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Abstract

Background

We can describe protein-protein interactions (PPIs) as setsstihctlidomain-domai

interactions (DDIs) that mediate the physical interactionsvds proteins. Experimental

data confirm that DDIs are more consistent than their correspoRéfitgy lending support

the notion that analyses of DDIs may improve our understanding sfdPéllead to further

insights into cellular function, disease, and evolution. However, curremtbilable
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experimental DDI data cover only a small fraction of all &xgsPPIs and, in the absence of

structural data, determining which particular DDI mediates any gi¢imsRa challenge.
Results

We present two contributions to the field of domain interaction arsallfirst, we introduce

novel computational strategy to merge domain annotation data fronpleulttabases. We
show that when we merged yeast domain annotations from six annaat&ipases we
increased the average number of domains per protein from 1.05 to 2mndpit closer to

the estimated average value of 3. Second, we introduce a novel coomalitatethod
parameter-dependent DDI selecti@ADDS), which, given a set of PPIs, extracts a sm
of domain pairs that can reconstruct the original set of proteiragtiens, while attemptin
to minimize false positives. Based on a set of PPIs from nmalopyanisms, our methg
extracted 27% more experimentally detected DDIs than existing compulaippmaaches.

Conclusions
We have provided a method to merge domain annotation data from mubiplees)

ensuring large and consistent domain annotation for any given organisreo\Mr, we
provided a method to extract a small set of DDIs from the undgriset of PPIs and w
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showed that, in contrast to existing approaches, our method wédmsasetl towards DDIs
with low or high occurrence counts. Finally, we used these two metbolighlight the
influence of the underlying annotation density on the characteristiextracted DDIs,
Although increased annotations greatly expanded the possible DDIackhef knowledge
of the true biological false positive interactions still prevemsinambiguous assignment of
domain interactions responsible for all protein network interactions.
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Background

The living cell is a dynamic, interconnected system where poteteract with each other to
facilitate biological processes. Large protein-protein intemaqPPIl) datasets have become
available due to advances in experimental biology and the developmeghehtoughput
screening techniques. However, while existing data describe thousaindsrotein
interactions, such interactions still constitute only a fracticalld?PIs for a small number of
available organisms [1-5]. Moreover, available PPI datasets adqficen different
experiments are often seemingly inconsistent with each otnetying that the different
methods might produce false positive interactions or fail to iderdértain types of
interactions [4,6-9]. Here, we attempt to address this seemingigciable problem by
focusing on bioinformatics approaches that use protein domains as funalaimétding
blocks of protein interactions.

Domains as protein interaction building blocks

Proteins consist of one or more domains and multiple studies have shatvdomain-

domain interactions (DDIs) from different experiments are maasistent than their
corresponding PPIs, suggesting that domains may be fundamentadiating physical

interactions between proteins [10-12]. Under the assumption that protemactions are
mediated by domain interactions, we can hypothesize that eachctidrrin a PPI dataset
can be converted into a corresponding set of pairwise domain imesaddowever, lack of
direct experimental evidence for interactions at the domain leeans that we can only
account for, or explain, a small fraction of known PPIs for any nisga using

experimentally determined DDIs. Determining the particdamains that physically bind
(i.e., mediate) a given PPI based on limited structural information remainfiengea

To address this challenge, we must first characterizespleeific protein domains that
mediate protein interactions. It is estimated that approxim&@¥ of eukaryotic proteins
and 67% of prokaryotic proteins have multiple domains [13,14]. Most annotitabases
characterize each domain family using a small, curated sshiolo acid sequences common
to representative members. These databases share a sigrafiwaunt of protein-domain
annotation data; however, each database also contains a noteworthyr rmimimeque
protein-domain annotations. Some databasggs, Conserved Domain Database (CDD) [15]
and InterPro [16,17], provide protein-domain annotation information colleabed $everal



databases but none provides the capability to methodically meigge dheotations (Figure
1A).

Figure 1 Evaluation of different protein-domain annotation merging strategies(A)

Using the InterPro database, we obtained seven protein-domain annotatiorstf@rgesin
YNL271C from three databases: PFAM [32], Superfamily (SF) [33], and SMART [34,35].
PFAM domains: FH2, DrfFH3, and twoDrf_GBD domains; SF domainsormin homology

2 domain (FH2 domairandARM repeatand SMART domainFormin Homology (B) The
naive domain-merging strategy identified seven unique domains for YNL2Z)1SeQuence
locations helped identify some of the identical domait$ FH2 domain andFormin
Homology but was not able to differentiate between different domains that share the same
sequence positionD] Taking into consideration both sequence location and domain
names/labels, our merging strategy identified four unique donmiRig: repeatDrf FHS3,
Drf_GBD, and a domain consisting BH2 domains FH2, FH2 domain,andFormin
Homology.

Combining data from multiple databases, while addressing annotatiomsisiencies, is a
non-trivial procedure. For example, a naive domain annotation datangesgiategy
consisting of the aggregation of all annotation data regardless of domain sequerages @rerl
domain name/label similarities would increase the average numhlgmpothetical domains
per protein. However, this strategy would also overestimate thlentat@ber of domains,
because it considers domains that are not identically represerteal different databases as
two different domains (Figure 1B). In contrast, considering seguericrmation as part of
the naive merging strategy.g, by aggregating all annotation data that overlap in at least 10
continuous amino acids, would reduce the number of inferred domains per proteswver,
such a merging strategy inherently assumes that all donfahverlap in sequence are
identical, leading to a small number of merged domains and, lkelynderestimation of the
total number of true domains (Figure 1C). The strategy prabémiee combines sequence
locations and name/label information to construct merged domain annotatisom svhich
the number of domains per protein is agdriori over- or underestimated (Figure 1D).

