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I. INTRODUCTION

Nonlinear optics is often described in the frequency domain so that dispersive effects can

be treated in a simple way. The convolution integrals associated with nonlinear effects are

simplified by assuming that the radiation spectrum takes the form of a discrete set of narrow

peaks. In the case of few cycle pulses, the convolution integrals cannot be reduced, and a time

domain model becomes attractive. The finite-difference-time-domain (FDTD) technique is

a well established method for solving the exact Maxwell equations in a bounded or periodic

domain [1]. It may be used in connection with the particle-in-cell (PIC) technique to self-

consistently solve for the motions of a large number of charged particles in an electromagnetic

field [2]. This approach is often used to model fully nonlinear laser-plasma interactions and

beam-plasma interactions. In this work, it is extended to account for nonlinear laser-crystal

and beam-crystal interactions. This is accomplished by incorporating a model for bound

particles into the PIC code turboWAVE [3]. The model is fully parallelized, and runs in up

to three dimensions.

The PIC aspect of turboWAVE has much in common with a number of other codes

designed to model laser-plasma interactions [4–10]. The nonlinear optics aspect is related

to a number of other codes designed to model ultrashort pulse propagation in a nonlinear

medium [11–16]. Both types of codes can be divided into those that describe the radiation

by means of a complex envelope, and those that are fully explicit, i.e., those that resolve

the optical time scale. TurboWAVE supports both models, but in this work only the fully

explicit model is used. As a result, there is no assumption about the frequency content of the

radiation, and given the right model for the dielectric response, all nonlinear and dispersive

effects are accounted for.

Our model for the dielectric response generalizes the auxiliary equation technique de-

scribed in Refs. [13, 15]. In particular, bound charges in the dielectric are represented by

effective particles, whose contribution to the four-current is computed using PIC techniques.

The effective particles are subjected to forces arising from a superposition of macroscopic and

microscopic fields. The macroscopic field is the usual electromagnetic field that is computed

in any FDTD code, while the microscopic field is a three dimensional electrostatic potential

representing, e.g., an atomic binding potential. The resulting equation of motion is expanded

as an anharmonic oscillator equation. By using multiple species of effective particles, each
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satisfying a different oscillator equation, the material response can be tailored to match that

of real materials over a broad range of frequencies. Free charges are self-consistently incor-

porated into the model by linear superposition of the free and bound sources in the FDTD

field solver [36]. The resulting model is capable of modeling interactions among laser pulses,

particle beams, plasmas, and dielectric crystals, in a fully dispersive, nonlinear, anisotropic,

and kinetic way.

In Ref. [17], the turboWAVE extensions described in this report were introduced for the

first time. In Ref. [18], the model was applied to a novel electro-optic diagnostic technique. In

the present report, the model is described in more detail, and a formal analysis of numerical

stability is given. The model is extended to include third order nonlinearities, and the

implementation is demonstrated via three numerical experiments.

II. DESCRIPTION OF THE MODEL

The numerical model described here solves the exact Maxwell equations:

∇×H = J +
∂D

∂t
(1a)

∇× E = −∂B
∂t

(1b)

∇ ·D = ρ (1c)

∇ ·B = 0 (1d)

Here, B = µ0H + M and D = ε0E + P, where P is the polarization and M is the magneti-

zation. In the present work, we take M = 0. The polarization can be expressed in terms of

a spatially smoothed four-current due to bound charges, denoted by (〈η〉 , 〈j〉). This results

in [19]

∇×B = µ0 (J + 〈j〉) +
1

c2

∂E

∂t
(2a)

∇× E = −∂B
∂t

(2b)

∇ · E = (ρ+ 〈η〉) /ε0 (2c)

∇ ·B = 0 (2d)
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With this formulation, any field solver designed to account for free charges can be easily

adapted to account for bound charges by making the substitution

(ρ,J)→ (ρ+ 〈η〉 ,J + 〈j〉) (3)

Our model for (〈η〉 , 〈j〉) is based on calculating the motions of effective particles that

respond to the superposition of a microscopic binding potential and a macroscopic electric

field E. Denoting the displacement of an effective particle from its equilibrium position by

r, and expanding the microscopic potential in a Taylor series, results in the effective particle

equation of motion

∂2ri

∂t2
+
∑
jk

[
2Γij

∂rj

∂t
+ (Ω2)ijrj + aijkrjrk − brirjrj

]
=

q

m
Ei (4)

where the subscripts vary over Cartesian coordinates, and q/m is the charge to mass ratio.

The anisotropy of the medium is represented by the tensors Γ, Ω2, and a. These are,

respectively, the damping rate, the square of the resonant frequency, and the first anharmonic

coefficient. At present, the second anharmonic coefficient, b, is assumed scalar. By means

of a coordinate transformation, Ω2 can always be made diagonal. The basis vectors which

induce this transformation will be denoted by (eu, ev, ew). The basis vectors used for the

general calculation will be denoted (ex, ey, ez). The crystallographic basis vectors, which

generally coincide with (eu, ev, ew), are denoted (〈100〉 , 〈010〉 , 〈001〉).

