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The Circuit Realization of a Neuromorphic Computing 
System with Memristor-based Synapse Design 
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Abstract. Conventional CMOS technology is slowly approaching its physical 
limitations and researchers are increasingly utilizing nanotechnology to both ex-
tend CMOS capabilities and to explore potential replacements.  Novel memris-
tive systems continue to attract growing attention since their reported physical 
realization by HP in 2008. Unique characteristics like non-volatility, re-
configurability, and analog storage properties make memristors a very promis-
ing candidate for the realization of artificial neural systems. In this work, we 
propose a memristor-based design of bidirectional transmission excita-
tion/inhibition synapses and implement a neuromorphic computing system 
based on our proposed synapse designs. The robustness of our system is also 
evaluated by considering the actual manufacturing variability with emphasis on 
process variation. 

Keywords: Bidirectional synapse, memristor, Hopfield network, pattern recog-
nition 

1 Introduction 

Although the existence of the memristor was predicted in 1971 by Professor Chua 
[1], it was not until 2008 that the first realization of a physical memristive system was 
reported by HP Labs [2]. Often regarded as the fourth fundamental circuit element, 
memristors are characterized by their pinched hysteresis loop such that all two termi-
nal, non-volatile, resistive switching memories can be classified as memristors [3].  
Memristors theoretically build upon the relationship between the magnetic flux(φ) 
and the electric charge(q) through the device as [1]: 

dφ = M ∙ dq                                                   (1) 
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Fig. 1. (a) Structure of 𝑇𝑖𝑂2 memristor (b) Conductivity equivalent circuit [4]. 

Figure 1(a) shows the conceptual structure of a 𝑇𝑖𝑂2 memristor [2][4]. A perfect 
𝑇𝑖𝑂2 layer acts as an insulator or highly resistive conductor while the conductivity of 
the oxygen-deficient titanium dioxide (𝑇𝑖𝑂2−𝑥) layer is much higher. The resistance 
of the entire memristive system can be controlled by translating the doping boundary 
between 𝑇𝑖𝑂2 and 𝑇𝑖𝑂2−𝑥. As shown in Figure 1(b), the overall memristance can be 
described as: 

𝑀(𝛼) = 𝛼 ∙ 𝑅𝑙 + (𝑙 − 𝛼) ∙ 𝑅ℎ                                   (2) 

Here, 𝑅ℎ  and 𝑅𝑙  represent the conductivities of 𝑇𝑖𝑂2  and 𝑇𝑖𝑂2−𝑥 , respectively.  In 
general, memristors have the following unique properties that make them very prom-
ising devices for artificial neural system realization: First, memristance relies on the 
history of the total electric charge flowing through the device [1][5]. Second, memris-
tors are non-volatile [6][7], which means that the memristance/resistance of the de-
vice is retained even after the system is powered off. No leakage or refresh power 
overheads are introduced into the memristor-based storage system. Lastly, memristors 
can be used as an analog device in which the resistance can be programmed continu-
ously.  

2 Principle of Memristor-based Synapse Design 

Previous circuit implementations of synapse designs mainly focus on basic func-
tions such as multiplication, summation and comparison etc. [8]. In order to build 
more complex fully-connected networks (e.g., bidirectional associative memory) and 
to implement higher level applications such as pattern recognition, the synapse must 
be able to transmit both excitation and inhibition signals in two directions.  

Figure 2(a) shows our proposed memristor-based bidirectional synapse designed to 
mimic the basic biological synapse structure. Besides the basic functions like multi-
plication and summation, our synapse design has the following new functions that 
could significantly simplify the corresponding neuron network designs:  

Bidirectional transmission: in a real neural system, there exist two kinds of synap-
ses (chemical synapse and electrical synapse) with quite different characteristics. 
Chemical synapse can only transmit signals in a single direction while an electrical 
synapse can transmit bidirectional signals. The bidirectional data transmission is es-
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sential in some artificial neural networks where the neurons in the neuromorphic 
computing system need to communicate among each other. In our design, each syn-
apse has two pairs of inputs/outputs (Vin1, Vin2/ Vout1, Vout2) that can connect two 
adjacent neurons. Such a structure allows the neuron to be either a message sender or 
a message receiver according to the control switch signal ‘c’. 

