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ABSTRACT
This research is concerned with dynamically determining appropriate flight patterns for a
set of autonomous UAVs in an urban environment, with multiple mission goals. The
UAVs are tasked with searching the urban region for targets of interest, and tracking
those targets that have been detected. We assume that there are limited communication
capabilities between the UAVs, and that there exist possible line of sight constraints
between  the  UAVs  and  the  targets.  Each  UAV  (i) operates its own dynamic feedback
loop, in a receding horizon framework, incorporating local information (from the
perspective of UAV i)  as  well  as  remote  information  (from  the  perspective  of  the
‘neighbor’ UAVs) to determine the tasks to perform and the optimal trajectory of UAV i
(and neighbor UAVs) over the planning horizon. This results in a decentralized and more
realistic model of the real-world situation. As the coupled task assignment and flight
route optimization formulation is NP-hard, a hybrid heuristic for continuous global
optimization is developed to solve for the flight plan and tasking over the planning
horizon. Metrics capturing the price of anarchy and price of decentralization are
developed, and experimental results are discussed.
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1.0 Introduction
Military forces face ever increasing challenges to provide timely and accurate information on targets of
interest, especially those targets that are mobile and elusive in nature. These tasks expand significantly in
complexity when the targets are operating in an urban environment. The use of multiple unmanned
vehicles to provide this target information allows our military personnel to stay out of the line of fire.
However,  many  remotely  controlled  UAVs  (i.e.,  swarms)  require  as  many  skilled  pilots  as  there  are
swarm members, and these pilots must be able to deconflict airspace demands, mission requirements, and
situational changes in near real time [3]. On the other hand, autonomous unmanned vehicles allow
military personnel to focus on more important issues like interpreting the gathered information, as
opposed to determining how to acquire the information [4]. Hence, there is a need to build intelligent
unmanned vehicles that can plan and adapt autonomously to the environment they perceive, while also
collaborating with the human-in-the-loop as appropriate [46]. The clear benefit is shortened mission-
critical decision chains.

There has recently been much research done in the area of autonomous vehicle control for surveillance
type missions. Almost all of the research has dealt with centralized cooperative control, with little
research concerned with the more realistic decentralized problem [5]. Steinberg [6] provided an overview
on research and limitations of autonomous technologies for the control of heterogeneous unmanned naval
vehicles. Experiments in this paper examined aspects such as multi-vehicle task allocation, dynamic
replanning of vehicle tasks, as well as human-in-the-loop management. Constraints considered in the
experiments included pop-up threats, adverse weather conditions, and communication issues between the
autonomous vehicles, among others. Ahmadzadeh et al. [8] described their Time Critical Coverage
planner as a component of the Office of Naval Research Autonomy program, ICARUS. Each autonomous
vehicle was modeled as a Dubin’s vehicle [9], where-by the vehicles were assumed to be point masses
with constant speed and a prescribed minimum turning radius. The vehicles also had prescribed starting
and ending spatial-temporal locations, as well as polygonal obstacles to be avoided throughout flight. The
objective was to determine the flight path of the UAVs to maximize the total sensor footprint over the
region of interest. The algorithm utilized to solve this problem was based on sampling a discretized search
graph [10]. Shetty, Sudit, and Nagi [13] considered the strategic routing of multiple unmanned combat
vehicles to service multiple potential targets in space. They formulated this as a mixed-integer linear
program, and through a decomposition scheme looked at solving the target assignment problem (vehicles
to targets) and then determining the tour that each vehicle should take to service their assigned targets (a
classical vehicle routing problem). They implemented a tabu-search heuristic to find solutions to their
problem. However, they assumed the vehicles were holonomic, which enabled the mixed-integer linear
program formulation. Schumacher and Shima [16] considered the problem of wide area search munitions,
which are capable of searching for, identifying, and attacking targets. Whenever a new target is found, or
a new task needs to be assigned, a capacitated transshipment assignment problem is solved, to determine
the optimal assignment of munitions to tasks.  Note that from one solution to the next solution, the
assignment can change significantly. Schouwenaars et al. [21] considered fuel-optimal paths for multiple
vehicles. They formulated the problem as a mixed-integer linear program. The vehicles needed to move
from an initial to final state, while avoiding vehicular collisions, as well as stationary and moving
obstacles. Obstacle positions were assumed known a priori. Kingston and Beard [22] presented an
algorithm to keep moving UAVs equally spaced (angularly) about a stationary target. The UAVs adapted
their spacing based on local communication with other UAVs. Velocity bounds were derived so that the
UAVs satisfied their kinematic constraints. They extended this approach to the case when the target was
moving, but the path and velocity of the target was assumed known throughout. Gu et al. [23] discussed
the problem of cooperative estimation using a team of UAVs. They considered the goal of organizing the
teams configuration to achieve optimal position and velocity estimates of a moving ground target.
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Close range maneuvering and following of a moving target continue to pose significant research
challenges [27]. Close-range maneuvering requires real-time dynamic replanning and decision-making, as
well as optimization of many parameters (taking into account the physical constraints of the vehicle). The
problem becomes even more complex when the goal is to track a moving target for which the target
dynamics  is  not  known.  In  [31,  32,  33],  Hirsch  et  al.  developed  a  decentralized  approach  for  the
autonomous cooperative control of UAVs, with the goal of persistent and accurate tracking of moving
ground targets in an urban domain. The UAVs were able to share limited information with neighboring
UAVs (other UAVs in their communication region), and had to dynamically re-plan their flight paths,
incorporating predicted target movements and re-planned flight paths of their neighbors into their own
decision making process. Line of sight also plays a big role in the flight plan of the UAVs and was
incorporated into the problem through the use of Plüker coordinates [1, 2]. However, it was assumed that
the targets were already known. In [44], Hirsch and Schroeder extended the work of [31, 32] to include, in
a decentralized framework, the UAVs actively searching for and detecting the targets, before tracking of
the targets can commence. Since the UAVs have no knowledge of how many targets are present in the
environment, at each decision making step, the UAVs needed to determine both the task to perform
(either  searching  for  new targets  or  tracking  those  targets  already  detected)  as  well  as  the  trajectory  to
optimally accomplish their task. This resulted in a coupled task assignment / route planning mathematical
formulation, which is highly nonlinear.  In this research, we look at the problem in [44] when the UAVs
have two different types of passive sensors on-board.  In addition, we analyze the results using ‘price of
anarchy’ [45] and ‘cost of decentralization’ metrics.