In general, the parameters in Eq. (4) depend not only on tensor indices, but also on an

index p that identifies a particular particle. In other words, each particle may move in a

unique potential well, and may therefore satisfy a unique equation of motion. The system

of the particle together with its equation of motion is called an oscillator. In practical

implementations, it is convenient to group all particles that satisfy the same equation of

motion into an oscillator species with index s. Then the material parameters, q, m, Ω2, Γ,

a, and b, depend on s, while only r is explicitly dependent on p. As discussed below, the

macroscopic sources (〈η〉 , 〈j〉) can be derived from the set rp using a variation on source

deposition techniques developed for PIC codes.

III. ANALYTICAL DISPERSION RELATION

In order to analyze the model described above, consider the locally averaged displacement

〈rs〉 associated with each oscillator species. In the case of a uniform medium, this is related
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to the spatially smoothed four-current by

(〈η〉 , 〈j〉) =
∑

s

qsNs

(
−∇ · f 〈rs〉 ,

∂

∂t
f 〈rs〉

)
(5)

where Ns is the density of oscillators, and the tensor f is an oscillator strength. Assuming

local phase coherence, 〈rs〉 satisfies the same equation as rp, which in the (eu, ev, ew) basis

is (
∂2

∂t2
+ 2Γiis

∂

∂t
+ Ω2

iis

)
〈ris〉 = − qs

ms

(
∂Ai

∂t
+
∂φ

∂ξi

)
. (6)

where i is the coordinate index, ξi is the ith coordinate, A is the vector potential, and φ is

the scalar potential. Using the Coulomb gauge, the radiation is described by(
c2∇2 − ∂2

∂t2

)
Ai = −

∑
s

fiis
qsNs

ε0

∂ 〈ris〉
∂t

+
∂2φ

∂t∂ξi
(7)

Consider any mode with a wave-vector that is collinear with one of the principal axes,

(eu, ev, ew). Then, it can be shown that φ = 0, and the transverse components of A satisfy

the dispersion relation

ω2

(
1 +

∑
s

fiisω
2
ps

Dis(ω)

)
− c2k2 = 0 (8)

where ω2
ps = Nsq

2
s/ε0ms, and

Dis(ω) = Ω2
iis − 2iωΓiis − ω2 (9)

In the case of a medium comprised of a single, lossless, isotropic species with unit oscillator

strength, the dispersion relation is

(Ω2 − ω2)(ω2 − c2k2) + ω2ω2
p = 0 (10)

The primary feature of this dispersion relation is a stop-band between the resonant frequency,

Ω, and the cutoff frequency,
√

Ω2 + ω2
p.

IV. OSCILLATOR PARAMETERS

Measured dielectric properties are usually given as susceptibilities in the frequency do-

main. Hence, in order to apply the time dependent model described above to real mate-

rials, it is necessary to connect the constants Ω2, Γ, f, a, and b, with the susceptibilities
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Parameter Lattice Oscillator Electronic Oscillator

Oscillator Strength, f 1 1

Resonance Frequency, Ω 6.90× 1013 rad/s 6.38× 1015 rad/s

Damping Frequency, Γ 6.25× 1010 rad/s 0

Plasma Frequency, ωp 9.27× 1013 rad/s 1.78× 1016 rad/s

Anharmonic Coefficient, a123 −3.28× 1037 m−1s−2 4.1× 1041 m−1s−2

TABLE I: Oscillator Parameters for Gallium Phosphide

χ(n)(ω1, ω2, ...). In the (eu, ev, ew) basis, the linear susceptibility has only the diagonal ele-

ments

χii(ω) =
∑

s

fiisω
2
ps

Dis(ω)
(11)

Following Ref. [20], the first anharmonic coefficient is related to χ(2) by

χ
(2)
ijk(ω1, ω2, ω3) = −

∑
s

qs
ms

fsω
2
ps

Ds(ω1)Ds(ω2)Ds(ω3)
(aijk)s (12)

where for simplicity, a cubic crystal is assumed. The nonlinear susceptibility is related to

the electro-optic coefficient rijk via

χ
(2)
ijk(ω + δω, ω, δω) = −1

2

∑
lm

εil(ω)rlmk(ω, δω)εmj(ω) (13)

Here, the factor of 1/2 accounts for the degeneracy of sum and difference generation when

δω → 0, and ε is the relative permittivity. Finally, the nonlinear refractive index is given by

n2(ω) =
3

4

η0

n0(ω)2

∑
s

q2
s

m2
s

ω2
ps

D∗s(ω)Ds(ω)3
bs (14)

where n0 is the linear refractive index and η0 is the impedance of free space (see appendix).

Note that the charge to mass ratio qs/ms amounts to an extraneous free parameter that

could have been absorbed into qsNs, as, and bs. In this work, the electronic charge to mass

ratio is always assumed.

