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[I]   Data assimilation experiments with the coupled physical, bio-optical model of 
Monterey Bay are presented. The objective of this study is to investigate whether the 
assimilation of satellite-derived bio-optical properties can improve the model predictions 
(phytoplankton population, chlorophyll) in a coastal ocean on time scales of 1-5 days. The 
Monterey Bay model consists of a physical model based on the Navy Coastal Ocean Model 
and a biochemical model which includes three nutrients, two phytoplankton groups 
(diatoms and small phytoplankton), two groups of Zooplankton grazers, and two detrital 
pools. The Navy Coupled Ocean Data Assimilation system is used for the assimilation 
of physical observations. For the assimilation of bio-optical observations, we used 
reduced-order Kaiman filter with a stationary forecast error covariance. The forecast error 
covariance is specified in the subspace of the multivariate (bio-optical, physical) empirical 
orthogonal functions estimated from a monthlong model run. With the assimilation of 
satellite-derived bio-optical properties (chlorophyll a or absorption due to phytoplankton), 
the model was able to reproduce intensity and tendencies in subsurface chlorophyll 
distributions observed at water sample locations in the Monterey Bay, CA. Data 
assimilation also improved agreement between the observed and model-predicted ratios 
between diatoms and small phytoplankton populations. Model runs with or without 
assimilation of satellite-derived bio-optical observations show underestimated values of 
nitrate as compared to the water sample observations. We found that an instantaneous 
update of nitrate based on statistical relations between temperature and nitrate corrected the 
model underestimation of the nitrate fields during the multivariate update. 

Citation:   Shulman, I., S. Frolov, S. Anderson, B. Penta, R. Gould, P. Sakalaukus, and S. Ladner (2013). Impact of 
bio-optical data assimilation on short-term coupled physical, bio-optical model predictions, J. Geophys. Res. Oceans, 118, 
2215-2230, doi: 10.1002/jgrc20177. 

1.    Introduction (updating) of model bio-optical and physical state variables 

r,_.      ., JII«-_X!        i based on available observations [for example, Anderson et al, 
[2]  During the last decade, considerable enorts have been innn inni  \r*.-i     JC lnm  D   •/,       -   ; -mm L t   .    ,   &, .    ' . ,      -    j .   . 2000,2001; Natvik and Evensen, 2003; Bestktepe et al., 2003: 

made in development and testing approaches tor the assimi- ., , „ inm   „ . .       ,   -„■>,„   „   ...        , 
c, .      K.   , Tr       • «       .ii'i     L Nerger and Gregg, 2007  Cossanm et al., 2009; Smith and 

lation of b.o-opt,cal properties (especially satellite observa- McGmicuM   m ,  Ciaval(a e( d  20„  ford e( fl/  2012 

tions or the ocean color) into biochemical, physical models. ,,     .   ,  <,n,~  „                     . ^         -inm T<_     L- 
_              ..     ,        ,   '    ,        ,         •   •   :•       c       , , nu et at., 2012; Rousseaux and Gregg, 20121. The obiectives 
Some studies have focused on the optimization of model r„        ...            ,.   .                  .   e            ,            , 

.,  r      ,  ,     ,        ,. ol many studies were the improvement ot seasonal or yearly 
parameters and paramctenzations with regards to observations ,•   ■     ,    ru.       ...         _■     c              %•**•• 

c              ,     „ .           ,    lrvrio   T?„.„.    ,,          , hindcasts ol bio-optical properties, ror example, in Cossanm 
[see, for example. Spitz et al.,  1998; McGilhcuddy et al., .    ,  r->nnm   tu     u-   .■             .    •       .•    .   .u                i 
irvno   c       i.i   ™.   u r             J o ■ J ■ L    -mm et a<- [2009J, the objective was to investigate the seasonal 
1998; Fennel et al., 2001; Holmann and Friedrichs, 2002; :       ,J             ■'-..   ,              c..    .     ~.     , . 
B-wJ—fc. „, „/    -.new;.  Ud -i    ^nno.  n^n„ ,„ „, ecosystem dynamics of the Lagoon of Venice. The objective Friedrichs et al, 2006; Smith et al., 2009; Doron et al. 

of Ciavatta et al. [2011] was to investigate if a yearlong 
2011], while others have focused on the sequential estimation •   •, ,.        .   "A,       , .,.,     ,.     ' ,b„   , .    ■ 1 ^ assimilation of weekly satellite chlorophyll data improves 

the hindcast of key biogeochemical variables in shelf seas. 
  Ford et al. [2012] conducted assimilation of satellite-derived 

'Oceanography Division, Naval Research Laboratory, Stcnnis Space chlorophyll   into   the   global   coupled   physical,   biochemical 
Center, Mississippi, USA. model. The objective of Rousseaux and Gregg [2012] was 

2Naval Research Laboratory, Monterey, California, USA. thc study of c[jmate variability and phytoplankton com- 

Corrcsponding author: I. Shulman, Oceanography Division, Naval Research position  in  the  Pacific  Ocean.  The  impact  of yearlong 
Laboratory, Stcnnis Space Center, MS 39529, USA. (igor.shulman@nrissc. assimilation of SeaWiFS- and MODIS-derived chlorophyll 
navy.mil) on ecosystem model predictions was investigated in Hu et al. 

©2013. American Geophysical Union. All Rights Reserved. [2012]. See Gregg [2008], McClain [2009], and Hu et al. 
2169-9275/13/10.1002/jgrc.20l 77 [2012] for a more detail review of data assimilative studies. 
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Figure 1. Map of the observational assets during June 2008 
field program: MBARI moorings Ml and M2 locations; R/V 
Point Sur stations and water sample locations; HPLC sam- 
ple locations; glider tracks (shown schematically); AUV 
DORADO survey; locations of HF radar sites. 

[3] In contrast to the existing studies, the objective of 
this paper is to investigate whether the assimilation of 
satellite-derived bio-optical properties (as either chlorophyll 
a (Chi) or absorption coefficient) can improve the ecosystem 
model predictions of chlorophyll and phyloplankton pop- 
ulation in a coastal ocean on time scales of 1-5 days. The 
specific time scale of 1-5 days is chosen because it is a time 
scale of availability of the atmospheric model forecast 
needed to force the oceanic model forecast. The atmospheric 
model forecast includes predictions of short-wave radiation, 
which is critical not only for forecasting the heat content and 
other physical properties of the ocean but also for estimating 
the photosynthetically active radiation (PAR) which drives 
photosynthesis of the ecosystem model, and relevant to the 
forecast of the underwater light. Predictions of optical prop- 
erties and underwater light are critical for numerous Navy 
operations, which rely on 1-5 days of forecasts. 

