
   
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
ABSTRACT 

 
Despite advances in health monitoring systems, the certification process for 

automated SHM systems remain rooted in the probability of detection (POD).  POD is 
a fundamental part of the certification process, however, it is not the only measure of 
system validity.  The process to certify a system must contain measures of accuracy 
and reliability.  Disclosing the accuracy and reliability at the time of system design 
allows the end user to weigh differences among various SHM system architectures.  In 
this manner, end users may identify the architecture that meets their specific overall 
system requirements.  Further, it creates a benchmark from which system redesigns 
may be assessed and compared in order to improve overall system performance. 

In order to determine the appropriate measures of accuracy and reliability for the 
SHM system, first, the necessary output of such a system must be defined.   Typically, 
the system is built in order to identify and assess structural damage.  The appearance 
of damage is a detection problem whereas the extent of damage (crack length and 
location) is an estimation problem.  Thus, the proper certification of a SHM system 
must incorporate measures of accuracy and reliability for both the detection and 
estimation of structural damage.  These include probabilities related to detection such 
as the probabilities of true and false alarms as well as positive and negative predictive 
values.  Confidence intervals must be defined as measures of the reliability of these 
probability estimates.  Measures for the accuracy of the location and extent of 
structural damage include summary measures of the estimation process or model as 
well as the predicted location or crack length and its associated confidence interval.        

Establishment of the certification process as related to SHM will lead to better 
quantification of system performance for both detection and estimation and ultimately 
better system designs.  These criteria may then act as a springboard for certification in 
subsequent prediction of structural failure, time remaining until structural failure, and 
other general aspects of risk analysis related to structural health.  
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INTRODUCTION 
 

It is inherent that the process to certify a system must contain measures of 
both accuracy and reliability.  Disclosing measures of accuracy and reliability at the 
time of system design will allow the end user to weight differences among various 
SHM system architectures and to build-in features at the design stage to assure a 
specific level of performance.  In this manner, end users may identify the 
architecture that meets their specific overall system requirements and further, it 
creates a benchmark from which system redesigns may be assessed and compared 
in order to meet, or improve, overall system performance. 

SHM systems for aircraft, as for other structures, are mounted as a 
permanent part of the structure.  As such, these systems collect and process data in 
situ.  The advantages of such systems are apparent through the real-time monitoring 
of structural integrity. To ignore or not make proper use of such real-time data 
streams is to negate the advantages and purpose of SHM technology.   

The information in the data streams that such systems collect as to structural 
health, takes on several forms, but contains: 1) the presence of structural damage, 2) 
the extent of structural damage, and 3) the location of the structural damage.  How 
the system captures information to estimate these measures of damage is not the 
focus of this paper, yet clearly the tools required to capture, process and predict 
presence and extent of damage must also embrace SHM technology and capitalize 
on continuous monitoring.  To the extent that these tools must embrace SHM 
technology, so does the certification (validation) process of SHM systems.  Thus, 
this paper seeks to establish a statistical framework with which statistical tools may 
be applied to assess how well the system captures this information, that is, the 
validity and reliability of the system output.  An understanding of the nature of the 
measures comprising the framework for structural damage as well as how to 
statistically estimate them is of importance. 

 
 
DEVELOPMENT OF THE STATISTICAL FRAMEWORK 
 

As previously stated, the statistical framework for the certification of a SHM 
system should contain measures that assess the system’s accuracy and reliability with 
respect to the system’s outcomes: 1) the presence, 2) the extent, and 3) the location of 
the structural damage.  The appearance of structural damage, typically a crack, is a 
detection problem whereas the extent and location of the structural damage are 
estimation problems.   

To create the framework, statistical tools assessing detection (for the presence 
of damage) and estimation (for the extent and location of damage) must be utilized 
to create a multi-dimensional assessment for the SHM system.  Paramount to 
assessing the ability of the SHM system to detect and estimate, is the use and/or 
development of statistical methods that are adjusted to capitalize on the added 
enhancement of the SHM system’s continuous data collection, that is, dependent 
measurements.  To not consider such adjustments is to negate the use and added 
utility of the SHM system.  First, methods for assessing the detection of damage 
will be examined, then methods for assessing the estimation of extent and location 
of damage will be examined.   