As an example, consider the cubic crystal gallium phosphide (GaP), which is useful for

electro-optic sensing applications [24–28]. Expressions fitting the measured linear dispersion

have already been given in Ref. [21]. There, two separate expressions were used for the

optical and THz regimes. A two-oscillator model based on the parameters given in Table I,

agrees with both expressions, as illustrated in Figs. 1(a) and (b).
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FIG. 1: Nonlinear Lorentz model for GaP. Panel (a) displays <(ε), where the solid curve is the

two-oscillator (2O) model and the points are from the expressions in Ref. [21]. Panel (b) is similar

to (a) except =(ε) is displayed. Panel (c) displays χ(2)
123(ωL± δω, ωL, δω), where ωL is a probe laser

frequency, given by 2πc/ωL = 0.6328 µm. The solid curve is the 2O model, and the dashed curve

is the expression in Ref. [22]. The triangles indicate the infra-red frequencies where the data points

in [22] are located. Panel (d) displays r123(ω, δω) = r41(ω, δω), where δω → 0. The curve is the

2O model, and the points are the data from Ref. [23]. The 2O model cannot be made consistent

with both Refs. [22] and [23].

Once the linear dispersion is determined, the only remaining free parameters are the

anharmonic coefficients associated with each oscillator. In order to choose these parameters,

an attempt was made to simultaneously fit data from Refs. [22] and [23]. In Ref. [22],

χ
(2)
ijk(ωL ± δω, ωL, δω) is reported, where ωL is the frequency of a probing helium-neon laser,

and δω is one of several infra-red frequencies produced by a multi-line H2+O2 laser. In

Ref. [23], rijk(ω, δω) is measured, where δω is in the radio frequency (RF) range, and ω

takes several values in the optical range. It was found that the two-oscillator model cannot
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be made to agree with both experiments. The parameters of Table I are chosen to obtain

agreement with the measured rijk(ω, δω). The resulting dispersion is displayed in Figs. 1(c)

and (d). In order to make the two-oscillator model agree with χ(2)(ωL± δω, ωL, δω), a much

larger absolute value of the lattice anharmonic coefficient must be used. This leads, roughly,

to the oscillator parameters given in Ref. [17], although for the simulations presented there

and in Ref. [18], the lattice oscillator was taken to be linear.

V. NUMERICAL TECHNIQUE

A. Oscillator Equation and Source Deposition

Most electromagnetic PIC codes use the leap-frog technique. More specifically, En+1 is

computed using En, Bn+ 1
2 and Jn+ 1

2 , where n is the time level. Then, Bn+ 3
2 is computed

using Bn+ 1
2 and En+1. In some cases a Poisson solver is used to refine En+1 using ρn+1. As

discussed above, any such field solver can be used in the presence of an oscillator population

by making the substitution (ρ,J) → (ρ + 〈η〉 ,J + 〈j〉). This implies that 〈η〉 is known at

integral time levels, and 〈j〉 is known at half-integral time levels.

To compute 〈η〉n+1 and 〈j〉n+ 1
2 , the displacements rn

p and rn+1
p are needed. Let T repre-

sent the matrix of transformation of a vector from the (eu, ev, ew) basis to the (ex, ey, ez)

basis. If all quantities characterizing the oscillators are stored in the (eu, ev, ew) basis, the

displacements can be updated using

rn+1
i − 2rn

i + rn−1
i

∆t2
+ 2Γii

rn+1
i − rn

i

∆t
+ (Ω2)iir

n
i =

F n
i

m
(15)

where ∆t is the time step and

Fn = qT−1En −marnrn +mb(rn · rn)rn (16)

The macroscopic four-current (〈η〉 , 〈j〉) associated with the microscopic orbits rn
p can be

computed using PIC techniques. These techniques regard each particle as a “cloud” with

dimensions on the order of a cell size. Knowing the orbit of each cloud’s centroid allows

one to compute the amount of charge in each cell as a function of time, as well as the

current passing through each cell wall. Various schemes have been developed to facilitate

this calculation [2, 29, 30]. In the case of bound charges, these schemes have to be applied

with care in order to minimize round-off errors associated with very small displacements.
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FIG. 2: Charge Deposition. (a) Geometry of a grid cell in relation to the points on the Yee

mesh. The three dimensional arrows point to the mesh points where the corresponding electric

field components are known. (b) Quadratic Weighting. The bound charges are represented by

charge clouds (solid curve) whose equilibrium position (dashed curve) is the centroid of the cell

volume. For an electron, the charge in a cell is increased (decreased) by the area of the intersection

of the blue (red) area with the cell.

To deposit the sources due to bound charges, place one oscillator, per species, in each

grid cell [37]. The cell geometry is shown in Fig. 2(a). The deposition of charge, in one

dimension, is illustrated in Fig. 2(b). The oscillator is represented by two oppositely charged

density distributions. The equilibrium distribution, shown as a dashed line, is immobile.

The displaced distribution, shown as a solid line, executes the orbit described by Eq. (15).

The net charge in a cell is the integral over the cell volume of the difference between the

distributions. To minimize round-off error, this integral should not be carried out by re-

using a PIC routine that deposits each distribution separately. Instead, expressions should

be written for the net charge in a cell, and expanded to lowest order in the displacement.

