

Automatic Stripe Analysis Tool

by Justin R. Bickford

ARL-TR-6469 May 2013

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-6460 May 2013

Automatic Stripe Analysis Tool

Justin R. Bickford

Sensors and Electron Devices Directorate, ARL

Approved for public release; distribution unlimited.

 ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

May 2031

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

November 2012 to March 2013

4. TITLE AND SUBTITLE

Automatic Stripe Analysis Tool

5a. CONTRACT NUMBER

HR0011-08-09-0001

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Justin R. Bickford

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-SEE-E

2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6469

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

DARPA UNIC

675 N Randolph St

Arlington VA 22203

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report discusses the design and implementation of an automatic stripe analysis application for use in metrology. It has

been implemented in Mathworks’ Matlab scripting environment and wrapped in an easy-to-use graphical user interface (GUI).

The algorithm is robust against common image artifacts and can analyze several image formats. The automatic nature of the

script removes human error and allows large numbers of images to be analyzed quickly with high precision. The stripe width

precision is generally better than the resolution of the input image.

15. SUBJECT TERMS

Optical Microscope, SEM, Stripe Analysis, Metrology

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

30

19a. NAME OF RESPONSIBLE PERSON

Justin R. Bickford

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-5127

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

Acknowledgments v

1. Introduction 1

2. Methods, Assumptions, and Procedures 2

2.1 Image Calibration ..2

2.2 Automatic Rotation ...3

2.3 Stripe Analysis ..7

2.4 GUI Design..8

3. Conclusions 8

4. References 9

Appendix. Source Code 11

List of Symbols, Abbreviations, and Acronyms 21

Distribution List 22

iv

List of Figures

Figure 1. Line-space dose matrix example. ...2

Figure 2. Calibration line example...3

Figure 3. (a) ROI selection, (b) binary edge image, (c) Radon transform, and (d) standard
deviation of a Radon transform. ..4

Figure 4. GUI showing analyzed image output. ..6

Figure 5. Automatically labeled edges...7

v

Acknowledgments

This work was performed in support of the Defense Advanced Research Projects Agency’s

(DARPA) Ultraperformance Nanophotonic Intrachip Communication (UNIC) program contract

HR0011-08-09-0001.

vi

INTENTIONALLY LEFT BLANK.

1

1. Introduction

This automatic stripe analysis tool was initially developed to characterize the e-beam patterning

of hydrogen silsesquioxane (HSQ) on a silicon on insulator (SOI) substrate, but it is applicable to

a wide array of metrology applications. In order to produce HSQ resist patterns that are faithful

to their as-drawn feature geometries, we must account for the effective point spread function

(PSF) of the electronic beam (e-beam). The PSF is a function of the e-beam backscatter from the

substrate and other proximity effects associated with resist development. The correction of the

PSF is called proximity effect correction (PEC). The first step in measuring the PSF is to analyze

the linewidths of several line and space patterns written at different doses in a dose matrix (figure

1). Often, these types of dose matrices consist of a large number of test features (~100) and, to

correctly resolve the PSF, the linewidths of the patterned features must be resolved to an

accuracy of a few nanometers, despite the ~10-nm resolution of the scanning electron

microscopy (SEM) images. This tool provides precision far beyond traditional human picked

feature width metrology.

2

Figure 1. Line-space dose matrix example.

The algorithm is split into several steps including image calibration, automatic rotation, edge

finding, and stripe analysis. The script was packaged with a graphical user interface (GUI) for

ease of use. All examples are of SEM images; however, the script is applicable to optical

microscope and macroscopic images. The program was written in Mathworks’ Matlab scripting

environment.

2. Methods, Assumptions, and Procedures

2.1 Image Calibration

In order to produce measurements applicable to the real world, the pixels per meter must be

calibrated. This calibration only needs to be preformed once for every magnification. The GUI

allows the user to draw a line across a known feature size and then enter its physical size in

3

meters to establish a calibration (figure 2). As the line end placement accuracy is limited by the

resolution of the image, longer lines yield more precise calibrations.

Figure 2. Calibration line example.

2.2 Automatic Rotation

When analyzing an image, the first task is to choose a region of interest (ROI) to analyze, as

shown in figure 3a. Older revisions of this algorithm allowed the user to select multiple stripes.

However, those older revisions analyzed the stripes with a more primitive method and were

susceptible to image compression artifacts and only worked on distinctly bright stripes. The

latest revision uses an edge finding method and can analyze single stripes that are bright, dark, or

of equal intensity (as long as their edges are distinct). The example starting image shown in

figure 3a shows a stripe being selected that is approximately 3° off from vertical.

