

Automating RPM Creation from a Source Code Repository

by Travis Parker and Paul Ritchey

ARL-CR-0687 February 2012

Prepared by

ICF International

9300 Lee Highway,

Fairfax, VA 22031-1207 USA

Under Contract W911QX-07-F-0023

COR:

U.S. Army Research Laboratory

RDRL-CI

Linda Duchow

2800 Powder Mill Road

Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-CR-0687 February 2012

Automating RPM Creation from a Source Code Repository

Travis Parker and Paul Ritchey

ICF International

Prepared by

ICF International

9300 Lee Highway

Fairfax, VA 22031-1207 USA

Under Contract W911QX-07-F-0023

COR:

U.S. Army Research Laboratory

RDRL-CI

Linda Duchow

2800 Powder Mill Road

Adelphi, MD 20783-1197

Approved for public release; distribution unlimited.

 ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid

OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

February 2012

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Automating RPM Creation from a Source Code Repository

5a. CONTRACT NUMBER

W911QX-07-F-0023
5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Travis Parker and Paul Ritchey

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

ICF International

9300 Lee Highway

Fairfax, VA 22031-1207 USA

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-CIN-D

Aberdeen Proving Ground, MD 21005

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

ARL-CR-0687
12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

The use of a source code repository while writing and maintaining a software project has become a modern standard. With

careful planning and standardization of the structure of the source code repository, it is possible to automate the construction of

Red Hat Package Manager packages (RPMs). This automation encompasses checking out the most recent release of the

software, compiling the software, if necessary, to create binaries through building the actual RPM that can then be immediately

used to install the software on a computer. This report describes the repository structure and script we developed to allow us to

automate this process.

15. SUBJECT TERMS

RPM, software development, source code repository

16. SECURITY CLASSIFICATION OF:
17. LIMITATION

 OF
 ABSTRACT

UU

18. NUMBER
 OF

 PAGES

26

19a. NAME OF RESPONSIBLE PERSON

Travis Parker
a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(410) 278-0900

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

 iii

Contents

List of Figures iv

1. Introduction 1

2. Source Code Repository Structure 1

3. Example Repository Structure 2

4. Tagging Release Versions and Version Naming 3

5. Automated RPM Build Basic Project Setup 4

6. RPM Specification File Overview 4

7. RPM Specification File Tag Examples 7

8. Performing an Automated RPM Build 9

9. Conclusion 10

Appendix A. Release Tagging Script tag-it.sh 11

Appendix B. The build_rpm.sh Script 13

Appendix C. Sample RPM Specification File 17

Distribution List 19

 iv

List of Figures

Figure 1. Fictitious example of a repository structure. ..2

Figure 2. Template specification file ...5

Figure 3. Sample code from a C/C++ project that supports the GNU AutoTools compilation
process..7

Figure 4. Sample code with the global permission setting matrix used...8

Figure 5. Sample <change_log> code. ...8

Figure 6. Sample content used to define several environment variables needed by the
build_rpm.sh script. ..9

 1

1. Introduction

The use of a source code repository while writing and maintaining a software project has become

a modern standard. With careful planning and standardization of the structure of the source code

repository, it is possible to automate the construction of Red Hat Package Manager1 packages

(RPMs). This automation encompasses checking out the most recent release of the software,

compiling the software, if necessary, to create binaries through building the actual RPM that can

then be immediately used to install the software on a computer. This report describes the

repository structure and script we developed to allow us to automate this process.

2. Source Code Repository Structure

For the purposes of this report, the provided scripts are based on using Subversion2 for the source

code repository. The structure and concepts provided should be easily implemented if other

source code repositories are used, such as CVS3.

Each major project or component that should be built into a package will need to contain a

specific directory structure that will be used to maintain the current working branch, tagged

release versions, and alternate branches:

• trunk – This directory contains the current code under development and is typically used

by all developers working on the project.

• branch – This directory contains an alternative set of code that may be under

development. This is typically used to “fork” the primary development code to work on a

new version that is not yet ready to replace the primary code.