Then, for the oscillator in cell (i, j, k), the net charge density is distributed in the surrounding

cells as follows:

〈η〉ni±1,j,k = ±ex · Tfrn
p

Nsqs
2∆x

(17a)

〈η〉ni,j±1,k = ±ey · Tfrn
p

Nsqs
2∆y

(17b)

〈η〉ni,j,k±1 = ±ez · Tfrn
p

Nsqs
2∆z

(17c)

Here, the cell dimension is ∆x × ∆y × ∆z. The current density through the surrounding
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cell walls follows directly from charge conservation:

ex · 〈j〉
n+ 1

2

i± 1
2
,j,k

= ±
(
〈η〉n+1

i±1,j,k − 〈η〉
n
i±1,j,k

) ∆x

∆t
(18a)

ey · 〈j〉
n+ 1

2

i,j± 1
2
,k

= ±
(
〈η〉n+1

i,j±1,k − 〈η〉
n
i,j±1,k

) ∆y

∆t
(18b)

ez · 〈j〉
n+ 1

2

i,j,k± 1
2

= ±
(
〈η〉n+1

i,j,k±1 − 〈η〉
n
i,j,k±1

) ∆z

∆t
(18c)

Note that the above expressions are particular to the choice of quadratic weighting. This

choice provides adequate smoothing, while also allowing for abrupt vacuum-dielectric tran-

sitions. A useful fact is that the current density due to an effective particle, through any

cell wall enclosing that particle, is the normal component of 1
2
Nsqsvp, where

vp = Tf

(
rn+1

p − rn
p

∆t

)
(19)

is the velocity of the effective particle in the (ex, ey, ez) basis.

B. Linear Stability and Accuracy

In an ordinary PIC code, the primary stability criterion is the Courant condition, which

in one dimension reads c∆t < ∆z, where ∆t is the time step and ∆z is the grid spacing.

It is clear that in the presence of a dispersionless dielectric, this would be modified to

read c∆t/n < ∆z, where n is the refractive index. In the case of a fully dispersive model

such as the one described above, the modification of the Courant condition is more subtle.

Expressing Eqs. (6) and (7) in finite difference form, assuming propagation along a principal

axis, and inserting exponential forms for Ai and 〈ris〉, gives the numerical dispersion relation

cosω∆t = V(k) + Pi(ω) (20)

where

V(k) = 1− 2c2∆t2
(

sin2 1
2
kx∆x

∆x2
+

sin2 1
2
ky∆y

∆y2
+

sin2 1
2
kz∆z

∆z2

)
(21)

and

Pi(ω) =
∑

s

1
2
fiisω

2
ps∆t

2 sin2 1
2
ω∆t

1
4
(Ω2)iis∆t2 − (1 + Γiis∆t) sin2 1

2
ω∆t− i

2
Γiis∆t sinω∆t

(22)

Note that when the density of oscillators vanishes, Pi → 0 and the well known vacuum

equation is recovered. The effect of Pi can be estimated by assuming Ω2∆t2 � 1 and
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kx∆x ∼ ky∆y ∼ kz∆z ∼ ω∆t ∼ π. These assumptions are motivated by the fact that

the resonance frequency should be well resolved, and by the expectation that numerical

instabilities are most severe at the Nyquist frequency. Under these assumptions, the stability

criterion becomes

∆t .

(
c2

∆x2
+

c2

∆y2
+

c2

∆z2

)−1/2
(

1− 1

4

∑
s

fiisω
2
ps∆t

2

1 + Γiis∆t

)1/2

(23)

This is more stringent than the usual Courant condition. Numerical experiments show that

Eq. (23) is accurate in practice.

In order to evaluate the accuracy and stability of the differencing scheme more precisely,

the numerical dispersion relation is evaluated numerically for the case of a single, lossless

oscillator species. Since the dispersion relation scales, we normalize all frequencies to the

resonant frequency, Ω, taking ωp = 2Ω, ∆z = 0.5c/Ω, and ∆x = ∆y → ∞. The results

are shown in Fig. 3 for three choices of the time step. The case ∆t = 0.2/Ω is shown in

panel (a), the case ∆t = 0.4/Ω is shown in panel (b), and the case ∆t = 0.48/Ω is shown

in panel (c). The analytical dispersion relation is overlayed for comparison. As usual, the

best accuracy is obtained for small values of ω and k. As c∆t/∆z increases, the accuracy

improves, until numerical instability sets in. This behavior is similar to the vacuum case.

However, unlike the vacuum case, instability occurs for c∆t/∆z < 1, as shown in panel (c).

Better accuracy may be obtained by decreasing both ∆z and ∆t proportionately.

C. Nonlinear Stability

In the case of the fully nonlinear system, a rigorous stability analysis is difficult. However,

if the oscillator equation is viewed as describing an effective particle in a potential well, the

stability criterion may be viewed as the requirement that the particle never enter any region

of runaway acceleration. Such a region exists if b > 0, for in this case there is a divergent

repulsive force as r → ±∞. Instability is also possible if b = 0 and a 6= 0. Assuming there

are no metastable regions, the stability criterion can be written

FNL · r < mΩ2r · r (24)

where

FNL = mb(r · r)r−marr (25)
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FIG. 3: Numerical dispersion for (a) c∆t/∆z = 0.4, (b) c∆t/∆z = 0.8, and (c) c∆t/∆z =

0.96. Solid curves are the analytical dispersion relation, solid circles are <(ω/Ω), and open circles

connected by a thin line are =(ω/Ω). In all cases, ωp/Ω = 2, and ∆z = 0.5c/Ω. Panel (c) shows

that numerical instability may occur for c∆t/∆z < 1.