Domain-based methods for reconstituting whole prote interaction networks

The use of domains as mediators of protein interactions requirabilitye to assign domains
to all proteins under consideration. However, in the case of multatoproteins, it is
unclear which particular domains truly mediate a given PPl seguse more than one
potential domain pair can account for a single interaction. This tantigr could lead to
predictions of false positive PPIs, as domains identified as roesliat protein interactions
account not only for the original PPI set but also for all other jpr@@irs that contain the
same domain pair combinations. Existing computational methods use vapgraaches to
tackle different aspects of these problems, each with its otvofsaims, strengths, and
limitations [18-30]. For example, some methods use additional biolagicaination, such
as gene expression data, to establish whether a PPI can occur [24 &tJ28hers limit the
PPl coverage to smaller sets of high-confidence interactions [19,2@\&7]hdditional
promising approach is to use a feature selection algorithrimmdoaf set of DDIs that best
discriminate between true and false PPIs [30]. However, thesigodseare not broadly
applicable to non-model organisms or comprehensive enough to includan pnbéractions
on a proteomic scale.



In this regard, reconstitution methods provide a framework that dmtes priori require
additional data and is applicable on a genomic scale to any smg@novided a PPI dataset
exists [20,21,23]. The aim of these methods is to identify smallagbotential DDIs that
reconstitute the complete original set of PPIs. Overall, itmecd the maximum-specificity
set cover (MSSC) method [23] is to minimize the number of potefdlae positive
interactions regardless of the number of DDIs used to explain theeBRvhile the aim of
the parsimonious approach (PA) [20] and the generalized parsimoniousaixpla(GPE)
method [21] is to minimize the number of selected DDIs regaraiesise introduction of
false positive interactions. Despite their underlying differena# three approaches (MSSC,
PA, and GPE) have been shown to recover DDIs experimentally idenfrtbm structural
data. This leads to the observation that true DDIs are not nelyessge, promiscuous, or
parsimonious, but rather are distributed between the extremes. Cornequemethod that
reconstitutes protein interactions based on different degrees af pesmiscuous, and
parsimonious DDIs could prove beneficial.

Our contributions

Here, we investigate how to create merged sets of domain anonstatid how to use these
annotations to select sets of DDIs that reconstitute large-8dal networks using different
true positive and false positive selection weights. First, wedate a novel computational
strategy to merge protein-domain annotation data from multiple da&mba needed
capability that is not currently available elsewhere. Weebelthat merging protein-domain
annotation data from multiple sources will help ensure a large candistent domain
annotation set for any given organism. Second, we introduce a novisticezomputational
approachparameter-dependent DDI selectifPADDS), which, given a set of PPIs, extracts
a small set of DDIs that explains the original set of protei@aractions and is not biased
towards DDIs with either low or high occurrence counts. The h&ussbring system for
selecting DDIs can be tuned between favoring known interactions fwsgives) and
penalizing non-observed interactions (false positives). Given thatddneain-merging
procedure increases the number of domains per protein and, hence, the olupdssible
domain combinations, PADDS was designed to minimize both the numles®fpositive
PPIs and the size of the extracted DDI set.

Results and discussion

Merged domain annotations from multiple databases

Our strategy combines sequence locations and name/label inforntomstruct merged
domain annotation sets as detailed in Methods. Here, we illugsapplication on a well-
annotated single-cell organism. We created a merged set oinpiloteain annotations for
yeast Saccharomyces cerevisjaesing sequences of 5,884 protéirtywnloaded from the
Saccharomyces Genome Database (SGD) [31] and yeast annotadidronasix commonly
used annotation databases: PFAM-A (release 25.0) [32], Superfédfi)y[83], SMART
[34,35], PRODOM [36], TIGRFAM [37], and CDD [15]. To assign protein-domai
annotations, we either used curated yeast domain annotations (ifbkyjaild2,33] or
extracted domain annotations based orEamlue threshold of 102 [15,34-37]. Although
approximately 80% of the proteins had at least one domain annotatioe of the databases
(Table 1), this level of annotation density cannot be expected dsfstadied organisms.



Thus, merging protein-domain annotation data from multiple sourcéshelp ensure a
maximally large and consistent domain annotation set for any given organism.

Table 1Yeast protein-domain annotation data from six publicly available annotation
databases

Database Np Ns No Nu Ap
n % n %
PFAM-A 4,709 80.0 1,174,333 40.2 2,595 2,553 1.05
SF 3,651 62.1 962,602 33.0 1,355 1,307 0.79
SMART 3,023 51.4 455,523 15.6 392 379 0.66
PRODOM 146 2.5 19,760 0.7 111 111 0.02
TIGRFAM 3,019 51.3 546,226 18.7 2,544 1,944 1.25
CDD 2,210 37.6 560,299 19.2 3,300 731 0.58

A total of 5,884 proteins containing a total of 2,921,809 amino acids were doled|if@m
the Saccharomyces Genome DatabfxH. Np, proteins with at least one domain annotation.
Ns, protein-domain amino acid sequence cover&@ge.number of unique domains in the
original databaseéNy, number of unique domains in the unified databAseaverage number
of domains per protein in the unified database.

Table 1 shows that, despite extensive annotation efforts, each stataieacterized each
protein by a small average number of domains. It also shows tiadiorain the number of

domains extracted among the different databases, as wék asration in the number of
proteins with domain annotations.

The content of the final merged domain annotation set does not depédrelayder in which
we merged the databases. However, to create high-confidengedn@nnotation sets of
different sizesge.g, merged annotation from two, three, ..., six, databases, we fngfech
the PFAM-A and SF contents because they contain curated domaimgh aonifidence. We
selected the merging order of the other four databases randomlyrable 2 shows the
database origins of the six merged sets, SET-1 to SET-6.

Table 2 Database origin of merged domain annotation sets

Annotation set Domain annotation databases
SET-1 PFAM-A [32]
SET-2 PFAM-A, SF [33]
SET-3 PFAM-A, SF, SMART [34,35]
SET-4 PFAM-A, SF, SMART, PRODOM [36]
SET-5 PFAM-A, SF, SMART, PRODOM, TIGRFAM [37]
SET-6 PFAM-A, SF, SMART, PRODOM, TIGRFAM, CDD [15]

Table 3 shows that the merging procedure increased the number @hgmneith domain
annotation by more than 10%. At the same time, the average nunmimnains per protein
increased from 1.05 to 2.44 (Table 3), approaching the estimated avalagef ~3 [10,14].
The final domain annotation set created using the database mprgoeglure consisted of
4,114 unique domains (Additional file 1). The domain length distribution in #tisvas
similar to the domain length distribution from each of the siximaigdatabases (data not
shown), and most domains ranged in length between 100 and 300 amino acids.