4

(a) (b) _

(c) (d) _

Figure 3. (a) ROI selection, (b) binary edge image, (c) Radon transform, and (d) standard deviation

of a Radon transform.

After selecting the ROI, the remaining tasks are done automatically. After the ROI is defined, the

next task is to preliminarily find edges. Several methods exist, though I found the most reliable

was the Prewitt (1) method. The Prewitt edge finding method convolves the original intensity

image with two 3x3 pixel filters, one that approximates the vertical gradient and one that

approximates the horizontal gradient. The two resulting gradient maps are added in quadrature to

approximate the gradient magnitude. This method is performed as a function in Matlab. The

resulting image is actually a thresholded version (binary valued image) of the gradient magnitude

5

image, where all gradient values above a threshold are considered edges and the remaining area

is not. The result of performing the Prewitt edge detection on the ROI of figure 3a is shown in

figure 3b.

In order to determine the stripe width, the rotation angle must be found. Once found, the original

edges may be analyzed with the rotation angle or the original image may be rotated and the

edges found again. It is easier and faster to perform the later. To find the rotation angle, I chose

to perform a Radon transform (2) of the binary edge image. The Radon transform integrates the

image pixel values along a given direction and then repeats this process for several different

directions. It is typically performed over a full 180° set of rotation angles, but I have chosen to

implement it over a high resolution subset extending from –5° to +5° in 0.1° increments. The

result of performing the Radon transform of figure 3b is shown in figure 3c. It is less

computationally intensive to perform the Radon transform on the binary edge image than it is to

perform several trial rotations of the original image, and it yields a more accurate result than

performing several trial rotations of the preliminary binary edge image. I have assumed, as is

often the case, that the stripes will be either nearly vertical or nearly horizontal in the starting

image. The ±5° Radon transform subset illustrated above is only meaningful for nearly vertical

stripes. The above discussion is written to elucidate the concept; the script actually performs a

pre-alignment check step that determines whether the binary edge image has nearly vertical or

nearly horizontal edges and performs the Radon transform over either –5° to +5° or 85° to 95°

appropriately. This pre-alignment check is done by averaging the binary edge image in the

horizontal and vertical directions, and then measuring the standard deviation of both results.

When the edges are nearly vertical, the vertical average yields a higher standard deviation and

vice versa. This pre-alignment check is faster than performing two high-resolution Radon

transforms.

The standard deviation of the Radon transform generates a plot with a peak at the ideal

orientation angle. The standard deviation plot of the Radon transform of figure 3c is shown in

figure 3d. This rotation angle is used to perform a bilinear rotation transform of the ROI image,

resulting in a new ROI image with stripes that are vertical to within <0.05°. This rotated image is

then automatically cropped to remove any border pixels resulting from the image rotation. A

rotated and cropped ROI image is shown within the GUI of figure 4. After rotation, the same

Prewitt filter is run on the rotated image, as shown in figure 5.

6

Figure 4. GUI showing analyzed image output.

7

Figure 5. Automatically labeled edges.

2.3 Stripe Analysis

Note that (as is common in SEM images) the feature edges of figure 3a are highlighted due to

electron charging and are detected as multiple edges. The first task in analyzing the stripes is to

categorize and label each edge. This is done by a Matlab function that looks for connectedness

among the edge lines. The resulting labeled edges are shown as colored lines in figure 5.

There are three cases of errors that occasionally occur and must be addressed. The first case is of

edges that are not associated with the stripe geometry. These types of errors typically stem from

image compression artifacts or particles in the field areas of the image. To combat this error,

lines that extend <10% of the ROI image height are removed. The assumption here is that all

artifacts or particles do not extend across a significant portion of the ROI image height.

The second error case is that of non-contiguous edges. To combat this, a search is performed

across every edge line whereby any set of edges that are within the horizontal standard deviation

of each other are relabeled as being part of the same edge.

The third error case arises when adjacent edge lines are connected resulting in labeled edges that

contain multiple edge segments. The solution to this error is combined with the overall goal of

the stripe analysis, which is to choose only the outermost edge pixels. This process results in two

labeled edges that represent the exterior boarder of the stripe, whether it is a bright stripe, dark

stripe, or of equal intensity (assuming their edges are distinct). The average distance between

these exterior edges is the stripe width.

Often it is important to analyze the edges themselves to gauge edge roughness. The script

averages the root mean square (RMS) edge roughness of each exterior line and outputs the result.

