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Abstract

Most previous visual recognition systems simply assume
ideal inputs without real-world degradations, such as low
resolution, motion blur and out-of-focus blur. In presence
of such unknown degradations, the conventional approach
first resorts to blind image restoration and then feeds the
restored image into a classifier. Treating restoration and
recognition separately, such a straightforward approach,
however, suffers greatly from the defective output of the ill-
posed blind image restoration. In this paper, we present a
joint blind image restoration and recognition method based
on the sparse representation prior to handle the challeng-
ing problem of face recognition from low-quality images,
where the degradation model is realistic and totally un-
known. The sparse representation prior states that the de-
graded input image, if correctly restored, will have a good
sparse representation in terms of the training set, which in-
dicates the identity of the test image. The proposed algo-
rithm achieves simultaneous restoration and recognition by
iteratively solving the blind image restoration in pursuitof
the sparest representation for recognition. Based on such a
sparse representation prior, we demonstrate that the image
restoration task and the recognition task can benefit greatly
from each other. Extensive experiments on face datasets un-
der various degradations are carried out and the results of
our joint model shows significant improvements over con-
ventional methods of treating the two tasks independently.

1. Introduction

In many real world applications, such as video surveil-
lance, the target of interest in the captured image usually
suffers from low qualities, such as low resolution due to the
long distance of the target, motion blur due to the relative
motion between the target and the camera, and out-of-focus
blur if the the target is not in the focus of the capture de-

Figure 1. Sparse Representation based Joint Blind Restoration and
Recognition (JRR) framework. Given a blurry observation, JRR
iteratively estimates the PSF and the underlying identity based on
the sparse representation prior. The algorithm will outputthe esti-
mated PSF, a deblurred image, and the identity of the observation.

vice, or even some complex combinations of these factors.
In such practical scenarios, it will present a big challengeto
perform many high level vision tasks such as recognition.

A natural solution to this problem would be to first per-
form image restorations to obtain an image with better qual-
ity [6, 14, 19], and then feed the restored result into a recog-
nition system. Such a straightforward approach has the
problem that many restoration algorithms are designed for
improving human visual perception only, rather than ma-
chine perception, thus there is no guarantee of recognition
improvements. Even worse, when the degradation model
is unknown, general purpose restoration schemes, such as
deblurring, do not perform well on some realistic images
that do not exhibit strong edge structures, such as faces, and
will typically introduce severe artifacts that actually deteri-
orate the recognition performance. Instead of restoring the
test image, another approach could be to estimate the degra-
dation model first, use it to transform the training images,
and then compare the input test image with the synthetically
generated training set. This method generally works better
than the previous one. But for many realistic data whose
degradation model is very complex, it may easily fail.

Image deblurring is a long-standing restoration prob-



lem in image processing and computer vision communi-
ties [6, 14]. Recent works have shown that it is possi-
ble to estimate both the blur kernel and the latent sharp
image with high quality from a single blurry observation
[6, 14, 11, 1, 2]. However, these methods rely on the key
assumption of the existence of strong edge structures in
the latent image, which facilitates the algorithms to find
a meaningful local minimum [11]. In situations of few
strong edge structures,e.g., face images, these methods may
fail. Although much progress has been made on pure im-
age restoration, only few works have studied the impacts
of restoration on recognition, or vice versa, the effects of
recognition on restoration. The method in [3] alternated be-
tween recognition and restoration to change the patch sam-
pling prior using non-parametric belief propagation for digit
recognition, with the assumption of a known image blur
model. Hennings-Yeomanset al. [9] proposed a method
to extract features from both the low-resolution faces and
their super-resolved ones within a single energy minimiza-
tion framework. Nishiyamaet al. [12] proposed to improve
the recognition of blurry faces with a pre-defined finite set
of Point Spread Function (PSF) kernels. However, these
methods only deal with some simple image degradations.