Detection of Damage 
 

There are several probabilities with which to assess the system as to its 
ability to detect damage.  Indeed, the same probabilities that are of current use are 
the same probabilities that should continue to be used to assess the validity and 
reliability of damage detection.  However, the method to compute these 
probabilities must take advantage of the added value of continuous monitoring, 
namely, the time-related, continuous assessment of damage occurrence.  Because 
the data to detect damage for a SHM system is obtained in a manner different that 
current standard inspections, so should the estimation and validation process reflect 
and capitalize on these differences.  Although the point of this paper is to develop 
the statistical framework for certification, a discussion of how SHM systems differ 
will be used to suggest how the methods to compute these probabilities should be 
enhanced to incorporate the continuous data collection. 
 In general, with any system that seeks to classify whether or not damage is 
present, there are four probabilities related to system outcomes:  the probability that 
the system detects damage is present when it is not (false positive), the probability 
that the system detects damage is present when it is (true positive), the probability 
that the system detects no damage when it is (false negative) and the probability 
that the system detects no damage when it is not (true negative).  Conjunctive 
equations stemming from set theory [1-2] demonstrate that the probabilities of true 
positive and false negative add to one as do the probabilities of false positive and 
true negative.  Thus, not all four probabilities need be disclosed, but only one from 
each equation is necessary.  The two probabilities typically used are the probability 
of true positive (or probability of detection) and the probability of false positive.  In 
addition, these probabilities may also be used to incorporate how likely (prevalent) 
structural damage is to occur.  These probabilities are discussed in turn. 
 
PROBABILITY OF DETECTION (POD) 

 
Current standards for detection center on the POD of the system also known 

as the sensitivity, hit rate, or more precisely as the probability of true positive.  The 
POD is defined as the probability that the system detects structural damage when 
damage is truly present.  Because current practice is to perform periodic assessment 
of structural damage, a “snap-shot” of structural integrity is obtained.  The time of 
occurrence of damage that is present may not be known with certainty.  However, 
the extent of the damage present enhances the probability that the damage will be 
detected, that is, enhances the POD.  Thus, current standards advocate that the 
certification process of damage assessment should include a POD that is computed 
after adjustment for the target (damage) size.  Therefore, experimental (or real) data 
is collected as to the detection of damage.  Truth data is observed and a GLM is fit 
using a hypothesized relationship between the target and observed damage size.  
Such a relationship is assumed to adjust for the increased POD that accompanies 
increased structural damage.   

To fit such a model, standard statistical techniques are employed.  A special 
link function is specified that transforms the outcome (“damage” or “no damage”) 
into a probability estimate with respect to the target sizes.  Such a model is known 
typically as a logistic regression [3-5], or a form of a log-linear model [4] such as a 



logit or probit model, and its properties and solutions are well established [3-5] as 
are its confidence bounds.  Once fit, the POD is estimated from this model (e.g. 
POD=0.90) and a 95% confidence bound at this point is used as the threshold for 
detection.  If multiple inspectors (sensors) are used to estimate the POD, then the 
POD estimate contains an adjustment for multiple inspectors, that is, contains a 
dampening effect to adjust the estimated POD and its confidence interval for the 
variability in inspectors (e.g. sensors).  Ideally, in future sampling as set by the 
schedule in the application’s standards of practice, the target POD, or at least the 
lower bound of the confidence interval for the target POD is sought to assure 
continued validity of the system.  

The POD as well as the confidence bound (as a measure of reliability of the 
POD estimate) is extremely important as a measure of validity of the SHM system 
and its ability to detect structural damage. Recall, by the conjunctive equations, 
once an estimate of the POD is ascertained, so is the estimate for the probability of 
false negative of the system.  

