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ABSTRACT 

A Forward Operating Base (FOB) is designed to support combat operations in an austere 

environment, which often lacks pre-existing infrastructure. On-site diesel generators are 

the primary source of FOB electricity. Traditionally, each generator is connected to its 

own set of loads and operates independently from other generators. The benefits of 

transitioning from traditional generator employment to an alternative architecture using 

an Energy Management System (EMS) were investigated in this thesis. The EMS 

provides an interface between power sources, loads, and energy storage elements to form 

a microgrid. Using power electronics and programmable logic, the EMS provides 

capabilities such as power source selection, power metering, flow control, and peak 

power management. These capabilities enable more efficient generator utilization by 

matching real time load demand to the smallest capable power source, reducing overall 

fuel consumption. The EMS offers redundancy as it can connect any one of multiple 

power sources to critical loads. A hardware-based laboratory experiment demonstrated 

the ability to transition from one power source to another while providing uninterrupted 

current to the load. The results of the experiment validate a Simulink model of the EMS. 

An example load profile was applied to the model to compare overall fuel consumption 

between the traditional architecture and EMS-enabled microgrid. 
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EXECUTIVE SUMMARY 

A Marine Corps Forward Operating Base (FOB) is a self-contained military base 

designed to support combat operations in an austere environment, often without pre-

existing infrastructure. Similar in function to a permanent military base, a FOB contains 

planning spaces, billeting tents, and a variety of equipment, which all require electricity. 

Lacking a utility grid, the primary source of a FOB’s electrical power is provided on-site 

by diesel generators.  

Marines and soldiers are responsible for the transportation, safe employment, 

maintenance, and re-fueling of forward-deployed generators. These efforts enable 

sustained generator operation but also impose significant logistical challenges to 

deployed forces. For instance, the cost of fuel alone is a tremendous financial burden to 

the Department of Defense (DoD) at an estimated $400 per gallon delivered to a FOB [1]. 

In addition to the high dollar cost of fuel, the necessity of resupply convoys to deliver the 

fuel pose significant risk to U.S. armed forces. Former Commandant of the Marine 

Corps, General James Conway, related that 10–15 percent of Marine casualties occur 

during fuel and water convoy operations alone [2]. More efficient generator use presents 

opportunity to reduce a FOB’s overall fuel consumption and, in turn, save money while 

reducing risk to American troops. 

The efficiency of a diesel generator is related to its electrical power output, as 

shown in Figure 1 for an example 10 kW tactical quiet generator (TQG). The objective of 

this thesis is to introduce an Energy Management System (EMS) into the FOB power 

system in order to more efficiently utilize generators and reduce overall fuel 

consumption. For a given load a smaller generator at a high operating point is more 

efficient than a large generator at a low operating point in terms of fuel cost per unit of 

power. The EMS enables increased efficiency by ensuring that the smallest generator is 

selected to power the load; furthermore, if the batteries are charged and sufficiently rated, 

the EMS can shut down both generators and draw power from batteries alone. 
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Figure 1. Efficiency of a 10 kW generator versus load. After [3]. 

The EMS provides an interface between loads, power sources, and energy storage 

elements and is depicted in Figure 2. The blue box in Figure 2 highlights the EMS’s 

battery pack, boost converter, and H-bridge inverter, which allow the EMS to inject 

current to power a load or draw current to charge the battery pack. Logic stored on a field 

programmable gate array (FPGA) dictates which power source the EMS selects based 

upon the load’s power demand. Depending upon the load demand, the EMS can connect 

to an external voltage source or operate off of batteries alone. A handoff from one voltage 

source to another is depicted in Figure 2 in two steps. In step 1 the EMS disconnects from 

Source A by opening a switch. Once disconnected from Source A, the EMS then 

connects to Source B as shown by Step 2. 

A laboratory experiment was conducted to demonstrate the EMS’s ability to 

disconnect from an external voltage source, operate using batteries alone and then 

reconnect to an external voltage source while maintaining uninterrupted current to the 

load. The voltages and currents produced when disconnecting the EMS from Source A 

are shown in Figure 3, and the corresponding waveforms for the connection to Source B 

are shown in Figure 4. 
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Figure 2. Microgrid formed by the EMS, battery bank, two external voltage sources, 

and a resistive load. 