We present in this paper a Joint image Restoration and
Recognition (JRR) approach based on the sparse representa-
tion prior for face images, to handle the challenging task of
face recognition from low-quality images in a blind setting,
i.e., with noa priori knowledge on the blur kernels, which
can be non-parametric and very complex (Figure1). We as-
sume that we have sharp and clean training face images for
all the test subjects, and the degraded test image, if correctly
restored, can be well represented as a linear combination of
the training faces from the same subject up to some sparse
errors, thus leading to a sparse representation in terms of all
the training faces. When the test subject is not present in the
gallery, it will violate our sparse representation assumption,
and in principle the test subject can be rejected via a similar
approach as in [18], which is not considered in the current
paper. With such a sparse representation prior, the proposed
method connects restoration and recognition in a unified
framework by seeking sparse representations over the train-
ing faces viaℓ1-norm minimization. On one hand, a better
restored image can be better represented by the images from
the same class, leading to a sparser representation in terms
of the training set, thus facilitating recognition; on the other
hand, a better resolved sparse representation, which implies
better recognition ability, can give a more meaningful reg-
ularization in the solution space for blind restoration. Our
approach iteratively restores the input image by searching
for the sparsest representation, which can correct the initial
possibly erroneous recognition decision and recognize the
person’s identity with increasing confidence.

The rest of the paper is organized as follows. Section2

summarizes the role of sparsity in both image restoration
and recognition. Section3 proposes our JRR framework
and presents an efficient optimization procedure to find the
solution. Experiments on face datasets under various real-
istic degradations are carried out in Section4. Finally, we
make some discussions and conclude the paper in Section5.

2. Sparse Representation in Restoration and
Recognition

In this section, we briefly introduce the basics of sparse
representation and summarize its applications on both ill-
posed inverse image restoration and pattern recognition.

2.1. Sparse Representation

Sparse representation modeling of data assumes an abil-
ity to describe signals as a linear combination of a few
atoms from a pre-specified dictionary. Formally, given a
signalx ∈ R

m and a dictionaryD = [d1,d2, · · · ,dn] ∈
R

m×n, where typicallym ≤ n, we can recover a sparse
representation (ǫ = 0) or sparse approximation (ǫ > 0) α̂

for x by:

min
α

‖α‖0

s.t. ‖x − Dα‖2

2
≤ ǫ.

(1)

The model tries to seek the most compact representation
for the signalx given the dictionaryD, which can be or-
thogonal basis (m = n), over-complete basis (m < n) [1]
or dictionary learned from the training data [19]. For or-
thonormal basis, solution to (1) is merely the inner prod-
ucts of the signal with the basis. However, for general dic-
tionary (non-orthogonal and over-complete), the optimiza-
tion for (1) is combinatorially NP-hard. Recent works show
that, this NP-hard problem can be tackled by replacing the
non-convexℓ0-norm withℓ1-norm under some mild condi-
tions [4], which makes the objective function convex while
exact solution can still be guaranteed. Using the Lagrange
multiplier, we can reformulate the relaxedℓ1-problem as

α̂ =arg min
α

‖Dα − x‖2

2
+ λ‖α‖1. (2)

Sparsity plays an important or even crucial role in many
fields, such as image restoration [5, 1, 19], compressive
sensing, and recognition [17, 18]. In the following, we will
make a brief discussion on the role of sparsity in both image
restoration and pattern recognition.

2.2. Sparsity in Image Restoration

A close inspection of the progress made in the field of
image processing in the past decades reveals that much of
it can be attributed to better modeling of the image con-
tent [5]. Sparsity is arguably the most widely used prior



for image restoration, such as image denoising, inpaint-
ing, super-resolution and deblurring [5]. Among these, we
specifically focus the discussion on image deblurring.

Image blurring is a widely existing degradation factor in
the real life imaging process (e.g., surveillance), possibly
resulting from defocusing, relative motion between the ob-
ject and the camera, to name a few [6, 14], which may bring
severe adverse impacts on both human perception and ma-
chine perception (e.g., classification). Assuming convolu-
tional blur model and additive white Gaussian noise, the low
quality image observation process can be modeled as [6]:

y = k ∗ x + ε, (3)

wherek is the PSF (blur kernel) and∗ denotes the con-
volution operator. The problem of (blind) deblurring is to
estimate both the latent sharp imagex and the blur kernel
k from the blurry and noisy observationy. With more un-
knowns than knowns, this is a typical ill-posed inverse prob-
lem, thus requiring regularization to stabilize the solution:

{x̂, k̂} = arg min
x,k

‖k ∗ x − y‖2

2 + λρ(x) + γ̺(k), (4)

where ρ(x) is a regularization term on the desired im-
age, and̺ (k) regularizes the possible blur kernels, typi-
cally anℓ2-norm penalty [2]. Most of the current restora-
tion methods can be cast into such a regularization frame-
work where the regularization terms based on image prior
are crucial for obtaining better restoration results and are
related somehow with the sparse property of natural im-
ages [6, 14, 10, 19, 1, 5]. With the sparsity prior as reg-
ularization, we can arrive at the following formulation:

{x̂, k̂} = arg min
x,k

‖k ∗ x − y‖2

2 + λ‖D⊤x‖1 + γ‖k‖2, (5)

whereD⊤ is some sparse transformation (such as Wavelet,
Curvelet, among others [1]) or sparsity inducing operator
(such as handcrafted derivative filters or filters learned from
training images [6, 14, 10, 13]). WhenD is orthonormal,
we haveα = D⊤x as the transform coefficients, and thus
we can rewrite Eqn. (5) as:

{α̂, k̂} = argmin
α,k

‖k ∗ Dα − y‖2

2 + λ‖α‖1 + γ‖k‖2

2. (6)

To achieve better sparsity for the representationα, D can be
generalized to be non-orthogonal and over-complete, by ei-
ther combining different orthonormal basis or learning from
the data [19]. In this paper, we modelD as the training data
directly, which closely relates the solution̂α with recogni-
tion as we will discuss in the following.

2.3. Sparse Representation for Recognition

The application of sparse representation for classifica-
tion is based on the assumption that data samples belong-
ing to the same class live in the same subspace of a much

lower dimension, thus a new test sample can be well rep-
resented by the training samples of the same class, which
leads to a natural sparse representation over the whole train-
ing set. Casting the recognition problem as one of find-
ing a sparse representation of the test image in terms of
the training set as a whole up to some sparse errors due
to occlusion, Wrightet al. [18] showed that such a sim-
ple sparse representation based approach is robust to par-
tial occlusions and can achieve promising recognition ac-
curacy on public face datasets. This idea is further ex-
tended in their later work [15] to handle face misalignment.
Formally, given a set of training samples for thec-th class
Dc = [dc,1,dc,2, · · · ], a test samplex from classc can be
well represented byDc with coefficientsαc. As the label
for x is unknown, it is assumed thatαc can be recovered
from the sparse representation ofx in terms of the dictio-
nary constructed from training samples of allC classes by

α̂ =arg min
α

‖α‖1

s.t. ‖Dα − x‖2

2 ≤ ǫ,
(7)

whereD = [D1,D2, · · · ,DC ], α = [α⊤
1

, α⊤
2

, · · · , α⊤

C ]⊤.
Then the label for the test samplex is determined as the
class which gives the minimum reconstruction error:

ĉ = argmin
c

‖Dδc(α̂) − x‖2

2
= arg min

c
‖Dcα̂c − x‖2

2
.

δc(·) is an indicator function keeping the elements corre-
sponding to thec-th class while setting the rest to be zero.

3. Joint Blind Restoration and Recognition
with Sparse Representation Prior

In this section, we present our joint restoration and
recognition framework in the blind situation,i.e., noa pri-
ori information on the image degradation process about the
blurry query image is available, and develop an efficient
minimization algorithm to solve the problem.

3.1. Problem Formulation

In conventional recognition works, the test imagey is
often assumed to be captured under ideal condition with-
out any degradation,i.e. y = x. Some simple environ-
mental variations, such as illumination and mild misalign-
ment, can be fairly well handled given enough training sam-
ples [15]. In reality, however, we may only get observation
y for x with degradations,e.g., blur as in (3), which are
hard to model beforehand and can bring serious problems
to the recognition task. Therefore, recognition from a sin-
gle blurry observation is a very challenging task, especially
in the case of blind situation (dubbed asblind recognition),
i.e., noa priori information is available for the observation
process. As far as we know, few works have been done on



this challenging blind recognition problem. In this work, we
aim to address the task of blind recognition by exploiting
the interactions between restoration and recognition with
the sparse representation prior. Formally, given the blurry
observationy, and the sharp training image setD, we want
to estimate the latent sharp imagex, blur kernelk, as well
as the class labelc simultaneously by

{x̂, k̂, ĉ} = arg min
x,k,c

E(x,k, c), (8)

where

E(x,k, c) = ‖k ∗ x − y‖2

2
+ η‖x − Dα‖2

2
+ λ‖α‖1

+ τ

L
∑

l=1

|el ∗ x|s + γ‖k‖2

2
.