Table 3Yeast protein-domain annotation data after merging annotations from the six
databases

Domain annotation set Ny Np Ns Ap
n % n %
Domain-merging procedure
SET-1 2,595 4,709 80.0 1,174,333 40.0 1.05
SET-2 2,847 4,964 84.4 1,510,026 51.7 1.33
SET-3 2806 5,280 89.7 1,653,122 56.6 1.69
SET-4 2,843 5307 90.2 1,663,269 56.9 1.69
SET-5 4,182 5392 916 1,735533 59.4 255
SET-6 4,114 5395 91.7 1,756,481 60.1 2.44
Naive domain merging
SET-6-NB 10,297 5,395 91.7 1,756,481 60.1 5.77
Domain merging based solely on sequence overlap
SET-6-SB 1,492 539 91.7 1,756,481 60.1 1.32

Database sets SET-1 through SET-6 are defined in Table 2. SET{6d&N& merging)
contained the union of unique domain annotations from the six databases u€€b6n S
SET-6-SB contained merged domain annotations from the same six datalsas SET-6,
but domains in this set were merged only if their sequences ppedaand they shared at
least ten common amino acidise( domain labels were not considerebl);, number of
unique domaind\p, proteins with at least one domain annotathég.protein-domain amino
acid sequence coverag®, average number of domains per protein.

Evaluation of the protein-domain annotation mergingstrategy

To evaluate the merged domains, we compared our results to thosedbtamtwo simple
alternative strategies: a naive domain-merging strategy-6SRB) and a naive domain-
merging strategy that takes into account sequence overlaps6(SB]. Because the number
of original domains is constant, all three merged sets (SET-6;69%B, and SET-6-SB)
yielded the same number of proteins with domain annotation. Howevaer fittadidomain
annotations resulted in different numbers of unique domains, as wdiffa®nt average
numbers of domains per protein (Table 3). SET-6-NB consisted of over 10,0§@e uni
domains, with an average number of 5.77 domains per protein. This sédecally
overestimated the total number of unique domains, as many of its 10,008indom
represented the same domain with a slightly different labelekample, the naive merging
strategy would consider thiearmin homology 2domain represented in three annotation
databases (PFAM-A, SF, and SMART) as different domains, betiaiseélomain labels and
sequence locations are not identical (see Figure 1B). By mgeaginotations that overlap in
at least 10 continuous amino acids, SET-6-SB reduced the number of unigamsioon
1,492, as well as the average number of domains per protein to 1.32. Altheuatetage
number of domains per protein was greater than the average number fof the original
databases, the total number of unique domains was underestimated. afgrlegxthe
sequence location oARM repeatoverlaps with the sequence location @ff FH3 and
Drf_GBD domains (see Figure 1C) and this strategy would mergé\RM repeatwith
Drf_FH3 and also wittDrf_GBD. This would result in a merged domain that consists of the
three original domainsARM repeat Drf_FH3, and Drf_GBD, even though these three
domains are different and should not have been merged. Our mergieg\stloes not suffer



from these issues, as it distinguishes between the same terdrdidomains that cover the
same sequence location based on their domain labels (see Figure 1D).

These results showed that our protein-domain-merging strategypodicdverestimate or
underestimate the number of domains per protein. However, this does rsgamggemply
that the merged domain annotation is biologically more relevanthi§aend, we compared
our merged protein-domain annotations to the recently released hifythecae annotations
from the PFAM-A database (PFAM release 26.0). To assessrtbent of correctly retrieved
annotations from our merged set, we compared them to the followingntiependent
subsets of the new PFAM releasB: a set of new domain annotations that replaced
annotations from the previous PFAM release (PFAM release 25.0R)aadset of new
domain annotations that did not exist in the previous PFAM release\mial@rresponding
annotation in the merged data%@he comparison procedure consisted of two steps. First, for
each new domain annotation, we found one or more merged domain annotaticosehed

the same protein sequence location. Then, we manually compared doimss dad
descriptions between the new domain and the merged domains. Out of 1domawn
annotations in the first subset and 274 new domain annotations in the seccetd wabs
found 13 (76%) and 202 (71%) annotations, respectively, in our merged datdgiio(ral

file 2). Because these account for >70% of the new PFAM-A annotati@esnonstrates the
benefits of the proposed domain-merging strategy.

Use of annotation-based domains to reconstitute ptein interaction networks

The introduction of a more complete set of domain annotations acras®@cting proteins
in a genome would allow for the enumeration of all domain interacthat could account
for an original set of PPIs. Furthermore, this would also allow for a comprebensluation
of DDIs and identification of an optimum DDI set. However, this psecéas the
disadvantage of exponentially increasing the number of domain combindimoscumvent
this problem, our PADDS method enumerates only a subset of DDI cormbs;and
evaluates each one of them based on the following two crifgrihe number of DDIs used
to account for the observed PPIs aP}dthe number of non-observed PPl ( false
positives) introduced by the combination of DDIs. As detailed in Methtiils selection
depends on the value of the parameter that specifies the treigfaitive biases, denoted as
a; o € [0.0, 1.9, where ana of 0.0 favors observed protein interactions andzasf 1.0
maximally penalizes non-observed interactions. We first usedFAD investigate the
choice of selecting different values of the parameten retrieved DDIs. Here, the DDIs
were constructed from a study containing multiple organisms, it pvotein-domain
annotations from a single database. The PADDS-extracted DDEs eoenpared to other
methods and validated using the iPFAM [38] and DOMINE [39,40] datalé$emwn and
predicted DDIs. We then applied the algorithm to extract Dis fa high-confidence yeast
PPI dataset using merged domain annotations. We compared the resultsifranalysis to
those of existing reconstitution methods on the same datasets.

