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Abstract 

Background 

We can describe protein-protein interactions (PPIs) as sets of distinct domain-domain 
interactions (DDIs) that mediate the physical interactions between proteins. Experimental 
data confirm that DDIs are more consistent than their corresponding PPIs, lending support to 
the notion that analyses of DDIs may improve our understanding of PPIs and lead to further 
insights into cellular function, disease, and evolution. However, currently available 
experimental DDI data cover only a small fraction of all existing PPIs and, in the absence of 
structural data, determining which particular DDI mediates any given PPI is a challenge. 

Results 

We present two contributions to the field of domain interaction analysis. First, we introduce a 
novel computational strategy to merge domain annotation data from multiple databases. We 
show that when we merged yeast domain annotations from six annotation databases we 
increased the average number of domains per protein from 1.05 to 2.44, bringing it closer to 
the estimated average value of 3. Second, we introduce a novel computational method, 
parameter-dependent DDI selection (PADDS), which, given a set of PPIs, extracts a small set 
of domain pairs that can reconstruct the original set of protein interactions, while attempting 
to minimize false positives. Based on a set of PPIs from multiple organisms, our method 
extracted 27% more experimentally detected DDIs than existing computational approaches. 

Conclusions 

We have provided a method to merge domain annotation data from multiple sources, 
ensuring large and consistent domain annotation for any given organism. Moreover, we 
provided a method to extract a small set of DDIs from the underlying set of PPIs and we 



showed that, in contrast to existing approaches, our method was not biased towards DDIs 
with low or high occurrence counts. Finally, we used these two methods to highlight the 
influence of the underlying annotation density on the characteristics of extracted DDIs. 
Although increased annotations greatly expanded the possible DDIs, the lack of knowledge 
of the true biological false positive interactions still prevents an unambiguous assignment of 
domain interactions responsible for all protein network interactions. 

Executable files and examples are given at: http://www.bhsai.org/downloads/padds/ 

Keywords 

Merging domain annotations, Domain-domain interactions, Protein-protein interaction 
networks 

Background 

The living cell is a dynamic, interconnected system where proteins interact with each other to 
facilitate biological processes. Large protein-protein interaction (PPI) datasets have become 
available due to advances in experimental biology and the development of high-throughput 
screening techniques. However, while existing data describe thousands of protein 
interactions, such interactions still constitute only a fraction of all PPIs for a small number of 
available organisms [1-5]. Moreover, available PPI datasets acquired from different 
experiments are often seemingly inconsistent with each other, implying that the different 
methods might produce false positive interactions or fail to identify certain types of 
interactions [4,6-9]. Here, we attempt to address this seemingly intractable problem by 
focusing on bioinformatics approaches that use protein domains as fundamental building 
blocks of protein interactions. 

Domains as protein interaction building blocks 

Proteins consist of one or more domains and multiple studies have shown that domain-
domain interactions (DDIs) from different experiments are more consistent than their 
corresponding PPIs, suggesting that domains may be fundamental in mediating physical 
interactions between proteins [10-12]. Under the assumption that protein interactions are 
mediated by domain interactions, we can hypothesize that each interaction in a PPI dataset 
can be converted into a corresponding set of pairwise domain interactions. However, lack of 
direct experimental evidence for interactions at the domain level means that we can only 
account for, or explain, a small fraction of known PPIs for any organism using 
experimentally determined DDIs. Determining the particular domains that physically bind 
(i.e., mediate) a given PPI based on limited structural information remains a challenge. 

To address this challenge, we must first characterize the specific protein domains that 
mediate protein interactions. It is estimated that approximately 80% of eukaryotic proteins 
and 67% of prokaryotic proteins have multiple domains [13,14]. Most annotation databases 
characterize each domain family using a small, curated set of amino acid sequences common 
to representative members. These databases share a significant amount of protein-domain 
annotation data; however, each database also contains a noteworthy number of unique 
protein-domain annotations. Some databases, e.g., Conserved Domain Database (CDD) [15] 
and InterPro [16,17], provide protein-domain annotation information collected from several 



databases but none provides the capability to methodically merge these annotations (Figure 
1A). 

Figure 1 Evaluation of different protein-domain annotation merging strategies. (A) 
Using the InterPro database, we obtained seven protein-domain annotations for yeast protein 
YNL271C from three databases: PFAM [32], Superfamily (SF) [33], and SMART [34,35]. 
PFAM domains: FH2, Drf_FH3, and two Drf_GBD domains; SF domains: Formin homology 
2 domain (FH2 domain) and ARM repeat; and SMART domain: Formin Homology. (B) The 
naïve domain-merging strategy identified seven unique domains for YNL271C. (C) Sequence 
locations helped identify some of the identical domains (FH2, FH2 domain, and Formin 
Homology) but was not able to differentiate between different domains that share the same 
sequence position. (D) Taking into consideration both sequence location and domain 
names/labels, our merging strategy identified four unique domains: ARM repeat, Drf_FH3, 
Drf_GBD, and a domain consisting of FH2 domains (FH2, FH2 domain, and Formin 
Homology). 

Combining data from multiple databases, while addressing annotation inconsistencies, is a 
non-trivial procedure. For example, a naïve domain annotation data-merging strategy 
consisting of the aggregation of all annotation data regardless of domain sequence overlaps or 
domain name/label similarities would increase the average number of hypothetical domains 
per protein. However, this strategy would also overestimate the total number of domains, 
because it considers domains that are not identically represented in two different databases as 
two different domains (Figure 1B). In contrast, considering sequence information as part of 
the naïve merging strategy, e.g., by aggregating all annotation data that overlap in at least 10 
continuous amino acids, would reduce the number of inferred domains per protein. However, 
such a merging strategy inherently assumes that all domains that overlap in sequence are 
identical, leading to a small number of merged domains and, likely, an underestimation of the 
total number of true domains (Figure 1C). The strategy presented here combines sequence 
locations and name/label information to construct merged domain annotation sets in which 
the number of domains per protein is not a priori over- or underestimated (Figure 1D). 