Excitation/Inhibition: there are two ways neurons can communicate with each oth-
er; either through excitation or inhibition. In our design, a synapse can translate the 
absolute voltage amplitude of a neuron to either an excitation signal (pull-up current) 
or an inhibition signal (pull-down current). For example, in Figure 2(a), the input 
signal ‘Vc’ will turn on either a PMOS transistor or an NMOS transistor based on the 
input signals. When the PMOS transistor is turned on, the synapse output ‘Vout2’ will 
be connected to ‘Vdd’, denoting the excitation state. Alternatively, when the NMOS 
transistor is turned on, the ‘Vout2’ will be pulled down to ground, denoting the inhibi-
tion state. The amplitude of the output current is a function of the instantaneous re-
sistance of the two memristors, as shown in Figure 1(b). A truth table depicting the 
operation of our synapse is shown in Table 1. 
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Fig. 2. (a) Bidirectional Synapse Circuit with One Neuron. (b) Weighted Output Current 

Table 1. Excitation/Inhibition Synapse Truth Table 

Vin1/Vin2 +/- Vc P-transistor N-transistor Vout1/Vout2 
1 1 0 Pass Cut off Pull-up 
1 0 1 Cut off Pass Pull-down 
0 1 1 Cut off Pass Pull-down 
0 0 0 Pass Cut off Pull-up 

 
The neuron in our proposed design adopted a structure similar to some of our pre-

vious work [8], where a capacitance is serially connected with two inverters. The 
capacitance collects both the pull-up and pull-down signals generated from all the 
neurons which are connected to it through synapses, thus implementing the summa-
tion function. The neuron will change its state by comparing the inverter threshold to 
the voltage of the capacitance as: 

                               N0 = �1       𝑖𝑓 ∑ 𝑁𝑖 × 𝑊𝑖 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑛
𝑖=0

0                                       𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                 (3) 

Eq. (3) signifies that the neuron (N0), collects the signals from all the other con-
nected neurons (Ni) through the weighted connections (𝑊𝑖). The neuron (N0) is excit-
ed (N0 = 1) if the voltage is higher than the threshold value and it is inhibited (N0= 0) 
if voltage is lower than the threshold value.  
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Fig. 3. (a) Signal Collection System. (b) Simulation Result. 

To demonstrate the function of the proposed synapse, we constructed a signal col-
lection system comprised of 31 neurons and 30 synapses, as shown in Figure 3(a). 
Neuron (N0) collects the signals from its 30 neighboring neurons through 30 synaptic 
connections. In this case, the information (voltage) stored in the 30 neurons (N1-N30) 
is the same while the weights and excitation/inhibition properties of the 30 synapses 
(W1-W30) are different. In our experiments, we utilized different ratios of excitation 
weight vs. inhibition weight (Wex)/(𝑊𝑖𝑛ℎ) and tested for the ratios of how many 
excitation synapses vs. inhibition synapses (𝑆𝑒𝑥𝑐 )/(𝑆𝑖𝑛ℎ) were required to excite 
neuron N0. All the circuit simulations are conducted under the Cadence Virtuoso 
environment while configured for 90nm technology. The simulation’s results are 
shown in Figure 3(b). It shows that more than 15 excitation inputs are needed to ex-
cite ‘N0’ when the excitation weight is the same as the inhibition weight. When the 
excitation weights decrease, the required number of excitation inputs increases ac-
cordingly. The changing of neurons state always happens at the threshold as: 

 Wexc × 𝑆𝑒𝑥𝑐 = 𝑊𝑖𝑛ℎ × 𝑆𝑖𝑛ℎ. (4) 

As aforementioned, the state of a neuron changes when the capacitance voltage ex-
ceeds the threshold value.  

3 Neuromorphic Computing System Implementation 

Although many CMOS implementations of analog neural networks (ANN) have 
been proposed [9][10], they generally suffer from the following issues:  

Digital/Analog conversion: In neural network designs, the weights of the connec-
tions between neurons are analog. There are generally two ways to build analog con-
nections. In the first approach, the analog weight can be digitized and stored in 
memory. However, an increase of the neural network size requires the enhancement 
of the data precision, which may lead to the requirement for an unacceptably large 
memory capacity.  In the second approach, the analog weight can be stored in an ana-
log memory device, i.e., as the voltage level on a capacitance. Compared to the digital 
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solution, such an approach suffers from the reliability issues such as charge sharing-
induced voltage level fluctuation or leakage induced voltage level degradation.  Thus, 
memory refreshing schemes become essential, and compensate the fluctuating voltage 
level on the capacitance at certain required time intervals. Both read and write opera-
tions are performed during the refresh. 

Power consumption: Although analog neural networks generally offer a more 
compact structure and small footprint than that of a digital network, the power con-
sumption of the analog neural network is usually higher. The major aspects of com-
ponent power consumption include the current through the memristor and any other 
analog devices, as well as analog peripheral circuitry such as sense amplifiers. These 
power consumption issues become more and more severe as the network increases in 
size and complexity.  