Multiple organism PPIs characterized by a single dmain annotation database

To determine the consequences of favoring true positives or pegdise positives, we
examined the ability of PADDS to generate different set®Dfs that can reconstitute a
diverse set of PPIs from multiple organisms for different \sabfex. We applied PADDS to
a collection of PPIs from 68 different organisms as assembl&ildyyet al [27]. In order to
compare our results on this dataset to the GPE method, previousiifiedeas giving the



best reconstitution results on this dataset [21], we converted adlideno the same PFAM-

A supra-domain annotations used by GPE [21]. We identified 10,025 protéimBRMAM-A
supra-domain annotations and 20,625 PPIs where both interacting proteirtsldast ane
domain annotation. This dataset yielded a total number of 26,113 potentmittzd could

be used to reconstitute all PPIs and the average number of domains per protein fadéis dat
was 1.37.

For eacha used in PADDS to extract the DDI sets (Additional file\8§ ranked the DDIs
based on their corresponding benefit values (see Methods). We evalaatedet of top-
scoring DDIs for enrichment of DDIs detected in crystal stmgs available in the IPFAM
database (denoted as “known DDIs”) [38]. Out of 26,113 potential DDIs fherRiley
dataset, 691 DDIs were present in the set of known DDIs [20]. FRAshows the fraction
of known DDlIs retrieved for different values afin different top-ranked DDI sets. The
overall number of extracted known DDIs did not increase linearly thié number of DDIs
analyzed, and the total retrievable number was less than 70% of the katvAdditionally,
the number of known DDIs retrieved varied in a non-linear fashionayitidicating that the
extraction procedure was sensitive to the selection weights fbr ddmderved and non-
observed interactions. These observations imply a non-trivial solutitimetoptimal DDI
extraction problem. We also noted that the largest number of known W&k always
retrieved in sets for which was not at its extreme values @D or 1.0. For the small to
intermediate size sets between 1,000 to 4,000 analyzed DDlsndkienum retrievable
number occurred at values 9.10

Figure 2 Enrichment of “known” (iPFAM) domain-domain interactions. Evaluation of

the top-scoring domain-domain interactions (DDIs) extracted byaremeter-dependent
DDI selection(PADDS) and thgeneralized parsimonious explanati@@PE). A&) The
fraction of known DDIs in the iPFAM database [38] retrieved by PADDS as a function of
and the number of top-scoring DDIB)(Comparison of the percentage of retrieved iPFAM
DDIs using PADDS and GPE as a function of top-ranked DDI setsrécall). C)
Comparison of the fraction of retrieved iPFAM DDIs using PADDS and GPEwsadn of
the iPFAM DDI set and top-ranked DDI seitg( precision). For the GPE sets, we used the
DDI rank information provided with the published data that includes their designated high
confidence (GPE-HC) and low-confidence (GPE-LC) sets [21]. We have alsatedlibe
best results achievable with amyalue, typically achieved far = 0.1.

Figure 2B, Figure 2C, and in Additional file 4: Table S1 show thierdihce in retrieving
known DDIs between PADDS and the published results using GPE meBwd3ADDS,

we show both the best results using seleatgdlues and average results using non-extreme
values ofa. For this dataset, PADDS was more successful (13% — 27%) thaesh&PE
method in the majority of the selections away from the extreme values. This implies that
the ability to modulate the preference for known interactions andchtme of non-observed
interactions was an important factor in the process of DDI@draand the overall ability to
extract known DDIs. While there is always a dataset dependenttyese results, it was also
clear that relaxing either extreme selectiar=(0.0 or o = 1.0) retrieved more known DDIs
(Figure 2A).

Although DDI extraction can be optimized for each dataset byingaey one cannot in all
cases independently determine an optimalalue. Hence, we were also interested in the
robustness of the algorithm and, in particular, evaluating extrédsl that are independent
of a. We used the DOMINE database as a comprehensive source of kndwaredlicted



DDls derived from multiple sources [39,40] to construct DDIs (Additidihal4: Validation
of extracted core DDIs section and Additional file 4: Figure $hg analysis showed that
there was a large overlap among the sets of extracted DDldifferent values ofa,
indicating robustness of the algorithm to choices.oFurthermore, the PADDS algorithm
was capable of providing parameter-independent and unique DDI prediobomerivable
from high-confidence results of other computational procedures. To fuctieacterize
PADDS-extracted DDIs, we next examined the high-confidenatiprinteraction network
from a single organism (yeast) with our merged domain annotations.

Single organism PPIs characterized by multiple anration databases

To evaluate the influence of the underlying set of PPIs and proteiahd@mnotation data on
the DDI extraction process, we reconstructed a set of highdemtie yeast PPI data created
by the Interaction Detection Based On Shuffling (IDBOS) procedtuml 5% false discovery
rate [8,41]. We have previously shown that this dataset identifiedybimaractions as well
as, or better than, the high-confidence consolidated yeast two-hwiridr other high-
confidence datasets based on affinity purification followed bysrepsctrometry [8,41]. The
IDBOS dataset consists of 8,401 PPIs between 1,295 proteins. For proteimdomotation
of the IDBOS dataset, we used our merged protein-domain annotatiaicBatd to SET-6)
as described above. The average number of domains per protein for th8 HE3et was
2.69. In Additional file 4: Table S2 shows the complete statiticthe domain annotations
in the IDBOS dataset.

Evaluating domain interactions for high-confidenceyeast protein interactions

We evaluated the merged domain annotation sets using three retonstmethods:

PADDS, MSSC, and GPE. We used PADDS with parametg0.0, 1.Q in 0.1 increments,

ranked the extracted DDIs based on the corresponding benefit valllegx&racted the
corresponding ranked data for MSSC and GPE (see Methods). Althougbndiyuction, all

obtained DDI sets accounted for all original PPIs, differenthods yielded DDI sets of
different sizes for each of the six domain annotation schemes,PABDS consistently

extracting the smallest sets of DDIs. Additional file 4gu¥e S2, Additional file 4: Table S3,
and Additional file 4: Table S4 in Additional file 4 provide the completsults of this

analysis. However, despite of their aim to minimize the numbéalsdé positives, all three
methods identified a much larger number of novel (predicted) PRBfs wat could be

expected to occur in a living cell [1,2,4,5]. Even if we assume thatedicted interactions
represent plausible physical interactions between proteigsa specified PPI would occur if
two proteins were in close proximity, it is likely that in theative environment they are
under additional biological regulation. Thus, one cannot assume that alhprtitat contain

interacting domains will necessarily interact within the cell, due texistence of alternative
regulatory mechanisms that control these interactions [42].