(9)

We explain each term of the model in detail as follows.

1. The first term is the conventional reconstruction con-
straint, i.e., the restored image should be consistent
with the observation with respect to the estimated
degradation model.

2. The second term means the recovered sharp image can
be well represented by the clean training set.

3. The third term enforces that the representation of the
recovered image in terms of the training set should be
sparse. In other words, the algorithm favors a solution
x that can be sparsely represented by the training set.
Meanwhile, this sparse representation also recognizes
the identity of the observation.

4. The fourth term is a general sparse prior for natural
images using sparse exponential of the responses of
derivative filters to further stabilize the solution, where
typically 0.5 ≤ s ≤ 0.8.

5. The last term is merely aℓ2-norm stable regularization
for the blur kernel.

The basic idea of the model is that the restored image should
have a sparse representation in terms of the training images
if the blur kernel is correctly estimated, and meanwhile the
sparse representation itself identifies the observed target.
On one hand, the sparse representation prior effectively reg-
ularizes the solution space of the possible latent images and
blur kernels; on the other hand, better estimated blur ker-
nel will promote better sparse representations for recogni-
tion. As shown by Eqn. (9), our model unifies the restora-
tion (6) and recognition (7) in a unified framework based
on the sparse representation prior. Note that the proposed
model is a general framework which can handle different
kinds of image degradations,e.g., out-of-focus blur, various
motion blurs, translation misalignment, and etc., which can
be modeled by a linear operator.

3.2. Optimization Procedure

The proposed model (9) involves multiple variables and
is hard to minimize directly. We adopt the alternating min-
imization scheme advocated by recent sparse optimization
and image deblurring works [16, 14, 10, 2], which reduces
the original problem into several simpler subproblems. Fol-
lowing this scheme, we address the subproblems for each
of the optimization variables in an alternating fashion and
present an overall efficient optimization algorithm. In each
step, our algorithm reduces the objective function value, and
thus will converge to a local minima. To start, we initialize
the sparse representation̂α as that recovered fromy with
respect toD, and the latent sharp imagêx asDα̂.

3.2.1 Blur Kernel Estimation: Optimizing for k

In this subproblem, we fix all other variables and and opti-
mize the image blur kernelk by

k̂ = argmin
k

‖x̂ ∗ k− y‖2

2 + γ‖k‖2

2. (10)

This is a least square problem with Tikhonov regularization,
which leads to a close-form solution fork:

k̂ = F−1

(

F(x̂) ◦ F(y)

F(x̂) ◦ F(x̂) + γI

)

,

whereF(·) denotes Fast Fourier Transform (FFT),F−1(·)
denotes inverse FFT,F(·) denotes the complex conjugate
of F(·), and “◦” denotes element-wise multiplication.

3.2.2 Latent Image Recovery: Optimizing forx

Given the current kernel estimationk̂ and sparse representa-
tion α̂, we want to update the estimation for the latent sharp
imagex. The optimization problem (9) becomes

x̂ = argmin
x

‖x ∗ k̂ − y‖2

2
+ η‖x− Dα̂‖2

2
+ τ

L
∑

l=1

|el ∗ x|s. (11)

This optimization problem can be solved efficiently with
variable substitution and FFT [16, 14, 10, 2]. Introducing
new auxiliary variablesul(l ∈ 1, 2, · · · , L), we can rewrite
the energy function in (11) as:

E(x,u) = ‖x ∗ k̂− y‖2

2 + η‖x − Dα̂‖2

2

+ τ

L
∑

l=1

|ul|
s + β

L
∑

l=1

‖ul − el ∗ x‖2

2,
(12)

which can be divided into two sub-problems:x-subproblem
andu-subproblem. In thex-subproblem, the energy func-
tion to be minimized becomes

E(x) = ‖x ∗ k̂ − y‖2

2
+ η‖x − Dα̂‖2

2
+ β

L
∑

l=1

‖el ∗ x − ul‖
2

2



which can be solved efficiently using FFT as:

x̂ = F−1

(

F(k̂) ◦ F(y) + ηF(Dα̂) + β
∑L

l=1 F(el) ◦ F(ul)

F(k̂) ◦ F(k̂) + ηI + β
∑L

l=1 F(el) ◦ F(el)

)

.

