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ABSTRACT

Most previous visual recognition systems simply assume

ideal inputs without real-world degradations, such as low
resolution, motion blur and out-of-focus blur. In presence

of such unknown degradations, the conventional approach

first resorts to blind image restoration and then feeds the
restored image into a classifier. Treating restoration and
recognition separately, such a straightforward approach,
however, suffers greatly from the defective output of the illposed
blind image restoration. In this paper, we present a

joint blind image restoration and recognition method based

on the sparse representation prior to handle the challenging
problem of face recognition from low-quality images,

where the degradation model is realistic and totally unknown.
The sparse representation prior states that the degraded

input image, if correctly restored, will have a good

sparse representation in terms of the training set, which indicates
the identity of the test image. The proposed algorithm

achieves simultaneous restoration and recognition by

iteratively solving the blind image restoration in pursuit of

the sparest representation for recognition. Based on such a
sparse representation prior, we demonstrate that the image
restoration task and the recognition task can benefit greatly

from each other. Extensive experiments on face datasets under
various degradations are carried out and the results of

our joint model shows significant improvements over conventional
methods of treating the two tasks independently.
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Abstract

Output

Most previous visual recognition systems simply assume
ideal inputs without real-world degradations, such as low
resolution, motion blur and out-of-focus blur. In presence
of such unknown degradations, the conventional approach
first resorts to blind image restoration and then feeds the
restored image into a classifier. Treating restoration and

recognition separately, such a straight_forward approach, Figure 1. Sparse Representation based Joint Blind Reistoeatd
however, suffers greatly from the defective output of the il Recognition (JRR) framework. Given a blurry observatidRRJ

p(?sed .blin.d image resto_ration. In this paper, we present a jteratively estimates the PSF and the underlying identisell on
joint blind image restoration and recognition method based the sparse representation prior. The algorithm will outpatesti-

on the sparse representation prior to handle the challeng- mated PSF, a deblurred image, and the identity of the ohtsenva
ing problem of face recognition from low-quality images,

\Iivhere theh degradation model IS real_lst|c and tﬁta”% ug- vice, or even some complex combinations of these factors.
nown. .T € sparse representation prior states that the de-, ¢, practical scenarios, it will present a big challetoge
graded input image, if correctly restored, will have a good

sparse representation in terms of the training set, whieh in
dicates the identity of the test image. The proposed algo-

rithm achieves simultaneous restoration and recognitipn b . .
gnity ity [6, 14, 19], and then feed the restored result into a recog-

iteratively solving the blind image restoration in pursaft - .
Y g 9 b nition system. Such a straightforward approach has the

the sparest representation for recognition. Based on such a blem that torati lqorith desianed f
sparse representation prior, we demonstrate that the image.pro em that many restoration algonthms are designed for

restoration task and the recognition task can benefit gyeatl improving human visual perception only, rather than ma-

from each other. Extensive experiments on face datasets un_(-:hlne perception, thus there is no guarantee of recognition

der various degradations are carried out and the results of improvements. Even worse, when the degradation model

our joint model shows significant improvements over con- is unknown, general purpose restoration schemes, such as
ventional methods of treating the two tasks independently.

perform many high level vision tasks such as recognition.

A natural solution to this problem would be to first per-
form image restorations to obtain an image with better qual-

deblurring, do not perform well on some realistic images

that do not exhibit strong edge structures, such as facds, an

will typically introduce severe artifacts that actuallytelé-

1. Introduction orate the recognition performance. Instead of restorieg th

testimage, another approach could be to estimate the degra-

In many real world applications, such as video surveil- dation model first, use it to transform the training images,

lance, the target of interest in the captured image usuallyand then compare the input testimage with the synthetically

suffers from low qualities, such as low resolution due to the generated training set. This method generally works better

long distance of the target, motion blur due to the relative than the previous one. But for many realistic data whose

motion between the target and the camera, and out-of-focuglegradation model is very complex, it may easily fail.

