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SYSTEM STATE ESTIMATION IN THE PRESENCE OF FALSE INFORMATION INJECTION

Ruixin Niu† and Lauren Huie‡

†Virginia Commonwealth University, Dept. of Electrical & Computer Engineering, Richmond, VA 23284
‡Air Force Research Laboratory, Rome, NY 13441

ABSTRACT

The problem of system state estimation in the presence of an adver-

sary is investigated for linear dynamic systems. It is assumed that

the adversary injects additive false information into the sensor mea-

surement. The impact of the false information on the Kalman filter’s

estimation performance is analyzed for a general dynamic system.

To be concrete, a target tracking system has been used as an exam-

ple. In such a system, if the false information is injected only once,

the effect of the false information on the Kalman filter proves to be

diminishing over time, even when the Kalman filter is unaware of the

false information injection. The convergence rate as a function of the

maneuvering index is analyzed. If the false information is repeatedly

injected into the system, the induced estimation error proves to reach

a finite steady state. Numerical examples are presented to support the

theoretical results.

Index Terms— Kalman filter, linear dynamic system, target

tracking, false information injection, bias

1. INTRODUCTION

System state estimation in the presence of adversary that injects false

information into sensor readings is an important problem with wide

application areas, such as target tracking with compromised sensor

data, and secure monitoring of dynamic electric power systems. This

topic has attracted considerable attention and interest recently [1–4].

In [1], the authors showed that in some cases, an adversary can intro-

duce arbitrary errors in state estimates without being detected. The

close relationship between these attacks and power system observ-

ability was discussed in [2], where both the adversary’s attack strate-

gies and the control center’s attack detection algorithms have been

proposed. False data attacks on electricity market have also been

investigated in [3] and [4].

In this paper, for a linear dynamic system, we analyze the impact

of the injected false information on the Kalman filter’s state estima-

tion performance over time, which has received little attention in lit-

erature. Some related publications exist, where the problem of sen-

sor bias estimation and compensation for target tracking has been ad-

dressed. Interested readers are referred to [5] and references therein

for details. Note that these previous works focus on bias estimation

and compensation. Instead of estimating and removing the bias, in

this paper we concentrate on analyzing the effects of the bias on state

estimation performance over time. In particular, two cases are con-

sidered where false information is injected at a single time instant,

and it is injected continuously into the system, respectively. Through

theoretical derivations, we show that even under the assumption that

the Kalman filter is unaware of the false information injection, the

R. Niu’s work was supported by the Air Force Research Laboratory In-
formation Directorate through its Visiting Faculty Research Program in 2011.

impact of a single false injection converges to zero asymptotically.

Although it is known that the Kalman filter has a forgetting property,

to the best of our knowledge, the effect of false information injec-

tion has not yet been rigorously investigated in literature, especially

for tracking applications. The convergence rate will be characterized

by both the eigenvalues and the determinant of the bias gain matrix,

which will be derived later in the paper. In addition, the case of re-

peated false information injection is considered. It is shown that the

Kalman filter cannot forget the false information if it is continuously

injected. However, the extra estimation error due to injected false

information does reach a finite steady state asymptotically.

2. SYSTEM MODEL

Let us consider the following discrete-time linear dynamic system,

xk+1 = Fkxk +Gkuk + vk (1)

where xk is the state vector, uk is a known input vector, and vk is

the sequence of zero-mean white Gaussian process noise with co-

variance E[vkv
T
k ] = Qk. The measurement equation is

zk = Hkxk +wk (2)

with wk the sequence of zero-mean white Gaussian measurement

noise with covarianceE[wkw
T
k ] = Rk. The matrices Fk,Gk,Hk,

Qk, and Rk are assumed known. For such a linear and Gaussian

dynamic system, the Kalman filter is the optimal state estimator.

In this paper, we assume that a bias bk is intentionally injected

by the adversary into the measurement. Therefore, the measurement

equation (2) becomes

z
′
k = Hkxk +wk + bk = zk + bk (3)

where bk is either an unknown constant or a random variable (r.v.)

independent of {vk} and {wk}.