 
Figure 3. EMS provides power to the load after it disconnects VsA. (Vcfil is 

the AC bus servicing the loads). 
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Figure 4. EMS stops providing power to the load after it connects to VsB. 

A traditional method of generator employment is commonly used in FOBs where 

each generator is directly connected to its own set of loads [4]. An example of traditional 

two-generator employment is shown in the top pane of Figure 5. A notional profile 

representing each of the two generator’s load demand, as well as their sum, is depicted 

over a 24-hour period in the bottom pane of Figure 5. In this scenario the critical loads 

are connected to the 5 kW generator, and the non-critical loads are connected to the 20 

kW generator. Critical loads are those electrical devices that must be powered at all times 

to ensure safety or mission success. Non-critical loads may be briefly turned off without 

causing a major disruption to safety or operational requirements. While it is not necessary 

that under traditional generator employment the critical loads be connected to one 

generator and non-critical loads to the other, examples of such configurations do indeed 

exist [4], and it is convenient for comparison later to move forward with this 

configuration. 

Annotated boxes surrounding portions of the load profile in Figure 5 contain 

information regarding a generator’s loading. By visual inspection it is clear that both the 

5 kW and 20 kW generators run at less than 50 percent of their rated maximum load  
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throughout the notional scenario. Since a generator’s efficiency is directly proportional to 

its loading, such low generator loading as presented in Figure 5 gives room for 

optimization. 

Generator loading, fuel flow data, and fuel consumed by each generator under the 

traditional method of employment is contained in Table 1. Fuel flows were estimated 

using each generator’s capacity, operating point, and data from [5] and [6]. Using the 

traditional method of generator employment shown in Figure 5, we see that the two 

generators consumed a total of 22.7 gallons of fuel in a 24-hour period. 



 xx 

 
Figure 5. Traditional two-generator handling of the loads. 
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Table 1. Total generator fuel consumption using traditional method of generator 
employment. 

 
The integration of the EMS decreases overall generator fuel consumption while 

still providing power to the loads. The EMS-enabled scenario is compared to the 

traditional scenario using the same 24-hour load profile from the traditional scenario 

presented in Figure 5. Unlike the traditional scenario, the loads are connected to the 

EMS, not directly to a generator. Critical loads are connected to the EMS’s critical bus, 

and the non-critical loads are connected to the EMS’s non-critical bus, as shown in 

Figure 6. Another difference of the EMS-enabled setup as compared to the traditional 

method of generator employment is that no more than one generator is used to power the 

loads at any given time. In other words, for the architecture shown in the top of Figure 6, 

the EMS may connect to Generator 1, Generator 2, or operate solely on battery power. 

Design principles guiding EMS logic are as follow: 

• Provide uninterrupted power to critical loads at all times 

• Shed non-critical loads when necessary to maintain power to the critical 
loads 

• Use the battery bank to supplement power as necessary 

• Utilize the battery bank or the smallest generator possible to supply power 
to the loads 

Logic was developed and implemented in a Simulink model to explore how the 

EMS handled the notional 24-hour load profile from Figure 5. The results of the 

simulation determined which power source the EMS selected based upon the total load 

demand over the 24-hour period. Boxed regions surrounding different portions of the  

 

 

Power Source Time of Day
Duration 

(hrs)
Generator 
Load (kW)

Generator 
Operating 

Point
Fuel Flow 

(gph)

Fuel 
Consumed 

(gal)
5 kW Gen 0000-2359 24 1.5 30.0% 0.251 6.024

20 kW Gen 0000-0500 5 0 0.0% 0.4163 2.0815
0500-1000 5 4.6 23.0% 0.805 4.025
1000-1430 4.5 7.5 37.5% 1.05 4.725
1430-1930 5 4.6 23.0% 0.805 4.025
1930-2359 4.5 0 0.0% 0.4163 1.87335

TOTAL: 22.75385
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total load demand are shown in Figure 6. Each region defines the period of time in which 

the EMS selects a particular power source. An associated numeric label corresponding to 

each region relates to information contained in Table 2. 