blur if the the target is not in the focus of the capture de- Image deblurring is a long-standing restoration prob-



lem in image processing and computer vision communi- summarizes the role of sparsity in both image restoration
ties [6, 14]. Recent works have shown that it is possi- and recognition. Sectioi proposes our JRR framework
ble to estimate both the blur kernel and the latent sharpand presents an efficient optimization procedure to find the
image with high quality from a single blurry observation solution. Experiments on face datasets under various real-
[6, 14, 11, 1, 2]. However, these methods rely on the key istic degradations are carried out in SectibnFinally, we
assumption of the existence of strong edge structures inmake some discussions and conclude the paper in Séction
the latent image, which facilitates the algorithms to find

a meaningful local minimum1[1]. In situations of few 2. Sparse Representation in Restoration and
strong edge structures.,g, face images, these methods may Recognition

fail. Although much progress has been made on pure im-

age restoration, only few works have studied the impacts  In this section, we briefly introduce the basics of sparse
of restoration on recognition, or vice versa, the effects of representation and summarize its applications on both ill-
recognition on restoration. The method #i} lternated be- ~ Posed inverse image restoration and pattern recognition.
tween recognition and restoration to change the patch sam; .
pling prior using non-parametric belief propagation fagitli 2.1. Sparse Representation

recognition, with the assumption of a known image blur  Sparse representation modeling of data assumes an abil-
model. Hennings-Yeomaret al. [9] proposed a method ity to describe signals as a linear combination of a few
to extract features from both the low-resolution faces and atoms from a pre-specified dictionary. Formally, given a
their super-resolved ones within a single energy minimiza- signalx € R™ and a dictionaryD = [d,ds, - ,d,] €

tion framework. Nishiyamat al. [17] proposed to improve ~ R™*" where typicallym < n, we can recover a sparse
the recognition of blurry faces with a pre-defined finite set representatione(= 0) or sparse approximatior (> 0) &

of Point Spread Function (PSF) kernels. However, thesefor x by:
methods only deal with some simple image degradations.

We present in this paper a Joint image Restoration and mn lledlo
Recognition (JRR) approach based on the sparse representa- st. [x —Dall; <e.
tion prior for face images, to handle the challenging task of
face recognition from low-quality images in a blind setting The model tries to seek the most compact representation
i.e., with noa priori knowledge on the blur kernels, which  for the signalx given the dictionaryD, which can be or-
can be non-parametric and very complex (Figlré/Ne as- thogonal basisrt = n), over-complete basisi( < n) [1]
sume that we have sharp and clean training face images foor dictionary learned from the training datad. For or-
all the test subjects, and the degraded testimage, if drrec thonormal basis, solution tdl) is merely the inner prod-
restored, can be well represented as a linear combination ofjcts of the signal with the basis. However, for general dic-
the training faces from the same subject up to some sparseionary (non-orthogonal and over-complete), the optimiza
errors, thus leading to a sparse representation in ternik of a tion for (1) is combinatorially NP-hard. Recent works show
the training faces. When the test subject is not presenein th that, this NP-hard problem can be tackled by replacing the
gallery, it will violate our sparse representation assuomt  non-convex,,-norm with #;-norm under some mild condi-
and in principle the test subject can be rejected via a simila tions [4], which makes the objective function convex while
approach as in1[g], which is not considered in the current exact solution can still be guaranteed. Using the Lagrange
paper. With such a sparse representation prior, the prdposemultiplier, we can reformulate the relaxégproblem as
method connects restoration and recognition in a unified
framework by seeking sparse representations over the train & =argmin | Da — x|)3 + A1 2)
ing faces via/;-norm minimization. On one hand, a better «
restored image can be better represented by the images fror§parsity plays an important or even crucial role in many
the same class, leading to a sparser representation in termiields, such as image restoration, [, 19, compressive
of the training set, thus facilitating recognition; on thtber sensing, and recognition ], 18]. In the following, we will
hand, a better resolved sparse representation, whichdmpli make a brief discussion on the role of sparsity in both image
better recognition ability, can give a more meaningful reg- restoration and pattern recognition.
ularization in the solution space for blind restoration.rOu o )
approach iteratively restores the input image by searching2-2. Sparsity in Image Restoration
for the sparsest representation, which can correct thalinit A close inspection of the progress made in the field of
possibly erroneous recognition decision and recognize théimage processing in the past decades reveals that much of
person’s identity with increasing confidence. it can be attributed to better modeling of the image con-