3. IMPACTS OF FALSE INFORMATION INJECTION

3.1. General Linear Dynamic Systems

In this paper, it is assumed that the Kalman filter is not aware of the

presence of the false information (bias). We consider two cases. In

the first case, the false information b is only injected once into the

system at time K. We call this particular case single false informa-

tion injection. In the second case, the false information is continu-

ously injected into the system at and after timeK and we name this

case continuous false information injection.
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3.1.1. Single False Information Injection

In the single injection case, the extra state estimation error due to the

single bias injection is derived and provided in the following lemma.

Lemma 1. The extra state estimation error at time K + N due to

the single bias b injected at time K is
(

∏N−1

i=0
BK+N−i

)

WKb,

where

Bk , (I−WkHk)Fk−1 (4)

and WK is the Kalman filter gain [6] at time K.

Proof Sketches: At timeK, the updated state estimate x̂K|K is

x̂K|K = x̂K|K−1 +WK(zK − ẑK|K−1) (5)

where x̂K|K−1 and ẑK|K−1 are the predicted state estimate and pre-

dicted measurement respectively. Now, in the presence of the addi-

tive bias, the updated state estimate x̂′
K|K is

x̂
′
K|K = x̂K|K +WKb (6)

At timeK + 1, the predicted state estimate is

x̂
′
K+1|K = FK x̂

′
K|K +GKuK = x̂K+1|K + FKWKb (7)

and the predicted measurement is

ẑ
′
K+1|K = HK+1x̂

′
K+1|K = ẑK+1|K +HK+1FKWKb (8)

Combining (7) and (8), we have

x̂
′
K+1|K+1 = x̂

′
K+1|K +WK+1(zK+1 − ẑ

′
K+1|K) (9)

= x̂K+1|K+1 + (I−WK+1HK+1)FKWKb

Repeating this process for N times, finally we have

x̂
′
K+N|K+N = x̂K+N|K+N +

(

N−1
∏

i=0

BK+N−i

)

WKb (10)

Q.E.D.

From Lemma 1 and its proof, it can be shown that the evolution

of the extra estimation error νk due to the bias injected to the system

at timeK can be modeled by a linear equation:

νk+1 = Bkνk k = K, K + 1, · · · (11)

where Bk is the bias gain matrix defined in (4) and νK = WKb

is the initial condition for the system. It is important to study the

stability of the linear system defined in (11).

3.1.2. Continuous False Information Injection

In the continuous injection case, the extra estimation error at a partic-

ular time instantK +N due to the bias is provided in the following

lemma. Its proof is similar to that of Lemma 1, but is more involved,

which is skipped here for brevity.

Lemma 2. The extra state estimation error at time K + N due to

bias bk injected at and after timeK is

N
∑

m=0

(

m−1
∏

i=0

BK+N−i

)

WK+N−mbK+N−m (12)

where BK+N−i is defined in (4), and
∏−1

i=0
BK+N−i = I is an

identity matrix.

3.2. Linear Time Invariant Systems

In general, it is difficult to analyze the stability of a time-varying

system. In this subsection, we focus on linear time invariant (LTI)

systems with constant F,H,Q, andRmatrices. To further simplify

the problem, we assume that the Kalman filter has reached its steady

state at time K, so that its gain becomes a constant too, and Wk =
W, ∀k ≥ K.

Given these assumptions, in the single injection case, the system

defined in (11) becomes a LTI system, and it is well known that

the system is asymptotically stable if all the eigenvalues of B =
(I−WH)F have a modulus smaller than one. In an asymptotically

stable system, for an arbitrary initial condition Wb, as k → ∞,

νk → 0. In the continuous injection case, we study a case where
the false information b is repeatedly injected at and after time K.

It is important to investigate the asymptotic behavior of the extra

estimation error
(

∑N

m=0
Bm

)

Wb, as N → ∞. To be concrete,

in the next section, we study a target tracking example.

4. TARGET TRACKING EXAMPLE

4.1. Direct Discrete-Time Kinematic Models

We assume that the target moves in a 1-dimensional space according

to a discrete white noise acceleration model [6], which can still be

modeled by the plant and measurement equations given in (1) and

(2). In such a system, the state is defined as xk = [ξk ξ̇k]
T , where

ξk and ξ̇k denote the target’s position and velocity at time k respec-

tively. The input uk is a zero sequence. The state transition matrix

is

F =

[

1 T
0 1

]

(13)

where T is the time between measurements. The process noise is

vk = Γvk, where vk is a zero mean white acceleration sequence,

with variance σ2
v , and the vector gain multiplying the scalar process

noise is given by ΓT =
[

T 2/2 T
]

. The covariance matrix of the

process noise is therefore Q = σ2
vΓΓ

T . It is assumed that only

position measurements are available, so that H = [1 0]. The mea-
surement noise process is zero mean white with variance, σ2

w.