Our memristor-based synapse design is constructed on analog computation and to-
tally eliminates the conversion between the analog and digital values. Also, the non-
volatility of the memristor effectively reduces the standby power required by the 
computing circuit by eliminating the need for a refresh cycle.  

We note that the previous research on memristor-based neural networks mainly fo-
cused on system-level simulations using high level languages [11][12] or restricted 
the synapse design to that with single memristors. Our research, however, includes 
system level circuit evaluations besides on dual-memristor designs.  In the next sec-
tion we use the character recognition of printed text as a case study to demonstrate our 
design concept. 

4 Circuit-level Evaluation 

We implemented a Hopfield network [11][12] (see Figure 4) with our proposed 
memristor-based bidirectional synapses and applied it to a pattern recognition applica-
tion. The network is designed to learn and recognize several standard text patterns on 
a 4x3 grid, i.e., three text letter images of ‘A’, ‘B’, ‘C’ as shown in Figure 5(a). Dur-
ing the learning procedure, we first translate all standard patterns to vectors, each 
composed of 12 elements (𝑋1,𝑋2,𝑋3 … ,𝑋12), where black or white pixels are repre-
sented by the neurons with values of ‘1’ or ‘0’. Then the weight matrix is trained with 
these vectors based on the Hebbian learning rule [13][14]: 

𝑊 = 𝑋1𝑇 ∙ 𝑋1 + 𝑋2𝑇 ∙ 𝑋2 ⋯⋯+ 𝑋𝑚𝑇 ∙ 𝑋𝑚 − 𝑚𝐼.                       (5) 

After that, the input patterns that initialize the network will finally converge to a local 
minimum, which corresponds to one of the standard patterns that are used in training 
the weight matrix.  The entire network scheme is depicted in Figure 4. 
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Fig. 4. Memristor-based Hopfield Network [9]. 

We evaluate the robustness and performance of our circuit by using the defected 
images in Figure 5(a) as input patterns. In the ideal case, after several iterations, the 
outputs of the neural network will converge to one of the standard patterns. Based on 
previous work on associative recall [15], the capacity limits of Hopfield network is 
~15%, or about 2 patterns in a system of 12 neurons. But our initial simulation shows 
that our network works well in recognizing the defected patterns ‘A’, ‘B’ and ‘C’ 
(capacity of 25%), where 2 of the total 12 pixels are defective. After 2 iterations, the 
neuron states converged to a stable standard pattern that corresponds to the defected 
input pattern (shown in Figure 5(a)). 

 

 
Fig. 5. (a) Defected/Standard Patterns. (b) Schematic of 12 Neurons Hopfield Network  
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We also conducted Monte-Carlo simulations to evaluate the impact of memristor 

process variations on the robustness of our networks. A large Hopfield network with 
100 neurons was built to recognize larger sets of text patterns where the respective 
theoretical capacity is limited to about 15 patterns. Process variations were simulated 
by introducing Gaussian distribution noise to the memristance values of the memris-
tive devices within the Matlab simulations. A system failure was defined as converg-
ing to a wrong standard pattern (ones that do not correspond to the input pattern), or 
by failing to converge to a stable point. The test results are shown in Figure 6. Here σ 
is the standard deviation of the memristance and Pf is the system failure rate. 

 
Fig. 6. Failure rate of memristor-based Hopfield network under different pattern numbers and 

process variation conditions. 

Figure 6 shows that our design has a good immunity against process variations and 
performs well with a simulated Pf value close to zero even when the standard devia-
tion reached values greater than 0.2 (σ < 0.2).  The results confirm that increasing the 
number of text patterns quickly degraded the system’s robustness showing much 
higher Pf values.  When the number of patterns approaches the capacity limit, the 
slope of the failure rate rises quickly as the system robustness degrades. Increased 
process variations (σ) were also shown to degrade system robustness.  However, in 
conventional CMOS circuit manufacturing, the parametric standard deviation is usu-
ally less than 10% [16]. 

5 Conclusion 

In this paper, we proposed a novel memristor-based bidirectional synapse design 
that can transmit both excitation and inhibition signals.  On top of that, we imple-
mented a neural network circuit based on Hopfield networks and successfully demon-
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strated character pattern recognition capabilities. Simulation results show that our 
design has very good immunity against process variations, offering reliable function-
ality under the normal variability range of the CMOS manufacturing process.   
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