Figure 1: Dynamic feedback loop.
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2.0 Problem Description
The overall problem addressed here is to provide (i) continual surveillance over a region of interest and
(ii)  accurately  track  all  targets  detected  in  this  region.  Hence,  there  are  two  tasks  that  a  UAV  can  be
performing at any given time: searching for targets or tracking those targets already detected. For this
problem, there are N heterogeneous autonomous vehicles flying at a fixed altitude. The vehicles are
modeled as non-holonomic point masses on a two-dimensional plane with a minimum turning radius (i.e.,
a Dubin’s vehicle [9]). The vehicles have minimum and maximum speed restrictions, as well as a
maximum communication range, beyond which they cannot share information.  Each vehicle has an
independent internal representation of the surveillance region as a continuous search uncertainty map. For
each location Y in  the  region,  the  search  uncertainty  map  for  a  particular  UAV  stores  the  uncertainty
(from the UAVs perspective) of a target currently at location Y.  While  in  search  mode,  the  UAV  can
update its search uncertainty map using information from its own on-board sensor, as well as information
from other UAVs currently in search mode that can communicate with this UAV (i.e., its ‘neighbor’
UAVs). While in tracking mode, the UAV can only update its search uncertainty map using information
from neighbor UAVs that are in search mode. Similarly, each UAV has its own internal representation of
the targets in the region of interest. When in search mode, the UAV can only update its target map from
those neighbor UAVs in track mode. When in track mode, the UAV can update its target map based upon
its local sensors, as well as information provided from neighbor UAVs in track mode. The one exception
to this is if in search mode, it is possible (and hoped) that a UAV will detect a ‘new’ target. When this
happens, this target is added to the UAVs stored target map, and shared with neighbor UAVs.