4.2. Analytical Results for Single Injection Case

Here we assume that the bias is injected only once into zK by an

adversary at time K when the Kalman filter has already reached its

steady state. It is shown theoretically in this paper that for such a

tracking system, the impact of the bias on the Kalman filter is dimin-

ishing over time. Mathematically, this result is summarized in the

following theorem.

Theorem 1. The two eigenvalues (κ1 and κ2 ) of the bias gain ma-

trixB are inside the open unit disk.

Proof Sketches: The steady state Kalman filter gain for such a system

has been derived [6], which isW = [α β/T ]T , where

α = −
1

8

(

λ2 + 8λ− (λ+ 4)
√

λ2 + 8λ
)

(14)

β =
1

4

(

λ2 + 4λ− λ
√

λ2 + 8λ
)

. (15)
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λ , σvT
2/σw is the target maneuvering index, which is propor-

tional to the ratio of the motion uncertainty and the observation un-

certainty. It is easy to show that

B = (I−WH)F (16)

=

[

1− α (1− α)T

− β

T
1− β

]

and that matrixB has two eigenvalues

κ1, κ2 =
2− α− β ±

√

(α+ β)2 − 4β

2
(17)

We consider two cases where λ < 8 and λ > 8, respectively. In
both cases, we can show that |κ1| < 1 and |κ2| < 1.

Q.E.D.

From Theorem 1 and its proof, we can see that the bias has a di-

minishing impact on the tracking performance of the Kalman filter,

which asymptotically converges to zero, since all the eigenvalues of

B are inside the open unit disc. Further, it is useful to investigate

the relationship between the eigenvalues ofB and the target maneu-

vering index λ. In a stable LTI system, it is the eigenvalue with the
largest modulus that determines the rate of convergence. The rela-

tionship between the largest eigenvalue magnitude and λ is provided

in the following theorem, whose proof is skipped for brevity.

Theorem 2. The largest eigenvalue modulus of the bias gain ma-

trix B is a monotonically decreasing function of λ when λ < 8;
otherwise, it is a monotonically increasing function.

Using results obtained in the proofs of Theorems 1 and 2, it is

easy to show the following theorem.

Theorem 3. det(B) = 1 − α and det(BN ) = (1 − α)N , both of

which are monotonically decreasing functions of λ.

Theorem 2 shows that if the target maneuvering index is smaller

than 8, then a larger λ leads to faster convergence; otherwise when

λ > 8, a larger λ leads to slower convergence. If we consider the

determinant ofB, Theorem 3 shows that det(BN ) decays exponen-
tially, with a faster convergence when λ increases.

4.3. Analytical Results for Continuous Injection Case

In this subsection, let us assume that a constant bias b is repeat-

edly injected into the system at and after time K. To analyze the

asymptotic behavior of the extra estimation error due to the contin-

uous bias injection, we need to investigate
∑N

i=0
Bi. First, let us

denote Q as a square matrix whose columns are the eigenvectors of

B. Then through eigenvalue decomposition, and using properties

of the eigenvalues derived in Subsection 4.2, we give the following

theorem without proof.

Theorem 4. As N → ∞,

∞
∑

i=0

B
i = Q

[

1

1−κ1

0

0 1

1−κ2

]

Q
−1

(18)

and

det

(

∞
∑

i=0

B
i

)

=
1

β
(19)

Theorem 4 indicates that as N → ∞, the extra state estimation

error due to the repeated injection of the false information b reaches

a steady state,

Q

[

1

1−κ1

0

0 1

1−κ2

]

Q
−1

WKb (20)

Since it can be shown that β is a monotonically increasing function

of λ, as λ increases, det
(
∑∞

i=0
Bi
)

decreases.

5. NUMERICAL RESULTS

In this section, numerical results are presented for both the single

injection case and the continuous injection case.

5.1. Single False Information Injection

The parameters used in the simulations are T = 1 and σ2
w = 1. The

injected bias b is taken as a zero mean Gaussian r.v. with variance σ2
b .