[4] We designed our computational experiments to coin- 
cide with a large bio-optical field campaign that was 
conducted in Monterey Bay, California during a sustained 
wind-driven upwelling event in June 2008. The field pro- 
gram captured the dynamic response of the Bay ecosystem 
to the continuous supply of nutrients from coastal upwelling. 
To characterize the dynamics of the system, a combination 
of field assets and measurements systems was deployed, 
including ship surveys, buoys, and autonomous underwater 
vehicles. The experiment was a collaboration between the 
NRL "Bio-Optical Studies of Predictability and Assimilation 
for the Coastal Environment (BIOSPACE)" project, Multi- 
disciplinary University Research Initiative (MURI) project 
"Rapid Environmental Assessment Using an Integrated 
Coastal Ocean Observation-Modeling System (ESPRESSO)," 
and the Monterey Bay Aquarium Research Institute (MBARI). 

The objective of the NRL participation in the experiment was 
to study the variability and predictability of underwater light 
and coupled bio-optical and physical properties of the water 
column on time scales of 1-5 days. 

[5] The structure of the paper is as follows: Section 2 
describes observations, models, and data assimilation 
schemes used in this study. The bio-optical physical condi- 
tions during the data assimilation experiments are described 
in section 2.1.3.3. The design of data assimilation experi- 
ments is described in section 3. Section 4 presents results 
of the data assimilation experiments. Section 5 is devoted 
to discussions and conclusions. 

2.   Methods 
2.1.   Observations 

2.1.1.   Physical Observations 
[6] Observations of winds, temperature, and salinity from 

the Monterey Bay Aquarium Research Institute (MBARI) 
surface moorings Ml (122.02°W, 36.74°N) and M2 
(122.40°W, 36.67°N) are used in this study (Figure 1). 
Near-surface 3 m wind speed and direction were measured 
by a MetSys wind monitor. Temperature and salinity were 
measured by Sea-Bird MicroCAT CTD sensors at 12 depths 
between 1 and 350 m. According to the manufacturer's stated 
accuracy, the data are expected to be accurate to within 
about 0.005°C and 0.006 practical salinity units (psu). 

[7] Surface current observations used in this study were 
derived from the California Coastal Ocean Current Mapping 
Program's HF radar network (www.cocmp.org). Surface 
currents were estimated based on inputs from seven HF 
radar sites (Figure 1). Vector currents were estimated on a 
Cartesian grid with a horizontal resolution of 3 km by com- 
puting the best fit vector velocity components using all 
radial velocity observations within a radius of 3 km for each 
grid point each hour [Paduan et al., 2006]. Several studies 
have investigated the performance of the Monterey Bay 
HF radar network by comparing the radar-derived currents 
with in situ velocity observations and by comparing radar- 
to-radar velocity estimates on the overwater baselines 
between radar sites [e.g., Paduan et al., 2006]. Consistent 
uncertainty values emerge in the range of 7-9 cm/s for the 
remotely estimated velocities. 

[8] The R/V Point Sur occupied 25 hydrographic and 
optical stations from 2 to 13 June 2008 (Figure 1). Temper- 
ature and salinity depth profiles with 1 m vertical resolution 
were derived from Sea-Bird SBE 9+ CTD measurements 
using standard Sea-Bird processing software. Comparisons 
of the moored data with adjacent shipboard profiles show 
agreement to generally be within 0.1 °C and 0.01 psu. 

[9] Four NRL and two Rutgers University SLOCUM 
gliders [Schofield et al., 2007] were deployed during a 
period of 2 weeks of surveys with the R/V Point Sur. The 
gliders were equipped with a SeaBird CTD and collected 
temperature and salinity profiles up to 200 m depth mostly 
inside the Bay because the navigation of gliders outside 
the bay became difficult due to strong wind-driven currents 
(-1-2 knots). 

[10] Satellite surface temperature data, available in situ 
temperature, and salinity profiles from the Global Ocean 
Data Assimilation Experiment (GODAE) data set (http:// 
www.usgodae.org/) are used in this study for the assimilation 
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into the Monterey Bay model described in section 2.2. 
The description of the data set, processing, and quality 
control procedures are described in Cummings [2005] and 
Cummings et al. [2009]. 
2.1.2. Satellite MODIS-Aqua Ocean Color Data: 
Chlorophyll a Concentration and Phytoplankton 
Absorption Coefficient 

[n] The MODIS-Aqua satellite imagery was processed 
using the NRL Automated Processing System (APS). APS 
is a complete end-to-end system that includes sensor 
calibration, atmospheric correction (with near-infrared 
correction for coastal waters), and bio-optical inversion. 
APS incorporates, and is consistent with, the latest NASA 
MODIS code (SeaDAS) [Gould et al, 2011; Martinolich 
and Scardino, 2011]. 

[12] In this study, estimates of the chlorophyll a (Chi) 
and absorption coefficient due to phytoplankton at 488 nm 
(api,(488)) from MODIS-Aqua imagery on 5 and 10 June 
2008 were assimilated into the bio-optical, physical model 
described in section 2.2. Chlorophyll data are derived by 
OC3M algorithm [O 'Reilly et al., 2000], while aph(488) data 
are derived by using a quasi-analytical algorithm (QAA) 
[Lee et al., 2002] at 1 km pixel resolution. Data are inter- 
polated to the model grid spatially and temporally to 0Z and 
12Z (with 12 h data assimilation update cycle (see section 3)). 