 
Figure 6. EMS-enabled load handling. 
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Table 2. Generator selection, loading, and fuel consumption for total load profile in 
Figure 6. 

Region
Selected 

Generator
Duration 

(hrs)
Generator 
Load (kW)

Generator 
Operating 

Point

Fuel Flow 
(gph)

Fuel 
Consumed 

(gal)

1 NONE

2 5 kW 5 5 100% 0.573 2.865

3 15 kW 2.17 15 100% 1.23 2.6691

4 15 kW 2.33 9 60% 0.83 1.9339

5 5 kW 5 5 100% 0.573 2.865

6 5 kW 1.57 5 100% 0.573 0.89961

7 NONE

TOTAL: 11.23261  
It is important to note that the generator load for Region 3 and Region 6 in Table 

2 is higher than the total load demand depicted in Figure 6 because during these times the 

EMS used excess generator capacity to fully recharge the battery bank. In the EMS-

enabled scenario, the total fuel consumed by the gas generators was 11.2 gallons over the 

24-hour period. This was approximately one-half of the daily fuel consumed by the 

traditional method of generator employment from Figure 5. The decreased fuel 

consumption resulted from optimization in a variety of areas. First, the EMS used the 

battery pack to provide power in times of low loading, meaning the generators were shut 

off and not consuming any fuel. Second, the battery pack’s supplemental power allowed 

a 15 kW generator to be substituted for the 20 kW generator in the traditional scenario. 

This was beneficial because the 15 kW generator has a lower fuel flow than the 20 kW 

generator for a given load. Third, the EMS only operated one generator at a time. The 

chosen generator was smallest option available that could power the loads while the other 

generator was shut down. Results from Table 2 show that the generator operating points 

are as high as 100 percent and are consistently higher than those shown in Table 1 for the 

traditional method of generator employment. 



 xxiv 

THIS PAGE INTENTIONALLY LEFT BLANK 

  



 xxv 

LIST OF REFERENCES 

[1] R. Tiron, “$400 per gallon gas to drive debate over cost of war in Afghanistan,” 
The Hill, [Online]. Available: http://thehill.com/homenews/administration/63407–
400gallon-gas-another-cost-of-war-in-afghanistan.  

 
[2] B. Frazee, “Energy symposium looks at reducing the load in Marine Corps 

expeditionary operations,” in U. S. Marine Corps Forces Reserve, February 2010, 
[Online]. Available: 
http://www.marforres.marines.mil/MFRNews/NewsArticleDisplay/tabid/7930 
/Article/81664/.  

 
[3] “Hybridization tradeoffs,” Naval Sea Systems Command (NAVSEA) Warfare 

Centers Carderock, U. S. Navy, Bethesda, MD. 
 
[4] E. Shields, B. Newell, “Current power and energy requirements of forward 

Deployed USMC Locations,” Released January 2012, Quantico, VA. 
 
[5] “Approximate diesel fuel consumption chart” [Online]. Available: 

http://www.dieselserviceandsupply.com/Diesel_Fuel_Consumption.aspx. 
 
[6] “E2O update, Nov 2011,” USMC Expeditionary Power Systems, U.S. Marine 

Corps. 
  



 xxvi 

THIS PAGE INTENTIONALLY LEFT BLANK 



 xxvii 

ACKNOWLEDGMENTS 

I give my appreciation to my thesis advisors, Dr. Oriti and Dr. Julian, for their inspiration 

and guidance throughout the development of my thesis. I also thank the Department of 

Computer and Electrical Engineering faculty and staff for their patience in classroom, 

assistance in the laboratory, and positive impact on my academic success. I extend a 

grateful acknowledgement to the library staff for the vital support they provided, and to 

the thesis processors for their commitment to excellence.  