 
PROBABILITY OF FALSE POSITIVE (PFP) 
 

Current standards also suggest that along with the target size associated with 
the POD, the disclosure of the false alarm rate (specifically at the POD=0.90 point) 
is also recommended.  The false alarm rate is defined as the probability that the 
system detects structural damage when damage is truly not present, that is, it is an 
estimate of the PFP of the system.  In application of current standards, the false 
alarm rate is adjusted for target size as it is computed from a model of POD that 
assumes so.  The PFP is just as important as the probability of true positive (or 
POD) for a system.  Indeed, if everything is labeled as damage, then surely, the 
POD = 1.0, however, the PFP is also 1.0.  Such a misnomer is a costly waste of 
resources for structures with no damage.  In fact, any false positive is a costly waste 
of resources as damage is mistakenly thought to be present.  Thus, the estimate of 
the PFP needs to be disclosed for the system.  In addition, just as the POD requires 
a confidence interval, so should the PFP.  As all probability estimates for the system 
are based on data, the measure of variability associated with the estimate must be 
included.  A confidence interval for the PFP will provide the reliability associated 
with this measure of system accuracy.  Formulas for the confidence interval of the 
PFP (as well as POD) when independent of target size are well established [2]. 
 
POSITIVE (PPV) AND NEGATIVE (NPV) PREDICTIVE VALUES  
 

The positive (negative) predictive value refers to the probability that damage 
does (does not) exist when the system says that damage does (does not) exist.  
These probabilities are computed using Bayes rule [1,2].  In situ, these probabilities 
may be of great importance.  If a sensor detects damage, then the probability that 
damage is really present given that the system detects damage, becomes quite 
important, especially for structure in which immediate decisions must be made 
based on this information.  However, unlike the POD and PFP, the PPV and NPV 
are functions of the prevalence, or likelihood of damage being present.  Prevalence 
may be unknown, though estimated, but if not estimated accurately, may mislead 
users.  If accurate estimation of damage prevalence (likelihood) is possible, then 



these probabilities are useful to disclose.  In a simplified example, if it is known 
that the likelihood of damage for an aircraft is related to the number of flight hours, 
and that at onset of the system, the chance of damage is 0.01, then the PPV and its 
confidence bound may be estimated across the possible range of flight hours.   This 
information may be used to predict and schedule the necessary resources over time 
with respect to maintenance.  In addition, it allows for an assessment of the 
likelihood of a false positive occurring.  If the PPV is quite low, yet the system 
warns of the presence of structural damage, other measures or assessment tools may 
be used to determine if the warning is true or if a false positive is occurring.  The 
use of estimation of the extent and location of structural damage, as well as the 
conditions during which the warning occurred may add to this profile.  

 
DAMAGE DETECTION PROBABILITIES AS RELATED TO SHM SYSTEMS   
  

Differences exist for the automated SHM system.  SHM systems are 
permanently mounted and continuously collect data in situ using fixed sensors 
(inspectors) surrounding a region of interest.  Thus, measures to assess the accuracy 
of the system need not be adjusted for multiple inspectors as the same inspector(s) 
assess the system.  Specifically, it is reasonable to assume that the probability of 
inspection is equal to 1.0.  Further, there is no “snap shot” for assessment.  
Assessment is continual and virtually immediate.  Thus there is little question when 
damage occurs as continual assessment may be used to pinpoint its occurrence.  In 
addition, the system is capable of knowing what it just assumed about a region of 
interest (whether there was damage or not).  Further, just as for current practices, 
the POD will increase over time because the probability of damage will increase 
over time.  However, in an SHM system, the system’s ability to detect damage will 
rely almost entirely on the minimally detectable damage (MDD), e.g. minimally 
detectable crack length, and the variability associated with this MDD.  Assumably, 
almost with probability one, will the system of sensors detect any target size outside 
the range of variability associated with the MDD.  This is because the system 
continuously monitors this region and smart systems with feedback information 
may capitalize on previous observations.  With this feedback, though, is the real 
possibility to inflate the false alarm rate should a detection error be propagated 
forward.  Such feedback, though useful, must make adjustments and add the checks 
and balances necessary so as not to inflate the false alarm rate.   