The rest of the paper is organized as follows. Seckion tent [5]. Sparsity is arguably the most widely used prior

1)



for image restoration, such as image denoising, inpaint-lower dimension, thus a new test sample can be well rep-
ing, super-resolution and deblurring][ Among these, we  resented by the training samples of the same class, which
specifically focus the discussion on image deblurring. leads to a natural sparse representation over the whate trai
Image blurring is a widely existing degradation factor in ing set. Casting the recognition problem as one of find-
the real life imaging proces®.(g, surveillance), possibly ing a sparse representation of the test image in terms of
resulting from defocusing, relative motion between the ob- the training set as a whole up to some sparse errors due
ject and the camera, to name a fesy 4], which may bring to occlusion, Wrightet al. [18] showed that such a sim-
severe adverse impacts on both human perception and maple sparse representation based approach is robust to par-
chine perceptiond.g, classification). Assuming convolu- tial occlusions and can achieve promising recognition ac-
tional blur model and additive white Gaussian noise, the low curacy on public face datasets. This idea is further ex-
quality image observation process can be modele@las [  tended in their later workl[5] to handle face misalignment.
Formally, given a set of training samples for th¢h class
y=kxx+e, 3) D. = [d.1,d.2, -], a test sampl& from classc can be

wherek is the PSF (blur kernel) and denotes the con-  Well represented b¥. with coefficientsa... As the label
volution operator. The problem of (blind) deblurring is to for x is unknown, it is assumed that. can be recovered
estimate both the latent sharp imagend the blur kernel ~ from the sparse representationsoin terms of the dictio-
k from the blurry and noisy observatign With more un- nary constructed from training samples of@lclasses by
knowns than knowns, this is a typical ill-posed inverse prob

lem, thus requiring regularization to stabilize the salnti 6 = argmin [|or|;

(7)
. . 12

{x,k} = argrlﬂiil Ik *x —yl||3 + Ap(x) +vo(k), (4) st. [Da—x]; <e,

whereD = [Dlv DQa to aDC]v o = [airv Oé;, e 7ag]T'
Then the label for the test sampteis determined as the
class which gives the minimum reconstruction error:

where p(x) is a regularization term on the desired im-
age, ando(k) regularizes the possible blur kernels, typi-
cally an/;-norm penalty ]. Most of the current restora-
tion methods can be cast into such a regularization frame-
work where the regularization terms based on image prior
are crucial for obtaining better restoration results arel ar
related somehow with the sparse property of natural im-
ages p, 14, 10, 19, 1, 5]. With the sparsity prior as reg-
ularization, we can arrive at the following formulation:

¢ = argmin | Dd.(&) — x||3 = argmin | D.é&, — x||3.
c C

d.(+) is an indicator function keeping the elements corre-
sponding to the-th class while setting the rest to be zero.