• tag – This directory contains specific revisions from the primary development code

(“trunk”) that have been marked as release versions. This is the directory that the

automated RPM build procedure will check out code from when building RPMs. No

development work or commits are performed against tagged revisions, they are considered

final releases.

1Foster-Johnson, E. RPM Guide. Fedora Documentation. Fedora Project. Web. 31 May 2011. http://docs.fedoraproject.org/en-

US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/index.html (accessed November 2011).
2 Collins-Sussman, B. Version Control with Subversion. O'Reilly Media, 2008. Web. 31 May 2011. http://svnbook.red-

bean.com/ (accessed November 2011).
3 Price, D. R. CVS - Concurrent Versions System. CVS - Open Source Version Control. Free Software Foundation, 3 Dec.

2006. Web. 31 May 2011. http://www.nongnu.org/cvs/ (accessed November 2011).

 2

The structure within a project or component is up to the developer(s) working on it, but if the

code is written in C/C++ the structure outlined in the report titled Simple Guide to Using GNU

AutoTools4 is highly recommended. By using the GNU AutoTools for automating the

configuration/compilation of one’s C/C++ code, the automated RPM build procedure can

automatically compile the project when it builds the RPM.

3. Example Repository Structure

The following fictitious example of a repository structure (figure 1) shows how a project can be

broken up into several sub-components, each of which contains the proper directory structure so

they can be built into separate RPMs.

Project_foo

`-- component_a

 |-- subcomponent_a

 | |-- branch

 | |-- tag

 | | |-- 20100630-1.0-1

 | | |-- 20101103-2.0-1

 | | `-- 20101203-2.0-2

 | `-- trunk

 | |-- SPECS

 | |-- config

 | |-- include

 | |-- src

 | `-- web

 `-- subcomponent_b

 |-- branch

 |-- tag

 | |-- 20110119-1.0-1

 | `-- 20110208-2.0-2

 `-- trunk

 |-- SPECS

 |-- config

 |-- include

 `-- src

Figure 1. Fictitious example of a repository structure.

Examining the basic directory structure depicted in figure 1, there have been no new code

branches for either of the subcomponents. There have been three production releases for the

subcomponent_a project, which can be seen by the three directories listed in the tag

directory. The second project, subcomponent_b, has two production releases. Both

subcomponents are C/C++ based so the structure within the trunk directory includes additional

4 Parker, T.; Ritchey, R. P. Simple Guide to Using GNU AutoTools; ARL-CR-0681; U.S. Army Research Laboratory:

Aberdeen Proving Ground, MD, October 2011.

 3

subdirectories to support the use of GNU AutoTools. Both subcomponents also support the

automated build process, which can be determined by the inclusion of the SPEC directory, which

is described later.

4. Tagging Release Versions and Version Naming

Before describing the automated RPM mechanism that has been built, a brief discussion of the

convention used for version naming is needed. A specific format must be used for the naming

convention when tagging release versions in the tag directory. This naming scheme is relied

upon by the automated RPM build script when constructing the name of the RPM and when it

automatically fills in text in the specification file.

The name is constructed of four sections, separated by either a dash (-) or a period (.). A side

benefit to following this convention is the versions will automatically be listed in a sorted order,

making it easy to determine which one is the most recent release when performing a checkout by

hand.

• <YYYYMMDD>-<major_version_number>.<minor_version_number>-

<revision_number>

 Example: 20100630-2.0-1

 This is the date the release/tag is made using four digits for the year (YYYY), two digits

for the month (MM), and two digits for the day (DD). The month and day should be

preceded with a zero if necessary to make them two digits each.

• <major_version_number>.<minor_version_number>

 This is a typical software version numbering scheme using a major/minor indicator.

Packages whose software has received minor updates (new features, enhancements, or

fixes) should increment the minor version number value and packages whose software has

received some type of major change should have the major version number incremented.

• <revision_number>

 The revision number indicates either an update to the package or some type of very minor

update to the software. The revision number can be one of two numbers, which is up to the

discretion of the developer/maintainer. It can be the revision number of a specific commit

(save) in the code repository or it can be a manually maintained and incremented number.