Domain-based methods for reconstituting whole protein interaction networks 

The use of domains as mediators of protein interactions requires the ability to assign domains 
to all proteins under consideration. However, in the case of multi-domain proteins, it is 
unclear which particular domains truly mediate a given PPI set, because more than one 
potential domain pair can account for a single interaction. This uncertainty could lead to 
predictions of false positive PPIs, as domains identified as mediators of protein interactions 
account not only for the original PPI set but also for all other protein pairs that contain the 
same domain pair combinations. Existing computational methods use varying approaches to 
tackle different aspects of these problems, each with its own set of aims, strengths, and 
limitations [18-30]. For example, some methods use additional biological information, such 
as gene expression data, to establish whether a PPI can occur [24,25,29], and others limit the 
PPI coverage to smaller sets of high-confidence interactions [19,26,27]. An additional 
promising approach is to use a feature selection algorithm to find a set of DDIs that best 
discriminate between true and false PPIs [30]. However, these methods are not broadly 
applicable to non-model organisms or comprehensive enough to include protein interactions 
on a proteomic scale. 



In this regard, reconstitution methods provide a framework that does not a priori require 
additional data and is applicable on a genomic scale to any organism provided a PPI dataset 
exists [20,21,23]. The aim of these methods is to identify small sets of potential DDIs that 
reconstitute the complete original set of PPIs. Overall, the aim of the maximum-specificity 
set cover (MSSC) method [23] is to minimize the number of potential false positive 
interactions regardless of the number of DDIs used to explain the PPI set, while the aim of 
the parsimonious approach (PA) [20] and the generalized parsimonious explanation (GPE) 
method [21] is to minimize the number of selected DDIs regardless of the introduction of 
false positive interactions. Despite their underlying differences, all three approaches (MSSC, 
PA, and GPE) have been shown to recover DDIs experimentally identified from structural 
data. This leads to the observation that true DDIs are not necessarily rare, promiscuous, or 
parsimonious, but rather are distributed between the extremes. Consequently, a method that 
reconstitutes protein interactions based on different degrees of rare, promiscuous, and 
parsimonious DDIs could prove beneficial. 

Our contributions 

Here, we investigate how to create merged sets of domain annotations and how to use these 
annotations to select sets of DDIs that reconstitute large-scale PPI networks using different 
true positive and false positive selection weights. First, we introduce a novel computational 
strategy to merge protein-domain annotation data from multiple databases, a needed 
capability that is not currently available elsewhere. We believe that merging protein-domain 
annotation data from multiple sources will help ensure a large and consistent domain 
annotation set for any given organism. Second, we introduce a novel heuristic computational 
approach, parameter-dependent DDI selection (PADDS), which, given a set of PPIs, extracts 
a small set of DDIs that explains the original set of protein interactions and is not biased 
towards DDIs with either low or high occurrence counts. The heuristic scoring system for 
selecting DDIs can be tuned between favoring known interactions (true positives) and 
penalizing non-observed interactions (false positives). Given that the domain-merging 
procedure increases the number of domains per protein and, hence, the number of possible 
domain combinations, PADDS was designed to minimize both the number of false positive 
PPIs and the size of the extracted DDI set. 

Results and discussion 

Merged domain annotations from multiple databases 

Our strategy combines sequence locations and name/label information to construct merged 
domain annotation sets as detailed in Methods. Here, we illustrate its application on a well-
annotated single-cell organism. We created a merged set of protein-domain annotations for 
yeast (Saccharomyces cerevisiae) using sequences of 5,884 proteins,a downloaded from the 
Saccharomyces Genome Database (SGD) [31] and yeast annotation data from six commonly 
used annotation databases: PFAM-A (release 25.0) [32], Superfamily (SF) [33], SMART 
[34,35], PRODOM [36], TIGRFAM [37], and CDD [15]. To assign protein-domain 
annotations, we either used curated yeast domain annotations (if available) [32,33] or 
extracted domain annotations based on an E-value threshold of ≤ 10-2 [15,34-37]. Although 
approximately 80% of the proteins had at least one domain annotation in one of the databases 
(Table 1), this level of annotation density cannot be expected for less-studied organisms. 



Thus, merging protein-domain annotation data from multiple sources will help ensure a 
maximally large and consistent domain annotation set for any given organism. 

Table 1 Yeast protein-domain annotation data from six publicly available annotation 
databases 

Database NP NS NO NU AD 
n %  n %  

PFAM-A 4,709 80.0 1,174,333 40.2 2,595 2,553 1.05 
SF 3,651 62.1 962,602 33.0 1,355 1,307 0.79 
SMART 3,023 51.4 455,523 15.6 392 379 0.66 
PRODOM 146 2.5 19,760 0.7 111 111 0.02 
TIGRFAM 3,019 51.3 546,226 18.7 2,544 1,944 1.25 
CDD 2,210 37.6 560,299 19.2 3,300 731 0.58 
A total of 5,884 proteins containing a total of 2,921,809 amino acids were downloaded from 
the Saccharomyces Genome Database [31]. NP, proteins with at least one domain annotation. 
NS, protein-domain amino acid sequence coverage. NO, number of unique domains in the 
original database. NU, number of unique domains in the unified database. AD, average number 
of domains per protein in the unified database. 

Table 1 shows that, despite extensive annotation efforts, each database characterized each 
protein by a small average number of domains. It also shows the variation in the number of 
domains extracted among the different databases, as well as the variation in the number of 
proteins with domain annotations. 

The content of the final merged domain annotation set does not depend on the order in which 
we merged the databases. However, to create high-confidence merged annotation sets of 
different sizes, e.g., merged annotation from two, three, …, six, databases, we first merged 
the PFAM-A and SF contents because they contain curated domains of high confidence. We 
selected the merging order of the other four databases randomly and Table 2 shows the 
database origins of the six merged sets, SET-1 to SET-6. 

Table 2 Database origin of merged domain annotation sets 
Annotation set Domain annotation databases 

SET-1 PFAM-A [32] 
SET-2 PFAM-A, SF [33] 
SET-3 PFAM-A, SF, SMART [34,35] 
SET-4 PFAM-A, SF, SMART, PRODOM [36] 
SET-5 PFAM-A, SF, SMART, PRODOM, TIGRFAM [37] 
SET-6 PFAM-A, SF, SMART, PRODOM, TIGRFAM, CDD [15] 

Table 3 shows that the merging procedure increased the number of proteins with domain 
annotation by more than 10%. At the same time, the average number of domains per protein 
increased from 1.05 to 2.44 (Table 3), approaching the estimated average value of ~3 [10,14]. 
The final domain annotation set created using the database merging procedure consisted of 
4,114 unique domains (Additional file 1). The domain length distribution in this set was 
similar to the domain length distribution from each of the six original databases (data not 
shown), and most domains ranged in length between 100 and 300 amino acids. 