Finally, SHM systems may be adjusted to make use of the PPV and NPV 
estimates.  Since the PPV and NPV rely heavily on the prevalence of structural 
damage, some understanding and knowledge of the occurrence of structural damage 
over time, especially under specific environmental conditions, may aid the 
determination of the presence of structural damage when damage is detected.  For 
instance, at the onset of a new SHM system on a new structure, the PPV is quite 
low because the (expected) prevalence of structural damage is low.  Thus, a sensor 
denoting damage, without the occurrence of other environmental factors that 
facilitate damage, may be more suspect (i.e. more likely to be a false alarm) than a 
sensor denoting damage after extended use and/or exposure to environmental 
factors.  This ability is unique to SHM and is not readily incorporated in current 
inspection practice. 
 



Estimation 
 

Unique to a SHM system, is the ability of the system to measure and track 
the development of structural damage.  Therefore, in conjunction with assessment 
tools to evaluate the ability of the system to detect damage, are tools with which to 
assess how well the system estimates damage, both for the extent (crack length) and 
location of damage.  Since crack length and location are continuous measurements, 
prediction models will most likely be used for estimation.  Assessment measures in 
the statistical framework for such models as well as the estimates themselves should 
be disclosed.  Thus a recommendation is made for several measures within the 
framework in order to build a more comprehensive picture of the accuracy of the 
system. A description of suggested measures follows.   

 
SUMMARY MEASURES FOR PREDICTION MODEL 
 
 The most common tool for estimating a continuous measurement is a form 
of a general linear model (GLM), which includes supervised learning algorithms, 
linear regression, time series, random effects models and neural networks, though 
the model need not be linear.  The model’s root mean square error (RMSE) is an 
important measure for model validity.  Although many models are designed to 
minimize MSE, the MSE does not have much meaning in and of itself.  In linear 
regression models, the RMSE does have special meaning. Even without the 
assumption of normality, about 95% of the observed (predicted) values should lie 
within 2 times the RMSE.  That is, a model that fits well will have a 2 x RMSE 
value that is very small and that demonstrates a level of precision acceptable for any 
predicted damage, ideally, within the error of sensor measurement. 
 Secondly, the model should demonstrate no lack of fit (LOF).  When 
available, data used to create the prediction model should contain measurements to 
estimate the pure error of the model [3].  These estimates may be used to 
statistically test the prediction model for LOF.  Models exhibiting LOF indicate that 
for at least some range of data, the predicted values may be inaccurate.  Thus a 
good system will have a prediction model that passes a LOF test so that estimation 
in situ will not be subject to errors in prediction related to model fit. 
 Finally, model errors should follow the standard assumptions required of 
that modeling technique.  For instance, in simple or multivariate linear regression, 
prediction errors are typically normally distributed with mean zero, constant 
variance and are independent of each other. 
 
PREDICTED VALUE OF DAMAGE AND LOCATION 
 
 The estimates for crack length and location are of primary importance for 
any system designed to estimate structural damage.  Thus, although a fitted model 
or estimation equation may possess properties that are not traditionally desirable 
(such as non-significant terms), these models may produce accurate predicted 
values and are thus meaningful.  A good system will have an accurate predicted 
value for crack length and location with a small residual value.  Not only the 
predicted value should be disclosed, but a confidence for the estimate must be 
disclosed.  This confidence is a function of the model variability (mean square 
error).  For crack length estimation this confidence should form a prediction 