A script that can be used to automate the process of tagging releases is provided in appendix A.

The script defaults to using the repository commit number if a revision number isn’t provided

when the script is executed.

 4

5. Automated RPM Build Basic Project Setup

To ease the administration and maintenance of large projects, a convention has been defined for

incorporating the files necessary to build an RPM non-intrusively into the source code. When

this convention is followed, it allows one to build an RPM package for a project, component, or

subcomponent by using the generic build_rpm.sh script (provided in appendix B). For

projects where multiple packages are desired, multiple calls to the build_rpm.sh script can

be combined into a single master script that when used will automatically build all packages

needed for that project.

In the component/subcomponent’s trunk directory create a SPECS subdirectory (all capital

letters), which will contain one file, the specification file for building the RPM. The name of the

specification file must adhere to the following format for the script to function:

<package_name>.spec

The <package_name> portion should be set to the name one wants used for the RPM package

file without the version or revision numbers. When the RPM package is built, the script will

automatically determine and append the version number and revision number based on the

tagged name contained in the tag directory.

For example, if the automated build script is called to build the subcomponent_a package

based on the listing provided in the previous section, a valid package name could be the

following:

projecta_componenta_subcomponenta-2.0-2.x84_64.rpm

The beginning portion of the name is taken from the name of the specification file

(projecta_componenta_subcomponenta.spec), the version number is derived from

the repository tagged name and the platform (‘x84_64’) is taken from the contents of the

specification file (BuildArch entry), which is described in section 6.

6. RPM Specification File Overview

To build an RPM, one needs to provide a specification file5 (generally referred to as a “spec

file”) that provides the rpm command with the information it needs to build the package. All of

the specification files can be derived from the same basic template, changing a few specific lines

5 “Creating the Spec File.” Maximum RPM: Taking the Red Hat Package Manager to the Limit. Web. 31 May 2011.

<http://www.rpm.org/max-rpm/s1-rpm-build-creating-spec-file.html>.

 5

that are unique for each project. Figure 2 shows a template specification file; a completed

sample specification file can be found in appendix C.

Summary: <summary_description>

Name: %NAME_MARKER%

Version: %VERSION_MARKER%

Release: %RELEASE_MARKER%

License: <license>

Group: <group_name>

Source: %SOURCE_MARKER%.tgz

Distribution: <distribution_information>

Vendor: <vendor>

Packager: <packager>

BuildRoot: %{_tmppath}/%{name}-buildroot

Provides: %NAME_MARKER%

BuildArch: <target_architecture>

AutoReqProv: <ignore_dependencies>

%description

<complete_description>

%pre

%prep

%setup

%build

<commands_to_compile>

%install

<commands_to_install>

%clean

rm -rf $RPM_BUILD_ROOT

%files

<files_included/installed_by_rpm>

%post

%changelog

<change_log>

Figure 2. Template specification file.

While the template in figure 2 can be used as the basis for a specification file for each new

project, it is much easier to take a specification file from an existing project and change it

instead. Select a specification file from a project that’s similar to the new one and use that as the

basis for the new project (i.e., pick a specification file from a C/C++ project if the new project is

a C/C++ project).

 6

The following is a list of the tagged areas in the sample template above describing what the

contents should be changed to and a sample value.

• <summary_description> This entry is a free text area where a brief summary (one

sentence) describing the package can be placed. A more complete, in-depth description is

provided in a different tag.

• <license> This shows the type of license the package is released under. A possible

example would be GPL; however, this will depend on the environment one is developing

the package in.

• <group_name> This names the group providing the package. An example would be

ARL-SBNAB.

• <distribution_information> Typically, this is set to a text string describing a

Linux operating system (OS) distribution. For packages not related to a Linux distribution,

this can be set to a value that can be used to group the user’s packages or related projects.

• <vendor> This text string names who is providing the package. We have been

specifying ARL here as the work and packages are created under contract for the U.S.

Army Research Laboratory (ARL).