The vehicles operate in a decentralized manner; at each time step, every UAV processes an equivalent
version of the same dynamic feedback loop, as presented in Figure 1. We discuss the feedback loop from
the standpoint of UAV i. At the current time, tc,  the  first  step  is  for  UAV i to move according to its
planned route, and continue to execute its current task (e.g., searching or tracking). Using on-board
sensors, UAV i either searches its current field of view for new targets or attempts to sense the targets
(known to UAV i) that are within its line of sight. The neighbors of UAV i send information relating to
their (a) current positions, trajectories, and tasking; (b) sensor characteristics; (c) search uncertainty maps;
and (d) sensed target maps. At this point, UAV i updates  its  assessment  of  the world,  represented as  a
fused search uncertainty map and a fused target location map. This fused picture is scored in some
qualitative manner, based upon the current positions of UAV i and neighbor UAVs, their current planned
trajectories and tasking, as well as the extrapolated search uncertainty map and target tracks, over the
planning horizon. If the resultant score is small, or if the elapsed time since the last replan for UAV i is
large, then UAV i solves a coupled tasking / route planning optimization problem for itself and its
neighbor UAVs, over the planning horizon (discussed in detail in [44]). The solution to this problem is a
tasking for each UAV and route for each UAV to fly in order to accomplish their tasking. We note that
while UAV i updates its own flight path and tasking, it does not share any of this computed information
with its neighbor UAVs. The reason for this is that the neighbors are going through this same feedback
loop, and may be incorporating additional knowledge not available to UAV i.   The  time  is  then
incremented, and the dynamic loop continues.

3.0 Heuristic Approach
To efficiently solve the optimization problem discussed above, we have developed a hybrid heuristic
combining Greedy Randomized Adaptive Search Procedures (GRASP) and Simulated Annealing (SA).
GRASP is a multi-start local search procedure, where each iteration consists of two phases, a construction
phase and a local search phase [38, 39, 40]. In the construction phase, interactions between greediness and
randomization generate a diverse set of quality solutions. The local search phase improves upon the
solutions found in the construction phase. In our implementation, we have only made use of the
construction portion of GRASP. Simulated annealing is a heuristic to find good-quality solutions to
optimization problems by approximating the cooling process of metals [41]. At each step, a current
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solution is perturbed. If the perturbation results in a better solution, then the current solution is replaced. If
the perturbed solution is worse than the current solution, it still might replace the current solution;
replacement will occur with a probability based on the distance between the current and perturbed
solution values and the current temperature in the annealing process. As the heuristic progresses, the
temperature is lowered, making it more and more unlikely to replace the current solution with a worse
solution.

For our hybrid GRASP-SA heuristic, the GRASP heuristic determines the task assignment for the UAVs,
interacting directly with a Simulated Annealing heuristic which determines the routes that the UAVs
should fly to accomplish their tasks. The best solution over all of the GRASP multi-start iterations is
retained as the final solution. We note here that a solution, for a given UAV, is the tasking and flight path
for that UAV, as well as all neighbors of that UAV, over the planning horizon.

4.0 Experiments and Analysis
Figure 2 shows our experimental environment, a simulated urban environment, displayed from an
overhead perspective.  The yellow rectangles represent buildings.  Small white squares represent UAVs;
the blue rectangular box emanating from each UAV is the sensor footprint, and the lines extending from
each UAV represent its projected flight path.  Sensors onboard the UAV can rotate independent of the
UAV’s heading.  The UAVs can communicate with each other, as long as a building doesn’t block their
line of sight.  The segments of the flight paths are colored either pink (used to represent timesteps where
the UAV is performing a “search” task) or green (where the UAV is performing a “tracking” task).  The
small pink squares represent targets.  The UAVs have no a priori knowledge of the number of targets or
their movement dynamics.  These targets can be stationary, mobile, or alternate between stationary and
mobile at different times.

The colored background in Figure 2 represents the minimum search uncertainty values across all UAVs.
The colors range from blue to red: blue representing areas of low search uncertainty, and red representing
areas of high search uncertainty.  A UAV that performs a search task over a particular area reduces the
uncertainty, changing the colors from red to blue.  If no UAV has searched over an area for a length of
time, the uncertainty increases, and the colors change from blue to red.

Figure 3 depicts time-step 3, when both UAV1 and UAV2 detect targets; however, their current
trajectories are such that they will overfly these targets, and not be able to track them. UAV3 is a neighbor
of both UAV1 and UAV2. Hence, UAV3 is made aware of these detected targets.  As seen in Figure 4, at
time-step 4 UAV3 switches from a search task to a track task, to track the target detected by UAV1.   At
time-step 5 (Figure 5), UAV2 is seen to shown modifying its flight path, so that it can begin tracking the
target it detected at time-step 3.