interval, though for location which may be multi-dimensional it could form a 
prediction ellipse [3].  The prediction interval (or ellipse) should be constructed to 
meet the statistical requirements of being uniformly most accurate, that is, will 
possess minimum width [1,3] thus minimizing the probability of false coverage, 
and ideally lie within the range of error (noise) of estimation by the sensor.   
 Prediction intervals which meet the criteria of minimal width [1] are derived 
for well established modeling techniques such as forms of the GLM [3,6].  For 
other methods that are non-parametric in nature, alternate techniques may be 
necessary with which to establish an estimate of the variability of the predicted 
damage.  Common methods to do so often use re-sampling techniques, the most 
commonly applied in many situations being bootstrap methods [7]. 
 Of utmost importance, is to assess the model fit by cross-validation [3,8].  
This may be accomplished by computing the sum of squares of pure error (SSPE) 
and its associated squared correlation [3,8].  To compute these values, a cross-
validation sample must be established.  In general, if the SSPE is high, the model 
does not predict well on independent data and thus will most likely produce poor 
estimation. The validity of the model will be overstated and will not perform as 
expected in situ.  That is, the model does not translate beyond the data on which it 
was trained and is over-fit to the data used to create the model.  Many modeling 
procedures, especially those trained on data, lend themselves to overfitting and 
model summary measures such as R-square and MSE mislead users to believing 
that the data is better than it is.  A model that cannot translate beyond the data on 
which it was derived will not be useful in practice.  There are a plethora of cross-
validation methods, some of which are more useful for certain models than others 
[3,8].   When possible, a disclosure of the SSPE and its associated R-square value is 
recommended to assess the validity of estimation for the SHM system.  
 
ESTIMATION AS RELATED TO SHM SYSTEMS   

 
Unique to the SHM system is its continuous data collection surrounding a 

region of interest.  To capitalize on this feature, models developed to estimate 
damage should include the stream of time related measurements in the estimation 
process.  Standard GLM forms exist for such data structures, and further, may 
incorporate multiple outcomes [3-6].  Such complex models that make use of time-
related data streams are seemingly appropriate and may offer better estimation, i.e., 
tighter prediction intervals [3,6].   

Summary measures for the prediction model are not directly translatable 
from simple prediction models to those that incorporate the time related data with 
the exception of the SSPE.  This measure and the lack of fit for SHM prediction 
models may still be employed.  Further, by virtue of continuous data collection, an 
extensive subset of data may be readily obtained from which to conduct cross-
validation, and fine intervals of data cycles may be created with which to group 
data for formal lack of fit testing. 
 
 
CONCLUSION 
 
The statistical framework suggested in this paper and summarized in Figure 1 includes 
statistical measures for systems whose purpose is detection and estimation.  To a large  



• Detection (presence of damage):  Probability of detection (POD), Probability of 
false positive (PFP), other enhancers (positive predictive value, negative predictive 
value). 
• Estimation (extent and location of damage): predicted value and associated 
prediction interval or ellipse, pure error sum of squares, p-value for lack of fit testing, 
assurance that model assumptions are met, prediction model RMSE.  

 
Figure 1. Summary measures to include in the statistical framework for SHM system validation. 

 
 
extent, these are the same measures as in current standard practice.  However, the 
methods of current practice do not account for the added value of continuous 
monitoring in permanently mounted SHM systems. 

Specific criteria for each measure in the framework have not been suggested.  
This was, for the most part, purposely avoided because each SHM system may be 
uniquely designed for the application of interest.  Thus, a system that performs poorer 
on location estimation, but is highly accurate in detection may be a valid system in 
applications that do not require location estimation.  Such systems may be preferred  
due to cost or design specifications as compared to a more complex system which 
estimates location well.   

Not all systems need to include measures for detection and estimation of 
structural damage.  Indeed the necessary measures to validate the system must come 
from the purpose and application of the system itself.  In some applications, “hot 
spots” may be targeted and thus estimates for damage location are not necessary.  For 
SHM certification in this application, measures of detection and crack length, but not 
location, provide system validation.  In other applications, the SHM system may 
monitor a large area, and thus pinpointing the location of damage may impact greatly 
the response to such damage.  Although not every SHM systems must include all 
measures as described in Figure 1, the statistical framework of the certification process 
must identify the appropriate statistical estimates with which to validate the SHM 
system for both detection and estimation. 

Establishment of the certification process and subsequent estimation methods 
as related to SHM will lead to better quantification of system performance and 
ultimately better system designs.  These criteria may then act as a springboard for 
certification in subsequent prediction of structural failure, time until structural failure, 
and other aspects of structural health; all which capitalize on the added value of SHM.  
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