• <packager> This text string names the person or group packaging the software, for

example, ARL-SBNAB.

• <complete_description> This is a free text area for providing a more complete

description of the package than what is provided in the <summary_description> tag.

• <commands_to_compile> This holds the shell commands required to build a binary

out of the code checked out from the repository. This may be left blank or eliminated for

projects that do not require compilation, such as scripts (Python, shell, Perl, PHP, etc.). An

example for building a C/C++ based project is included in section 7.

• <commands_to_install> This holds the shell commands required to install the

binaries/scripts. This section is needed at all times, even if the commands to perform a

compilation are not needed. An example is included in section 7.

• <files_included/installed_by_rpm> This is the list of files, including their

path, that are installed by the package. It is also possible to specify default ownership and

permissions, which can be overridden on a file by file basis. An example is included in

section 7.

• <change_log> This holds information describing the changes made in each

version/revision. Although partially made up of free text, a specific format must be used so

the rpm command can properly parse it. An example and description of the format is

included in section 7.

 7

Throughout the specification file are additional tags that are marked with starting and ending

percent signs (%). These are special markers in the file and should not be changed or altered in

any way. The build_rpm.sh script will automatically replace these tags with the appropriate

text, such as the package name and version number.

7. RPM Specification File Tag Examples

The <commands_to_compile> section contains the shell commands that need to be used to

configure and compile the source code. The sample in figure 3 is taken from a C/C++ project

that supports the GNU AutoTools compilation process, but the concept can be adapted for other

compilers and languages. It first executes the autogen.sh script to ensure that the macros

used by AutoTools have been updated for compatibility with the system the package is being

compiled on. It then executes the configure script, passing in several optional configuration

parameters to enable certain desired features in the resulting binaries. Finally, the make

command is executed, which performs the compilation. As seen in the provided example, it’s

possible to combine multiple commands onto a single line just as can be done in a normal shell

prompt or script by placing a semicolon (;) between them.

./autogen.sh ; ./configure --with-db=/apps/usr --with-

libpq=/apps/postgres

make

rm -rf $RPM_BUILD_ROOT

umask 0077

mkdir -p $RPM_BUILD_ROOT/usr/local/bin

mkdir -p $RPM_BUILD_ROOT/usr/local/etc

install -p src/mybinary $RPM_BUILD_ROOT/usr/local/bin

cp -v config/mybinary.cfg $RPM_BUILD_ROOT/usr/local/etc/mybinary.cfg

Figure 3. Sample code from a C/C++ project that supports the GNU AutoTools compilation process.

The <commands_to_install> section contains the shell commands that are needed to

install the binaries/scripts for the package. Every specification file should include the same first

line, which cleans up the directory where the RPM is being constructed. The rest of the

commands will be highly customized for each project. If another project’s specification file is

used, this section will need to be carefully reviewed to make sure each line is performing a task

that is valid and needed to install that particular package. The location the files should be

installed to are based off of the $RPM_BUILD_ROOT environment variable, with the rest of the

path being the exact path the file will be installed in on a real system. In the C/C++ example in

figure 3, a compiled binary is copied from the source code src directory and a default

configuration file is copied as well.

 8

The <files_installed/included_by_rpm> section should contain an exhaustive list

of all files, including their path, that are installed by the RPM. Additional macros such as

%defattr() can be used to set default permissions and ownership for the files as well as being

done on a file by file basis. In the example in figure 4, the global permission setting matrix is

used, which will be applied to all files/directories installed or created by the RPM.

Note: At the time of writing a known bug with the %defattr() macro was causing incorrect

ownership and permission settings to be set for directories if they were to be owned by anyone

other than the root user. A solution to this problem is to use the %attr() macro on

individual directories.

%defattr(750, my_user, my_group, 750)

/usr/local/bin/foo

/user/local/etc/foo.cfg

Figure 4. Sample code with the global permission setting matrix used.

The <change_log> section of the specification file should be updated when changes are made

to the software or package so others have an indication of what has been changed in the new

release. The rpm command enforces a specific format, which must be used or the package will

not be built. The change log entries are broken into two sections, the date/maintainer line which

is preceded by an asterisk (*) and the list of changes consisting of one change per line preceded

by a hyphen (-), as shown in figure 5.