At  time-step  35  (Figure  6),  UAV1 detects two targets, and UAV2 detects  a  third  target.   Because  these
UAVs are neighbors, they communicate all detections to each other.  These UAVs switch from searching
to tracking the targets at time-step 36 (Figure 7), with modified trajectories to allow them to track all three
targets.  Both UAVs successfully track these targets until time-step 44, when they switch back to search
tasks.
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Figure 2: Initial time-step of experiment.

Figure 3: Time-step 3. Both UAVs 1 and 2 detect targets.
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Figure 4: Time-step 4. UAV3 begins tracking target detected by UAV1.

Figure 5: Time-step 5. UAV2 alters trajectory try to reacquire the target it detected at time-step 3.
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Figure 6: Time-step 35. UAV1 detects two targets, and UAV2 detects a third.

Figure 7: Time-step 36. UAVs 1 and 2 switch from a search to a track task, to keep track of
the three targets they detected at time-step 35.
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We analyze our experiment using two metrics.  The Cost of Decentralization is defined as a measure of
how the solution quality degrades from a centralized to a decentralized environment.  At each time-step in
our experiment, we determined the situation awareness picture of each UAV, and appropriately combined
these  pictures  to  create  the  situation  awareness  picture  for  a  centralized  problem.   We  then  used  that
centralized situation awareness picture to solve the coupled tasking / trajectory optimization problem for
all the UAVs.  We computed the number of UAVs where the tasking is different from the centralized to
the decentralized solution.  That result is shown in Figure 8.  For those UAVs with the same tasking, we
computed the average distance between their computed trajectories.  This is shown in Figure 9. One
would rightly expect that a centralized solution would be closer to optimal (in a global sense) than a
solution determined in a decentralized environment.

Figure 8: Cost of Decentralization. Number of UAVs with different tasking.

Figure 9: Cost of Decentralization. Average distance (in meters) between trajectories of those UAVs
with the same tasking.
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The average distance is smallest at time-step 84. Comparing the centralized with the decentralized
solution, two of the UAVs have the same tasking and two have different tasking.  The two with the same
tasking (tracking) have the same tracking situational awareness picture in both the centralized and
decentralized environments, and result in very similar computed trajectories. The average distance is
largest at time-step 93. At this time-step, only one UAV has the same tasking when comparing the
decentralized and centralized solutions.  Based on the situational awareness picture in the centralized
case, the UAV is routed in the opposite direction as from the decentralized case, resulting in the large
average distance.

The price of anarchy metric is adapted from routing in networks [45].  This is defined as the comparison
in solution quality between a selfish versus a cooperative approach.  At each time-step of the experiment,
going through the dynamic feedback loop of Figure 1, each UAV has the possibility of solving a coupled
task assignment and routing optimization problem.  In the cooperative case, as discussed above, the
UAVs solve this problem for themselves and their neighbors.  In the selfish case, while each UAV makes
use of the information provided by their neighbor UAVs to create their fused situational awareness
picture, each UAV solves the optimization problem only for themselves.  One would expect that a
cooperative solution would be more optimal (in the global sense) than a selfish solution. Again, we
computed the number of UAVs where the tasking is different from the cooperative to the selfish solution.
That result is shown in Figure 10.  For those UAVs with the same tasking, we computed the average
distance between their computed trajectories.  This is shown in Figure 11.

Figure 10: Price of Anarchy. Number of UAVs with different tasking.
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Figure 11: Price of Anarchy. Average distance (in meters) between trajectories of those UAVs with
the same tasking.

The smallest average distance occurred at time-step 55.  At this time-step, none of the UAVs are in
communication with each other, so the cooperative approach and the selfish approach should be the same.
Due to stochasticity in the heuristic, one of the UAVs was tasked differently between the cooperative and
selfish solutions, and for the three UAVs tasked the same, the trajectories are almost identical.

5.0 Conclusions and Future Research Directions
In this research, we have considered UAVs tasked with searching an urban environment for targets of
interest,  and  tracking  those  targets  that  have  been  detected.   The  UAVs  operate  cooperatively,  in  a
decentralized framework.  We have also introduced two metrics.  The first, the Cost of Decentralization,
measures the solution degradation in a decentralized framework versus a centralized framework.  The
second, the Price of Anarchy, measures the solution degradation as the UAVs move from a cooperative
approach to a selfish approach.  Future research will include investigating how to modify the tasking for
the UAVs on a sub-interval of the planning horizon, to account for collection opportunities, without
degrading the original tasking for the UAVs.
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