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Abstract— In many target tracking problems it is advantageous
to perform tracking in a different coordinate system than the
measurements. In these cases, the measurements require some
form of conversion prior to use in tracking. There are two po-
tential issues that arise when performing converted measurement
tracking. The first occurs when the measurement conversion
results in a biased (converted) measurement. The second is
estimation bias that occurs when the estimate of the converted
measurement error covariance is correlated with the measure-
ment noise. First, previously proposed unbiased conversions are
examined. Following this, the “decorrelated unbiased converted
measurement” approach is examined and shown to overcome
the issues of conversion bias and estimation bias. Finally this
approach is evaluated in a Converted Measurement Kalman
Filter (CMKF).

I. INTRODUCTION

In some estimation problems measurements are converted

to a different coordinate system prior to tracking. If this

conversion process results in a biased converted measurement,

degradation in tracking performance occurs. Use of unbiased

measurement conversion is preferred for these cases. In this

paper previous work on unbiased converted measurements,

including the recently proposed Decorrelated Unbiased Con-

verted Measurement (DUCM) [2], are analyzed for radar track-

ing scenarios. The conversion techniques are then evaluated

in a Converted Measurement Kalman Filter (CMKF). In this

filter the polar measurements of range, r, and bearing, α, are

converted to Cartesian coordinates to allow for the use of a

linear Kalman filter. The conventional conversion is shown

below:

[

x

y

]

=

[

r cosα
r sinα

]

(1)

The polar to Cartesian conversion equations include a

trigonometric function of a random variable. There are various

issues with this type of conversion. One problem is that the

conventional conversion (1) is biased [5], [6]. A second is that

the calculation of the converted measurement error covariance

requires the true range and bearing, unavailable in practice.

The practical resolution to this problem results in correlation

between the covariance measurement error estimate (evaluated

at the measurement) and the measurement error leading to an

estimation bias when the converted measurement is used in

tracking [8], [4], [2].

II. EVALUATION OF THE CONVERSION BIAS

Analysis of the expected value of the conventional conver-

sion (1) shows that the conversion introduces a bias in the

mean of the converted measurement [6]. The bias can be found

by taking the expectation of the converted range and bearing

measurements, rm and αm. If the range measurement noise,

wr, and bearing measurement noise, wα, are uncorrelated,

zero mean, and Gaussian with standard deviations of σr and

σα respectively; the expected converted measurement is as

follows:

E [(r + wr) cos (α+ wα)] = e−σ2

α
/2r cosα (2)

E [(r + wr) sin (α+ wα)] = e−σ2

α
/2r sinα (3)

Evident in (2) and (3) is that there is bias along the true

bearing to the target with a magnitude of r
(

e−σ2

α
/2

− 1
)

.

The absolute bias increases for long ranges and poor angle

accuracies. The relative bias (i.e. the bias divided by the true

range) is a function of angle accuracy. To compensate for

the bias, previous authors proposed an Unbiased Converted

Measurement (UCM) [6]:

xUCM

m = eσ
2

α
/2rm cosαm (4)

yUCM

m = eσ
2

α
/2rm sinαm (5)

III. ESTIMATION OF THE COVARIANCE

The true measurement covariance of the UCM is given by:

R11

true =
1

2

(

r2 + σ2

r

)

[

1 + cos(2α)e−2σ2

α

]

eσ
2

α

− r2 cos2 α (6)

R22

true =
1

2

(

r2 + σ2

r

)

[

1− cos(2α)e−2σ2

α

]

eσ
2

α

− r2 sin2 α (7)

R12

true =
1

2

(

r2 + σ2

r

)

[

sin(2α)e−2σ2

α

]

eσ
2

α

− r2 cos(α) sin(α) (8)

Since the true covariance requires the true range and

bearing, it cannot be calculated in practice. Two approaches

have been proposed to approximate the covariance using the

Proc. 2012 IEEE Radar Conference, (4197), Atlanta, GA, May 2012.



measurements. The UCM approach evaluates the covariance

at the measurements [6], namely,

R11

UCM =
1

2

(

r2m + σ2

r

)

[

1 + cos(2αm)e−2σ2

α

]