If one is interested primarily in second order effects, the system can be stabilized by taking

b < 0. The magnitude of b is chosen such that the order of magnitude of the first, second,

and third order forces are the same at some critical point. This leads to

b ≈ − a
2

Ω2
(26)

where a and Ω are typical values of the elements of a and Ω. If third order effects are

important physically, a stabilizing fifth order nonlinearity can be easily introduced. In this

case,

FNL = md(r · r)2r +mb(r · r)r−marr (27)

where d is the fifth order anharmonic coefficient. Demanding that the first, third, and fifth

order forces be equal at some critical point gives

d ≈ − b
2

Ω2
(28)

The ultimate nonlinear stabilization technique would utilize physical effects, such as ion-

ization in the case of the electronic oscillator, or material damage in the case of the lattice

oscillator. However, accounting for these processes is beyond the scope of the present work.
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Parameter Lattice Oscillator False Resonance

Oscillator Strength, f 1 1

Resonance Frequency, Ω 6.90× 1013 rad/s 8.91× 1014 rad/s

Damping Frequency, Γ 6.25× 1010 rad/s 0

Plasma Frequency, ωp 9.27× 1013 rad/s 2.46× 1015 rad/s

Anharmonic Coefficient, a123 −3.28× 1037 m−1s−2 1.23× 1040 m−1s−2

TABLE II: False Resonance Model for Gallium Phosphide

FIG. 4: False resonance model for GaP. Panel (a) displays <(ε), where the solid curve is the

false resonance model and the points are from the expressions in Ref. [21]. Panel (b) displays

χ
(2)
123(2δω, δω, δω), where the curve is the false resonance model and the points are the true resonance

model (Table I).

D. False Resonance Technique for Accelerating Computation

It sometimes happens that the accuracy and stability criteria, Ω2∆t2 � 1 and ω2
p∆t2 � 1,

force one to use a very large number of time steps to simulate a given process. This limitation

can be mitigated if the frequency range of interest is well below Ω. In such cases, it is

possible to artificially shift Ω to a lower frequency while preserving the dispersion relation

in the region of interest. In this way, the “true resonance” is replaced by a “false resonance”

which is easier to resolve, but leads to the same physics.

As an example of a false resonance model, consider again GaP, which has the true reso-

nance parameters displayed in Table I. When modeling an electron bunch with a characteris-

tic time of, say, 100 femtoseconds, the frequency range of interest is well below the electronic
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resonance, which has 2π/Ω ≈ 1 femtosecond. One may then use a false resonance model

such as the one described by Table II. The linear and nonlinear dispersion curves associated

with this model are shown in Fig. 4. In the THz range, the dispersion relation remains

accurate. Note that the dispersion in this range could be fine tuned by adding additional

false resonances.

E. Boundary Conditions and Moving Window

In simulations of laser-plasma interactions, the moving window technique [31] is often

used. In this technique, the mesh points are shifted by one cell in between time levels

such that the computational region, or “window,” moves at the speed of light. Boundary

conditions are greatly simplified by the requirements of causality. When the plasma density

is low, the laser pulse group velocity is nearly the speed of light, and the pulse stays in the

window for a long time. Hence, the window only has to be as long as the laser pulse, even

if the interaction region is much longer.

When the group velocity is significantly smaller than the speed of light, the pulse quickly

falls behind a light frame window, and one might as well work in the lab frame. If the

window speed is the group velocity, a fully dispersive model might allow precursor signals

to reach the front of the window. Moreover, signals reflected from the back of the window

might work their way toward the region of interest. One solution is to use perfectly matched

layers (PML) [32] to absorb waves near the boundaries of the window. In order for this to

be effective, it is necessary to use a large number of layers due to the fact that the moving

window involves shifting the field data by one cell between time levels. In order that this

shift should weakly perturb the solution, the PML conductivity has to change very gradually

from one cell to the next.

In the case of lab frame simulations, another option is to use Lindman’s absorbing bound-

ary condition [33] in the longitudinal direction, and periodic boundary conditions trans-

versely. If a Poisson equation has to be solved, the solution in the box can be matched to a

decaying solution outside the box [30].
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VI. NUMERICAL EXPERIMENTS

The model described above has been implemented as a module within the turboWAVE

[3] framework. In this section, three numerical experiments are presented. First, the electro-

optic effect in GaP is demonstrated by comparing the numerical change in polarization with

that predicted by the low frequency theory. Second, soliton propagation in fused silica is

demonstrated. Finally, to take full advantage of the PIC framework, a relativistic electron

bunch is passed near a GaP crystal, and the induced fields are examined.