[13] Errors in satellite derived products as chlorophyll a 
and absorption are usually poorly known. McClain [2009] 
stated that many recent investigations in comparison of sat- 
ellite derived products with water samples or high- 
performance liquid chromatography (HPLC) data were 
inconclusive mostly due to differences in the pigment 
measurement methodology, i.e., fluorometric for water 
samples versus high-pressure liquid chromatography 
(HPLC). In McClain [2009]: "The satellite data product 
accuracy goals generally accepted by the international mis- 
sions are ±5% for water-leaving radiances and ±35% for 
chlorophyll in the open ocean." At the same time, it is also 
stated that errors differ regionally. Lee et al. [2010] reported 
error in estimation of absorption around 10% for values 
below 0.1 m , which is an about average value for the 
Monterey Bay area. 
2.1.3. Bio-Optical Observations Used for Model 
Predictions Verification 
2.1.3.1. Extracted Chlorophyll From the Water Samples 

[14]  Water was collected at up to 12 depths at each R/V 
Point Sur station (Figure 1). Samples (280 ml) were taken 
from the Niskin bottles and filtered through 25 mm 
Whatman GF/F (glass fiber filters) at 5 7 mm Hg pres- 
sure. The filters were then placed into glass scintillation 
vials with 10 ml of 90% acetone and frozen for 24 h to 
allow chlorophyll extraction [Venrick and Hayward, 
1984]. Samples were allowed to wann for several hours 
in the dark before fluorescence measurements were per- 
formed with a Turner 10-AU Fluorometer using standard 
methods [Holm-Hansen et al., 1965; Lorenzen, 1966]. To 
correct for phaeophytin interference, each sample was then 
acidified with three drops of 5% HC1 to convert chloro- 
phyll to phaeophytin. The ratio of these two measurements 
is directly proportional to chlorophyll concentration. 
2.1.3.2. High-Performance Liquid Chromatography Data 

[15]  Water samples (540 ml) collected from near-surface 
(-0.5 m) Niskin bottles were filtered onto Whatman glass 

fiber filters (GF/F). The high-performance liquid chromatog- 
raphy (HPLC) analysis provided pigment indices and 
proportion factor for microplankton, nanoplankton, and 
picoplankton [Vidussi et al., 2001]. The pigment data 
indicated that the microplankton fraction was composed 
predominantly of diatoms (based on the presence of fuco- 
xanthin). For this analysis, the nano- and picoplankton frac- 
tions were combined to represent the "small phytoplankton" 
in our coupled bio-optical physical model (section 2.2). 
Claustre et al. [2004] reported 11.5% uncertainty for fuco- 
xanthin and 7% for chlorophyll a. 
2.1.3.3.   Nitrate Data 

[i6] Propeller-driven AUV such as the MBARI manu- 
factured DORADO has been described in Bellingham et al. 
[2000] and Ryan et al. [2009]. The DORADO was deployed 
on 3 June 2008 in the Monterey Bay (Figure 1), and instru- 
ments on board included in situ ultraviolet spectrophotome- 
ter sensor that measured nitrate concentrations [Johnson and 
Coletti, 2002]. 

2.2.   Coupled Physical, Bio-Optical Model of the 
Monterey Bay 

[17] The Monterey Bay model (called the Navy Coastal 
Ocean Model (NCOM) Innovative Coastal-Ocean Observ- 
ing Network (ICON)) consists of a physical model 
[Shulman et al., 2007], which is coupled to a biochemical 
model [Chai et al., 2002]. The initial model development 
started under the National Oceanic Partnership Program 
ICON project. The physical model of the Monterey 
Bay is based on the NCOM model, which is a primitive- 
equation, 3-D, hydrostatic model. It uses the Mellor- 
Yamada level 2.5 turbulence closure scheme and the 
Smagorinsky formulation for horizontal mixing [Martin, 
2006; Barron et al., 2006]. The NCOM ICON model is 
set up on a curvilinear orthogonal grid with resolution 
ranging from 1 to 4 km. The model domain is shown on 
Figure 1. The model is forced with surface fluxes from 
the Coupled Ocean and Atmospheric Mesoscale Prediction 
System (COAMPS) [Doyle et al., 2009] at 3 km horizon- 
tal resolution. The 3 km resolution COAMPS grid mesh is 
centered over Central California and the Monterey Bay. 
The biochemical model (the Carbon, Silicon, Nitrogen 
Ecosystem (CoSINE) model) [Chai et al., 2002; Shulman 
et al., 2011] of the NCOM ICON simulates the dynamics 
of two sizes of phytoplankton, small phytoplankton cells 
(<5 um in diameter) and diatoms, two Zooplankton 
grazers, nitrate, silicate, ammonium, and two detritus pools 
(Figure 2). Constituents from the biochemical model are 
used to estimate chlorophyll and inherent optical proper- 
ties (lOPs) based on the methodology outlined by Fujii 
et al. [2007]. For example, the model chlorophyll concen- 
tration (chl) and absorption due to phytoplankton (aph(k)) 
are estimated based on the following: 

chl = chlf/'l +chl;/>2 

aph(/l) = a;(/)-chl,-Fl +a;(A)-chl2-K 

a"W = «MhighiighO^-H1 -/»■')) +<(]owiigbt)(A)/»,f 

chl,/cn, - 0min 
Ai = —5 a  

(1) 

(2) 
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Figure 2.   Schematic view and flowchart of the nine-component biochemical model (the Carbon, Silicon, 
Nitrogen Ecosystem (CoSINE)). 

where P\ is the small phytoplankton concentration, PI is the 
diatoms concentration, aph(A) is the absorption coefficient 
due to phytoplankton, k is the wavelength, a](/.) and a*2{X) 
are chlorophyll-specific absorption coefficients by small phy- 
toplankton and diatoms , <Ihighlight)(A) and a^-^X) are 
chlorophyll-specific absorption coefficients at high and low 
light by each phytoplankton group [Fujii et al., 2007], chl, 
are chlorophyll to nitrogen conversion coefficients, en, are 
carbon to nitrogen conversion coefficients,^., is the phyto- 
plankton size fraction, and f?min and ömax are the minimum 
and maximum phytoplanktonic chlorophyll to carbon ratios 
[Fujii et al., 2007]. Absorption in equation (2) is modeled 
as a sum of absorptions from small phytoplankton and dia- 
toms. The chlorophyll-specific absorption coefficients for 
small phytoplankton and diatoms are modeled separately, 
taking into account their photoadaptive state (e.g., their spe- 
cific chlorophyll to carbon ratio). This requires specification 
of high/low light absorption coefficients for each phyto- 
plankton group (small phytoplankton and diatoms). For 
more details, see Fujii et al. [2007]. It is known that phyto- 
planktonic chlorophyll to carbon ratio is not constant and 
depends on light, nutrients, temperature, etc. However, to 
model the ratio as variable will require introduction of more 
state variables, as well as more highly uncertain model 
parameters into the biochemical model. Because the 
objective of the paper is modeling on short-term time scales 
(1-5 days), we prefer to use (l)-(2) relations rather than 
to increase a number of the biochemical model state vari- 
ables and highly uncertain model parameters. Only P\ and 
PI are prognostic variables in (1) and (2). 