* <day_of_wk> <month> <day_of_mnth> <year> <version_number>

<maintainer> - <one_change>

- <first change>

- <second change>

…

Figure 5. Sample <change_log> code.

The following apply to code in figure 5:

• <day_of_wk> is the three letter abbreviation for the day of the week (Sun, Mon, Tue,

Wed, Thu, Fri, or Sat).

• <month> is the three-letter abbreviation for the month.

• <day_of_mnth> is the two-digit number of the day of the month.

• <year> is the year specified in four digits.

• <version> can be any string, typically in the format “Version <major>.<minor>”.

• <maintainer> is the basic information about the person that is creating the new release,

such as the person’s name or e-mail address.

 9

8. Performing an Automated RPM Build

Once the RPM specification file has been created in the SPECS directory and the release has

been tagged in the tag subdirectory the automated RPM build mechanism can be used. When

the build_rpm.sh script is executed, it will automatically create an .rpmmacros file (note

the period at the beginning of the filename) in the home directory. The content of this file is

used to define several environment variables needed by the build_rpm.sh script and will

contain entries similar to that in figure 6.

%_topdir /home/myhomedir/rpm

%_tmppath /home/myhomedir/rpm/tmp

%_buildroot ${_tmppath}/%{name}-buildroot

%define _unpackaged_files_terminate_build 0

Figure 6. Sample content used to define several environment variables needed by the

build_rpm.sh script.

The values in the first two lines will automatically be configured to point to the home directory

when the file is created. In the example in figure 6, the RPMs will be generated and stored in the

rpm subdirectory of a user named myhomedir.

To execute the build_rpm.sh script, one simply passes a single parameter to it indicating the

repository of the tagged project release that needs to be checked out and packaged:

./build_rpm.sh –r <repository_path>/tag

Example:

./build_rpm.sh –r file:///apps/rcs/svn/project_a/component_a/subcomponent_a/tag

This example will automatically check-out the most recent tagged release for the

subcomponent_a project, compile it if necessary and create the RPM, which will appear in

a subdirectory in /home/myhomedir/rpm.

For systems that consist of multiple RPMs maintained as separate projects in the repository, a

master script can be created that contains a line for each RPM that needs to be created. This

automation makes it easy to build a large number of RPMs by executing one script and walking

away while all of the individual projects are checked out, compiled, and turned into installable

RPMs.

 10

9. Conclusion

The tools provided here allow developers to easily build installable RPM packages directly from

revisions tagged for release in a source code repository. In addition to saving developers a

significant amount of time by automating the process, it can provide non-developers a simple,

single command for obtaining the latest version of software from the repository without the need

to learn how to check software out or compile it.

 11

Appendix A. Release Tagging Script tag-it.sh

The tag-it.sh script (shown below) can be used to tag releases of a project in a code

repository. The script will require minor modifications to adjust the base directory where the

repository can be located in the filesystem on the user’s server. The script is called in the

following format and takes several parameters:

tag-it.sh <repo> <major.minor> \"<message>\" [release, next-revision is default]

where

• <repo> is the path within the repository to the base directory of the project.

• <major.minor> is the major and minor version number for the release separated by a

period.

• <message> is the log message to be used when the release is tagged. The backslash (“\”)

character is used to prevent the shell from interpreting the quotes.

• [release]: Optional. If the release number is not provided the script will automatically

default to using the last commit number for the project.