Table 3 Yeast protein-domain annotation data after merging annotations from the six 
databases 

Domain annotation set NU NP NS AD 
n %  n %  

Domain-merging procedure 
SET-1 2,595 4,709 80.0 1,174,333 40.0 1.05 
SET-2 2,847 4,964 84.4 1,510,026 51.7 1.33 
SET-3 2,806 5,280 89.7 1,653,122 56.6 1.69 
SET-4 2,843 5,307 90.2 1,663,269 56.9 1.69 
SET-5 4,182 5,392 91.6 1,735,533 59.4 2.55 
SET-6 4,114 5,395 91.7 1,756,481 60.1 2.44 

Naïve domain merging 
SET-6-NB 10,297 5,395 91.7 1,756,481 60.1 5.77 

Domain merging based solely on sequence overlap 
SET-6-SB 1,492 5,395 91.7 1,756,481 60.1 1.32 
Database sets SET-1 through SET-6 are defined in Table 2. SET-6-NB (naïve merging) 
contained the union of unique domain annotations from the six databases used in SET-6. 
SET-6-SB contained merged domain annotations from the same six databases as in SET-6, 
but domains in this set were merged only if their sequences overlapped and they shared at 
least ten common amino acids (i.e., domain labels were not considered). NU, number of 
unique domains. NP, proteins with at least one domain annotation. NS, protein-domain amino 
acid sequence coverage. AD, average number of domains per protein. 

Evaluation of the protein-domain annotation merging strategy 

To evaluate the merged domains, we compared our results to those obtained with two simple 
alternative strategies: a naïve domain-merging strategy (SET-6-NB) and a naïve domain-
merging strategy that takes into account sequence overlaps (SET-6-SB). Because the number 
of original domains is constant, all three merged sets (SET-6, SET-6-NB, and SET-6-SB) 
yielded the same number of proteins with domain annotation. However, their final domain 
annotations resulted in different numbers of unique domains, as well as different average 
numbers of domains per protein (Table 3). SET-6-NB consisted of over 10,000 unique 
domains, with an average number of 5.77 domains per protein. This set considerably 
overestimated the total number of unique domains, as many of its 10,000 domains 
represented the same domain with a slightly different label. For example, the naïve merging 
strategy would consider the formin homology 2 domain represented in three annotation 
databases (PFAM-A, SF, and SMART) as different domains, because their domain labels and 
sequence locations are not identical (see Figure 1B). By merging annotations that overlap in 
at least 10 continuous amino acids, SET-6-SB reduced the number of unique domains to 
1,492, as well as the average number of domains per protein to 1.32. Although the average 
number of domains per protein was greater than the average number for any of the original 
databases, the total number of unique domains was underestimated. For example, the 
sequence location of ARM repeat overlaps with the sequence location of Drf_FH3 and 
Drf_GBD domains (see Figure 1C) and this strategy would merge the ARM repeat with 
Drf_FH3 and also with Drf_GBD. This would result in a merged domain that consists of the 
three original domains, ARM repeat, Drf_FH3, and Drf_GBD, even though these three 
domains are different and should not have been merged. Our merging strategy does not suffer 



from these issues, as it distinguishes between the same and different domains that cover the 
same sequence location based on their domain labels (see Figure 1D). 

These results showed that our protein-domain-merging strategy did not overestimate or 
underestimate the number of domains per protein. However, this does not necessarily imply 
that the merged domain annotation is biologically more relevant. To this end, we compared 
our merged protein-domain annotations to the recently released high-confidence annotations 
from the PFAM-A database (PFAM release 26.0). To assess the amount of correctly retrieved 
annotations from our merged set, we compared them to the following two independent 
subsets of the new PFAM release: 1) a set of new domain annotations that replaced 
annotations from the previous PFAM release (PFAM release 25.0) and 2) a set of new 
domain annotations that did not exist in the previous PFAM release but have a corresponding 
annotation in the merged dataset.b The comparison procedure consisted of two steps. First, for 
each new domain annotation, we found one or more merged domain annotations that covered 
the same protein sequence location. Then, we manually compared domain labels and 
descriptions between the new domain and the merged domains. Out of 17 new domain 
annotations in the first subset and 274 new domain annotations in the second subset, we 
found 13 (76%) and 202 (71%) annotations, respectively, in our merged dataset (Additional 
file 2). Because these account for >70% of the new PFAM-A annotations, it demonstrates the 
benefits of the proposed domain-merging strategy. 

Use of annotation-based domains to reconstitute protein interaction networks 

The introduction of a more complete set of domain annotations across all interacting proteins 
in a genome would allow for the enumeration of all domain interactions that could account 
for an original set of PPIs. Furthermore, this would also allow for a comprehensive evaluation 
of DDIs and identification of an optimum DDI set. However, this process has the 
disadvantage of exponentially increasing the number of domain combinations. To circumvent 
this problem, our PADDS method enumerates only a subset of DDI combinations and 
evaluates each one of them based on the following two criteria: 1) the number of DDIs used 
to account for the observed PPIs and 2) the number of non-observed PPIs (i.e., false 
positives) introduced by the combination of DDIs. As detailed in Methods, this selection 
depends on the value of the parameter that specifies the true/false positive biases, denoted as 
α; α ϵ [0.0, 1.0], where an α of 0.0 favors observed protein interactions and an α of 1.0 
maximally penalizes non-observed interactions. We first used PADDS to investigate the 
choice of selecting different values of the parameter α on retrieved DDIs. Here, the DDIs 
were constructed from a study containing multiple organisms, but with protein-domain 
annotations from a single database. The PADDS-extracted DDIs were compared to other 
methods and validated using the iPFAM [38] and DOMINE [39,40] databases of known and 
predicted DDIs. We then applied the algorithm to extract DDIs from a high-confidence yeast 
PPI dataset using merged domain annotations. We compared the results from our analysis to 
those of existing reconstitution methods on the same datasets. 