In the u-subproblem,ul can be estimated by solving the
following problem given fixedx:

ûl = arg min
ul

τ |ul|
s + β‖ul − el ∗ x‖2

2, (13)

which can be solved efficiently over each dimension sep-
arately [10]. In practice, we use first-order derivative fil-
ters

{

e1 = [1,−1], e2 = [1,−1]⊤
}

and sets = 0.5 as [10].
We follow the multi-scale estimation scheme for stable es-
timations of the blur kernelk and latent sharp imagex as
in [6, 14, 2]. Conventional schemes such as structure pre-
diction have also been incorporated into optimization [2].

3.2.3 Sparse Projection: Optimizing forα

With the recovered kernel̂k and sharp training setD, we
can generate the corresponding blurry dictionaryDb via

Db = D ∗ k̂, (14)

where the convolution∗ is performed on each column of
D with k̂. Then the sparse representation vectorα can be
updated by

α̂ = arg min
α

‖Dbα − y‖2

2
+ λ‖α‖1, (15)

from which the classification decision is made using

ĉ = arg min
c

‖Dbδc(α̂) − y‖2

2
. (16)

We do not use the deblurred image and the sharp training
set to compute the sparse representationα because the de-
blurring process may introduce artifacts which is disadvan-
tageous for recovery and recognition. Based on compres-
sive sensing theory, we can recover the sparse represen-
tation using the blurry observationy and the blurry dic-
tionary Db and thus circumvent the above problem. The
overall algorithm optimizes over blur kernelk, latent sharp
imagex, sparse representationα and class labelc alterna-
tively. Algorithm 1 describes the procedures of our joint
blind restoration and recognition algorithm.

4. Experiments and Results

In this section, we present several experiments to demon-
strate the effectiveness of the proposed JRR method in
terms of both restoration accuracy and recognition accu-
racy. The Extended Yale B [7](48 × 42) and CMU Multi-
PIE [8](80 × 60) datasets are used for evaluation in this
work. The Extended Yale B dataset contains38 individuals,

Algorithm 1 : Joint Blind Image Restoration and
Recognition with Sparse Representation Prior.

Input : a blurry imagey, training image setD
Output : estimated blur kernel̂k, restored imagêx,

and the class label̂c
Initialization: sparse vector̂α recovered fromy in
terms ofD, andx̂ = Dα̂.
for t = 1, 2, · · · , T do

Kernel Estimation: update kernelk by
minimizing Eqn.(10);
Image Estimation: update the latent imagex
estimation via minimizing Eqn.(11);
Sparse Projection:recovering the sparse
coefficientsα by minimizing Eqn.(15);
Classification: estimate the class labelc from
Eqn.(16).

each with64 near frontal view images under different illu-
minations. For CMU Multi-PIE dataset, We use the frontal
images with neutral expression under varying illuminations
from session 1 for computational considerations.

For restoration, we compare our algorithm with the fast
deblurring method in [2], one of thestate-of-the-artblind
deblurring algorithms. Root Mean Square Error (RMSE)
is employed to compare the estimation accuracy for both
the blur kernel and the restored image. For classification,
we compare our JRR algorithm with the following meth-
ods: (1) SVM: classification with linear SVM trained on
the sharp training set; (2) SRC: directly feed the blurry ob-
servation into the sparse representation based classification
algorithm [18]; and (3) SRC-B: first estimate the kernel and
then generate a blurred training set for SRC.1

4.1. An Illustrative Example

We illustrate the proposed method with a simple example
in Figure2. Given a blurry observation, we jointly recover
the blur kernel, the latent sharp image, and the class label
in an iterative way. Figure2 shows that, as the optimiza-
tion iteration increases, the latent representation becomes
sparser and sparser as indicated by the increase of Sparsity
Concentration Index (SCI) measure2, which implies that the
underlying class label of the test image can be determined
with increasing confidence. At the same time, the restored
image resembles more and more to the ground truth as indi-
cated by the decrease of the restoration error, which means

1Another approach is first to deblur the test image and then usethe de-
blurred image for recognition. Empirically, we observe that this method
may perform even worse than using the original blurry image directly,
mainly due to the artifacts induced by the deblurring step (Figure 4), and
thus we do not compare with this method in the sequel.