[is] Phytoplankton photosynthesis in the biochemical 
model is driven by photosynthetically active radiation (PAR), 
which is estimated based on the shortwave radiation flux 

from the COAMPS model. The Penta et al. [2008] scheme 
is used for PAR attenuation with depth. 

[19] Open boundary conditions for the NCOM ICON are 
derived from the regional model of the California Current 
(NCOM CCS) [Shulman et al., 2007]. The NCOM CCS 
has a horizontal resolution of about 9 km, and the model is 
forced with atmospheric products derived from the 
COAMPS [Doyle et al., 2009]. As in NCOM ICON model, 
the biochemical model of the NCOM CCS is also the nine- 
compartment model of Chai et al. [2002]. 

[20] Open boundary conditions for physical variables (tem- 
perature, salinity, velocities) for the regional NCOM CCS 
model are derived from the NCOM global model [Rhodes et 
al., 2002; Barron et al, 2004], which has 1 /8° horizontal reso- 
lution. The NCOM global model does not have a biochemical 
model to derive open boundary conditions for the biochemical 
model ofthe NCOM CCS. Forthis reason, biochemical tracers 
of the NCOM CCS were spun up from the climatological 
values of the nutrients (nitrate and silicate from The World 
Atlas) [Garcia et al., 2006] and background values for other 
biochemical variables from October 1998 to June 2008. 

2.3.   Assimilation of Physical Observations 

[21] For the assimilation of physical observations (tem- 
perature and salinity), the NCOM ICON model uses the 
Navy Coupled Ocean Data Assimilation (NCODA) system 
[Cummings, 2005; Cummings et al., 2009]. The NCODA is 
a fully 3-D multivariate optimum interpolation system. As- 
similation of temperature and salinity data is performed every 
12 h (assimilation cycle). The NCODA assimilates satellite 
altimeter observations, satellite surface temperature, as well 
as available in situ vertical temperature and salinity profiles 
from XBTs, ARGO floats, moored buoys, and gliders from 

2218 



SHULMAN ET AL.: IMPACT OF BIO-OPTICAL DATA ASSIMILATION 

(a) 

Ml 

M2 

MOORING HOURLY WINDS 

5 m/s 

10 

JUNE 2008 (DAY) 

(b) 
5 JUNE 2008 

37N 

36.5N 

10 JUNE 2008 

122.5W I22W I22.5W I22W 

5 JUNE 2008 

1 

10 JUNE 2008 mg/m ■ 

37N 

36N 

I23W I22W I23W 122W 
■ 

Figure3. (a) 10 m wind velocity at MBARI moorings Ml and M2. (b) HF radar surface currents, 
(c) MODIS-Aqua chlorophyll and MODIS-Aqua SSTs (bottom). The modeling domain is shown with 
black solid line overlay over MODIS-Aqua SST images (bottom). 

the Global Ocean Data Assimilation Experiment (GODAB) [2005] and Cummings et cd. [2009]. Results of glider, ship, 
data set. The description of the data sets, processing, and and satellite data assimilation into the NCOM ICON model 
quality  control  procedures  are  described  in  Cummings    are described in Shulman et al. [2009, 2010]. 
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Table 1.  Description of the Model Runs 

Assimilation Multivariatc Update 

Runs Physi' :s (NCODA) MODIS Chi (BOMA) MODIS rtph(488) (BOMA) Small Phytoplankton Diatoms Nitrate 

Run 1 No No No N/A N/A N/A 
Run 2 Yes No No N/A N/A N/A 
Run 3 Yes Yes No Yes Yes No 
Run 4 Yes No Yes Yes Yes No 
Run 5 Yes Yes No Yes Yes Yes 
Run 6" Yes Yes No Yes Yes Yes 

"Adjustment of nitrate based on temperature versus nitrate statistical relation (sec section 3). 

2.4.    A Multivariate Data Assimilation of Bio-Optical 
Properties (BOMA) 

2.4.1.   Kaiman Gain Update 
[22] To preserve the robustness of the existing assim- 

ilation system for physical fields (NCODA), we decided to 
decouple updates to the physical fields from the updates to 
the components of the ecosystem model. To assimilate bio- 
optical measurements into the ecosystem model, we used 
reduced-order Kaiman filter with a stationary forecast error 
covariance. 

[23] The analysis fields for the bio-optical model state 
variables were updated using Kaiman update equations: 

.v" =./ + K (>•-///) 

K = P„P1 

(3) 

(4) 

where x" and x are the vector of analyzed and forecasted 
bio-optical properties, y are available observations, H is the 
observational operator that maps the model state onto avail- 
able observations, and K is the Kaiman gain matrix. Covari- 
ance matrices Pxv and P„ in the Kaiman gain equation (4) 
are the cross-covariance between forecast and observation 
errors and the innovation error covariance matrixes respec- 
tively. For a linear measurement operator H, these covari- 
ance matrices become: 

pxy = pfHT 

P   = HP'HT + R 

(5) 

(6) 

where P is the forecast error covariance matrix, and R is 
the combined covariance of measurement and representation 
errors. 
2.4.2.   Forecast Error Covariance Model 

[24] Similar to Cane el al. [1996] and Nerger and Gregg 
[2007], we used a stationary form of the error covariance 
P. We specified the forecast error covariance P using an 
ensemble of model states A*™ drawn from a historic model run: 

P' % 2/*ns = a£J(Acns - £[Acns])(Acns - E\Xa 
(7) 

where a is a scalar that scales the climatological ensemble to 
be consistent with the statistics of model innovations. Twin 
data assimilation experiments were conducted, when 
pseudo- "observations" sampled from the "true" model run 
were assimilated into the model run with different initial 
conditions from the "true" run. Optimal value of a = 0.01 
was determined based on minimization of misfits between 
"true" and twin data assimilative run. 

[25] We drew the ensemble A*™ of-700 model states from a 
monthlong run of nonassimilated model (see section 3 for 
details of the run setup). To reduce the storage requirements 
and because the ensemble approximation P"™ was rank defi- 
cient, we stored matrix Pn* using a truncated series of eigen 
functions estimated from SVD of A*"5: 

P°ni w ZAZT 

where Z is the matrix of orthonormal 3-D eigen functions 
(EOFs) and A is the diagonal matrix of eigen values. We 
retained 100 eigen functions that captured 98% of the 
variance in the ensemble covariance P0"8. 