Multiple organism PPIs characterized by a single domain annotation database 

To determine the consequences of favoring true positives or penalizing false positives, we 
examined the ability of PADDS to generate different sets of DDIs that can reconstitute a 
diverse set of PPIs from multiple organisms for different values of α. We applied PADDS to 
a collection of PPIs from 68 different organisms as assembled by Riley et al. [27]. In order to 
compare our results on this dataset to the GPE method, previously identified as giving the 



best reconstitution results on this dataset [21], we converted all domains to the same PFAM-
A supra-domain annotations used by GPE [21]. We identified 10,025 proteins with PFAM-A 
supra-domain annotations and 20,625 PPIs where both interacting proteins had at least one 
domain annotation. This dataset yielded a total number of 26,113 potential DDIs that could 
be used to reconstitute all PPIs and the average number of domains per protein for this dataset 
was 1.37. 

For each α used in PADDS to extract the DDI sets (Additional file 3), we ranked the DDIs 
based on their corresponding benefit values (see Methods). We evaluated each set of top-
scoring DDIs for enrichment of DDIs detected in crystal structures available in the iPFAM 
database (denoted as “known DDIs”) [38]. Out of 26,113 potential DDIs from the Riley 
dataset, 691 DDIs were present in the set of known DDIs [20]. Figure 2A shows the fraction 
of known DDIs retrieved for different values of α in different top-ranked DDI sets. The 
overall number of extracted known DDIs did not increase linearly with the number of DDIs 
analyzed, and the total retrievable number was less than 70% of the known set. Additionally, 
the number of known DDIs retrieved varied in a non-linear fashion with α, indicating that the 
extraction procedure was sensitive to the selection weights for both observed and non-
observed interactions. These observations imply a non-trivial solution to the optimal DDI 
extraction problem. We also noted that the largest number of known DDIs were always 
retrieved in sets for which α was not at its extreme values of 0.0 or 1.0. For the small to 
intermediate size sets between 1,000 to 4,000 analyzed DDIs, the maximum retrievable 
number occurred at α values ~0.10. 

Figure 2 Enrichment of “known”  (iPFAM) domain-domain interactions. Evaluation of 
the top-scoring domain-domain interactions (DDIs) extracted by the parameter-dependent 
DDI selection (PADDS) and the generalized parsimonious explanation (GPE). (A) The 
fraction of known DDIs in the iPFAM database [38] retrieved by PADDS as a function of α 
and the number of top-scoring DDIs. (B) Comparison of the percentage of retrieved iPFAM 
DDIs using PADDS and GPE as a function of top-ranked DDI sets (i.e., recall). (C) 
Comparison of the fraction of retrieved iPFAM DDIs using PADDS and GPE as a function of 
the iPFAM DDI set and top-ranked DDI sets (i.e., precision). For the GPE sets, we used the 
DDI rank information provided with the published data that includes their designated high-
confidence (GPE-HC) and low-confidence (GPE-LC) sets [21]. We have also indicated the 
best results achievable with any α value, typically achieved for α = 0.1. 

Figure 2B, Figure 2C, and in Additional file 4: Table S1 show the difference in retrieving 
known DDIs between PADDS and the published results using GPE methods. For PADDS, 
we show both the best results using selected α values and average results using non-extreme 
values of α. For this dataset, PADDS was more successful (13% – 27%) than the best GPE 
method in the majority of the α selections away from the extreme values. This implies that 
the ability to modulate the preference for known interactions and tolerance of non-observed 
interactions was an important factor in the process of DDI extraction and the overall ability to 
extract known DDIs. While there is always a dataset dependency on these results, it was also 
clear that relaxing either extreme selection (α = 0.0 or α = 1.0) retrieved more known DDIs 
(Figure 2A). 

Although DDI extraction can be optimized for each dataset by varying α, one cannot in all 
cases independently determine an optimal α value. Hence, we were also interested in the 
robustness of the algorithm and, in particular, evaluating extracted DDIs that are independent 
of α. We used the DOMINE database as a comprehensive source of known and predicted 



DDIs derived from multiple sources [39,40] to construct DDIs (Additional file 4: Validation 
of extracted core DDIs section and Additional file 4: Figure S1). The analysis showed that 
there was a large overlap among the sets of extracted DDIs for different values of α, 
indicating robustness of the algorithm to choices of α. Furthermore, the PADDS algorithm 
was capable of providing parameter-independent and unique DDI predictions not derivable 
from high-confidence results of other computational procedures. To further characterize 
PADDS-extracted DDIs, we next examined the high-confidence protein interaction network 
from a single organism (yeast) with our merged domain annotations. 

Single organism PPIs characterized by multiple annotation databases 

To evaluate the influence of the underlying set of PPIs and protein-domain annotation data on 
the DDI extraction process, we reconstructed a set of high-confidence yeast PPI data created 
by the Interaction Detection Based On Shuffling (IDBOS) procedure at a 5% false discovery 
rate [8,41]. We have previously shown that this dataset identified binary interactions as well 
as, or better than, the high-confidence consolidated yeast two-hybrid set or other high-
confidence datasets based on affinity purification followed by mass spectrometry [8,41]. The 
IDBOS dataset consists of 8,401 PPIs between 1,295 proteins. For protein-domain annotation 
of the IDBOS dataset, we used our merged protein-domain annotation data (SET-1 to SET-6) 
as described above. The average number of domains per protein for the IDBOS dataset was 
2.69. In Additional file 4: Table S2 shows the complete statistics for the domain annotations 
in the IDBOS dataset. 

Evaluating domain interactions for high-confidence yeast protein interactions 

We evaluated the merged domain annotation sets using three reconstitution methods: 
PADDS, MSSC, and GPE. We used PADDS with parameter α ϵ [0.0, 1.0] in 0.1 increments, 
ranked the extracted DDIs based on the corresponding benefit value, and extracted the 
corresponding ranked data for MSSC and GPE (see Methods). Although, by construction, all 
obtained DDI sets accounted for all original PPIs, different methods yielded DDI sets of 
different sizes for each of the six domain annotation schemes, with PADDS consistently 
extracting the smallest sets of DDIs. Additional file 4: Figure S2, Additional file 4: Table S3, 
and Additional file 4: Table S4 in Additional file 4 provide the complete results of this 
analysis. However, despite of their aim to minimize the number of false positives, all three 
methods identified a much larger number of novel (predicted) PPIs than what could be 
expected to occur in a living cell [1,2,4,5]. Even if we assume that all predicted interactions 
represent plausible physical interactions between proteins, e.g., a specified PPI would occur if 
two proteins were in close proximity, it is likely that in their native environment they are 
under additional biological regulation. Thus, one cannot assume that all proteins that contain 
interacting domains will necessarily interact within the cell, due to the existence of alternative 
regulatory mechanisms that control these interactions [42]. 