A. Electro-Optic Effect

In this numerical experiment, an x-polarized laser pulse is copropagated with a y-polarized

THz half-wave in a GaP crystal, and the change in the polarization state of the laser pulse is

measured. The length of the THz half-wave is chosen to be long enough so that the standard

picture of the electro-optic effect applies. In this picture, the change in the impermeability

[38] tensor due to a DC electric field is

∆ηij = rijkEk (29)

For any Zinc-Blende type crystal, rijk = r123 = r41 if all three indices are distinct, and

rijk = 0 otherwise. The crystal orientation is represented by the operator T, which can be

viewed as a sequence of rotations that re-orients the crystal starting with the (eu, ev, ew)

and (ex, ey, ez) bases aligned. It turns out that the electro-optic effect is maximized if [34]

T = Rz(π/2)Rx(−π/2)Rz(π/4) (30)

with the laser field polarized in the x-direction and the DC field polarized in the y-direction.

Here, Ri is an active right-handed rotation about the ith coordinate axis. As an example,

if E and ∆η are given in the (ex, ey, ez) basis, and r is given in the (eu, ev, ew) basis, then

∆η = TrT−1ET−1. To calculate the change in polarization due to the electro-optic effect, a

principal axis transformation is usually made [34]. Alternatively, one may make direct use

of the solution of the slowly varying envelope equation,

E(z) = exp

(
iπ∆εz

nλ0

)
E(z = 0) (31)
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where E is the complex electric field envelope, λ0 is the free space laser wavelength, n is the

refractive index of the unperturbed crystal, and ∆ε is the change in permittivity induced by

the DC field. This equation remains valid even when ∆ε is a tensor and E is a vector, and

is easily evaluated in a software environment that supports the exponential of a matrix.

We now compare the prediction of Eq. (31) with the results of a turboWAVE simulation.

In the simulation, an x-polarized laser pulse and a y-polarized THz half-wave are incident on

a GaP crystal oriented as in Eq. (30). The simulation parameters are given in Tables I and

III. The lattice nonlinearity was stabilized with b = −a2/Ω2. The results from the simulation

are shown in Fig. 5. The data are evaluated 60 µm into the crystal to avoid interference from

reflections generated at either vacuum-crystal interface. Since the turboWAVE model uses

a universal electric field, the optical and THz frequency components have to be extracted

by means of a Fourier filter. The envelope of the optical wave is constructed by applying a

hard-edged band-pass filter centered at the optical frequency, +ω0. The result is then shifted

in frequency by −ω0, multiplied by 2 (to account for the energy in the negative frequencies)

and the inverse Fourier transform is applied. Based on Fig. 5, the polarization ratio at

z = 60 µm, and at times prior to the generation of internal reflections, is |Ey/Ex|2 ≈ 0.0018.

Applying the analytical formula with the inputs Ey = 68 kV/cm, n = 3.16, and r123 = 0.89

pm/V gives |Ey/Ex|2 ≈ 0.0019. Thus, the simulation model closely agrees with the theoretical

prediction.

An interesting feature of the simulation data is that the second y-polarized optical pulse is

larger than the first. This appears to happen because the reflected x-polarized optical pulse

continues to be rotated by the reflected y-polarized THz pulse. This leads to a coherent

reinforcement of the reflected y-polarized optical pulse.

B. Soliton Propagation

In this numerical experiment, a 20 femtosecond, 2.1 µm pulse is propagated in fused silica

in both the linear and soliton regimes. The Sellmeier formula for fused silica can be matched

exactly to a three oscillator model, the parameters of which are displayed in Table IV. The

second anharmonic coefficient is chosen to give a nonlinear refractive index of n2 = 3×10−16

cm2/W. The choice to take b 6= 0 only in the third oscillator has no effect other than on the

frequency dependence of n2.
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Parameter Symbol Value

Time Step c∆t 0.012 µm

Space Step ∆z 0.017 µm

Cells Nz 213

Steps Nt 217

THz Field Ey 68 kV/cm

THz Half Wave τH 2.2 ps

Laser Field |Ex| 18 kV/cm

Laser FWHM τL 220 fs

Laser wavelength λ0 0.81 µm

Crystal Length L 120 µm

Crystal Orientation T Eq. 30

TABLE III: Parameters for simulation of electro-optic effect. The fields are measured inside the

dielectric. The THz field is a half-cycle pulse with base-to-base width τH .

FIG. 5: Simulated electric field vs. time at z = 60 µm from the entrance plane of the crystal.

(a) y-polarized THz field (low-pass Fourier filter) (b) x-polarized optical field envelope (band-pass

Fourier filter with shift) (c) y-polarized optical field envelope (band-pass Fourier filter with shift).

The incident optical field is a single, purely x-polarized pulse, and the incident THz field is a single,

purely y-polarized half-wave. The additional optical pulses, and the late-time distortion of the THz

field, are due to reflections.
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Parameter Osc. 1 Osc. 2 Osc. 3 Unit

Oscillator Strength, f 1 1 1

Resonance Frequency, Ω 2.35× 1014 1.63× 1016 2.78× 1016 rad/s

Damping Frequency, Γ 0 0 0 rad/s

Plasma Frequency, ωp 1.79× 1014 1.06× 1016 2.30× 1016 rad/s

Anharmonic Coefficient, b 0 0 4.72× 1054 m−2s−2

TABLE IV: Oscillator Parameters for Fused Silica

Parameter Symbol Value

Time Step c∆t 0.014 µm

Space Step ∆z 0.034 µm

Cells Nz 212

Steps Nt 4× 105

Window Speed vg 0.68c

PML thickness - 8.7 µm

Intensity I0 0.4 TW/cm2

Pulse Width T0 20 fs

Free Space Wavelength λ0 2.1 µm

Dispersion Length LD 2.8 mm

Nonlinear Length LNL 2.8 mm

GVD Coefficient β2 −1.42× 10−25 s2/m

TABLE V: Parameters for simulation of soliton propagation.