) 3. Joint Blind Restoration and Recognition
{%,k} = arg min Ik *x —yl||2+ AND x| +~|k|2, (5) with Sparse Representation Prior

In this section, we present our joint restoration and
recognition framework in the blind situatione., noa pri-
ori information on the image degradation process about the
blurry query image is available, and develop an efficient
minimization algorithm to solve the problem.

whereD " is some sparse transformation (such as Wavelet,
Curvelet, among othersl]) or sparsity inducing operator
(such as handcrafted derivative filters or filters learnethfr
training imagesq, 14, 10, 13]). WhenD is orthonormal,
we havea = D "x as the transform coefficients, and thus

we can rewrite Eqn.5) as: 3.1. Problem Formulation

{& k} = argmin [k + Do — yl3 + Al +~[k[3- (6) In conventional recognition works, the test imagés
« often assumed to be captured under ideal condition with-

To achieve better sparsity for the representatiopld canbe  out any degradatiori,e. y = x. Some simple environ-
generalized to be non-orthogonal and over-complete, by ei-mental variations, such as illumination and mild misalign-
ther combining different orthonormal basis or learningifro  ment, can be fairly well handled given enough training sam-
the data ). In this paper, we moddD as the training data  ples [L5]. In reality, however, we may only get observation
directly, which closely relates the soluti@awith recogni- y for x with degradationse.g, blur as in 8), which are
tion as we will discuss in the following. hard to model beforehand and can bring serious problems
to the recognition task. Therefore, recognition from a sin-
gle blurry observation is a very challenging task, espscial

The application of sparse representation for classifica-in the case of blind situation (dubbedlasd recognition),
tion is based on the assumption that data samples belongke., noa priori information is available for the observation
ing to the same class live in the same subspace of a muctprocess. As far as we know, few works have been done on

2.3. Sparse Representation for Recognition



this challenging blind recognition problem. In thisworkew  3.2. Optimization Procedure
am _to addr_ess the task of blind r_ecognltlon by e?<_pI0|t|n_g The proposed modedj involves multiple variables and
the interactions between restoration and recognition with .

) . : is hard to minimize directly. We adopt the alternating min-
the sparse representation prior. Formally, given the flurr .~ . " - A
. S imization scheme advocated by recent sparse optimization
observatiory, and the sharp training image 4@t we want

: . and image deblurring works. §, 14, 10, 2], which reduces
to estimate the latent sharp imaggeblur kernelk, as well L ; .
. the original problem into several simpler subproblems: Fol
as the class labelsimultaneously by

lowing this scheme, we address the subproblems for each

{x,k, ¢} = arg min E(x, k, ¢), (8) of the optimization variables in an alternating fashion and
xk,c present an overall efficient optimization algorithm. Inleac

step, our algorithm reduces the objective function valod, a

where
) ) thus will converge to a local minima. To start, we initialize
E(x,k,c) = [k*x —y|3 + nlx — Dz + Allex[|1 the sparse representatiénas that recovered from with
L 9 respect td), and the latent sharp imageasDa.
s 5 9)
+ TZ v+ x|* + [[k|[3.
=1 3.2.1 Blur Kernel Estimation: Optimizing for k
We explain each term of the model in detail as follows. In this subproblem, we fix all other variables and and opti-
1. The first term is the conventional reconstruction con- Mize the image blur kern& by
straint, i.e., the restored image should be consistent 2 T 2 2
. P - . . k = argmin |[x x k — + ~|Ik]|5.
with the observation with respect to the estimated gmin | Yz +~lkll2 (10)
degradation model. This is a least square problem with Tikhonov regularization

2. The second term means the recovered sharp image caWhICh leads to a close-form solution flar

be well represented by the clean training set. ko Ft < F(x) o F(y) )

3. The third term enforces that the representation of the Fx) o F(x) +11

recovered image in terms of the training set should be whereF(-) denotes Fast Fourier Transform (FFF; ! (-)
sparse. In other words, the algorithm favors a solution genotes inverse FFTF(-) denotes the complex conjugate

x that can be sparsely represented by the training setof 7(.), and “” denotes element-wise multiplication.
Meanwhile, this sparse representation also recognizes

the identity of the observation. 3.2.2 Latent Image Recovery: Optimizing forx

4. The fourth term is a general sparse prior for natural Gjyen the current kernel estimatidrand sparse representa-

images using sparse exponential of the responses ofjon ¢, we want to update the estimation for the latent sharp
derivative filters to further stabilize the solution, where imagex. The optimization problend) becomes

typically 0.5 < s < 0.8.
L

5. The last term is merely@-norm stable regularization % = argmin |[x «k —y|3 +nx - D&l3 + 7 le;+x[*.  (11)
for the blur kernel. * =1