In certain situations, the peak-to-peak edge roughness is more meaningful than the RMS edge

roughness, so the script also outputs this value.

8

2.4 GUI Design

The script was wrapped with a GUI for ease of use by the end user, as shown in figure 4. This

was done so that anyone in the organization that had proper Matlab licensing could use this

utility without having to understand how it works. The GUI was designed to be very intuitive

and efficient. The analysis process flow is split into three simple user tasks.

The first step is to load a starting image using a file browser similar to Windows. Once selected,

the second step is either to enter a pixels-per-meter calibration value or click the calibrate scale

button. The calibrate scale button invokes the calibration window shown in figure 2. The third

step is to automatically perform the image rotation and stripe analysis. The stripe width and edge

roughness values are output in the results area at the bottom of the GUI.

For ease of use, the calibration value remains until it is changed; therefore, multiple images may

be loaded and analyzed within a single invocation of the GUI. Also, all relevant information

about the analyzed image is logged in an output stream of text, including filepath, filename,

pixels per meter, stripe width, RMS edge roughness, and peak-to-peak edge roughness.

3. Conclusions

The process of automatically analyzing striped features in images for metrology was discussed.

The algorithm was implemented in Mathworks’ Matlab scripting environment and wrapped with

a GUI for ease of use by end users. The algorithm has been tested by several users and found to

be robust to common image artifacts. The GUI outputs the average stripe with and edge

roughness values. Note that the precision of the average stripe width is defined as the RMS edge

roughness and that this precision is below the image resolution when ROI stripe selections are

more than a few pixels in height. The longer the SOI, the more accurate the average stripe width

result will be. By removing human error from the analysis, large numbers of images can be

quickly analyzed with high precision.

The script itself is included in the appendix for interested readers. This script includes the GUI

function calls; however, the associated GUI figure window is not text based and cannot be

included with this report. Please contact me directly if you wish to investigate the GUI further or

if would like to use the application.

9

4. References

1. Prewitt, J.M.S. Object Enhancement and Extraction in Picture Processing and

Psychopictorics. Academic Press, 1970.

2. Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser

Mannigfaltigkeiten, Berichte über die Verhandlungen der Königlich-Sächsischen Akademie

der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse [Reports on the proceedings

of the Royal Saxonian Academy of Sciences at Leipzig, mathematical and physical section]

(Leipzig: Teubner) (69): 262–277; Translation: Radon, J.; Parks, P.C. (translator) (1986), On

the determination of functions from their integral values along certain manifolds. IEEE

Transactions on Medical Imaging 1917, 5 (4), 170–176.

10

INTENTIONALLY LEFT BLANK.

11

Appendix. Source Code

The following is the Matlab script source code including the GUI portions.

function varargout = analyzeSEMstripesGUIv32(varargin)

% This script attempts to fix the inability of analyzeSEMstripes22.m

to

% properly analyze SOIj28 A1.tif. This script now finds the

stripewidth

% of any selection, whether they be bright or dark stripes depending

on how

% the ROI was selected. This version allows only one stripe to be

% selected. Image filetypes supported:

% (*.bmp,*.gif,*.jpg,*.pbm,*.pcx,*.pgm,*.png,*.ppm,*.ras,*.tif)

%

% v3.2 Changed file menu load image shortcut to ctrl-f instead of

ctrl-l.

% Added a GUI button to load images. Fixed a bug when you cancel the

load

% image file browser. Allowed the GUI to be rescalable. And added a

max

% edge span output to aid in roughness analysis.

% Last Modified by GUIDE v2.5 07-Mar-2013 07:36:37

% Begin initialization code - DO NOT EDIT

gui_Singleton = 1;

gui_State = struct('gui_Name', mfilename, ...

 'gui_Singleton', gui_Singleton, ...

 'gui_OpeningFcn', @analyzeSEMstripesGUIv32_OpeningFcn, ...

 'gui_OutputFcn', @analyzeSEMstripesGUIv32_OutputFcn, ...

 'gui_LayoutFcn', [] , ...

 'gui_Callback', []);

if nargin && ischar(varargin{1})

 gui_State.gui_Callback = str2func(varargin{1});

end

if nargout

 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});

else

 gui_mainfcn(gui_State, varargin{:});

end

format short eng

warning('off','Images:initSize:adjustingMag'); % shuts off image too

large warning

% End initialization code - DO NOT EDIT

12

% --- Executes just before analyzeSEMstripesGUIv32 is made visible.

function analyzeSEMstripesGUIv32_OpeningFcn(hObject, eventdata,

handles, varargin)

% This function has no output args, see OutputFcn.