To my wife, Nikki, I give you my sincere thanks for your unwavering support. I 

share my achievements with you. 



 xxviii 

THIS PAGE INTENTIONALLY LEFT BLANK 

 



 1 

I. INTRODUCTION 

A. BACKGROUND 

A Marine Corps Forward Operating Base (FOB) is a self-contained military base 

designed to support combat operations in an austere environment often without pre-

existing infrastructure. Similar in function to a permanent military base, a FOB contains 

planning spaces, billeting tents, and a variety of equipment, which all require electricity. 

However, lacking a utility grid the primary source of a FOB’s electrical power is 

provided on-site by diesel generators. 

Marines and soldiers are responsible for the transportation, safe employment, 

maintenance, and re-fueling of forward-deployed generators. These efforts enable 

sustained generator operation but also impose significant logistical challenges to 

deployed forces. For instance, the cost of fuel alone is a tremendous financial burden to 

the Department of Defense (DoD) at an estimated $400 per gallon delivered to a FOB [1]. 

In addition to the high dollar cost of fuel, the necessity of resupply convoys to deliver the 

fuel pose significant risk to U.S. armed forces. Former Commandant of the Marine Corps 

General James Conway related that 10–15 percent of Marine casualties occur during fuel 

and water convoy operations alone [2]. 

The energy profile of for a typical FOB is presented in [3]. Its energy demand by 

category is summarized in Figure 1. The majority of electrical energy is consumed by 

environmental control units (ECUs), which are used to heat or cool ambient air in the 

billeting spaces or the combat operations center (COC). The next largest electrical load is 

presented by the Ground Based Operational Surveillance System (GBOSS). Other loads, 

such as lighting or computers, collectively represent only 10 percent of the total energy 

demand. 



 2 

 
Figure 1. FOB electrical distribution. From [3]. 

B. OBJECTIVE 

More efficient generator use presents an opportunity to reduce a FOB’s overall 

fuel consumption and, in turn, save money while reducing risk to American troops. An 

internal combustion engine, whether it powers an automobile or an electrical generator, 

has varying fuel efficiency depending upon the load it drives. For example, a car owner 

may notice that his vehicle achieves the highest fuel efficiency (in terms of miles traveled 

per gallon) when driving at a particular speed, perhaps 55 miles per hour. In this case, the 

vehicle’s fuel efficiency is related to its speed assuming all other factors such as terrain or 

wind remain equal. In a similar manner the efficiency of a diesel generator is related to its 

electrical power output as shown in Figure 2 for an example 10 kW tactical quiet 

generator (TQG). 
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Figure 2. Efficiency of a 10 kW generator versus load. After [4]. 

One measure of a generator’s efficiency relates the electrical power delivered to 

the load per quantity of fuel consumed by 

 Power Delivered to LoadGenerator Efficiency (W/gal) = 
Quantity of Fuel Consumed

 
 
 

 (1) 

where the power delivered to the load is measured in Watts and the quantity of fuel is in 

gallons. A generator’s operating point is given by 

 Actual LoadOperating Point (%) = 100%
Maximum Rated Load

 
 
 

 (2) 

where the operating point is the generator’s load expressed as percentage of its total 

capacity. 

Some inferences can be drawn from Figure 2 by analyzing the relationship 

between generator efficiency and operating point. First, at no load the efficiency of the 

generator is zero. This makes sense because although the generator is not delivering 

power to a load its engine is still idling and consuming fuel. Second, the generator’s 

maximum efficiency occurs at a 100 percent operating point. Finally, the generator’s  
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efficiency monotonically increases as its operating point (or loading) increases. For the 

purpose of this thesis the aforementioned inferences are assumed to apply to the range of 

TQGs fielded by the United States Marine Corps (USMC).  

The EMS functionality developed in this thesis allows the EMS to choose 

between two differently rated generators or a battery bank as the primary source of 

electrical power. The objective of this thesis is to introduce an EMS into the FOB power 

system in order to more efficiently utilize generators and reduce overall fuel 

consumption. This goal is accomplished by ensuring that the EMS chooses the smallest 

generator capable of powering the load as the primary power source so that the generator 

operates at high efficiency. Additionally, the EMS has the option of using energy stored 

in a battery pack and shutting down all generators during periods of light loading. 