[26] In our experiments, we had more observations than 
ensemble members. Hence, it was more efficient to imple- 
ment the inverse of covariance Pn. in the space of the EOF 
coefficients instead of the observation space formulation in 
equation 6. To transform the Piy inverse from observational 
space to EOF space, and to the form that requires inverse of 
only R matrix, we used the Sherman-Morrison-Woodbury 
formula [Barth et al., 2011] as follows: 

where 

P~} = (*HZAZTHT + R)  ' = (UUT + R)  ' = 

= /r' - {R-lu) [/ + (R-1 ufu) (R-]U)T 

U = VäHZVX 

(8) 

(9) 

2.4.3. Observation Error Covariance Model 
[27] The combined covariance R of measurement and 

representation errors is usually poorly known. As we stated 
in section 2.1.2, "the satellite data product accuracy gener- 
ally accepted by the international missions are ±5% for 
water-leaving radiances and ±35% for chlorophyll a in the 
open ocean" [McClain, 2009]. However, errors differ 
regionally. As it is shown in section 4, the coupled physical, 
bio-optical model (section 2.2) is under productive in the 
Bay without data assimilation, and it is desirable to increase 
influence of observations on model predictions. We assumed 
that covariance R had diagonal structure (uncorrelated 
errors) and was stationary and proportional to the variance 
of the observed field. Wc set the variance of R to be equal 
to 10% of the field variance. The resulting magnitude of 
the measurement error was in agreement with uncertainty 
studies [Lee etal., 2002, 2010] of the QAA satellite retrieval 
algorithm that was used in our study (section 2.1.2). 
2.4.4. Localization 

[2s] To mitigate for the presence of spurious correlations 
in   our   ensemble   approximation   to   the   forecast   error 
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Figure 4.    Model-predicted SSTs and surface currents for runs 1 and 2 (see section 3 for model runs design). 

covariance equation (7) and to exclude remote observations 
from the analysis of the local grid point, we localized the 
forecast error covariance Pcm using the box-car localization 
function: 

C|0C(A-|, ,X2) 

pf = Cloc * I*** 

= j  c(xi,x2) = Vf\\x\ -.r2||2<L|oc 
c(*i,Jt2) = 0if\\x\ -*2II2 > £k 

(10) 

(11) 

where L|oc is the localization distance. The choice of the 
localization distance represents a challenge. In Hu et al. 
[2012], for assimilation of satellite-derived chlorophyll 
observations, the localization distance was set up to 100 km. 
In our case, this is approximately the size of the modeling 
domain. Through conducted twin experiments, we established 

that Lloc of 10 km was appropriate for our domain. We only 
used localization in one of our runs (run 4 in section 3). 
When localization was used, we implement Kaiman filter 
equations (3-4) as a set of independent filters, with each 
filter updating a single water column. Because we used the 
box-car localization function (equation (11)), the update for 
each water column was equivalent to using nonlocalized filter 
that only accounted for observations within the localization 
distance Lioc: 

*"('wc) = A'wc) + K(vloc - Hloc/) 

where /wc are the indices of grid points in a given water 
column, y[oc are observations within the localization radius 
Iioc, and Hin is the observational operator that maps the model 
state of the updated water column /wc onto observations ^o,;. 
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Figure 5.   Locations of R/V Point Sur water sample sections A (taken 9 June) and B (taken 10 June) (top 
insert); observed (second row) and model-predicted (runs 1 and 2) temperature profiles along sections A and B. 

3.    Bio-Optical, Physical Conditions During Data 
Assimilation Experiments 

[29] Data assimilation experiments described in this study 
were conducted for the time frame from 5 to 10 June 2008. 
Observed wind velocities at MBAR1 moorings (Figure 3) 
indicate that this period was characterized by steady upwell- 
ing winds. At the beginning of the experiment, 33 h low- 
pass-filtered HF radar surface currents indicate a southward 
flow along the entrance to the bay that separates a well- 
defined cyclonic eddy in the Bay and an anticyclonic circu- 
lation offshore (Figure 3). Five days later (Figure 3), HF 
radar data show weakening of the cyclonic circulation. 
Coincident with this weakening of cyclonic circulation and 
currents, conditions for phytoplankton growth in the Bay 
improved as indicated by the increase in surface concentra- 
tions of chlorophyll a (Figure 3). In accord with Figure 3, 
the satellite-derived SST images from MODIS-Aqua 
satellite show development and strengthening of a cold fila- 
ment along the entrance to the Bay, separating warm, less 

productive anticyclonic circulation offshore from the more 
productive waters of the Bay. 

4.    Design of Data Assimilation Experiments 

[30] Table 1 lists the runs and their attributes considered in 
this study. 

[31] Run 1 is the base run of the NCOM ICON model 
described in section 2.2. The run was initialized from the 
NCOM CCS model on 22 May 2008 and was run until 
the end of June without any assimilation of physical or 
bio-optical observations presented in section 2.1. The output 
from run 1 (during the month of June) is used to estimate 
error covariance P in accord with section 2.4. All runs 
described below started from the restart file from run 1 
(physical and bio-optical state variables) on 5 June 00Z 
and were run for 5 days until 10 June 00Z. 

[32] Run 2 is the run with the assimilation of physical 
observations listed in section 2.1.1 with a 12 h data assimi- 
lation cycle. Therefore, for each 12 h of the model run, 
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Table 2. RMSL Between Observed and Model-Predicted Distri- 
butions of Temperature and Salinity at Water Sample Sections A 
and B (Figure 3)a 

Temperature Salinity 

Section A Section B Section A Section B 

Run 1 
Run 2 

1.00 
0.78 

1.0 
0.86 

1.00 
0.35 

1.00 
0.82 

"RMSE is normalized by the RMSF. for (he base run I (0.9° and 0.06 psu 
for section A; 0.57° and 0.06 psu for section B). 

NCODA assimilated physical observations and created a 
new restart file (nowcast) with updated (analyzed) tempera- 
ture and salinity fields. The next segment of the model run 
was started from this NCODA created nowcast and was 
run for 12 h until the next model restart file is created. None 
of the bio-optical data listed in section 2.1.2 were assimi- 
lated in run 2. Comparisons of run 2 with the base run 1 
highlight the impact of just physical data assimilation on 
the model predictions of physical, as well as bio-optical 
properties on time scales of 1—5 days. 