To evaluate the performance of the different reconstitution methods on different domain 
annotation sets, we investigated the ability of each method to extract DDIs that accounted for 
the given PPIs while limiting the number of false positive PPIs. For this calculation, we 
defined the set of true non-interacting protein pairs as the set of all pairwise protein 
interactions minus the known true interaction set [18,20,30], see Methods. Based on these 
definitions, we could then ascertain true and false PPI predictions for each extracted set of 
DDIs and construct the corresponding Receiver Operating Characteristic (ROC) curves from 
an analysis of true positive and false positive rates. PADDS outperformed the other two 



methods for all six annotation sets (Additional file 4: Figure S3 and Additional file 4: Figure 
S4). The largest differences were most evident for the larger annotation sets, e.g., SET-6, 
where the other methods lack PADDS’s flexibility to extract a small number of DDIs while 
limiting the introduction of non-observed interaction. 

PADDS increases diversity of DDIs when provided with sufficient amounts of 
annotations 

To investigate the relationship between the size of the domain annotation sets and the 
obtained results, we compared the set of DDIs (accounting for the IDBOS set of PPIs) 
extracted by PADDS for different values of α. We found that, for SET-1, approximately 80% 
of the DDIs were represented in all extracted sets and were not dependent on the particular 
value of α (a similar result was observed in the multi-organism study). Figure 3 shows that, 
with an increasing amount of domain annotation data, the number of DDIs represented in all 
extracted sets decreased, and for SET-6 only ~30% of the DDIs were represented in all sets. 
In contrast, we observed an increased percentage of DDIs represented by a single value of α 
with larger annotation sets, implying that this parameter introduced significant variations 
among the extracted DDI sets when more domain annotation data were available. These 
observations suggest that, for limited amounts of domain annotation data, computational 
methods are forced to select particular DDIs, as these DDIs are the only ones that could 
account for certain PPIs. Using additional domain annotation data removed this bias, as more 
than one DDI accounted for a larger number of PPIs. 

Figure 3 Overlap between extracted domain-domain interaction sets for different values 
of parameter α. The graph indicate fractional overlaps between sets of extracted domain-
domain interactions (DDIs) for the six different domain annotation schemes defined in Table 
2, for different sets of α values. As the underlying set of PPIs, we used a high-confidence 
yeast PPI data set created by the Interaction Detection Based On Shuffling (IDBOS) 
procedure at a 5% false discovery rate [8,41]. 

In summary, PADDS extracted the smallest set of DDIs for this extensively annotated high-
confidence network. However, similar to other methods, regardless of how we biased our 
benefit score in the extraction process or how efficient PADDS was in extracting true 
positives, a large number of non-observed PPIs resulted from these DDI selections. 

Conclusions 

Proteins consist of one or more domains, and physical interactions between proteins arise 
from interactions between their specific domains. Given that there is more consistency in 
DDIs detected from different experiments than in the corresponding PPIs, the hope is that an 
in-depth analysis of DDIs would improve our understanding of PPIs and give us better 
insights into cellular function, disease, and evolution. However, determining which particular 
DDI mediates any given PPI is challenging, because currently available experimental DDI 
data accounts for only a small fraction of all existing PPIs. In this paper, we present two 
contributions to the field of domain interaction analysis. 

First, we introduced a novel computational strategy that systematically merged domain 
annotation data from multiple databases; a needed capability that is not currently available 
elsewhere. By combining sequence locations with domain name and labeling information, 



our merging strategy was less likely to grossly overestimate or underestimate the number of 
domains per protein. We showed that merging domain annotations from six different 
databases increased the average number of domains per proteins, bringing it closer to the 
estimated true value. We believe that our merging strategy can ensure a large and consistent 
domain annotation set for any given organism. 

The second contribution detailed here is the development of PADDS, a novel computational 
method that, given a set of PPIs, can identify a small set of potential DDIs that account for 
the provided set of PPIs and is not biased towards DDIs with low or high occurrence counts. 
We showed that PADDS was more successful in extracting known DDIs, i.e., DDIs that have 
been determined experimentally from crystal structures, than the MSSC method and the 
current best reconstitution method, GPE. 

It was also noteworthy that the choice of α value influences the number of known DDIs 
retrieved. For the PPI dataset aggregated from multiple organisms from different sources and 
annotated by PFAM only, we retrieved the largest number of known DDIs for small α values 
in the range of 0.05-0.10. We interpreted this to indicate that a small tolerance of false 
positives in the PPI reconstitution procedure relaxed constraints in the DDI selection process 
sufficiently enough to garner additional known DDIs, yet avoiding overwhelming the 
solution with too many non-observed interactions. This result also hints that the hypothesis 
that all protein interactions must strictly be composed of pairwise domain interactions could 
be relaxed. We further found that increased amounts of domain annotation data increased the 
diversity of DDIs that could account for a single PPI. As a result, for the densely annotated 
high-confidence yeast PPI network, we found that less than 30% of the extracted DDIs were 
present in all extracted sets. This last observation indicates that, once we have a sufficient 
amount of annotation data, more diverse DDI sets can be used to reconstitute PPI sets equally 
well. As currently available reconstitution methods identify only a single set of DDIs that 
account for a given set of PPIs, a method that is able to identify multiple DDI sets without a 
priori  bias towards DDIs with either low or high occurrence counts is a needed capability that 
is not currently available elsewhere. 

Methods 

Domain annotation and interaction datasets 

We used a number of available genome-scale annotation databases that contain domain 
information. Each database collates information based on different objectives and criteria. 
PFAM-A contains manually curated protein families and provides assignments of high-
confidence domain annotations through family-specific domain gathering thresholds [32]; we 
used PFAM-A release 25.0. SF contains structural and functional domain annotation, derived 
from the structural protein domains from the SCOP (Structural Classification of Protein) 
database [33]. SMART provides annotation of signaling domains [34,35], while PRODOM 
[36] and TIGRFAM [37] provide protein domain family annotations constructed 
automatically by sequence homology. CDD, which provides functional protein annotations, 
also lists domain annotations using multiple sequence alignment models for domains and 
proteins, as well as curated, structural domains and domains imported from a number of other 
protein-domain annotation databases (e.g., PFAM, SMART, and TIGRFAM) [15]. 