+
[

eσ
2

α
− 2

]

r2m cos2 αm (9)

R22

UCM =
1

2

(

r2m + σ2

r

)

[

1− cos(2αm)e−2σ2

α

]

+
[

eσ
2

α
− 2

]

r2m sin2 αm (10)

R12

UCM =
1

2

(

r2m + σ2

r

)

[

sin(2αm)e−2σ2

α

]

+
[

eσ
2

α
− 2

]

r2m cos(αm) sin(αm) (11)

It can be seen that the measurement conversion (4) and (5)

is derived by conditioning on the true range and bearing, while

the error covariance (9) - (11) is derived by conditioning on

the measurements. This incompatibility was pointed out by

previous authors along with a modified unbiased conversion

method [3]. The resulting Modified Unbiased Converted Mea-

surement (MUCM), shown below, resolves the incompatibility,

but results in a biased estimate.

xMUCM

m = e−σ2

α
/2rm cosαm (12)

yMUCM

m = e−σ2

α
/2rm sinαm (13)

R11

MUCM =
1

2

(

r2m + σ2

r

)

[

1 + cos(2αm)e−2σ2

α

]

− eσ
2

αr2m cos2 αm (14)

R22

MUCM =
1

2

(

r2m + σ2

r

)

[

1− cos(2αm)e−2σ2

α

]

− eσ
2

αr2m sin2 αm (15)

R12

MUCM =
1

2

(

r2m + σ2

r

)

[

sin(2αm)e−2σ2

α

]

− eσ
2

αr2m cos(αm) sin(αm) (16)

A comparison of the UCM and MUCM conversion is

instructive. The advantage of the UCM conversion is that it is

unbiased, an essential attribute in state estimation. The MUCM

conversion, however, results in a lower mean squared error

[2]. Both conversion techniques use a multiplicative term. The

multiplicative term that results in the smallest expected square

error can be derived using a factor η as follows:

xMMSE

m = ηrm cos (αm) (17)

yMMSE

m = ηrm sin (αm) (18)

The expected squared error is

η2(r + σ2

r)− 2ηr2e−σ2

α/2 + r2 (19)

The minimizing η, shown below, requires knowledge of the

true range, namely,

η =
r2

r2 + σ2
r

e−σ2

α/2 (20)

This term is bounded by the MUCM scaling term. There-

fore, the mean square error of the MUCM conversion is always

less than that of the UCM conversion [7]. In this light, the

MUCM conversion can be viewed as a shrinkage technique

that reduces the MSE at the expense of introducing a bias.

IV. EVALUATION OF THE ESTIMATION BIAS

Both the UCM and MUCM conversions utilize the measure-

ment to estimate the converted measurement error covariance.

As a result, the estimate of the covariance becomes correlated

with the measurement noise, leading to a biased estimator

[8], [4], [2]. In order to analyze this phenomenon, a position

estimator for a static target using converted measurements is

considered. For convenience, a true bearing of 0◦ is used,

resulting in a bias conveniently along the x-axis. The esti-

mation bias, best, and overall bias, btot are defined, using the

expectation operator E, as:

best,UCM = E [x̂]− E
[

eσ
2

α
/2rm cosαm

]

(21)

best,MUCM = E [x̂]− E
[

e−σ2

α
/2rm cosαm

]

(22)

btot = E [x̂]− xtrue (23)

While for the example geometry the bias is along the x-axis,

in general it is along the true line of sight to the target. For

this static estimation problem, consider the results of a linear

least squares estimator (LLSE) using the UCM and MUCM

conversion techniques. The LLSE is an average of the con-

verted measurements, weighted by the inverse of the converted

measurement noise covariance. Due to the dependence of the

converted measurement noise covariance on the measurement

noise, the estimator is biased.

As Fig. 1 shows, estimation bias due to the above correlation

is a problem common to the UCM and MUCM conversion. It

is interesting to note that while the estimation bias for UCM

and MUCM are similar (Fig. 1), the overall bias (Fig. 2) is

the smallest for the MUCM technique. This is due to the fact

that the MUCM conversion bias and the estimation bias are

in opposite directions. This explains why MUCM conversion

has outperformed UCM conversion in tracking simulations.