The amplitude envelope of the fundamental soliton has the form sech(τ), where τ =

(t− z/vg)/T0, vg is the group velocity, and T0 is the pulse width parameter. In simulations,

it is convenient to have a function whose support is strictly in a finite region. Furthermore,

in a model of the type used here, the initial conditions depend on z, and the pulse starts in

vacuum. Hence, the appropriate initial condition is [39]

Ex(t = 0, z) = ε1/4|E0|sech(ζ/cT0) sin(ω0ζ/c)C(ζ/cT0) (32)

where ζ = z − z0, z0 fixes the spatial origin, and C(x) is a suitable clipping function. The
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FIG. 6: Simulation of 1D soliton propagation in fused silica. Plots show ε1/2E2
x/η0 vs. vgt − z,

where vgt is held fixed in each plot, and vg is the velocity of the moving window. Panel (a) shows

the initial pulse, (b) shows the pulse after 8 mm propagation, and (c) shows the result from (b) in

the case where the initial intensity is I0/100.

clipping function used here is

C(x) =


|x| ≤ 4 , 1

4 < |x| < 6 , cos2[(|x| − 4)π/4]

|x| ≥ 6 , 0

(33)

The parameters of the pulse, and the numerical parameters associated with the simulation,

are displayed in Table V. The intensity and electric field are related by I0 = ε1/2|E0|2/2η0.

The free space wavelength is λ0 = 2πc/ω0. The group velocity dispersion (GVD) coefficient

is defined by cβ2 = ∂2(ε1/2ω)/∂t2|ω=ω0 . The dispersion length, LD = T 2
0 /|β2|, measures the

propagation length needed to observe group velocity dispersion (GVD) effects. The nonlinear

length, LNL = c/ω0n2I0, measures the propagation length needed to observe nonlinear pulse

distortions. The conditions β2 < 0 and LD = LNL result in stable propagation of the pulse

without distortion [20, 35]. This is illustrated in Fig. 6. Comparison of panels (a) and (b)

shows that when I0 = 0.4 TW/cm2, the pulse maintains its original form after propagating

nearly 3LD. Panel (c) shows that when I0 is reduced by a factor of 100, the pulse broadens

significantly over the same propagation distance.
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Parameter Symbol Value

Time Step c∆t 0.168 µm

Space Step ∆x = ∆y = ∆z 0.672 µm

Cells Nx ×Ny ×Nz 210 × 210 × 210

Steps Nt 3× 104

Window Speed v c

Bunch Diameter rb 8 µm

Bunch Length τb 80 fs

Electron Energy (γ − 1)mc2 250 MeV

Crystal Size Lx × Ly × Lz 605× 360×∞ µm3

Crystal Orientation T Eq. 30

TABLE VI: Parameters for simulation of fields induced by an electron bunch.

C. Electron Bunch Passing Near a Crystal

A three dimensional simulation of the fields generated in an electro-optic crystal by a

passing relativistic electron bunch was described in Ref. [17]. Here, a similar simulation is

carried out, with the following distinctions. First, the bunch charge is varied until significant

nonlinear distortions are observed in the bunch fields. Second, the false resonance technique

is used to accelerate the calculation, rather than the sub-cycling technique that was used

in Ref. [17]. The former technique is found to have superior stability and conservation

properties. The false resonance oscillator parameters are the same as those given in Table II,

except that a stabilizing third order nonlinearity is added to each oscillator. The other

parameters of the simulation are given in Table VI.

Figs. 7(a) and (b) display the electric field component Ey(x = 0, y, z), for the cases

Q = 0.28 pC and Q = 2.8 pC, where Q is the bunch charge. Figs. 7(c) and (d) show the

corresponding line-outs at y = 0. The bunch charge affects the degree of nonlinearity in

the interaction. The primary features are the vertical phase fronts located in the range

−400 < z − ct < −300 µm, and the diagonal phase front that appears at all z − ct. As

discussed previously [17], these can be roughly associated with coherent transition radiation

(CTR) and Cherenkov radiation, respectively. In electro-optic sensing applications, the
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FIG. 7: Simulation of fields induced by an electron bunch with (a,c) Q = 0.28 pC and (b,d) Q = 2.8

pC. The three dimensional data is evaluated at x = 0 in order to present a two dimensional plot.

The green oval represents the location of the electron bunch, which propagates from left to right.

The boundary between the crystal and vacuum is located at y = 200 µm. The plane of incidence

is located at z − ct = -435 µm. The line-outs in (c) and (d) are evaluated at y = 0.

CTR-like feature is supposed to retain the form of the vacuum bunch fields. However, as is

well known, dispersive effects lead to distortions of the type shown in the figure.