[33] Run 3 is the run with the assimilation of physical 
data as in run 2, but for each 12 h, MODIS-Aqua Chi data 
(described in section 2.1.2) are assimilated using BOM A 
(section 2.4). In accord with (3), the only analyzed 
(updated) bio-optical properties were P\ (small phyto- 
plankton) and PI (diatoms). Therefore, for each 12 h of 
the model run, the NCODA assimilated physical observa- 
tions and created a new restart file with updated (analyzed) 
temperature and salinity fields. Using this NCODA created 
restart file, the BOMA assimilated MODIS-Aqua Chi data 
and created a new restart file (nowcast) with updated 
(analyzed) P\ and PI. The next segment of the model 
run was started from this BOMA created restart file and 
was  run  for   12  h  until  the  next model  restart  file  is 

created. Comparisons of runs 3 and 1 show the impact 
of assimilations of physical, as well as MODIS-Aqua 
Chi data on the model predictions of bio-optical proper- 
ties. We found that no localization was needed to assimi- 
late MODIS-Aqua Chi data into the model. 

[34] Run 4 is a clone of run 3, but the MODIS- 
Aqua phytoplankton absorption coefficient at 488 nm 
(api,(488)) data are assimilated in the model instead of 
the MODIS-Aqua Chi data as in run 3. Unlike run 3, we 
found that localization was necessary for assimilation of 
phytoplankton absorption data. Localization distance L]oc 

(in section 2.4.4) was set to 10 km. Comparisons of runs 
3 and 4 will provide the impact of the assimilation of 
surface absorption coefficient versus chlorophyll data on 
the model predictions of bio-optical properties on time 
scales 1-5 days. 

[35] Run 5 is a clone of run 3. However, the model nitrate 
is also updated together with the phytoplankton (PI and P2) 
through the multivariate data assimilation BOMA in accord 
with section 2.4. Comparisons of runs 3 and 5 show the 
impact of also updating nitrate through multivariate assimi- 
lation on the model predictions of bio-optical properties. 

[36] In the described data assimilative runs 3-5, for each 
data assimilative cycle (12 h), the assimilation of physical 
observations (through NCODA) is independent from the 
assimilation of bio-optical observations (through BOMA). 
In run 6, we introduced an instantaneous update of the model 
nitrate based on updated temperature fields (through NCODA). 
For each data assimilation cycle (12 h), the updated tempera- 
ture from the NCODA is used to instantaneously update nitrate 
fields through the observed statistical relations between 
temperature and nitrate based on the AUV DORADO survey 
(section 2.1.3) conducted on 3 June prior to the start of the data 
assimilation experiments (5 June). The updated nitrate field is 
written into the NCODA-created restart file. Using this 
NCODA created restart file, the BOMA assimilated MODIS- 
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I23W 122W I23W I22W I23W I22W I23W I22W 

Figure 6.    Observed MODIS-Aqua   and model-predicted chlorophyll distributions on 10 June 2008. 
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Figure 7.    Comparisons of observed (sections A and B, see locations on Figure 3) and model-predicted 
subsurface chlorophyll distributions at water sample locations. 

Aqua Chi data and created restart file (nowcast) with updated 
(analyzed) PI, P2, and nitrate fields (as in run 5). Comparisons 
of runs 5 and 6 provide the impact of the instantaneous update 
of nitrate fields (based on updated physical fields (tempera- 
ture)) on bio-optical properties predictions. 

5.    Results 

5.1.   Assimilation of Physical Data 

[37] Figures 4 and 5 provide a comparison of physical 
properties between runs 1 and 2 (without and with assimila- 
tion of physical data, see section 3 and Table 1). There are 
significant differences in predictions of surface and subsur- 
face physical properties: Run 2 matches much better with 
observed SSTs (Figure 3), as well as observed subsurface 
temperature distributions from the water samples (Figure 5). 
This is also supported by the RMS errors (RMSEs) between 
observed water samples and model-predicted temperature 
and salinity fields presented in Table 2. RMSEs for run 2 
are reduced by 14%—65% in comparison to the base run 1. 
Concerning currents, run 2 is also better defined than in 
run 1 cyclonic circulation in the Bay. 

[38] Figure 6 provides a comparison of surface model- 
predicted chlorophyll distributions for runs 1 and 2. Without 
the assimilation of MODIS-Aqua Chi, the model predicts 
much lower chlorophyll values in the Bay for both cases of 
with (run 2) and without (run 1) assimilation of physical 
observations. 

S.2.   Assimilation of Satellite-Derived 
Bio-Optical Properties 

[39] In agreement with satellite observations, the assimila- 
tion of MODIS-Aqua Chi increased the model productivity 
inside the bay and decreased productivity outside the bay 
for run 3 (Figure 6). The assimilation of api,(488) (run 4) also 
increased productivity inside the Bay; however, it also 
created an artificial tongue of high Chi values offshore from 
the northern part of the domain along the coast. This might be 
a result of difficulties in assimilation of offshore values of 
absorption, which are significantly lower in comparison to 
the values in the Bay. As stated in section 3, run 4 was done 
with the localization (see section 2.4.4). This was required to 
avoid noisy updated fields and to exclude remote tfph(488) 
observations from the analysis of the local grid point. 

Table 3.  RMSE Between Observed and Model-Predicted Chloro- 
phyll Distributions at Water Sample Sections A and B (Figure 3)a 

Section A Section B 

Run 1 
Run 2 
Run 3 
Run 4 
Run 5 
Run 6 

1.00 
1.01 
0.71 
0.65 
0.70 
0.71 

1.00 
1.02 
0.95 
0.83 
0.93 
0.94 

"RMSE is normalized by the RMSE for the base run 1 (5.8 mg/m3 for 
section A; 8.6 mg/m3 for section B). 
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Figure 8.    Model-predicted surface diatoms and small phytoplankton distributions. 