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% varargin command line arguments to analyzeSEMstripesGUIv32 (see

VARARGIN)

% Choose default command line output for analyzeSEMstripesGUIv32

handles.output = hObject;

% Update handles structure

guidata(hObject, handles);

% This sets up the initial plot - only do when we are invisible

% so window can get raised using analyzeSEMstripesGUIv32.

if strcmp(get(hObject,'Visible'),'off')

 cla;

end

global filepath

filepath= pwd;

% UIWAIT makes analyzeSEMstripesGUIv32 wait for user response (see

UIRESUME)

% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.

function varargout = analyzeSEMstripesGUIv32_OutputFcn(hObject,

eventdata, handles)

% varargout cell array for returning output args (see VARARGOUT);

% hObject handle to figure

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure

varargout{1} = handles.output;

% --- Executes on button press in pushbutton4.

function pushbutton4_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global I pixelspermeter

13

caldistance_meters= 1600e-9;

%% calibrate pixelspermeter

%figure('Name','Click on two points, a known distance apart.');

figure('Name','Adjust the line''s endpoints to a known distance apart,

then press any key.');

imshow(I,[]);

hh= imdistline(gca);

% wait for a key to be pressed (not a mouse button)

w= waitforbuttonpress;

while w==0

 w= waitforbuttonpress;

end

api= iptgetapi(hh);

caldistance_pixels = api.getDistance(); % returns the line's distance

in pixels

prompt= {'Enter distance in meters:'};

dlg_title= '';

num_lines= 1;

def= {num2str(caldistance_meters,'%3.5g')};

answer= inputdlg(prompt,dlg_title,num_lines,def); % answer is a cell

array of strings

caldistance_meters= str2num(answer{1});

pixelspermeter= caldistance_pixels/caldistance_meters

close(gcf)

set(handles.edit2, 'String', num2str(pixelspermeter,'%3.5g'));

% --- Executes on button press in pushbutton5.

function pushbutton5_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global I pixelspermeter filename

%% crop the original image

figure('Name','Drag a window across the ROI in the image and right-

click to crop.');

J= imcrop(I); % prompts for cropping window and outputs the resulting

image

close(gcf)

J= imadjust(J);

14

%% find edges for rotation

method= 'prewitt';

Jbinmask= edge(J,method);

%figure, imshow(Jbinmask), title(['preliminary edge-find using method:

', method])

%% rotate image automatically

meanv= mean(J,1);

meanh= mean(J,2);

if std(meanv)>std(meanh) % if stripes are vertical

 theta = -5:0.1:5; % generates a reasonable set of misalignments to

choose from

 [R,xp] = radon(Jbinmask,theta); % performs Radon transform

 R= R/max(max(R));

 stdR= std(R,0,1); % finds the most probable stripe orientation

 maxstdR= max(stdR);

 rotationangle= mean(theta(stdR>maxstdR*.99)); % selects the most

probable stripe rotation angle, this one corrects for any near-ties

that may occur

 %rotationangle= theta(stdR==maxstdR); % selects the most probable

stripe rotation angle

 [r,c]= size(J); % necissary to prevent errors when croping below

else % if stripes are horizontal

 theta = 85:0.1:95; % generates a reasonable set of misalignments to

choose from

 [R,xp] = radon(Jbinmask,theta); % performs Radon transform

 R= R/max(max(R));

 stdR= std(R,0,1); % finds the most probable stripe orientation

 maxstdR= max(stdR);

 rotationangle= mean(theta(stdR>maxstdR*0.99)); % selects the most

probable stripe rotation angle, this one corrects for any near-ties

that may occur

 %rotationangle= theta(stdR==maxstdR); % selects the most probable

stripe rotation angle

 [r,c]= size(J'); % necissary to prevent errors when croping below

end

J= imrotate(J,-rotationangle,'bilinear','loose'); % rotates the

cropped image to vertical, very narrow sliver-like input J's yield

J=[] for some reason?

[r2,c2]= size(J);

dr= r2-r+1; % the +1 is necissary

dc= c2-c+1; % the +1 is necissary

J= J(dr:r2-dr,dc:c2-dc); % crops the image tightly to omit all

unwanted rotation data

[r,c]= size(J);

axes(handles.axes1);

imshow(J,[]); title(['analyzed image:

',filename],'Interpreter','none')

15

%% find the best edges

Jedge= edge(J,'prewitt'); % find edges of rotated image.