2SCI is defined asSCI(x) = C·maxi ‖δi(x)‖1/‖x‖1−1
C−1

, whereC is
the total number of classes [18].
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Figure 2. The joint blind restoration and recognition optimization
process for5 iterations. Top row, left to right: ground-truth sharp
image, blurry test image, and the restored images from iteration
1 to 5. The ground truth and estimated PSFs are framed in red
and green borders respectively. Bottom row, left: sparsityof the
recovered sparse coefficients in terms of SCI; right: restoration
errors in terms of RMSE.

that the estimated blur kernel gets more and more accurate.
Actually, in the first iteration, the blurry input is wronglyas-
signed with class label of subject4, while the ground truth
label is subject1. After the second iteration, with better re-
stored image and kernel, the algorithm can correctly finds
the true class label. This illustrates that our approach can
effectively regularize the ill-posed blind image restoration
in pursuit of the sparsest representation for recognition.On
one hand, a better recovered image will have a more mean-
ingful sparse representation for recognition; on the other
hand, the updated sparse representation, tightly connected
with recognition, will provides a powerful regularizationfor
the followed blind image restoration. In practice, we notice
that the joint optimization proces converges very quickly,
typically in no more than4 iterations. Therefore, we fix the
iteration number as4 in all the following experiments.

4.2. Joint Blind Image Restoration and Recognition

In this subsection, we conduct experiments on joint im-
age restoration and recognition for face images under var-
ious blind degradation settings. In our JRR algorithm, the
tasks of image restoration and recognition are tightly cou-
pled. However, to facilitate the comparisons with conven-
tional restoration and recognition approaches respectively,
we will present the results for restoration and recognition
separately in the sequel.
4.2.1 Blind Image Restoration
We first quantitatively evaluate the kernel estimation and
image restoration accuracy on Extended Yale B face dataset.
To be consistent with the recognition evaluation, we ran-
domly select half of the images for each subject as the train-
ing set. We then randomly choose10 images from the rest
as our testing examples for restoration. For each test im-
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Figure 3. Restoration results comparison in terms of RMSE.
(a) kernel estimation; (b) image estimation.

age, we generate its blurry images using the8 realistic non-
parametric complex blur kernels proposed by Levinet al.
in [11], shown in the first row of Table2. Given a blurry
input, our JRR algorithm estimates the unknown blur ker-
nel without any prior knowledge and recovers the underly-
ing sharp latent image, which are then evaluated in terms of
RMSE with respect to the ground truth. We compare our
JRR algorithm with the fast deblurring method in [2].

Figure 3 (a) shows the average RMSEs for each es-
timated kernels given the blurry inputs, where our JRR
method improves the kernel estimation accuracy substan-
tially compared with the fast deblurring algorithm. This can
be explained by the fact that face images are lack of strong
edge structures, especially in the case of blurry observa-
tion, which presents a great challenge to the existing blind
deblurring methods. With the sparse representation prior,
however, our method demonstrates much more robustness
in estimating the complex blur kernels. Figure3 (b) shows
the comparisons of average restoration RMSEs for the10
images under the8 complex kernels. Due to the incorpo-
ration of the sparse representation prior, our algorithm im-
proves the restoration accuracy significantly over the fast
deblurring method for all the test images. By exploiting
the sparse representation prior, the restored image has more
details and less artifacts (Figure4), implying a more accu-
rate sparse representation, thus facilitating recognition, as
shown in the following.

4.2.2 Blind Image Recognition
For recognition, we first evaluate the recognition perfor-
mance of the proposed method on Extended Yale B dataset.
We randomly select half of the images for each subject for
training, and use the rest for testing. To generate the blurry
inputs, we also add two more simple parametric blur ker-
nels,i.e., linear motion kernel and Gaussian blur kernel, in
addition to the eight complex blur kernels [11]. For each
blur kernel, we generate a set of blurred testing images,
leading to in total 10 testing sets. Table1 summarizes the
recognition results for a simple motion blur (10 pixel-length
with 45 degree) and a Gaussian kernel (with standard de-
viation 3), where the kernel size is9 × 9. Our JRR al-
gorithm outperforms SRC remarkably, while slightly better



Table 1. Recognition rate (%) on Extend Yale B under simple para-
metric blur kernels.