When the bunch charge is high enough to excite large nonlinear polarization currents in

the material, the fields induced in the crystal may be further distorted. Such a case is shown
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FIG. 8: Conservation of energy during simulated bunch-crystal interaction.

in Figs. 7(b) and (d). For the chosen crystal orientation, the nonlinear polarization is

P(2) = χ
(2)
123E

2
yex + 2χ

(2)
123ExEyey (34)

Hence, a y-polarized THz field induces an x-polarized field with second harmonic com-

ponents. This field then mixes with the original y-polarized field to produce a distorted

y-polarized field. This distortion can be clearly seen by comparing panels (c) and (d) of

Fig. 7. Qualitatively, the effect is to produce narrower features in the waveform. In an

electro-optic sensing application, this could adversely affect the fidelity of the diagnostic.

Finally, consider the flow of energy in the crystal during the simulation. For the specific

form of the dielectric response considered in this report, Poynting’s theorem can be written

as ∫
∂Ω

dn · S +
ε0
2

d

dt

∫
Ω

d3r(E2 + c2B2) +
∑
p∈Ω

(
dUp

dt
+ Lp

)
= 0 (35)

where the first term is the energy radiated through a surface ∂Ω, the second is the rate of

change of field energy in the volume Ω, and the third is the rate of change of the energy of

all the effective particles in Ω. Here, the effective particle energy is

Up =
1

2
mp

(
drp

dt

)2

+ qpφp(rp) (36)

where mp is the mass, rp is the displacement, qp is the charge, and φp(rp) is the microscopic

electrostatic potential of the displaced particle. The rate of frictional damping for an effective
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particle is

Lp = 2Γpmp

(
drp

dt

)2

(37)

Fig. 8 displays the three terms in Poynting’s theorem, integrated over time, along with

the sum. The “radiated” curve is negative, corresponding to the fact that the bunch fields

propagate into the crystal. The steep initial slope corresponds to the generation of the CTR-

like feature, while the more gradual slope corresponds to the generation of the Cherenkov-like

feature. The “field” and “material” curves show that half the incident energy goes to the

fields, while the other half goes to the effective particles. The “sum” curve shows that energy

is conserved, to the extent that it vanishes. One notices a slight discrepancy at the moment

the bunch fields first enter the crystal. This may be related to the numerical process of

generating a reflected wave.

VII. CONCLUSIONS

The physics of nonlinear crystals excited by laser pulses, plasmas, particle beams, or any

combination of these, can be numerically simulated using an effective particle model based

on particle-in-cell techniques. In this model, bound charges respond to a superposition

of microscopic and macroscopic fields, where the former are chosen to satisfy the known

dispersion characteristics of the material, and the latter are self-consistently computed using

the usual FDTD technique. The resulting numerical model is extremely flexible and makes

very few assumptions. It is, however, computationally expensive. Nevertheless, it is now

possible to carry out three dimensional simulations of electro-optic sensing, where the bunch

fields induced in an electro-optic crystal are computed with unprecedented detail. Other

applications of this model might include modeling the nonlinear optics of nano-composites,

or frequency mixing with ultra-short pulses.
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In this appendix, the relationship between the nonlinear refractive index, n2, and the sec-

ond anharmonic coefficient, b, is derived. For simplicity, all quantities are reduced to scalars.
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Consider a perturbation expansion of the anharmonic oscillator equation. Suppressing the

species index, and expressing all quantities in frequency space, the first order equation is

D(ω)r(1) =
q

m
E(ω) (38)

and the third order equation is

D(ω)r(3) = b
(
r(1) ∗ r(1)

)
∗ r(1) (39)

Here, the asterisk denotes convolution over frequency, and the electric field is in the form

E(ω) =
E0

2
[δ(ω − ω0) + δ(ω + ω0)] (40)

Inserting r(1) into the third order equation gives

r(3) = b

(
qE0

2m

)3
F (ω)

D(ω)
(41)

where

F (ω) =
δ(ω − 3ω0)

D3(ω0)
+

3δ(ω − ω0)

D2(ω0)D(−ω0)
+

3δ(ω + ω0)

D2(−ω0)D(ω0)
+
δ(ω + 3ω0)

D3(−ω0)
(42)

Restoring species indices, the nonlinear polarization is

P (3) =
∑

s

Nsqsr
(3)
s (43)

This quantity must now be connected to the refractive index.

The refractive index is defined by n = ε1/2, with ε the relative permittivity. Using

D = ε0εE, this can be written as

n =

(
ε0E + P

ε0E

)1/2

(44)

For a weakly nonlinear interaction, P (3) � P (1), and

n ≈ n0 +
P (3)

2n0ε0E
(45)

where n0 is the linear index, given by n2
0 = 1 + P (1)/ε0E. The nonlinear index, n2, is

conventionally defined by

n = n0 + n2I0 (46)

where I0 is the cycle averaged intensity. Choosing the Fourier transform convention such

that E0 is the peak value of the electric field, one has the relationship I0 = n0E
2
0/2η0.

Finally, equating Eqs. (45) and (46), and evaluating at ω0, gives

n2(ω0) =
3

4

η0

n0(ω0)2

∑
s

q2
s

m2
s

ω2
ps

D∗s(ω0)Ds(ω0)3
bs (47)
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