Similarly, we used three databases to verify the extracted domain interactions: 1) the iPFAM 
database that contains domain-domain interactions obtained from the PDB structures [38], 2) 
the domain-domain and peptide-mediated interactions of known 3D structure database 
(3DID) [43,44], and 3) a comprehensive collection of known and predicted DDIs (DOMINE) 
[39,40]. 

Protein – domain annotation merging strategy 

Our merging strategy combines protein-domain annotation data through the following three 
consecutive steps (Figure 4): 

Figure 4 Protein-domain annotation merging procedure. An illustration of the 
computational procedure used to merge protein-domain annotation data from multiple 
databases for a single protein P (consisting of n amino acids) and domain annotation data 
from three databases: DB1, DB2, and DB3. INPUT: Protein sequences and protein-domain 
annotations from one or more databases. PROCESSING: The annotation data were merged in 
three consecutive steps. In Step I, tandem domains within each protein (and for each 
database) were merged and represented as a continuous domain with the same domain label 
as the tandem domains. In Step II, annotation data between all pairs of databases were 
merged. In Step III, all pairs from Step II were merged into a final annotation set. In this step, 
new domain labels were assigned to the sets of merged domains. OUTPUT: The output of the 
annotation merging procedure consists of 1) a set of new (merged) domain labels assigned to 
the protein, 2) a mapping between the new and original domain labels, and 3) a list of 
merging exceptions. Based on these lists, one may (re)define sets of labels that should be 
treated as equivalent or non-equivalent and iterate through the complete domain annotation 
merging procedure (ITERATION). 

  

Step I – Domain repeats merging procedure 
In the first step, we merged domain repeats within each database. Domain repeats 
represent two or more domains from the same domain family that appear in tandem [45]. 
Different proteins may have domain repeats that consist of a different number of domains 
from the same domain family. In annotation databases, domain repeats are represented 
either as a set of domains that appear in tandem or as a single domain that corresponds to 
the union of the tandem domains. Our procedure aimed to represent each domain repeat as 
a single domain. This ensured a uniform representation of all domain repeats and 
ultimately removed inconsistencies among databases. To this end, for each database and 
for each protein of interest, our method flagged domains with identical labels and assigned 
them to a single domain. The new domain inherited all labels of its members. Furthermore, 
its sequence was represented by a continuous amino acid sequence containing both the 
member domains and the amino acid sequences between the domains (Figure 4, Step I). 
Although tandem domains that consist of different numbers of domains from the same 
family may have different functional roles, our current implementation did not distinguish 
between them. We chose this strategy because the domain annotation data retrieved from 
most annotation databases depend on an E-value threshold and, hence, it was not possible 
to accurately and indisputably determine how many domains appear in tandem. 
Furthermore, the E-value threshold could also influence the length of the amino acid 
sequence between tandem domains that were merged together. For this reason, we did not 
impose a limit on the minimum or maximum sequence length between tandem domains in 
the merging procedure. 

  Step II – Merging annotation data between pairs of databases 



In the second step, we merged annotation data between each pair of databases, including 
each database with itself. This step ensured that all possible domain pairs were considered 
and it removed any possible effect of the order in which domains and databases were 
merged. In this step, for each protein, we grouped domain annotations into sets such that 
domains within a set had equivalent domain labels and overlapped with approximately the 
same segment of the protein sequence, i.e., it matched at least ten continuous amino acids. 
The final merged domains were not sensitive to the examined threshold variations ranging 
from 1-30 amino acids. Domain annotations within each set were merged into a single 
domain. The new domain inherited all domain labels of its members, i.e., it became a 
multi-label domain. Furthermore, the sequence of the newly defined domain represented a 
continuous amino acid sequence that consisted of the union of all amino acid sequences of 
the member domains (Figure 4, Step II). By using a combination of domain labels and 
domain sequences in the merging procedure, the method ensured that potentially different 
domains that covered approximately the same segment of a protein sequence were not 
merged together. 
To determine if two domain labels were equivalent, we first represented each one of them 
as an array of words contained within each label. Because domain labels often contain 
general common/trivial words (e.g., a, the, domain, family, like, member, of, via, within), 
these words were excluded from the domain labels. Next, we compared all words from the 
first array to all words from the second array to determine whether they consisted of 
identical words or words that were contained within each other (e.g., “kinases” and 
“pkinase”). If such a pair of non-trivial words was detected, the two corresponding domain 
labels were considered equivalent. Clearly, this method of determining the equivalence of 
two labels does not guarantee a correct outcome. Therefore, our method allows users to 
specify pairs of labels that should be considered equivalent as well as pairs of labels that 
should be considered non-equivalent (Figure 4, “Predefined label relationships”). This 
functionality also overcame problems that arose from labeling-scheme variations that were 
not always recognized by computational procedures for string comparison. For example, 
the labels “fmt” and “formyltransferase” are equivalent, where the first word represents an 
abbreviation of the second. However, these words are neither the same nor contained 
within each other, and their equivalence cannot be detected solely by string comparison. A 
computational procedure that could detect such equivalence based on string manipulation 
would yield many false positives and was not pursued. 

  

Step III – Creating a final annotation set 
In the third step, all pairs of domains from all databases in the second step were merged 
into a final annotation set. The merging procedure was similar to the one from Step II. 
Here, however, each domain annotation set already contained some merged domains from 
Step II. Therefore, for merged domains, the representative sequence was the sequence 
derived in Step II and the representative label was a multi-label annotation, whereas, for 
domains that had not been merged, the original label was used as their annotation. For 
each protein, we grouped the domain annotations into sets such that domains within the 
same set had equivalent domain labels and overlapped with the same sequence locations. 
Then, we merged the domain annotations within each set into a single domain. Finally, we 
assigned new domain labels to each set of merged domains (Figure 4, Step III). 
By merging all joined pairs from Step II, it was possible to detect additional overlap 
between domain labels that were not detected in Step II. For example, given three domains 
with labels “abc-smc5,” “ abc-atpase,” and “smc” from three different databases, the 
computational procedure in Step II would identify the domain labels “abc-smc5” and 
“abc-atpase” as equivalent, the labels “abc-smc5” and “smc” as equivalent, and the labels 
“abc-atpase” and “smc”  as not equivalent. Only the first and second pairs of domains 



would therefore be merged, assuming that all three domains covered approximately the 
same sequence stretch. However, in Step III, the computational procedure would 
determine that the merged domain “abc-atpase abc-smc5” was equivalent to the merged 
domain “abc-smc5 smc,” and that the “smc” and “abc-atpase” domains would thus be 
identified as equivalent, even though this was missed in Step II (Figure 4). 