The basic idea of the model is that the restored image shouldThis optimization problem can be solved efficiently with
have a sparse representation in terms of the training imageariable substitution and FFTL§, 14, 10, 2]. Introducing

if the blur kernel is correctly estimated, and meanwhile the new auxiliary variablesy, (I € 1,2,--- , L), we can rewrite
sparse representation itself identifies the observed ttarge the energy function inl(1) as:

On one hand, the sparse representation prior effectivgly re
ularizes the solution space of the possible latent images an
blur kernels; on the other hand, better estimated blur ker- L L )
nel will promote better sparse representations for recogni + TZ lug|* + BZ la; — e *x]|3,
tion. As shown by Eqn.9), our model unifies the restora- =1 =1

tion (6) and recognition?) in a unified framework based which can be divided into two sub-problemssubproblem
on the sparse representation prior. Note that the proposecindu-subproblem. In the-subproblem, the energy func-
model is a general framework which can handle different tion to be minimized becomes

kinds of image degradations.g, out-of-focus blur, various L

motion blurs, translation misalignment, and etc., which €a ¢ () _ |1x « k — y|2 + n[/x — D&/ + B llerx — w3
be modeled by a linear operator.

E(x,u) = [jx * k — y[|3 + nl}x - Da|3
(12)

=1



which can be solved efficiently using FFT as: Algorithm 1: Joint Blind Image Restoration and

—_— . [— Recognition with Sparse Representation Prior.

x=r"" (f(lﬂ:(Y) + nF(D&) + ﬂz’zl_f(el) ° f(u’)) Input : a blurry imagey, training image seb
F(k) o F(k)+nl+ B3, Fle) o Fler) Output: estimated blur kerndt, restored image,
and the class labél

Initialization: sparse vectodr recovered frony in
terms ofD, andx = Da.
S : s _ 2 for t=1,2,---,Tdo
Hm e Hllllznﬂul' + Bllus —evxxl, (13) Kernel Estimation: update kernek by
minimizing Eqn.(0);
Image Estimation: update the latent image
estimation via minimizing Eqni();
Sparse Projection:recovering the sparse
coefficientsae by minimizing Eqn.(5);
Classification: estimate the class labefrom
Eqn.(@6).

In the u-subproblemyy; can be estimated by solving the
following problem given fixed:

which can be solved efficiently over each dimension sep-
arately [L(]. In practice, we use first-order derivative fil-
ters{e; =[1,—1],e; =[1,—1] "} and sets = 0.5 as [L]].

We follow the multi-scale estimation scheme for stable es-
timations of the blur kerngk and latent sharp image as

in [6, 14, 2]. Conventional schemes such as structure pre-
diction have also been incorporated into optimizatign [ =

3.2.3 Sparse Projection: Optimizing fora
each with64 near frontal view images under different illu-

With the recovered kernéd and sharp training sdD, we  mjnations. For CMU Multi-PIE dataset, We use the frontal
can generate the corresponding blurry dictionByvia images with neutral expression under varying illuminagion
from session 1 for computational considerations.

For restoration, we compare our algorithm with the fast
deblurring method inZ], one of thestate-of-the-arblind
deblurring algorithms. Root Mean Square Error (RMSE)
is employed to compare the estimation accuracy for both
the blur kernel and the restored image. For classification,
& = argmin |[Dya — y||2 + A e, (15) we compare our JRR algorithm with the following meth-

o ods: (1) SVM: classification with linear SVM trained on
the sharp training set; (2) SRC: directly feed the blurry ob-
servation into the sparse representation based classificat

¢ = argmin | Dpd.(&) — y||2. (16) algorithm [L&]; and (3) SRCTB_: first estimate the kernel and

¢ then generate a blurred training set for SRC.