Kernel Type SVM SRC SRC-B JRR

Motion 40.0 68.7 85.3 86.0
Gaussian 29.9 57.7 84.8 84.8

Table 2. Recognition accuracy (%) on Extend Yale B set under
complex non-parametric blur kernels.

Kernels

Sizes 19 17 15 27 13 21 23 23

SVM 45.9 27.2 45.8 11.2 43.5 48.4 20.9 16.9
SRC 79.8 54.1 74.9 21.3 65.5 83.5 36.6 30.3

SRC-B 80.6 79.3 73.4 33.0 70.1 76.8 51.9 51.9
JRR 86.2 79.3 85.7 43.1 81.9 86.4 64.7 54.8

than SRC-B. This is because the conventional blind deblur-
ring method can estimate the blur kernel reasonably well in
simple blur model case. Table2 presents the recognition re-
sults under the complex non-parametric blur kernels. In this
case, conventional blur kernel estimation methods fail eas-
ily due to the complexity of the kernels and lack of strong
structures in the face images, and as a result, the recognition
results of our JRR algorithm outperform those of SRC-B
and SRC by a large margin in most cases.

We then evaluate our algorithm on Multi-PIE [8] dataset,
with 15 images from each subject of Session 1 for training
and the rest of Session 1 for testing. Due to space limita-
tion, we only report the results for the third complex kernel
as shown in Table3. Again, our algorithm performs much
better than other methods. Note that as the conventional
kernel estimation method is not robust enough in this case,
SRC-B performs even worse than SRC. We further evaluate
our algorithm in a more realistic scenario, where the blur
kernel for generating a blurry image is not fixed but ran-
domly chosen from

{

Linear Motion kernel, Gaussian ker-
nel, Nonparametric Complex kernel, Delta (no blur)

}

. The
recognition results for this case are shown in Table4, and
our proposed JRR method outperforms all the other meth-
ods with large margins on both datasets.

Finally, to visually demonstrate the effectiveness of our
JRR algorithm, we compare the estimated kernels, de-
blurred images, and the top-10 selected atoms with the
largest absolute coefficients from sparse representationsun-
der two different kernels, shown in Figure4. Top row shows
the results of SRC; middle row shows the results of con-
ventional blind deblur followed by SRC; and bottom row
shows our results. The blur kernels framed in red denote
the ground truth kernels, and those framed in green are the
estimated kernels. In both cases, our algorithm can accu-
rately estimate the unknown blur kernels and can output
sharp images close to the ground truth, while the fast de-
blurring method is not robust and fails drastically for the

Table 3. Recognition rate (%) on Multi-PIE with the third complex
blur kernel.

Algorithm SVM SRC SRC-B JRR

Accuracy 84.8 85.2 79.1 91.4

Table 4. Recognition rate (%) with randomly blur kernels on both
Extended Yale B and Multi-PIE.

Algorithm SVM SRC SRC-B JRR

Extended Yale B 57.0 68.8 66.3 73.7
Multi-PIE 49.4 53.6 54.9 61.3

complex kernel. To the right of each restored image, top-10
atoms from the sharp training set are selected by the largest
absolute sparse representation coefficients, where red num-
bers denote atoms chosen from the same class (correct) and
blue numbers denote otherwise (wrong). It is clear that our
JRR algorithm can select more atoms from the same class
with more concentrated large coefficients, indicating better
recognition ability.

However, a challenging situation is when the blurry test
image suffers from extreme illuminations, as in Figure5,
where little information about the facial structures is kept
for deblurring. In this case, the deblurring task becomes
extremely challenging and the blur kernel may not be cor-
rectly estimated even with our algorithm, which will lead to
incorrect classification decisions. In both datasets we use,
there are in fact a notable amount of such kind of images,
which pose great challenges to the task of blind recognition
on these datasets. Yet, with the sparse representation prior,
the deblurring result of our algorithm looks much more rea-
sonable than that of the fast deblurring method.