While the MUCM conversion bias and estimation bias seem to

have a symbiotic relationship, using a biased conversion is not

ideal for recursive estimation. For trackers using low process

noise, the MUCM conversion will eventually converge to a

solution with little bias. For higher process noise situations,

where the tracker relies more on the converted measurement,

the MUCM’s biased measurement conversion will degrade

performance.
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Fig. 1. Position estimation bias versus σα for a 10,000 sample LLSE using
UCM and MUCM conversion methods with ranges of 250,000; 500,000;
750,000 and 1,000,000. For all cases σr = 0.5.
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Fig. 2. Total position bias versus σα for a 10,000 sample LLSE using UCM
and MUCM conversion methods with ranges of 250,000; 500,000; 750,000
and 1,000,000. For all cases σr = 0.5.

V. DECORRELATED UNBIASED MEASUREMENT

CONVERSION

To overcome the disadvantages of the CMKF using the

UCM and MUCM conversion techniques, the Decorrelated1

Unbiased Converted Measurement (DUCM) has been pro-

posed [2]. The design goals used in the development of this

technique were:

1) Utilize an unbiased measurement conversion

2) Avoid correlation of the converted measurement covari-

ance estimate and the measurement noise to preclude

estimation bias

3) Provide minimum mean square error estimates.

To achieve the first goal, the UCM measurement conversion

is used:

xDUCM

m = xUCM

m = eσ
2

α
/2rm cosαm (24)

yDUCM

m = yUCM

m = eσ
2

α
/2rm sinαm (25)

To decorrelate the estimation of the measurement covariance

from the measurement noise, an approach similar to previ-

ous work is used [8]. While conditioning on the previous

measurement has been proposed [8], the approach used here

is to condition on the predicted estimate (i.e., use one-step

predictions), namely,

R11

DUCM =
1

2

(

r2m + σ2

r + σ2

rt

)

·

[

1 + cos(2αt)e
−2σ2

αe−2σ2

αt

]

eσ
2

α

−

1

2

(

r2m + σ2

rt

)

[

1 + cos(2αt)e
−2σ2

αt

]

(26)

R22

DUCM =
1

2

(

r2m + σ2

r + σ2

rt

)

·

[

1− cos(2αt)e
−2σ2

αe−2σ2

αt

]

eσ
2

α

−

1

2

(

r2m + σ2

rt

)

[

1− cos(2αt)e
−2σ2

αt

]

(27)

R12

DUCM =
1

2

(

r2m + σ2

r + σ2

rt

)

·

[

sin(2αt)e
−2σ2

αe−2σ2

αt

]

eσ
2

α

−

1

2

(

r2m + σ2

rt

)

[

sin(2αt)e
−2σ2

αt

]

(28)

where rt and αt are the predicted estimate’s range and bearing

and σ2
αt

and σ2
rt are their associated variances. Various tech-

niques could be used for approximating these quantities; for

example use of the Unscented Transform has been proposed

[9]. The technique chosen here is a linearization of tracked

covariance, ignoring correlation between range and bearing

errors. Defining the predicted position as xt and yt and its

associated covariance as:

1Some researchers prefer the name ‘Federated’, alluding to the union of
decorrelating and debiasing.



[

PxxPxy

PyxPyy

]

(29)

The predicted range and approximated range variance are

as follows:

rt =
√

xt
2 + yt2 (30)

σ2

rt =
[

∂rt
∂xt

∂rt
∂yt

]

[

PxxPxy

PyxPyy

]

[

∂rt
∂xt

∂rt
∂yt

]

(31)

which simplifies to:

σ2

rt =
Pxxx

2
t + 2Pxyxtyt + Pyyy

2
t

x2
t + y2t

(32)

Similarly, the predicted bearing and approximated bearing

variance are:

αt = tan−1

(

yt

xt

)

(33)

σ2

αt
=

[

∂αt

∂xt

∂αt

∂yt

]

[

PxxPxy

PyxPyy

]

[

∂αt

∂xt

∂αt

∂yt

]

(34)

which simplifies to:

σ2

αt
=

Pxxy
2
t − 2Pxyxtyt + Pyyx

2
t

(x2
t + y2t )

2
(35)

Evaluation of the DUCM technique indicates that neither

the estimation bias nor the overall bias are significant (Fig. 3).