We do not use the deblurred image and the sharp training .
set to compute the sparse representatidrecause the de- 4.1. An lllustrative Example
blurring process may introduce artifacts which is disadvan  We illustrate the proposed method with a simple example
tageous for recovery and recognition. Based on compres4in Figure2. Given a blurry observation, we jointly recover
sive sensing theory, we can recover the sparse represerthe blur kernel, the latent sharp image, and the class label
tation using the blurry observatiopn and the blurry dic-  in an iterative way. Figur@ shows that, as the optimiza-
tionary Dy, and thus circumvent the above problem. The tion iteration increases, the latent representation besom
overall algorithm optimizes over blur kerrle] latent sharp  sparser and sparser as indicated by the increase of Sparsity

Db =D=x lA{, (14)
where the convolution is performed on each column of

D with k. Then the sparse representation veetaran be
updated by

from which the classification decision is made using

imagex, sparse representatianand class labet alterna- Concentration Index (SCI) measgyevhich implies that the
tively. Algorithm 1 describes the procedures of our joint underlying class label of the test image can be determined
blind restoration and recognition algorithm. with increasing confidence. At the same time, the restored
image resembles more and more to the ground truth as indi-
4. Experiments and Results cated by the decrease of the restoration error, which means

In this section, we present several experiments to demon-  *Another approach s first to deblur the test image and thetthesee-
strate the effectiveness of the proposed JRR method inblurred image for recognition. Empirically, we observetttras method
terms of both restoration accuracy and recognition accy-m2ay perform even worse than using the original blurry imagectly,

. mainly due to the artifacts induced by the deblurring steguie 4), and
racy. The Extended Yale B/J(48 x 42) and CMU. Mu_m' _ thus we do not compare with this method in the sequel.
PIE [3](80 x 60) datasets are used for evaluation in this 25| js defined asCI(x) = Cmax 16Ol /Ixlli=L | whereC' is

work. The Extended Yale B dataset contaifsndividuals, the total number of classes].
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Figure 2. The joint blind restoration and recognition opzation age, we generate its blurry images usingghiealistic non-
process fols iterations. Top row, left to right: ground-truth sharp Parametric complex blur kernels proposed by Lestral.
image, blurry test image, and the restored images fromticera  in [11], shown in the first row of Tabl@. Given a blurry
1to 5. The ground truth and estimated PSFs are framed in redinput, our JRR algorithm estimates the unknown blur ker-
and green borders respectively. Bottom row, left: sparsitihe nel without any prior knowledge and recovers the underly-
recovered sparse coefficients in terms of SCI; right: resitam ing sharp latent image, which are then evaluated in terms of
errors in terms of RMSE. RMSE with respect to the ground truth. We compare our
JRR algorithm with the fast deblurring method ifj.[

that the estimated blur kernel gets more and more accurate. Figure 3 (a) shows the average RMSEs for each es-
Actually, in the first iteration, the blurry inputis wronghs-  timated kernels given the blurry inputs, where our JRR
signed with class label of subje¢f while the ground truth ~ Method improves the kernel estimation accuracy substan-
label is subject. After the second iteration, with better re- tially compared with the fast deblurring algorithm. Thisica
stored image and kernel, the algorithm can correctly finds P& explained by the fact that face images are lack of strong
the true class label. This illustrates that our approach can®dge structures, especially in the case of blurry observa-
effectively regularize the ill-posed blind image restaat tion, Wr_uch presents a g.reat challenge to the eX|st!ng blllnd
in pursuit of the sparsest representation for recognit@m. deblurring methods. With the sparse representation prior,
one hand, a better recovered image will have a more meanlowever, our method demonstrates much more robustness
ingful sparse representation for recognition; on the other in estimating the complex blur kernels. Figut¢b) shows
hand, the updated sparse representation, tightly corthecteth® comparisons of average restoration RMSEs forlthe
with recognition, will provides a powerful regularizatitor images under the complex kernels. Due to the incorpo-
the followed blind image restoration. In practice, we netic "ation of the sparse representation prior, our algorithm im
that the joint optimization proces converges very quickly, Proves _the restoration accuracy S|_gn|f|cantly over thglfast
typically in no more than iterations. Therefore, we fix the deblurring method for all the test images. By exploiting

iteration number ag in all the following experiments. the sparse representation prior, the restored image has mor
details and less artifacts (Figudg, implying a more accu-