LJedge = bwlabel(Jedge); % labeled edges

%figure, imshow(label2rgb(LJedge)), title('all edges: labeled')

N= max(max(LJedge)); % number of labels

newLJedge= zeros(r,c); % Jmask is type double

m= 0;

for n= 1:N

 if sum(logical(sum(LJedge==n,2))) > 0.10*r; % if the edge spans >10%

of the whole height of the image, keep it. This filters out all of the

tiny edge segments and edge squiggles that are sometimes found with

the canny edge finding method.

 m= m+1;

 [x,y]= find(LJedge'==n);

 aveedge(m)= mean(x);

 stdedge(m)= std(x);

 if m>1

 deltaedge= aveedge(m)-aveedge(m-1);

 if deltaedge < mean([stdedge(m),stdedge(m-1)]) % if the m'th edge is

NOT significantly different from the m-1'th edge, make them one edge

 aveedge(m-1)= mean([aveedge(m-1),aveedge(m)]);

 stdedge(m-1)= mean([stdedge(m-1),stdedge(m)]);

 %disp([int2str(m),' th edge is not significantly different from the

previous edge.'])

 m= m-1;

 end

 end

 newLJedge(LJedge==n)= m; % place m in every pixel that contains a

contiguous edge; ie: rebuilding a label image

 end

end

%figure, imshow(label2rgb(newLJedge))

if m==1

 disp('Only found one edge, try analyzing a different ROI.')

elseif m>4

 disp('Found too many edges, try analyzing a different ROI.')

end

%% analyze only the outermost edge pixels

aveedge= [];

stdedge= [];

maxedgeroughness_pixels= [];

for mm=[1,m]

 if mm==1

16

 firstorlast= 'first'; % collect only left-hand pixels, removing all

duplicates to the right

 else % if mm==m

 firstorlast= 'last'; % collect only right-hand pixels, removing all

duplicates to the left

 end

 clear x y

 nn= 1;

 for n=1:r

 val= find(newLJedge(n,:)==mm,1,firstorlast);

 if ~isempty(val)

 x(nn)= val;

 y(nn)= n;

 nn= nn+1;

 end

 end

 aveedge= [aveedge, mean(x)];

 stdedge= [stdedge, std(x)];

 maxedgeroughness_pixels= max([maxedgeroughness_pixels, max(x)-

min(x)]);

 axes(handles.axes1);

 hold on, plot(x,y,'b'), hold off

end

avestripewidth_pixels= diff(aveedge);

rmsofedges_pixels= mean(stdedge);

%% output data

Stripe_Width_in_meters= avestripewidth_pixels/pixelspermeter

RMS_Edge_Roughness_in_meters= rmsofedges_pixels/pixelspermeter

Max_Edge_Roughness_in_meters= maxedgeroughness_pixels/pixelspermeter

axis off

set(handles.text5, 'String', num2str(Stripe_Width_in_meters,'%3.5g'));

set(handles.text13, 'String',

num2str(RMS_Edge_Roughness_in_meters,'%3.5g'));

set(handles.text15, 'String',

[num2str(Max_Edge_Roughness_in_meters,'%3.5g'), ' ± ',

num2str(1/pixelspermeter,'%3.5g')]);

% --

function FileMenu_Callback(hObject, eventdata, handles)

% hObject handle to FileMenu (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

17

% --

function OpenMenuItem_Callback(hObject, eventdata, handles)

% hObject handle to OpenMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

global I filename filepath % pass in the previous filepath and pass

out the most current filepath

filepathtmp= filepath;

filenametmp= filename;

[filename,filepath,filenameindex]=

uigetfile({'*.bmp;*.gif;*.jpg;*.pbm;*.pcx;*.pgm;*.png;*.ppm;*.ras;*.ti

f','Image Files'},'Browse to Load an image; it need not be in the

origin directory.', filepath); % opens a typical windows file

selection panel and retrieves the selected filename, starting from the

last known filepath (which initializes to the pwd)

if filename~=0 % if a file was chosen

 if ~strcmp(filepathtmp,filepath)

 disp(['filepath= ',filepath])

 end

 disp(['filename= ',filename])

 I= imread([filepath,filename]);

 Ind= length(size(I)); % number of input image color dimensions

 if Ind==3

 I= rgb2gray(I); % this update supports color using standard weighted

sum= 0.2989*R + 0.5870*G + 0.1140*B, and supports high bit depth

images. Even if the input image is gray, but written in rgb mode, this

will still faithfully reproduce the gray coloring.

 elseif Ind==2

 % do nothing for grayscale images

 else

 filepath= filepathtmp;

 filename= filenametmp;

 disp('Filetype not supported, please convert to RGB or grayscale.')

 end

else % if a file was not chosen

 filepath= filepathtmp;

 filename= filenametmp;

 disp('Please load an image before proceeding.')

end

% --

function CloseMenuItem_Callback(hObject, eventdata, handles)

% hObject handle to CloseMenuItem (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],...