To evaluate the performance of the different reconstitution methodsffenedi domain
annotation sets, we investigated the ability of each method &cekiDIs that accounted for
the given PPIs while limiting the number of false positive PPs. this calculation, we
defined the set of true non-interacting protein pairs as theofsell pairwise protein
interactions minus the known true interaction set [18,20,30], see Methoskxd Ba these
definitions, we could then ascertain true and false PPI predidboreach extracted set of
DDIs and construct the corresponding Receiver Operating ChastctéROC) curves from
an analysis of true positive and false positive rates. PADDBedatmed the other two



methods for all six annotation sets (Additional file 4: Figure 188 Additional file 4: Figure
S4). The largest differences were most evident for the langeotation sets.g, SET-6,

where the other methods lack PADDS'’s flexibility to extrashall number of DDIs while
limiting the introduction of non-observed interaction.

PADDS increases diversity of DDIs when provided wit sufficient amounts of
annotations

To investigate the relationship between the size of the domain #onosets and the
obtained results, we compared the set of DDIs (accounting forDBO$ set of PPIs)
extracted by PADDS for different values@fWe found that, for SET-1, approximately 80%
of the DDIs were represented in all extracted sets and me¢rdependent on the particular
value ofa (a similar result was observed in the multi-organism studguré 3 shows that,
with an increasing amount of domain annotation data, the number of Bfpesented in all
extracted sets decreased, and for SET-6 only ~30% of the Dédésrepresented in all sets.
In contrast, we observed an increased percentage of DDIs reptebgra single value af
with larger annotation sets, implying that this parametepdired significant variations
among the extracted DDI sets when more domain annotation dataawaitable. These
observations suggest that, for limited amounts of domain annotation coatautational
methods are forced to select particular DDIs, as these D®Isha only ones that could
account for certain PPIs. Using additional domain annotation data rdrttogéias, as more
than one DDI accounted for a larger number of PPIs.

Figure 3 Overlap between extracted domain-domain interaction sets for diffemt values

of parameter . The graph indicate fractional overlaps between sets of extracted domain-
domain interactions (DDIs) for the six different domain annotation schemes defimable

2, for different sets o values. As the underlying set of PPIs, we used a high-confidence
yeast PPl data set created by the Interaction Detection Based Onngh{lEiBOS)

procedure at a 5% false discovery rate [8,41].

In summary, PADDS extracted the smallest set of DDIsHigr éxtensively annotated high-
confidence network. However, similar to other methods, regardless ofweohiased our

benefit score in the extraction process or how efficient PBADEas in extracting true
positives, a large number of non-observed PPIs resulted from these DDI selections.

Conclusions

Proteins consist of one or more domains, and physical interactionsedmefwoteins arise
from interactions between their specific domains. Given that tiseneore consistency in
DDls detected from different experiments than in the correspoiftg, the hope is that an
in-depth analysis of DDIs would improve our understanding of PPIs ared ugivbetter
insights into cellular function, disease, and evolution. However, dgi@gnwhich particular
DDI mediates any given PPI is challenging, becausesctlyr available experimental DDI
data accounts for only a small fraction of all existing PRisthis paper, we present two
contributions to the field of domain interaction analysis.

First, we introduced a novel computational strategy that systathatimerged domain
annotation data from multiple databases; a needed capabilitis that currently available
elsewhere. By combining sequence locations with domain name anohdalpdbrmation,



our merging strategy was less likely to grossly overestimmaunderestimate the number of
domains per protein. We showed that merging domain annotations fromiffeirerd
databases increased the average number of domains per proteingightiraipser to the
estimated true value. We believe that our merging strateggmsure a large and consistent
domain annotation set for any given organism.

The second contribution detailed here is the development of PADDS, acooweltational
method that, given a set of PPIs, can identify a small seotential DDIs that account for
the provided set of PPIs and is not biased towards DDIs with Idwgbroccurrence counts.
We showed that PADDS was more successful in extracting knows, D&J| DDIs that have
been determined experimentally from crystal structures, thanMSSC method and the
current best reconstitution method, GPE.

It was also noteworthy that the choice cofvalue influences the number of known DDIs
retrieved. For the PPI dataset aggregated from multiplensrga from different sources and
annotated by PFAM only, we retrieved the largest number of known foD#snalla values

in the range 0f0.05-0.10 We interpreted this to indicate that a small tolerance Isk fa
positives in the PPI reconstitution procedure relaxed constraittie IDDI selection process
sufficiently enough to garner additional known DDIs, yet avoiding okeling the
solution with too many non-observed interactions. This result also thatshe hypothesis
that all protein interactions must strictly be composed of pard@smnain interactions could
be relaxed. We further found that increased amounts of domain aonatata increased the
diversity of DDIs that could account for a single PPI. As altefor the densely annotated
high-confidence yeast PPI network, we found that less than 30% ektitaeted DDIs were
present in all extracted sets. This last observation indicatd, once we have a sufficient
amount of annotation data, more diverse DDI sets can be used taitatoR$P| sets equally
well. As currently available reconstitution methods identify amlgingle set of DDIs that
account for a given set of PPIs, a method that is able to idemtityple DDI sets withoua
priori bias towards DDIs with either low or high occurrence counts is a needed cgphailit
is not currently available elsewhere.

Methods

Domain annotation and interaction datasets

We used a number of available genome-scale annotation databasesntia& domain
information. Each database collates information based on diffelgattives and criteria.
PFAM-A contains manually curated protein families and provideggrasents of high-
confidence domain annotations through family-specific domain gathéwmesghiolds [32]; we
used PFAM-A release 25.0. SF contains structural and functional damaatation, derived
from the structural protein domains from the SCOP (Structurads@ileation of Protein)
database [33]. SMART provides annotation of signaling domains [34,35], RREDOM
[36] and TIGRFAM [37] provide protein domain family annotations constructed
automatically by sequence homology. CDD, which provides functional prateiotations,
also lists domain annotations using multiple sequence alignment nfodelemains and
proteins, as well as curated, structural domains and domains imfsorted number of other
protein-domain annotation databases (e.g., PFAM, SMART, and TIGRFAM) [15].