4.2. Joint Blind Image Restoration and Recognition  rate sparse representation, thus facilitating recognitis

In this subsection, we conduct experiments on joint im- shown in the following.

age restoration and recognition for face images under var-4.2.2 Blind Image Recognition

ious blind degradation settings. In our JRR algorithm, the For recognition, we first evaluate the recognition perfor-
tasks of image restoration and recognition are tightly cou- mance of the proposed method on Extended Yale B dataset.
pled. However, to facilitate the comparisons with conven- We randomly select half of the images for each subject for
tional restoration and recognition approaches respégtive training, and use the rest for testing. To generate thelurr
we will present the results for restoration and recognition inputs, we also add two more simple parametric blur ker-
separately in the sequel. nels,i.e., linear motion kernel and Gaussian blur kernel, in
4.2.1 Blind Image Restoration addition to the eight complex blur kernels1]. For each

We first quantitatively evaluate the kernel estimation and blur kernel, we generate a set of blurred testing images,
image restoration accuracy on Extended Yale B face datasetleading to in total 10 testing sets. Taldlesummarizes the

To be consistent with the recognition evaluation, we ran- recognition results for a simple motion blur (10 pixel-lémg
domly select half of the images for each subject as the train-with 45 degree) and a Gaussian kernel (with standard de-
ing set. We then randomly choos@ images from the rest  viation 3), where the kernel size 5 x 9. Our JRR al-

as our testing examples for restoration. For each test im-gorithm outperforms SRC remarkably, while slightly better



Table 1. Recognition ratéq) on Extend Yale B under simple para-  Table 3. Recognition raté&4) on Multi-PIE with the third complex

metric blur kernels. blur kernel.
[ KemelType [ SYM  SRC _ SRC-B| JRR | [ Algorithm [ SYM SRC  SRC-B[ JRR |
Motion 40.0 68.7 85.3 | 86.0

| Accuracy | 848 852  79.1 | 914 |

Gaussian 29.9 57.7 84.8 84.8

Table 4. Recognition raté4) with randomly blur kernels on both

Table 2. Recognition accuracyof on Extend Yale B set under Extended Yale B and Multi-PIE.

complex non-parametric blur kernels.

[ Algorithm [ SVM  SRC  SRC-B] JRR |
kernels| |l BEEEEHR Extended Yale B| 57.0 688 663 | 73.7
Sizes | 10 17 15 27 13 21 23 23 Multi-PIE 494 536 549 | 613
SVM [459 272 458 11.2 435 484 209 16.9
SRC |79.8 541 749 213 655 835 36.6 30.3 complex kernel. To the right of each restored image, t0p-
SRC-B|80.6 79.3 734 330 70.1 76.8 519 519 atoms from the sharp training set are selected by the largest
JRR 862 793 857 431 819 864 64.7 548 absolute sparse representation coefficients, where red num

bers denote atoms chosen from the same class (correct) and
blue numbers denote otherwise (wrong). It is clear that our
JRR algorithm can select more atoms from the same class
with more concentrated large coefficients, indicatingdrett

than SRC-B. This is because the conventional blind deblur-
ring method can estimate the blur kernel reasonably well in
simple blur model case. Tablgpresents the recognition re- - !
sults under the complex non-parametric blur kernels. I thi "€cognition ability. S

case, conventional blur kernel estimation methods fail eas ~ HOWever, a challenging situation is when the blurry test
ily due to the complexity of the kernels and lack of strong IMage suffers from extreme illuminations, as in Figtire
structures in the face images, and as a result, the recogniti where little information about the facial structures is kep

results of our JRR algorithm outperform those of SRC-B for deblurring. In this case, the deblurring task becomes
and SRC by a large margin in most cases. extremely challenging and the blur kernel may not be cor-