5. Conclusion and Future Work

We propose in this paper a joint restoration and recog-
nition method with the sparse representation prior, and
demonstrate its application on face recognition from a sin-
gle blurry image. By combining these two interactive tasks,
our algorithm demonstrates significant improvements over
that of treating them separately. In the current model, mild
translation misalignment between test and training images
can be captured and compensated by the blur kernel. For
future work, more complex alignment models,e.g., affine
transformation, can be incorporated into our framework to
further handle more challenging misalignment between the
blurry test image and sharp training images with techniques
similar to [15] and [20]. Moreover, using learned dictionary
rather than the training images directly in our model is also
interesting and worthy of investigation in the future.
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Figure 4. Image restoration results under (a) parametric PSF (Gaussian blur) and (b) realistic non-parametric PSF (27× 27 non-parametric
motion blur). Top: SRC; Middle: conventional deblur + SRC; Bottom: JRR. The PSF kernels framed in red denote the ground-truth kernels
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Figure 5. Failure case analysis. (a) ground truth image and kernel; (b) blurry input; estimated image and kernel using (c) conventional
deblurring method [2] and (d) the proposed JRR method; (e) top-10 selected atoms with the JRR method. Kernel estimation is very
challenging due to the extreme illumination.

References

[1] J.-F. Cai, H. Ji, C. Liu, and Z. Shen. Blind motion deblurring from a
single image using sparse approximation. InCVPR, 2009.2, 3

[2] S. Cho and S. Lee. Fast motion deblurring. InSIGGRAPH ASIA,
2009.2, 3, 4, 5, 6, 8

[3] M. Das Gupta, S. Rajaram, N. Petrovic, and T. S. Huang. Restoration
and recognition in a loop. InCVPR, 2005.2

[4] D. L. Donoho. For most large underdetermined systems of linear
equations the minimalℓ1-norm solution is also the sparsest solution.
Comm. Pure Appl. Math, 59:797–829, 2004.2

[5] M. Elad, M. A. T. Figueiredo, and Y. Ma. On the role of sparse
and redundant representations in image processing.Proc. of IEEE,
98(6):972–982, 2010.2, 3

[6] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman.
Removing camera shake from a single photograph. InSIGGRAPH,
2006.1, 2, 3, 5

[7] A. Georghiades, P. Belhumeur, and D. Kriegman. From few to many:
illumination cone models for face recognition under variable lighting
and pose.IEEE TPAMI, 23(6):643–660, 2001.5

[8] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-PIE.
In IEEE Intl. Conf. Automatic Face and Gesture Recog., 2008.5, 7

[9] P. H. Hennings-Yeomans, S. Baker, and B. V. Kumar. Simultane-
ous super-resolution and feature extraction for recognition of low-
resolution faces. InCVPR, 2008.2

[10] D. Krishnan and R. Fergus. Fast image deconvolution using hyper-
laplacian priors. InNIPS, 2009.3, 4, 5

[11] A. Levin, Y. Weiss, F. Durand, and W. Freeman. Understanding and
evaluating blind deconvolution algorithms. InCVPR, 2009.2, 6

[12] M. Nishiyama, H. Takeshima, J. Shotton, T. Kozakaya, and O. Ya-
maguchi. Facial deblur inference to improve recognition ofblurred
faces. InCVPR, 2009.2

[13] S. Roth and M. J. Black. Fields of experts: A framework for learning
image priors. InCVPR, 2005.3

[14] Q. Shan, J. Jia, and A. Agarwala. High-quality motion deblurring
from a single image. InSIGGRAPH, 2008.1, 2, 3, 4, 5

[15] A. Wagner, J. Wright, A. Ganesh, Z. Zhou, and Y. Ma. Towards a
practical face recognition system: Robust registration and illumina-
tion by sparse representation. InCVPR, 2009.3, 7

[16] Y. Wang, J. Yang, W. Yin, and Y. Zhang. A new alternating mini-
mization algorithm for total variation image reconstruction. SIAM J.
Img. Sci., 1(3):248–272, 2008.4

[17] J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S.Yan.
Sparse representation for computer vision and pattern recognition.
Proc. of IEEE, 98(6):1031–1044, 2010.2

[18] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma. Robust face
recognition via sparse representation.IEEE TPAMI, 2009.2, 3, 5

[19] J. Yang, J. Wright, T. Huang, and Y. Ma. Image super resolution as
sparse representation of raw image patches. InCVPR, 2008.1, 2, 3

[20] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum. Blurred/non-blurred im-
age alignment using sparseness prior. InICCV, 2007.7