[40] Figure 7 provides comparisons of the model-predicted 
subsurface Chi distributions to observed distributions (from 
water bottle analyses) along sections A and B (recall that 
chlorophyll data from the water samples were not assimilated). 
The assimilation of surface MODIS-Aqua Chi improved not 
only surface (Figure 6) but also subsurface model Chi predic- 
tions in the Bay for data assimilative runs 3-4. Quantitatively, 
this is also reflected in Table 3, where RMSEs between 
observed Chi from water samples and corresponding model- 
predicted Chi values (at water sample locations) are presented. 
All RMSE metrics are normalized by the corresponding 
RMSE metric for the base run 1 (no assimilation of physical 
as well as bio-optical properties). Table 3 shows similar values 
of RMSE metrics for runs 1 and 2. This indicates that while the 
assimilation of physical observations improved the model 
predictions of physical properties, the model predictions of 
Chi are not improved on time scales 1-5 days. Results show 
that the assimilation of observed surface Chi or aph(488) 
provides improvement in subsurface Chi predictions ranging 
from 5% to 35%. While the assimilation of MODIS-Aqua 
bio-optical products improved subsurface predictions for 
runs 3 and 4, the model subsurface predictions of Chi are still 
underestimated in comparison to the water sample profiles 
(Figure 7). One of the reasons might be that MODIS-Aqua 
bio-optical data are assimilated as observed surface values, 

while satellite data provide an estimate of the average, for 
example, chlorophyll concentration over the layer between 
the surface and one attenuation depth. In this case, based on 
observed profiles on Figure 7, MODIS-Aqua Chi data should 
somewhat underestimate the "true" surface Chi (this is also 
illustrated by a comparison of Chi values from the water 
samples taken at surface and MODIS-Aqua Chi values at 
water sample locations (comparison is not shown here)). For 
this reason, assimilation of satellite Chi data (as well as 
aph(488)) as surface observations should result in under- 
estimated surface and subsurface Chi values in model predic- 
tions, which is illustrated in Figure 7. 

[41 ] Assimilation of MODIS-Aqua bio-optical observations 
increased (decreased) the concentration of diatoms (small 
phytoplankton) inside the Bay in comparison to nonassimilative 
runs 1 and 2 (Figure 8). This is supported by comparisons of 
model predictions with observed fractions of microplankton 
(analog of diatoms in the model) versus total phytoplankton 
from HPLC data (section 2.1.3). Comparisons are presented 
on Figure 9. The HPLC data indicate that there was steady 
presence of diatoms in the Bay between 5 and 10 June, with 
the fraction of diatoms to total phytoplankton population in 
the range of 90%. Runs 1 and 2 show variable fractions of 
diatoms to the total phytoplankton population ranging from 
20% to 80%, but mostly below the observed HPLC fractions. 
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Figure 9. Observed and model-predicted fractions of diatoms to the whole phytoplankton populations at 
locations of R/V Point Sur water samples. Green, HPLC observed fractions; blue, run 1; light blue, run 2; 
brown, run 3; red, run 4. 
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Table 4.  RMSE Between HPLC Fractions and Model-Predicted 
Fractions of Diatoms to Total Phytoplankton Population3 

RMSE 

Run 1 
Run 2 
Run 3 
Run 4 
Run 5 
Run 6 

1.00 
0.92 
0.43 
0.84 
0.42 
0.44 

'RMSE is normalized by the RMSE for the base run 1 (0.52). 

However, for run 3 (run with assimilation of MODIS-Aqua 
surface chlorophyll), the fraction of diatoms increased and 
partitioning between diatoms and small phytoplankton is in 
much better agreement with the independent, nonassimilated 
HPLC observations. This is also reflected in the RMSE 

metrics presented in Table 4. With the assimilation of 
MODIS-Aqua Chi data, the RMSE between HPLC observed 
and model-predicted fractions of diatoms to the total phyto- 
plankton is more than twice smaller for run 3 in comparison 
to the RMSE for nonassimilative base run 1. There are also 
improvements in fractions of diatoms to the total phytoplank- 
ton predictions for run 4 (assimilation of aph(488)) after a 
couple days of assimilation (Figure 9 and Table 4). 

5.3.   Impact on Predictions of Nitrate Distributions 

[42] Figure 10 provides comparisons of the observed and 
model-predicted subsurface nitrate distributions along water 
sample sections A and B. Runs 1 and 2 without assimilation 
of MODIS-Aqua Chi data and run 3 with assimilation of 
MODIS-Aqua Chi data show underestimated values of 
subsurface nitrate distributions in comparison to water 
samples. Therefore, while the assimilation of MODIS-Aqua 

SECTION A SECTION B 

OBS 

RUN1 
20 

RUN 2 
20 

RUN 3 
20 

RUN 5 
20 

RUN 6 
20 

1 . • r— • , ( 

• • 
• • 

• ' • ' • ' • 

.         .         .      ■   , 

II .-• . »- • r 

• • • 
• • • 

• • • 

mg/m 

I 

10 20    0 10 

DEPTH (m) vs. DISTANCE (Km) 
20 

Figure 10.    Observed (top row) and model-predicted nitrate distributions for runs 1-6 at water sample 
sections A and B. 
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Figure 11.    Observed versus model-predicted nitrate for runs 1, 3, 5, and 6 at water sample locations. 

Chi improved model subsurface Chi distributions (Figure 7) 
and partitioning between diatoms and small phytoplankton 
(Figure 9), it had a minimal impact on nitrate fields in the 
model. Results arc similar for run 4 with the assimilation of 
Oph(488) (not shown here). For run 5, when phytoplankton 
(and) and nitrate are updated through the BOMA, the subsur- 
face nitrate distributions are even more underestimated 
(Figure 10). This is also illustrated by the scattcrplots of 
observed (from water samples) versus the model nitrate fields 
presented on Figure 11. 

[43] As it was demonstrated in section 4.2, the model run 
1 without assimilation of MODIS-Aqua Chi underestimates 
surface and subsurface Chi distributions (Figures 6 and 7). 
As a result, the assimilation of surface Chi data tends to 
increase model Chi values and increase phytoplankton 
population, especially diatom population in the Bay (Figures 8 
and 9). However, the increase in the model phytoplankton 
population results in the decrease of nutrients due to the 
uptake by phytoplankton for growth, which is statistically 
inherited in the model multivariate error covariances used 
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Figure 12.   Temperature versus nitrate relations for AUV DORADO, water samples, and model runs. 
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in the BOMA (section 2.4). This is why the assimilation of 
MODIS-Aqua Chi increased the model bias in predictions 
of nitrate values even more for run 5 (Figures 10 and 11), 
when not only phytoplankton but also nitrate are also 
updated through the multivariate data assimilation. Note 
that predictions of Chi and partitioning between diatoms 
and small phytoplankton for run 5 are similar to run 3 
(see Tables 3 and 4). 