We then evaluate our algorithm on Multi-PIH dataset, rectly estimateq_evgn with our algorithm, which will lead to
with 15 images from each subject of Session 1 for training incorrect c_:IaSS|f|cat|on decisions. In both da_tasets_we use
and the rest of Session 1 for testing. Due to space Iimita-the_re are in fact a notable amount of such k_|nd of Images,
tion, we only report the results for the third complex kernel Which pose great challenges to the task of blind recognition
as shown in Tabl&. Again, our algorithm performs much on these d{;\tasets. Yet, with the.sparse representatian prio
better than other methods. Note that as the conventionafl€ deblurring result of our algorithm looks much more rea-
kernel estimation method is not robust enough in this Case,sonable than that of the fast deblurring method.

SRC-B performs even worse than SRC. We further evaluate
our algorithm in a more realistic scenario, where the blur
kernel for generating a blurry image is not fixed but ran- We propose in this paper a joint restoration and recog-
domly chosen fron{ Linear Motion kernel, Gaussian ker- nition method with the sparse representation prior, and
nel, Nonparametric Complex kernel, Delta (no bl}xr)l'he demonstrate its application on face recognition from a sin-
recognition results for this case are shown in Tahland gle blurry image. By combining these two interactive tasks,
our proposed JRR method outperforms all the other meth-our algorithm demonstrates significant improvements over
ods with large margins on both datasets. that of treating them separately. In the current model, mild

Finally, to visually demonstrate the effectiveness of our translation misalignment between test and training images
JRR algorithm, we compare the estimated kernels, de-can be captured and compensated by the blur kernel. For
blurred images, and the top) selected atoms with the future work, more complex alignment modeésg, affine
largest absolute coefficients from sparse representations transformation, can be incorporated into our framework to
der two different kernels, shown in FiguéeTop row shows  further handle more challenging misalignment between the
the results of SRC; middle row shows the results of con- blurry testimage and sharp training images with techniques
ventional blind deblur followed by SRC; and bottom row similar to [L5] and [20]. Moreover, using learned dictionary
shows our results. The blur kernels framed in red denoterather than the training images directly in our model is also
the ground truth kernels, and those framed in green are thenteresting and worthy of investigation in the future.
estimated kernels. In both cases, our algorithm can accu-Acknowledgements This work is supported by NSF (60872145,

: 60903126), National High-Tech.(2009AA01Z315), Postdmit Science
rately estimate the unknown blur kemels and can output o vt 50060451397, 201003685) and Cultivation o Min-

sharp images Clqse to the ground tl‘l.Jth, Wh”_e the fast de-isyry of Education (708085) of China. This work is also supeo by U.S.
blurring method is not robust and fails drastically for the ARL and ARO under grant number W911NF-09-1-0383.

5. Conclusion and Future Work
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Figure 4. Image restoration results under (a) parametrie(Baussian blur) and (b) realistic non-parametric PEFE( 27 non-parametric
motion blur). Top: SRC; Middle: conventional deblur + SR@t®mM: JRR. The PSF kernels framed in red denote the grauitidkernels
while those in green are estimated kernels. Atoms correBpgrio the topt0 largest absolute coefficient values are shown together with
the absolute values for each method, with red indicatinatselected from the same class as the test image.

64

Figure 5. Failure case analysis. (a) ground truth image @&ndek (b) blurry input; estimated image and kernel usingc(mventional

deblurring method4] and (d) the proposed JRR method; (e) tdpselected atoms with the JRR method. Kernel estimation ig ver

challenging due to the extreme illumination.
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