Similarly, we used three databases to verify the extractedidomeractionsl) the iPFAM
database that contains domain-domain interactions obtained from BistRidtures [38]2)

the domain-domain and peptide-mediated interactions of known 3D structizieasa
(3DID) [43,44], and3) a comprehensive collection of known and predicted DDIs (DOMINE)
[39,40].

Protein — domain annotation merging strategy

Our merging strategy combines protein-domain annotation data throudbiltvang three
consecutive steps (Figure 4):

Figure 4 Protein-domain annotation merging procedure An illustration of the

computational procedure used to merge protein-domain annotation data from multiple
databases for a single prot&r{consisting oh amino acids) and domain annotation data

from three databases: DB1, DB2, and DB3. INPUT: Protein sequences and protain-dom
annotations from one or more databases. PROCESSING: The annotation data gedemer
three consecutive steps. In Step |, tandem domains within each protein (and for each
database) were merged and represented as a continuous domain with the same domain label
as the tandem domains. In Step Il, annotation data between all pairs of datarases w
merged. In Step Ill, all pairs from Step Il were merged into a final anmotset. In this step,

new domain labels were assigned to the sets of merged domains. OUTPUT: The ottput of t
annotation merging procedure consistd)oh set of new (merged) domain labels assigned to
the protein?) a mapping between the new and original domain labels3)aamdist of

merging exceptions. Based on these lists, one may (re)define setdothabshould be

treated as equivalent or non-equivalent and iterate through the complete domaatiannot
merging procedure (ITERATION).

Step | — Domain repeats merging procedure

In the first step, we merged domain repeats within each database. Domais repeat
represent two or more domains from the same domain family that appear in tdsilem |
Different proteins may have domain repeats that consist of a different numberahslom
from the same domain family. In annotation databases, domain repeats aentepre

either as a set of domains that appear in tandem or as a single domain that cortesponds
the union of the tandem domains. Our procedure aimed to represent each domain repeat as
a single domain. This ensured a uniform representation of all domain repeats and
ultimately removed inconsistencies among databases. To this end, for ebelselatad

for each protein of interest, our method flagged domains with identical labels amgkdssig
them to a single domain. The new domain inherited all labels of its members. Forth

its sequence was represented by a continuous amino acid sequence containing both the
member domains and the amino acid sequences between the domains (Figure 4, Step I).
Although tandem domains that consist of different numbers of domains from the same
family may have different functional roles, our current implementation did notglissh
between them. We chose this strategy because the domain annotation data retrieved fr
most annotation databases depend oB-galue threshold and, hence, it was not possible

to accurately and indisputably determine how many domains appear in tandem.
Furthermore, th&-value threshold could also influence the length of the amino acid
sequence between tandem domains that were merged together. For this reason, we did not
impose a limit on the minimum or maximum sequence length between tandem domains in
the merging procedure.

Step Il — Merging annotation data between pairs of databases



In the second step, we merged annotation data between each pair of databases, including
each database with itself. This step ensured that all possible domain peaiton&dered

and it removed any possible effect of the order in which domains and databases were
merged. In this step, for each protein, we grouped domain annotations into sets such that
domains within a set had equivalent domain labels and overlapped with approximately the
same segment of the protein sequeneeg,it matched at least ten continuous amino acids.
The final merged domains were not sensitive to the examined threshold variatging ra

from 1-30 amino acids. Domain annotations within each set were merged into a single
domain. The new domain inherited all domain labels of its memiberst became a

multi-label domain. Furthermore, the sequence of the newly defined domain represented a
continuous amino acid sequence that consisted of the union of all amino acid sequences of
the member domains (Figure 4, Step Il). By using a combination of domain labels and
domain sequences in the merging procedure, the method ensured that potenaediytdiff
domains that covered approximately the same segment of a protein sequenuat were
merged together.

To determine if two domain labels were equivalent, we first represented eachtbem

as an array of words contained within each label. Because domain labels often conta
general commonl/trivial word® (g, a, the, domain family, like, membeyof, via, within),

these words were excluded from the domain labels. Next, we compared all \wardbdr

first array to all words from the second array to determine whether dimsysted of

identical words or words that were contained within each o¢hegry (kinases and

“pkinasé). If such a pair of norrivial words was detected, the two corresponding dol

labels were considered equivalent. Clearly, this method of determining the egoevaf

two labels does not guarantee a correct outcome. Therefore, our method allows users
specify pairs of labels that should be considered equivalent as well as pabslisthat

should be considered non-equivalent (Figure 4, “Predefined label relationships”). This
functionality also overcame problems that arose from labeling-scheragémasithat were

not always recognized by computational procedures for string comparison argulex

the labels fmt’ and “formyltransferaséare equivalent, where the first word represents an
abbreviation of the second. However, these words are neither the same nor contained
within each other, and their equivalence cannot be detected solely by string sompari
computational procedure that could detect such equivalence based on string mamipulat
would yield many false positives and was not pursued.

Step Il — Creating a final annotation set

In the third step, all pairs of domains from all databases in the second step wgrd me

into a final annotation set. The merging procedure was similar to the one frpmh. Ste

Here, however, each domain annotation set already contained some merged domains from
Step Il. Therefore, for merged domains, the representative sequence was theeseque
derived in Step Il and the representative label was a multi-label annotatioeas/Her
domains that had not been merged, the original label was used as their annotation. For
each protein, we grouped the domain annotations into sets such that domains within the
same set had equivalent domain labels and overlapped with the same sequence locations
Then, we merged the domain annotations within each set into a single domain. wmally,
assigned new domain labels to each set of merged domains (Figure 4, Step IlI).

By merging all joined pairs from Step Il, it was possible to detect additimealap

between domain labels that were naiedeed in Step Il. For example, given three dom

with labels ‘abc-smc5 “abc-atpasg and “smc from three different databases, the
computational procedure in Step Il would identify the domain laladds-5mc5and
“abc-atpastas equivalent, the labelabc-smc5and “smc as equivalent, and the labels
“abc-atpase” and“smc” as not equivalent. Only the first and second pairs of domains



would therefore be merged, assuming that all three domains covered approxinsately
same sequence stretch. However, in Step lll, the computational procedure would
determine that the merged domaabt-atpase abc-smt@as equivalent to the merged
domain ‘abc-smc5 smtand that the Sm¢ and “abc-atpaseédomains would thus be
identified as equivalent, even though this was missed in Step Il (Figure 4).