For all string (word) comparison procedures, we used string comparison algorithms available 
in a standard C++ library. 

For each protein of interest, our method outputs the newly assigned domain labels and their 
corresponding sequence locations. Additionally, the procedure provides a list (dictionary) that 
contains mappings between the new domain labels and labels from the original databases, as 
well as a list of domain labels that overlapped in sequence but were not similar enough to be 
merged. These lists can be used to redefine a set of labels that should be treated as the 
equivalent or different (Figure 4). 

Definition of true and false positive/negative predicted PPIs 

In this work, we have adapted an operational definition of true and false PPI predictions 
based on what is known about a given protein interactions network. Given a set of n proteins 
and m known, experimentally detected pairwise interactions among these proteins (the 
interacting set), we defined the set of non-interacting protein pairs as the set that includes all 
pairwise PPIs among the n proteins, except for the known interactions. Hence, the number of 

non-interacting PPIs is given by ��2� ��  [18,20,30]. We then defined a true positive (TP) 

PPI prediction as a predicted PPI that belongs to the interacting set. Similarly, a false positive 
(FP) PPI is defined as a predicted PPI that belongs to the non-interacting set. A true negative 
(TN) PPI prediction is defined as a predicted non-interacting protein pair that belongs to the 
non-interacting set. A false negative (FN) PPI prediction is defined as a predicted non-
interacting protein pair that belongs to the interacting set. The true positive rate is then 
defined as TP/(TP + FN) and the false positive rate as FP/(FP + TN). 

Parameter-dependent DDI selection (PADDS) algorithm 

PADDS was designed to select sets of DDIs that can reconstitute a given protein interaction 
network. Specifically, for each potential DDI and its corresponding PPIs, we assessed the 
consequences of selecting that particular DDI versus each one of the other possible DDIs that 
account for the same PPIs (we denoted these DDIs as alternative DDIs). Instead of exploring 
all possible combinations of alternative DDIs, PADDS explores only a subset of 
enumerations consisting of currently evaluated DDIs and their best alternatives, i.e., 
alternatives that best satisfy the evaluation criteria. If the evaluated DDI was better than any 
alternative, it was selected as a PPI mediator and assigned a benefit score. Already selected 
DDIs, as well as the PPIs they accounted for, were never re-evaluated, further limiting the 
number of combinations to be enumerated. The final constructed set of domain interactions 
represented a minimal DDI set that accounted for all PPIs, while attempting to minimize false 
positives. 

In contrast to existing reconstitution methods, PADDS does not a priori reward or penalize 
the most rare, promiscuous, or parsimonious set of interactions. Instead, it biases the benefit 
of each selected domain interaction towards either preferring observed PPIs (true positives) 



or penalizing non-observed PPIs (here categorized as false positives). Thus, depending on the 
value of the parameter that specifies the true/false positive biases (denoted as α; α ϵ [0.0, 
1.0]), PADDS extracts multiple sets of potential DDIs that can explain the original set of 
PPIs. An α of 0.0 favors observed protein interactions and an α of 1.0 maximally penalizes 
non-observed interactions. In addition, PADDS also identifies a set of robust, core DDIs that 
are independent of the parameter α. 

Algorithm and implementation details 

Let Oij denote the number of observed interacting protein pairs, where one protein contains 
domain i and the other contains domain j, and let Nij denote the number of all possible non-
interacting protein pairs, where one protein contains domain i and the other contains domain 
j. The association score Aij [28], which represents the probability of interaction between 
domains i and j, is defined as: 
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Let α denote a parameter with a value in the [0.0, 1.0] range that specifies the amount of 
tolerable non-interacting protein pairs. We evaluated the probability of the occurrence of a 
domain pair i and j in a set of PPIs as a modified association score �	
� : 
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For α = 0.0, �	
�  equals the number of observed DDIs, i.e., the number of PPIs in which one 
protein contains domain i and the other contains domain j, whereas for α = 1.0, �	
�  denotes 
the probability of interaction between domains i and j [defined in Equation (1)] multiplied by 
the number of domain interaction occurrences. Thus, for α = 0.0, the modified association 
score corresponds to domain interactions that explain the largest number of PPIs, while for α 
= 1.0, the score corresponds to domain interactions that do not introduce large number of 
false positive PPIs. We multiplied the probability of interaction by Oij to differentiate 
between DDIs that have the same probability by assigning a higher score to those DDIs that 
account for a larger number of PPIs. 

Benefit definition 

The benefit of interaction between two domains i and j represents the propensity that these 
two domains mediate protein interactions. We defined the benefit by combining the above 
modified association score with a term that takes into account the co-occurrence of domains, 
because domains that appear together within a protein often interact [46,47]. Let Cij denote 
the number of proteins in which domains i and j co-occur, and let maxCij denote the 
maximum number of co-occurring domains observed in a given set of proteins. We then 
defined the benefit Bij of the interaction between two domains i and j as: 
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Using different values of α, one can rank the same set of DDIs differently based on their Bij 
value. 

Iterative evaluation of selected DDIs 

PADDS goal is to extract a set of DDIs such that: 1) these DDIs account for a given set of 
PPIs and 2) the sum of benefits of this set is higher than the sum of benefits of any alternative 
DDI set of the same size that explains the same PPIs. The optimal solution for this problem 
would require the exhaustive enumeration of all possible combinations of DDIs that account 
for the original set of PPIs. Because, in practice, the exhaustive enumeration is 
computationally unfeasible, PADDS uses a heuristic solution. Given a set of PPIs, a list of 
protein-domain annotations, and a user-specified parameter α, PADDS calculates Bij for each 
potential DDI (Figure 5 – I). For each DDI and the corresponding PPIs represented by this 
DDI, PADDS evaluates the consequences of selecting this DDI versus each of its alternative 
DDIs. This evaluation yields a small set of DDIs, called the final set. 