#!/bin/bash

if ["$1" != ""]

then

 echo file:///apps/rcs/svn/$1/tag/

 svn list file:///apps/rcs/svn/$1/tag/

fi

if ["$2" == "" -o "$3" == ""]

then

 echo "usage: tag-it.sh <repo> <major.minor> \"<message>\" [release, next-

revision is default]"

 exit 1

fi

if ["$4" == ""]

then

 ctr=`svn info file:///apps/rcs/svn/$1 | grep Revision | cut -d' ' -f 2`

 ctr=`expr $ctr + 1`

else

 ctr=$4

fi

echo copy file:///apps/rcs/svn/$1/trunk file:///apps/rcs/svn/$1/tag/`date +%Y%m%d`-$2-

$ctr -m "$3"

svn copy file:///apps/rcs/svn/$1/trunk file:///apps/rcs/svn/$1/tag/`date +%Y%m%d`-$2-

$ctr -m "$3"

echo list file:///apps/rcs/svn/$1/tag/

svn list file:///apps/rcs/svn/$1/tag/

exit 0

 12

INTENTIONALLY LEFT BLANK.

 13

Appendix B. The build_rpm.sh Script

The build_rpm.sh script is a generic script that can be used to automatically check out the

latest release from a repository and build the RPM. For projects consisting of multiple packages,

a master build script can be written that contains multiple calls to the build_rpm.sh script,

one for each package that needs to be built.

#!/bin/bash

Initialize some variables before we get started.

svnrepo=""

Make sure script isn't being executed as the root user.

if [`id -u` -eq 0]

then

 echo "ERROR: RPM build script can NOT be run by root"

 exit 1

fi

Print a few blank lines so script output is more visible.

echo -e "\n\n\n"

Process passed in options. If no parameters are passed, then we'll

prompt for them.

while getopts "hr:" flag

do

 case $flag in

 h) echo "This script is used to automate building packages maintained in the svn

repository."

 echo "The following parameters are accepted:"

 echo ""

 echo " <no parameters>: Script will prompt you for needed parameters"

 echo ""

 echo " -h Print this help text and exit."

 echo " -r <repo_path> Repository path to pull source code from."

 echo ""

 echo ""

 exit 0

 ;;

 r) svnrepo=$OPTARG

 ;;

 esac

done

Create the necessary directories in the user's home directory.

echo "Creating RPM build directories in your home directory...."

for i in BUILD RPMS SOURCES SPECS SRPMS tmp; do

 mkdir -p ~/rpm/$i

done

for i in i686 noarch x86_64; do

 mkdir -p ~/rpm/RPMS/$i

done

Create the rpmmacro file

echo "Creating rpm macro file (~/.rpmmacros)"

echo "%_topdir $HOME/rpm" > ~/.rpmmacros

 14

echo "%_tmppath $HOME/rpm/tmp" >> ~/.rpmmacros

echo "%_buildroot \${_tmppath}/%{name}-buildroot" >> ~/.rpmmacros

echo "%define _unpackaged_files_terminate_build 0" >> ~/.rpmmacros

Move to the directory where we will pull checkout the repository to.

cd $HOME/rpm/SOURCES

If not passed in as a parameter, prompt user for repository containing the software

to be checked out.

if ["${svnrepo}m" == 'm']

then

 read -e -p "Enter the svn repository path to checked out: " svnrepo

fi

#get the version and release from the tag

if [`basename ${svnrepo}` == "tag"]

then

 # The release names in the tag section of the repository are expected to be

 # in the following format:

 # YYYYMMDD-<ver>-<rel>

 #

 # YYYY = 4 digit year

 # MM = 2 digit month

 # DD = 2 digit day

 # <ver> = version number (such as '1.0' or '1.0p')

 # <rel> = release number (such as '1' or '3')

 echo "-- Packaging production release."

 release=`svn ls ${svnrepo} | tail -1`

 vernum=`echo ${release} | cut -d'-' -f2`

 relnum=`echo ${release} | cut -d'-' -f3 | sed -e 's/\///g'`

 # Now build the complete svnrepo path for the checkout.

 svnrepo="${svnrepo}/${release}"

fi

From the repository we can get the package name from the SPEC file

basename=`svn ls ${svnrepo}/SPECS | cut -d. -f1`

Prompt the user for the rpm package version number.

if ["${vernum}m" == 'm']

then

 read -e -p "Enter the rpm package version number: " vernum

fi

Prompt the user for the rpm package release number.