For all string (word) comparison procedures, we used string casopalgorithms available
in a standarcC++ library.

For each protein of interest, our method outputs the newly assignedndiaimels and their
corresponding sequence locations. Additionally, the procedure provides a list (dyjttbaa
contains mappings between the new domain labels and labels fromdinalatatabases, as
well as a list of domain labels that overlapped in sequence butwesemilar enough to be
merged. These lists can be used to redefine a set of ldag¢lshould be treated as the
equivalent or different (Figure 4).

Definition of true and false positive/negative prettted PPIs

In this work, we have adapted an operational definition of true alsé PPI predictions
based on what is known about a given protein interactions netwamn @iset oh proteins

and m known, experimentally detected pairwise interactions among thexeins (the
interacting set), we defined the set of non-interacting protera pa the set that includes all
pairwise PPIs among threproteins, except for the known interactions. Hence, the number of

non-interacting PPIs is given t@) —m [18,20,30]. We then defined a true positive (TP)

PPI prediction as a predicted PPI that belongs to the inteyesst. Similarly, a false positive
(FP) PPl is defined as a predicted PPI that belongs toaiénteracting set. A true negative
(TN) PPI prediction is defined as a predicted non-interactingiprgir that belongs to the
non-interacting set. A false negative (FN) PPI prediction fnel@ as a predicted non-
interacting protein pair that belongs to the interacting set. tithe positive rate is then
defined as TP/(TP + FN) and the false positive rate as FP/(FP + TN).

Parameter-dependent DDI selection (PADDS) algorithm

PADDS was designed to select sets of DDIs that can rettdasti given protein interaction
network. Specifically, for each potential DDI and its correspondifds, we assessed the
consequences of selecting that particular DDI versus each dme athier possible DDIs that
account for the same PPIs (we denoted these DDIs as altei&tisg Instead of exploring
all possible combinations of alternative DDIs, PADDS explores oalysubset of
enumerations consisting of currently evaluated DDIs and thest bHernatives,i.e.,
alternatives that best satisfy the evaluation criteria. liettuated DDI was better than any
alternative, it was selected as a PPl mediator and assmyenefit score. Already selected
DDls, as well as the PPIs they accounted for, were nevevaleated, further limiting the
number of combinations to be enumerated. The final constructed set ohdaoteeactions
represented a minimal DDI set that accounted for all PPI$e atiempting to minimize false
positives.

In contrast to existing reconstitution methods, PADDS does 1pstori reward or penalize
the most rare, promiscuous, or parsimonious set of interactionsadngitéiases the benefit
of each selected domain interaction towards either preferringvelos@PIs (true positives)



or penalizing non-observed PPIs (here categorized as falsev@®siiihus, depending on the
value of the parameter that specifies the true/false poditases (denoted as o € [0.0,
1.0]), PADDS extracts multiple sets of potential DDIs that eaplain the original set of
PPIs. Ana of 0.0 favors observed protein interactions and afi 1.0 maximally penalizes
non-observed interactions. In addition, PADDS also identifies a sebost, core DDIs that
are independent of the parameier

Algorithm and implementation details

Let O; denote the number of observed interacting protein pairs, wherprotagn contains
domaini and the other contains domajrand letN; denote the number of all possible non-
interacting protein pairs, where one protein contains domaia the other contains domain
j. The association scom; [28], which represents the probability of interaction between
domains andj, is defined as:

R
1 Oij+Nij.

A 1)

Let a denote a parameter with a value in theD] 1.Q range that specifies the amount of
tolerable non-interacting protein pairs. We evaluated the probabilitlye occurrence of a
domain paiii andj in a set of PPIs as a modified association sdfjre

2

A" = _ 9 [(2)
O +alh

Fora = 0.0, 4! equals the number of observed DDIs, the number of PPIs in which one
protein contains domainand the other contains domgjrwhereas for: = 1.0, Ai' denotes
the probability of interaction between domairandj [defined in Equation (1)] multiplied by
the number of domain interaction occurrences. Thusg = 0.0, the modified association
score corresponds to domain interactions that exghe largest number of PPIs, while for

= 1.0, the score corresponds to domain interactions dbanot introduce large number of
false positive PPIs. We multiplied the probability interaction byO; to differentiate
between DDIs that have the same probability bygagsy a higher score to those DDIs that
account for a larger number of PPIs.

Benefit definition

The benefit of interaction between two domairend]j represents the propensity that these
two domains mediate protein interactions. We defittee benefit by combining the above
modified association score with a term that takés account the co-occurrence of domains,
because domains that appear together within aiproften interact [46,47]. Le€; denote
the number of proteins in which domainsandj co-occur, and lemaxG denote the
maximum number of co-occurring domains observea igiven set of proteins. We then
defined the benefiB; of the interaction between two domairend] as:

2 2
B=_ O, G
Oy taN, maxg
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Using different values of, one can rank the same set of DDlIs differentlyetasn theirB;
value.

Iterative evaluation of selected DDIs

PADDS goal is to extract a set of DDIs such tlatthese DDIs account for a given set of
PPls and) the sum of benefits of this set is higher thamsbm of benefits of any alternative
DDI set of the same size that explains the same. ARk optimal solution for this problem
would require the exhaustive enumeration of allsgz@e combinations of DDIs that account
for the original set of PPIs. Because, in practitke exhaustive enumeration is
computationally unfeasible, PADDS uses a heursticition. Given a set of PPlIs, a list of
protein-domain annotations, and a user-specifiedrpatera, PADDS calculateB; for each
potential DDI (Figure 5 — 1). For each DDI and tt@responding PPIs represented by this
DDI, PADDS evaluates the consequences of seletiisgDDI versus each of its alternative
DDls. This evaluation yields a small set of DDIslled thefinal set.