While the DUCM technique has the advantage of unbi-

ased conversion and negligible estimation bias, based on the

arguments of (20), it will have a larger mean square error

than the MUCM technique for the initial conversion and first

few recursive estimates. To overcome this issue, a shrinkage

technique is applied to the output of the filter. By applying

the scaling factor only to the output of the filter, the Kalman

Filter assumption of unbiased measurements is not violated.

The scaling factor (36) converts the unbiased estimate into an

approximate MMSE estimate.

ηDUCM = e−σ2

αt (36)

VI. APPLICATION TO CONVERTED MEASUREMENT

KALMAN FILTER

The DUCM technique can be applied to the Converted

Measurement Kalman Filter (CMKF) for improved state esti-

mation. To evaluate realistic tracking performance, the general

approach of previous works is adopted, with the appropriate

values to be relevant to radar tracking. The target’s initial

x and y positions are taken from independent draws from

a Gaussian distribution with mean 500,000 m and standard

deviation of 10,000 m. Target speed is taken from a Gaussian

distribution with a mean of 75 m/s and a standard deviation of

10 m/s. Target heading is taken from a uniform distribution.

The target follows a constant velocity track and is estimated

using a nearly constant velocity tracker with a discrete white

noise acceleration model [1]. One point initialization of the

tracker is used with an initial velocity estimate of 0 m/sec and

standard deviation of 47.5 m/s in each component.
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Fig. 3. Estimation and total position bias versus σα for a 10,000 sample
LLSE using DUCM conversion method with ranges of 250,000; 500,000;
750,000 and 1,000,000. For all cases σr = 0.5.

A. Mean Square Error performance

Evaluation of tracking performance indicates that the CMKF

using the DUCM technique outperforms the CMKF using

UCM or MUCM in position MSE. CMKF-DUCM velocity

MSE slightly underperforms during the initial scans, but has

the best performance for later scans. Fig. 4 and 5 show the

MSE comparison of the three techniques.

B. Average Normalized Estimation Error Squared (ANEES)

performance

To ensure credibility of the DUCM method, the ANEES

performance is examined. The ANEES scaled to the state

dimension, n, is [1]

ANEES =
1

Nn

N
∑

i=1

X̃T
i P

−1

i X̃i (37)

where X̃i is the estimation error and Pi is the error covariance

for trial i. The ANEES of a consistent estimator should be

close to 1. Fig. 6 shows that the DUCM approach is the most

consistent based on the ANEES.

VII. CONCLUSION

When using converted measurements in tracking, two

sources of bias need to be evaluated and eliminated. The

first is measurement conversion bias that occurs when the

conversion process introduces a bias in the mean of the



Fig. 4. CMKF position MSE comparison for the UCM, MUCM and DUCM
conversion methods from 10,000 Monte-Carlo runs. The range and bearing
measurement noises used were uncorrelated Gaussian with σr = 0.5m and
σα = 3/15◦. The inset figure shows the results of 50 scans, while the main
figure is zoomed into scans 10 to 50.

Fig. 5. CMKF velocity MSE for the UCM, MUCM and DUCM conversion
methods from 10,000 Monte-Carlo runs. The range and bearing measurement
noises used were uncorrelated Gaussian with σr = 0.5m and σα = 3/15◦. The
inset figure shows the results of 50 scans, while the main figure is zoomed
into scans 10 to 50.

converted measurement. The second source of bias is estima-

tion bias that occurs when the estimate of the measurement

covariance is correlated with the converted measurement noise,

leading to a biased Kalman gain. It has been shown for

converted measurement tracking problems that a decorrelated

version of the Unbiased Measurement Conversion (DUCM)

exhibits improved performance over the previously proposed

techniques. Future work may include evaluation of the DUCM
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Fig. 6. ANEES comparison for the UCM, MUCM and DUCM conversion
methods from 10,000 Monte-Carlo runs. The range and bearing measurement
noises used were uncorrelated Gaussian with σr = 0.5m and σα = 3/15◦.

technique in additional scenarios and extension from polar to

spherical coordinate conversion.
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