[44] Figure 12 shows temperature versus nitrate scatterplots 
of the AUV DORADO survey, from the water samples, and 
the model runs. The average temperature versus nitrate statis- 
tical relation for the AUV survey is very similar to the relation 
for the water samples, while the AUV survey was taken on 
3 June which is about 6 days prior to water samples surveys. 
This indicates persistence of the same statistical relation 
between temperature and nitrate on time scales of a week. 
In run 6 (section 3), for each data assimilation cycle (12 h), 
the statistical relation between T and nitrate (Figure 12) from 
the AUV DORADO on 3 June is used to instantaneously 
update nitrate fields based on the temperature from the 
NCODA update. The nitrate predictions in run 6 improved 
significantly and match nitrate observations much better in 
comparison to other runs (Figures 10 and 11). Therefore, 
the instantaneous update of nitrate (based on statistical 
relations between temperature and nitrate) corrected the a 
priori model underestimation of the nitrate and the reduction 
of nitrate by the multivariate update. Note that predictions of 
Chi and partitioning between diatoms and small phytoplank- 
ton for run 6 are similar to data assimilation runs 3 and 5 
(see Tables 3 and 4). 

6.    Conclusions and Discussions 

[45] Data assimilation experiments were conducted during 
5 days of steady upwelling in the Monterey Bay area. The 
results show that while the assimilation of physical observa- 
tions improved the model predictions of physical properties, 
the model underestimates productivity inside the Bay with 
or without assimilation of physical observations. At the 
same time, assimilation of MODlS-Aqua-derived optical 
properties (chlorophyll or absorption due to phytoplankton) 
significantly improved surface and subsurface agreement 
between the model and observations. Results show that 
the reduction in RMSEs between model and independent 
water samples ranges from 5% to 35% in contrast to the 
nonassimilative run. 

[46] While the assimilation improved the model predic- 
tions, the model subsurface Chi distributions retained an 
underprediction bias as compared to observed profiles from 
water samples. One of the reasons might be that MODIS- 
Aqua bio-optical data are assimilated as observed surface 
values, while satellite data provide an estimate of the aver- 
age, for example, chlorophyll concentration over the layer 
between the surface and one attenuation depth. The assimila- 
tion of satellite-derived products, not as surface values, but 
rather as averages over attenuation depth values, is consid- 
ered as a topic of our future research. 

[47] Assimilation of bio-optical data also improved frac- 
tionation of phytoplankton biomass between diatoms and 
small phytoplankton in the model. Without assimilation, 
the percentage of large diatoms varied during the experiment 
between 20% and 80%. In contrast, HPLC measurements 

showed the fraction of diatoms to total phytoplankton popu- 
lation in the range of 90%. However, runs with the assim- 
ilation of MODIS-Aqua surface chlorophyll produced much 
better agreement with the independent, nonassimilated HPLC 
observations. With the assimilation, the RMSE between HPLC 
observed and model-predicted fractions of diatoms to the 
total phytoplankton is less than half smaller than the RMSE 
for nonassimilative run. There are also improvements in frac- 
tions of diatoms to the total phytoplankton predictions for 
the run with assimilation of aPh(488) after a couple days of 
assimilation. 

[48] To extend of our knowledge, we believe that the pres- 
ent study is the first demonstration of IOP (aph(488)) assim- 
ilation into coupled physical, biochemical dynamical model, 
as well as the first demonstration of a capability to improve 
the model-predicted fractionation of phytoplankton biomass 
between diatoms and small phytoplankton. 

[49] Model runs with or without assimilation of MODIS- 
Aqua observations show underestimated values of nitrate 
distributions in comparison to the water sample observa- 
tions. The assimilation of MODIS-Aqua observations did 
not improve the model predictions of nitrate. This can be 
explained by the fact that multivariate data assimilation 
tends to increase phytoplankton population in the Bay (due 
to the underestimated a priori Chi values in the model) 
and, at the same time, tends to decrease nutrients. The lack 
of improvements in nitrate distributions in the model sug- 
gests deficiencies in the model nitrate initial and open 
boundary conditions, and the need for nitrate observations 
for assimilation into the model. These conclusions correlate 
with results of the Ourmieres et al. [2009] study. Their goal 
was an estimation of the basin scale patterns of oceanic 
primary production and their seasonal variability. Ourmieres 
et al. [2009] found that intensive in situ measurements of 
biogeochemical nutrients are urgently needed at basin scale 
to improve coupled model predictions. Our results showed 
that an instantaneous update of nitrate based on statistical 
relations between temperature and nitrate (derived from 
the AUV observations taken prior to the data assimilation 
experiments) corrected the model underestimation of the 
nitrate fields. 

[50] The experiments conducted in this study were limited 
to a 5-day period during a steady upwelling event. More 
complicated bio-optical conditions are usually observed 
during wind weakening and relaxation, when transitions 
from diatoms to other phytoplankton groups might occur 
with corresponding drastic changes in bio-optical properties 
on time scales of days to a week. This might be a combina- 
tion of changes in physical conditions (for example, dinofla- 
gellates prefer more stable, stratified conditions), as well as 
changes in nutrient distribution, leading to decreasing dia- 
toms population and replacement by other phytoplankton 
groups, which are capable of prospering at lower nutrients 
levels. Also, as demonstrated in Shulman et al. [2011, 
2012], dinoflagellates play an important role in changes of 
bio-optical properties during the upwelling events. It was 
demonstrated that during the upwelling development, dino- 
flagellates avoided advection and retained their population 
in the Bay due to their vertical swimming ability. The bio- 
chemical model considered here does not include modeling 
of dinoflagellates dynamics. Inclusion of the dinoflagellates 
into the biochemical model and conducting data assimilation 
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experiments during the events influenced by their presence 
is another topic of our future research. 

[51] Our experiments with the ensemble computed from a 
monthlong model simulation suggest that ensemble methods 
are very capable at capturing complex multivariate relation- 
ships between optical properties, phytoplankton biomass, 
and ecosystem structure (as represented by small and large 
phytoplankton pools in the model). Our preliminary experi- 
ments encourage further development of ensemble methods 
for bio-optical data assimilation and uncertainty estimation 
[Gould et al., 2011]. 

[52] Finally, in the present study, assimilation of physical 
properties through the NCODA and assimilation of bio- 
optical properties through BOMA are separated. The adjust- 
ment of updated physical and bio-optical variables is 
achieved through the coupled, bio-optical physical model 
run during the data assimilation cycle. At the same time, 
an instantaneous joint update of physical and bio-optical 
properties is preferred in order to maintain dynamical con- 
sistency between the assimilated physical and bio-optical 
fields [see, for example, Anderson et al., 2000, 2001]. 
The merger of NCODA and BOMA is another topic of our 
future research. 
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