Figure 5 Example of domain-domain interaction extraction.l: Given a set of protein-
protein interactions (PPIs) and a protein-domaimotettion scheme, PADDS transformed all
PPlIs into the corresponding set of domain-domaeractions (DDIs) and calculated the
benefit valueB; for all DDIs. II: The five steps involved in theldDiterative evaluation
procedure is illustrated using interactions betweé@mains D1 and D3. Ill: After PADDS
performed the DDI evaluation procedure for all oth®Is, the results were examined to
select the final set of DDIs that can reconstitheePPIs. P1, ..., P7 denote proteins and D1,
..., D8 denote domains. The bendjtand the reassessed benBjjt associated with the

interaction between domairnswere calculated using Equations (3) and (4), reispay.

The evaluation process consists of five phaseshénfirst phase, PADDS adds a DDI of
interest into a set called tineain set. In addition, PADDS evaluates all alternaidls, i.e.,
DDls that overlap with the DDI of interest, and adde one with the highest benefit to a set
called thealternativeset. Note that theain andalternativesets are initially empty (Figure 5
— Il, Step: 0 and Step: 1). In the second phas® P2 evaluates all DDIs that overlap with
the DDIs from thealternativeset (Figure 5 — 1l, Step: 2 to Step: 4). PADDSas/evaluates
only the DDIs that are not already contained indltiernative, main, ofinal sets. However,

in the evaluation process, PADDS takes into comatt that DDIs from thdinal set
already account for a particular subset of PPIsaBse these PPls should not be used for the
evaluation of potential DDIs, for all potential Dthat are not in thénal set, PADDS
calculates the reassessed bengfjtsas:

Oij_Eij

Oij

Bjj = - Byj — s - Ey, (4)

whereE; represents the number of observed interactingepraiairs containing domains
and j that have already been accounted for by some oD@l (either from the
main/alternativeset or thefinal set), ands represents a scaling factor used to additionally
reduce the benefit value of DDIs. We empiricallyesteds = 0.01.Out of all evaluated
DDls, PADDS finds a DDI with the highest reassedsedefit and adds it to theain set. In

the second phase, the algorithm iterates betweealtdrnativeset and thenain set until all
PPIs that are explained by potential DDIs in onease also explained by potential DDIs



from the other set. In phase three, PADDS calcsildte total accumulative bene)ﬁlﬁOt for
each set as:

B"=k>'B,, +(1-K)>_B,,, k= Oor (5)

wherek = 1 for DDIs that were added into a set based oin thiginal benefit valud,,, and
k = O for DDIs that were added into a set based oin tbassessed benefit valBg,, (Figure
5 — Il, Step: 5). In the fourth phase, PADDS con&ﬂsalheBitjOt value of themain and

alternativesets. If thanainset has the greatel%ﬁ"t value, PADDS flags the DDI of interest

and assigns it this value. Then, in phase fiveafbflagged DDIs, PADDS finds the one with
the highesIBit]-Ot value and adds this DDI to tfieal set of DDIs (Figure 5 — Il, Step: 5). In

the case where no DDI is flaggegk., all alternativesets have highe?s’it]-Ot values than their
correspondingnain set counterparts, PADDS assigns to each DDI aevatual to the ratio
of B{** of themain set andB{** of thealternativeset. Then, PADDS adds DDI with the
highest ratio value to thignal set (Figure 5 — 1lI). This evaluation proceduregpeated until
all given PPIs are explained by DDIs from fiveal set. Extracted sets of potential DDIs that

are common to all values afare denoted as tloere set.

Ties between two DDIs are broken in the followinde: 1) minimumN;, 2) maximumQ;,

3) maximum number of times the interaction betweemainsi andj explains a single PPI
multiple times €.g, if both proteins contain domainsndj, then that PPI can be explained
by twoi —j domain interactions¥}) maximumcC;, 5) maximum number of unique PPIs that a
DDI explains, and6) maximum benefit. In cases where ties are not dmokfter this
procedure, they are broken randomly.

Data and implementation of other reconstitution mehods: GPE and MSSC

For the comparison with the GPE method [21] onda®set from Rilewt al [27], we used
two sets of published results; the first contaitiedtop 1,399 high-confidence DDIs (denoted
“GPE-HC) and the second contained 7,554 DDIs of lowerficiemce (denotedGPE-LC)
that were not necessarily included in the first Bethe comparisons, we used the DDI rank
information provided with the published data [21].

For the yeast high-confidence dataset comparisenused the MSSC program available
from the authors’ Web site to extract and rank DDdsng the association score [28]. We
implemented the GPE algorithm in MATLAB using thargmeter values specified by the
authors and ranked DDIs using the LP-score, follgwihe methodology detailed in the
original manuscript [21].

Endnotes

®This set of proteins contains the translationsliafystematically named ORFs, except ORFs
designated as “dubious” or “pseudogenes.”

The remaining domain annotations did not change nhiaor modifications compared to the
previous version, had domains of unknown functioagd domains assigned to previously
unannotated proteins, or had domains assignectagouisly unannotated sequence segments.
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Additional files

Additional_file_1 as ZIP

Additional file 1 Merged annotation. This file contains lists of n@wtein-domain
annotations and lists that map new domain labdis thie domain labels used in the original
annotation databases.

Additional_file_2 as XLSX

Additional file 2 Merged protein-domain annotations that corresgordbmain annotations
from the new PFAM-A release. This file containssadf 202 merged protein-domain
annotations corresponding to domain annotatiorms tte current PFAM-A release (release
26.0) that did not exist in the previous PFAM-Aeade (release 25.0), but had a matching
domain annotation in our merged set. Additionalhys file contains the merged protein-
domain annotations corresponding to the currentNPBAdomain annotations that replaced
the annotations from the previous PFAM release.

Additional_file_3 as XLSX

Additional file 3 Domain-domain interactions extracted by plagameter-dependent DDI
selection(PADDS) method — multiple organisms. This file tans lists of domain-domain
interactions extracted by PADDS for the Riley datd&7] for all values of the parameter
analyzed in the main text.

Additional_file_4 as PDF
Additional file 4 Supplementary material. This file provides thedemental text,
supplemental Figures S1 — S4, and supplementaé3&d — S4.
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