The effect of the bias injection on the Kalman filter is measured by

the time required for the MSE to become consistent with the nominal

covariance matrix once again, using a chi-squared test. The sum of

the normalized MSE over Nm Monte-Carlo runs is given by

qk =

Nm
∑

i=1

[

x̂
i
k|k − x

i
k

]T

P
−1

k|k

[

x̂
i
k|k − x

i
k

]

(21)

where at time k, Pk|k is the state covariance matrix, and x̂i
k|k is

the state estimate, and xi
k is the true state, during the ith Monte-

Carlo run. It could be shown that qk is a chi-squared r.v. with 2Nm

degrees of freedom, in the absence of bias. The chi-squared test

compares qk with a threshold η. When qk < η, it is considered
that the MSE of x̂k|k is consistent with Pk|k. η is determined by

solving the following equation, Pr {qk ≤ η} = 1 − ǫ, where ǫ is
a small number. Here we run Nm = 1000 Monte-Carlo runs, and

set ǫ = 10−4. Correspondingly, the threshold used in the test is

η = 2243.81.
An example is shown in Fig. 1, where a single random bias

is injected at time K = 50. It can be seen that the impact of the

bias only lasts for several time steps and then becomes negligible.

The time required to return to the normal state is shown in Table 1

10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

6000

 Iteration number k

 q
k

No injection

With Injection

Prob[q
k

≤ 2243.81]= 99.99%

Fig. 1. Single Injection Case: σ2
b = 5, σ2

v = 2.

for varying λ and σ2
b . It is clear that when λ < 8, as λ increases,

the time to return to the normal state decreases; when λ > 8, as
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σ
2
b

λ 1 5 10 20 50 100 1000

2 2 3 3 3 3 3 5
4 2 2 2 2 2 3 4
6 2 2 2 3 3 3 3
8 2 2 3 3 3 4 4
10 2 2 3 3 4 4 5
12 2 3 3 4 5 4 6
14 2 3 3 4 5 5 7

Table 1. Time required to return to normal state

λ increases, the time to return to the normal state increases. This

is exactly as predicted by Theorem 2. Also, we can observe that a

random bias with a larger variance σ2
b has a longer-lasting impact on

the Kalman filter. But eventually, the filter will return to the normal

state.

5.2. Continuous False Information Injection

In this subsection, it is assumed that a constant false information b

is repeatedly injected in the measurement at and after time K =
50. The normalized MSE qk is plotted as a function of time k in

Fig. 2. We observe that the estimation error due to the repeated

injected bias asymptotically reaches a finite steady state as shown in

Theorem 4. A similar phenomenon is observed for the case where an

independent and identically distributed (i.i.d.) random bias sequence

is continuously injected to the system. The corresponding numerical

example is skipped due to limited space. Note that for the random

bias sequence case, the theoretical result is very difficult to obtain.

Fig. 3 shows the normalized MSE at time k = 200 for different
b and λ values. It is clear that as λ increases, the MSE decreases, as

indicated in Theorem 4. Further, we observe that the larger the bias

b is, the larger the steady state value will be.

40 50 60 70 80 90 100 110
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

Iteration number k

q
k  No injection

With Injection

Prob [q
k

≤ 2243.81]=99.99%

Fig. 2. Continuous Injection Case: b2 = 5 and σ2
v = 4.

6. CONCLUSIONS

In this paper, for a linear system, we have studied the problem of

state estimation in the presence of additive false information, which

is injected by an adversary into the sensor measurement. For a gen-

eral linear system, the impact of the false information on the Kalman

2 4 6 8 10 12 14

10
1

10
2

10
3

λ

q
2
0
0
 /
 N

m

Fig. 3. Continuous Injection Case: The curves from top to bottom

correspond to: b2 = 1000, 100, 50, 20, 10, 5, 1.

filter’s estimation performance over time was derived. Further, to

be concrete, an example target tracking system has been provided,

where the effect of the false information on the Kalman filter was

investigated. In the case of single false information injection, it has

been shown that the system that models the bias evolution is sta-

ble, and the impact of the false information decays exponentially.

The convergence rate was also analyzed in terms of both the largest

eigenvalue modulus and the determinant of the bias gain matrix. In

the case of continuous constant false information injection, the finite

steady state of the extra estimation error due to bias injection has

been derived, and its relationship with the target maneuvering index

was investigated.

In the future, the more challenging case where the adversary

injects coordinated random false information over multiple sensors

and over time will be explored.
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