if ["${relnum}m" == 'm']

then

 read -e -p "Enter the rpm package release number: " relnum

fi

echo "Checking out ${release} from svn...."

svn co ${svnrepo} $basename-$vernum

Copy the SPEC file from the repository check-out to the proper directory.

cp -v $basename-$vernum/SPECS/$basename.spec ~/rpm/SPECS/$basename-$vernum-

$relnum.spec

Remove the repository SPECS directory, we don't want it inluded in the RPM.

rm -rf $basename-$vernum/SPECS

Now remove the hidden .svn directories, we don't want them included in the RPM.

find $basename-$vernum -type d -name '*.svn' -exec rm -rf '{}' \;

 15

SUB='$/=undef; $O=`$ARGV[2]`; open(F,$ARGV[0]); $_=<F>; s/$ARGV[1]/$O/g; print $_;'

Replace the remaining markers in the SPECS file with the actual package name.

cat ~/rpm/SPECS/$basename-$vernum-$relnum.spec.3 | sed -e

"s/%NAME_MARKER%/$basename/g" | sed -e "s/%VERSION_MARKER%/$vernum/g" | sed -e

"s/%RELEASE_MARKER%/$relnum/g" | sed -e "s/%SOU

RCE_MARKER%/$basename-$vernum/g" > ~/rpm/SPECS/$basename-$vernum-$relnum.spec

Now turn the source directory into a gzipped tarball.

tar zcvf $basename-$vernum.tgz $basename-$vernum

Now remove the source directory and temporary SPEC files.

rm -rf $basename-$vernum

Finally build the rpm package.

rpmbuild -bb ~/rpm/SPECS/$basename-$vernum-$relnum.spec

 16

INTENTIONALLY LEFT BLANK.

 17

Appendix C. Sample RPM Specification File

The following is a complete specification file.

 18

Summary: sample_application: RPM creation test package

Name: %NAME_MARKER%

Version: %VERSION_MARKER%

Release: %RELEASE_MARKER%

License: None

Group: ARL-SBNAB-PITT

Source: %SOURCE_MARKER%.tgz

Distribution: ARL-SBNAB-PITT Tools

Vendor: ARL

Packager: ARL-SBNAB-PITT

BuildRoot: %{_tmppath}/%{name}-buildroot

Provides: %NAME_MARKER%

BuildArch: x86_64

AutoReqProv: no

%description

This package contains a simple hello world application for testing RPM build

from a source code repository.

%pre

%prep

%setup

%build

./autogen.sh ; ./configure --with-db=/apps/db --with-libpq=/apps/postgres

make

%install

rm -rf $RPM_BUILD_ROOT

umask 0077

mkdir -p $RPM_BUILD_ROOT/usr/local/bin

mkdir -p $RPM_BUILD_ROOT/usr/local/etc

install -p src/hello $RPM_BUILD_ROOT/usr/local/bin

cp -v config/hello.cfg $RPM_BUILD_ROOT/usr/local/etc/hello.cfg

%clean

rm -rf $RPM_BUILD_ROOT

%files

%defattr(750, root, root, 755)

/usr/local/bin/hello

/usr/local/etc/hello.cfg

%post

%changelog

Place the changelog info for the RPM here

 19

NO. OF

COPIES ORGANIZATION

ADMNSTR

DEFNS TECHL INFO CTR

ATTN DTIC OCP

8725 JOHN J KINGMAN RD STE 0944

FT BELVOIR VA 22060-6218

US ARMY RSRCH LAB

ATTN RDRL CIN D T PARKER

BLDG 310E RM C53

ABERDEEN PROVING GROUND MD 21005

US ARMY RSRCH LAB

ATTN RDRL CIN S P RITCHEY

BLDG 310E RM C72

ABERDEEN PROVING GROUND MD 21005

US ARMY RSRCH LAB

ATTN IMNE ALC HRR MAIL & RECORDS MGMT

ATTN RDRL CIO LL TECHL LIB

ATTN RDRL CIO LT TECHL PUB

ADELPHI MD 20783-1197

 20

INTENTIONALLY LEFT BLANK.