18

 ['Close ' get(handles.figure1,'Name') '...'],...

 'Yes','No','Yes');

if strcmp(selection,'No')

 return;

end

delete(handles.figure1)

% --- Executes on change in editbox edit2.

function edit2_Callback(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of edit2 as text

% str2double(get(hObject,'String')) returns contents of edit2 as a

double

global pixelspermeter

pixelspermeter= str2double(get(hObject,'String'))

% --- Executes during object creation, after setting all properties.

function edit2_CreateFcn(hObject, eventdata, handles)

% hObject handle to edit2 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.

% See ISPC and COMPUTER.

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))

 set(hObject,'BackgroundColor','white');

end

global pixelspermeter

pixelspermeter= 311.5e6; % sets the default value when the GUI

launches

set(hObject, 'String', num2str(pixelspermeter,'%3.5g'));

% --- Executes on button press in pushbutton6.

function pushbutton6_Callback(hObject, eventdata, handles)

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

19

OpenMenuItem_Callback(); % simply calls the filemenu open function

% --- Executes during object creation, after setting all properties.

function text5_CreateFcn(hObject, eventdata, handles)

% hObject handle to text5 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

set(hObject, 'String', '');

% --- Executes during object creation, after setting all properties.

function text13_CreateFcn(hObject, eventdata, handles)

% hObject handle to text13 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

set(hObject, 'String', '');

% --- Executes during object creation, after setting all properties.

function text15_CreateFcn(hObject, eventdata, handles)

% hObject handle to text15 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

set(hObject, 'String', '');

% --- Executes during object creation, after setting all properties.

function uipanel4_CreateFcn(hObject, eventdata, handles)

% hObject handle to uipanel4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% --- Executes during object creation, after setting all properties.

function uipanel7_CreateFcn(hObject, eventdata, handles)

% hObject handle to uipanel7 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% --- Executes during object creation, after setting all properties.

function uipanel8_CreateFcn(hObject, eventdata, handles)

20

% hObject handle to uipanel8 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

%% calibrate button

% --- Executes during object creation, after setting all properties.

function pushbutton4_CreateFcn(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

% --- Executes during object deletion, before destroying properties.

function pushbutton4_DeleteFcn(hObject, eventdata, handles)

% hObject handle to pushbutton4 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- If Enable == 'on', executes on mouse press in 5 pixel border.

% --- Otherwise, executes on mouse press in 5 pixel border or over

pushbutton6.

function pushbutton6_ButtonDownFcn(hObject, eventdata, handles)

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles structure with handles and user data (see GUIDATA)

% --- Executes during object creation, after setting all properties.

function pushbutton6_CreateFcn(hObject, eventdata, handles)

% hObject handle to pushbutton6 (see GCBO)

% eventdata reserved - to be defined in a future version of MATLAB

% handles empty - handles not created until after all CreateFcns

called

21

List of Symbols, Abbreviations, and Acronyms

DARPA Defense Advanced Research Projects Agency

e-beam electron beam

GUI graphical user interface

HSQ hydrogen silsesquioxane

PEC proximity effect correction

PSF point spread function

RMS root mean square

ROI region of interest

SEM scanning electron microscopy

SOI silicon on insulator

UNIC Ultraperformance Nanophotonic Intrachip Communication

22

NO. OF

COPIES ORGANIZATION

 1 ADMNSTR

(PDF) DEFNS TECHL INFO CTR

 ATTN DTIC OCP

 7 US ARMY RSRCH LAB

(PDFS) ATTN IMAL HRA MAIL & RECORDS MGMT (1 HC)

 1 ATTN RDRL CIO LL TECHL LIB

 (HC) ATTN RDRL SEE E J BICKFORD

 ATTN RDRL SEE E P PELLEGRINO

 ATTN RDRL SEE E N BAMBHA

 ATTN RDRL SEE E W CHANG

 ATTN RDRL SEE G WOOD

 ATTN RDRL SEE P GILLESPIE

 1 DARPA

 (PDF) ATTN MTO J SHAH

