
W911 Nf-12-1-0604, 1st interim report:

Accelerating development and maintenance of

scientific Python distributions

Overview
This report covers the period 26 September 2012 to 1 May 2013 of contract W911 Nf-12-1-0604
between Simula Innovation AS and ERDC-IRO. The work done in this period completes the
milestones described in the original project proposal (Milestones 1 and 2), and we describe the
•.vork on these be!O'vv. Since then, the contract has been amended 'vvith additional tasks for a third
milestone. This work has not yet started.

During the period, the project PI, Dag Sverre Seljebotn, worked 300 hours on the project.
Including all overhead and expenses the calculated cost to Simula Innovation AS for this part of
the project is $42,000.

Milestones 1 and 2 describes a software component for accelerating development of scientific
Python distributions, dubbed the Build Artifact Cache in the proposal. This software component
has since been given the name Hashdist, which we will use in the following. Hashdist is in
continuous development and licensed under a permissive open source license (3-clause BSD).
The code and issue tracker for Hashdist is available at https://github.com/hashdist/hashdist. In
addition, as a proof of concept, we have worked on the Python-HPCMP Python distribution,
authored by Chris Kees. A modified version of this software distribution using Hashdist
technology is available at https://qithub.com/hashdist/python-hpcmp2. The work on this modified
version of Python-HPCMP has been done together with Ondrej Certik from the Texas Advanced
Computing Center and Chris Kees (ERDC-CM).

Hashdist is a very low-level piece of technology, providing exactly the features we feel is missing
from existing software packaging/meta-build systems. Focus has been on providing a solid core
for Python-HPCMP to build further on, and in this we have succeeded . However, we would like
Hashdist to be used by many other similar projects and build a community around it. A problem
here is that Hashdist is only made available as a low-level library API, and the lack of higher-level
abstractions to the features has turned out to be a significant barrier to wider adoption . The goal
of Milestone 3 is to develop an API/domain specific language for describing software builds,
which will attach an end-user-facing side to the project and so help bootstrap a community

around Hashdist.

Milestone 1

A
p

p
ro

ve
d

fo

r
p

u
b

lic
re

le
a

se
;

D
istrib

u
tio

n

u
n

lim
ite

d

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2013

2. REPORT TYPE
1st Interim Report

3. DATES COVERED
 26-09-2012 to 01-05-2013

4. TITLE AND SUBTITLE
Accelerating development and maintenance of scientific Python
distributions

5a. CONTRACT NUMBER
W911NF-12-1-0604

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Simula Innovation AS,POSTBOKS 134, 1325 Lysaker,Norway,

8. PERFORMING ORGANIZATION REPORT
NUMBER
; 1535-EN-01

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Engineer Research & Development Center - International Research
Office, ERDC-IRO, Unit 4507, APO, AE, 09421

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
1535-EN-01

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

Same as
Report (SAR)

18. NUMBER
OF PAGES

3

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

The requirements of Milestone 1 were:
• Development of a specification format to enable fully describing a build process, and use

it to give every build a unique ID (through hashing)
• Given the specification, perform the described build in an isolated environment, producing

a build artifact, and maintain a build artifact cache to prevent gratuitous rebuilds
• A mechanism for declaring which software on the host system, not built by Hashdist,

should be made available in the isolated build environment
• The ability to link together multiple build artifacts into a profile, as the entry-point of the

user to a coherent software stack built by Hashdist

These objectives were completed within the first third of the project, and present in a public
demonstration release of Hashdist in December 2012. Some the details have since changed as
we got experience with applying Hashdist to Python-HPCMP, but most of the code and design
remains from this milestone.

Of particular note:
• For specifying the source code of the build to use, we natively support archives (tar.gz,

tar.bz2, zip) and the git version control system (VCS). Support for other VCSes like
Subversion is not present but should be an easy extension later. To lay the foundation for
future caching and mirroring of source code across an organization, the source code is
identified by a commit ID or an archive hash, not URLs, in the build specification itself.
Thus changing the download URL does not trigger a rebuild.

• In line with the proposed Milestone, the sandbox was at this stage very simple, only
affecting the environment variables (such as clearing $PATH and $LD_LIBRARY _PATH
and rebuilding them).

• The mechanism for using software from the host system has only been tested on small
scale in isolated test cases, and not yet in Python-HPCMP, which currently assumes that
all software from the host system should be made available (in the $PATH environment
variable). Work on this is currently under way, outside of the scope of this project.
However, we are confident that the mechanism Hashdist exposes for this is robust.

Milestone 2

The required goal of Milestone 2 was to build a subset of python-hpcmp and resolve any issues
discovered. At the present date, all packages included in python-hpcmp builds (on the Linux
platform) in the new Hashdist edition except "daetik" (python-hpcmp2 Issue 25). We stress that
the goal of the contract of the present report was to lay the foundation of this work and provide
assistance, and that the main work was carried out by Ondl'ej Certik. Numerous Hashdist issues
were reported and had to be fixed by us during this process.

The end-result is a much better controlled build process than what was provided by the previous
version of Python-HPCMP, and we feel our original assumptions have been validated: The

Hashdist approach to performing isolated builds and caching the resulting build artifacts

Milestone 2 also specified a list of optional features, marked "If time allows", to be worked on
while Python-HPCMP development was taking place. The status on these are:

• Improved sandbox functionality: Hashdist currently has an optional "jail" (Linux only)
which able to capture filesystem access to "illegal" files made by the build process, both
for logging these incidents for debugging purposes or to hide their presence. However,
this has so far only been used in small-scale testing and not during Python-HPCMP
development.

• Backwards compatibility layer for build scripts: Fully implemented.
• Statistics about build artifact cache, garbage collection: Not implemented. However the

important structure for doing garbage collection (the build artifact dependency graph) is
available, so that the work to be done is primarily figuring out how to expose garbage
collection to the user.