Figure 5 Example of domain-domain interaction extraction. I: Given a set of protein-
protein interactions (PPIs) and a protein-domain annotation scheme, PADDS transformed all 
PPIs into the corresponding set of domain-domain interactions (DDIs) and calculated the 
benefit value Bij for all DDIs. II: The five steps involved in the DDI iterative evaluation 
procedure is illustrated using interactions between domains D1 and D3. III: After PADDS 
performed the DDI evaluation procedure for all other DDIs, the results were examined to 
select the final set of DDIs that can reconstitute the PPIs. P1, …, P7 denote proteins and D1, 
…, D8 denote domains. The benefit Bij and the reassessed benefit B	
�   associated with the 
interaction between domains ij  were calculated using Equations (3) and (4), respectively. 

The evaluation process consists of five phases. In the first phase, PADDS adds a DDI of 
interest into a set called the main set. In addition, PADDS evaluates all alternative DDIs, i.e., 
DDIs that overlap with the DDI of interest, and adds the one with the highest benefit to a set 
called the alternative set. Note that the main and alternative sets are initially empty (Figure 5 
– II, Step: 0 and Step: 1). In the second phase, PADDS evaluates all DDIs that overlap with 
the DDIs from the alternative set (Figure 5 – II, Step: 2 to Step: 4). PADDS always evaluates 
only the DDIs that are not already contained in the alternative, main, or final sets. However, 
in the evaluation process, PADDS takes into consideration that DDIs from the final set 
already account for a particular subset of PPIs. Because these PPIs should not be used for the 
evaluation of potential DDIs, for all potential DDIs that are not in the final set, PADDS 
calculates the reassessed benefits �	
�  as: 
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where Eij represents the number of observed interacting protein pairs containing domains i 
and j that have already been accounted for by some other DDI (either from the 
main/alternative set or the final set), and s represents a scaling factor used to additionally 
reduce the benefit value of DDIs. We empirically selected s = 0.01. Out of all evaluated 
DDIs, PADDS finds a DDI with the highest reassessed benefit and adds it to the main set. In 
the second phase, the algorithm iterates between the alternative set and the main set until all 
PPIs that are explained by potential DDIs in one set are also explained by potential DDIs 



from the other set. In phase three, PADDS calculates the total accumulative benefit �	
���  for 
each set as: 
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where k = 1 for DDIs that were added into a set based on their original benefit value Bmn, and 
k = 0 for DDIs that were added into a set based on their reassessed benefit value �� �   (Figure 
5 – II, Step: 5). In the fourth phase, PADDS compares the �	
���  value of the main and 
alternative sets. If the main set has the greatest �	
���  value, PADDS flags the DDI of interest 
and assigns it this value. Then, in phase five, for all flagged DDIs, PADDS finds the one with 
the highest �	
���  value and adds this DDI to the final set of DDIs (Figure 5 – II, Step: 5). In 
the case where no DDI is flagged, i.e., all alternative sets have higher �	
���  values than their 
corresponding main set counterparts, PADDS assigns to each DDI a value equal to the ratio 
of �	
���  of the main set and �	
���  of the alternative set. Then, PADDS adds DDI with the 
highest ratio value to the final set (Figure 5 – III). This evaluation procedure is repeated until 
all given PPIs are explained by DDIs from the final set. Extracted sets of potential DDIs that 
are common to all values of α are denoted as the core set. 

Ties between two DDIs are broken in the following order: 1) minimum Nij, 2) maximum Oij, 
3) maximum number of times the interaction between domains i and j explains a single PPI 
multiple times (e.g., if both proteins contain domains i and j, then that PPI can be explained 
by two i – j domain interactions), 4) maximum Cij, 5) maximum number of unique PPIs that a 
DDI explains, and 6) maximum benefit. In cases where ties are not broken after this 
procedure, they are broken randomly. 

Data and implementation of other reconstitution methods: GPE and MSSC 

For the comparison with the GPE method [21] on the dataset from Riley et al. [27], we used 
two sets of published results; the first contained the top 1,399 high-confidence DDIs (denoted 
“GPE-HC”) and the second contained 7,554 DDIs of lower-confidence (denoted “GPE-LC”) 
that were not necessarily included in the first set. In the comparisons, we used the DDI rank 
information provided with the published data [21]. 

For the yeast high-confidence dataset comparison, we used the MSSC program available 
from the authors’ Web site to extract and rank DDIs using the association score [28]. We 
implemented the GPE algorithm in MATLAB using the parameter values specified by the 
authors and ranked DDIs using the LP-score, following the methodology detailed in the 
original manuscript [21]. 

Endnotes 
aThis set of proteins contains the translations of all systematically named ORFs, except ORFs 
designated as “dubious” or “pseudogenes.” 

bThe remaining domain annotations did not change, had minor modifications compared to the 
previous version, had domains of unknown function, had domains assigned to previously 
unannotated proteins, or had domains assigned to previously unannotated sequence segments. 
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Additional files 

Additional_file_1 as ZIP 
Additional file 1  Merged annotation. This file contains lists of new protein-domain 
annotations and lists that map new domain labels onto the domain labels used in the original 
annotation databases. 

Additional_file_2 as XLSX 
Additional file 2  Merged protein-domain annotations that correspond to domain annotations 
from the new PFAM-A release. This file contains a list of 202 merged protein-domain 
annotations corresponding to domain annotations from the current PFAM-A release (release 
26.0) that did not exist in the previous PFAM-A release (release 25.0), but had a matching 
domain annotation in our merged set. Additionally, this file contains the merged protein-
domain annotations corresponding to the current PFAM-A domain annotations that replaced 
the annotations from the previous PFAM release. 

Additional_file_3 as XLSX 
Additional file 3  Domain-domain interactions extracted by the parameter-dependent DDI 
selection (PADDS) method – multiple organisms. This file contains lists of domain-domain 
interactions extracted by PADDS for the Riley dataset [27] for all values of the parameter α 
analyzed in the main text. 

Additional_file_4 as PDF 
Additional file 4  Supplementary material. This file provides the supplemental text, 
supplemental Figures S1 – S4, and supplemental Tables S1 – S4. 
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