Generator rating, battery bank state of charge (SoC), and real-time power demand all 

factor into the source selection decision. 

C. RELATED WORK 

The EMS provides an electrical interface between gas generators, renewable 

sources, energy storage elements, and loads. Power electronics and digital logic provide 

key underlying technologies that enable the EMS to measure and control the flow of 

power between connected elements [5–6]. Solid state systems have been developed and 

analyzed for applications ranging from peak power control to direct current power 

distribution to control of power in autonomous microgrids [7–10]. Already, the Marine 

Corps has integrated solar panels and batteries into some FOB power systems [11], 

reinforcing the need for a power management solution that can integrate all aspects of the 

microgrid to include generators and loads. 

D. THESIS ORGANIZATION 

A small-scale hardware-based experiment is introduced in Chapter II to verify 

that the EMS can successfully transfer from an external power source to its H-bridge 

inverter and then back to an external voltage source. Next, a physics based model of the 

EMS is implemented in Simulink, and the results of the simulation are verified against 

those of the laboratory experiment. 
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Two methods of generator employment are explored in Chapter III. The first 

method is considered traditional, wherein two generators are each connected to a set of 

loads and operate independently from one another. The second method uses the EMS as 

the common point of connection between both generators, their loads, and a battery bank, 

forming a microgrid. EMS logic dictates which power source serves the loads under the 

microgrid architecture. Design considerations guiding EMS development are introduced, 

as well as those factors that influence system operation such as load demand, generator 

rating, and the composition and capabilities of the battery bank. 

An example scenario is used in Chapter IV to demonstrate how the EMS manages 

available power sources as a function of load demand. In this scenario a 24-hour power 

profile is presented showing the power demanded by two sets of loads and the resulting 

total power requirement. The 24-hour scenario is scaled down to a 1.5 second version and 

applied to a model of the EMS created in Simulink. Important systems states are analyzed 

in detail throughout the simulation and include the status of generator connections, 

supplemental power from the battery bank, and non-critical load bus shedding. 

The total fuel consumed by the generators in both the traditional and EMS-

enabled architectures is compared in Chapter V. The 24-hour load profile from Chapter 

IV is applied directly to the traditional generator scenario. For the EMS-enabled 

architecture, the results of the Simulink model from Chapter IV are used to determine 

which generator is operating at any given time. The fuel consumed by each generator in 

either scenario is calculated from the particular generator’s operating point and its 

corresponding fuel flow. The sum of all the fuel quantities consumed throughout the day 

is compared to confirm the thesis that the EMS-enabled microgrid architecture reduces 

fuel consumption as compared to traditional generator employment. 
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II. LAB EXPERIMENT AND MODEL VALIDATION 

A. EMS FUNCTIONALITY 

The EMS provides an interface between the loads, conventional and renewable 

power sources, and energy storage elements, as shown in Figure 3. The EMS has the 

potential to carry out many useful functions applicable to today’s power management 

needs. These capabilities include peak power management, uninterrupted power to 

critical loads, automatic power source selection, and selective load shedding. The 

functionality demonstrated in this chapter focuses on the EMS’s ability to transfer from 

one power source to another while providing uninterrupted power to the load. 

 
Figure 3. Diagram of EMS interconnections.  

B. EMS DESIGN AND HARDWARE 

A small scale laboratory experiment conducted to demonstrate the EMS’s ability 

to transfer from one voltage source to another while maintaining current to the load is 

presented in this section. The electrical schematic depicting the experiment is shown in 

Figure 4, where VsA=VsB=116 Vrms, LsA=LsB=300 μH, Lfil=1160 μH, Ccfil=12 μF, and the 

load is a 400 Ω resistor. The EMS includes a battery pack, boost converter, and H-bridge 

inverter, which are depicted within the boxed region in Figure 4. 



 8 

 
Figure 4. Schematic of experimental setup. 

The hardware on the laboratory workbench is shown in Figure 5 including, from 

the bottom of the stack, a power conversion custom printed circuit board (PCB), field-

programmable gate array (FPGA) development board and signal processing board. The 

battery pack is visible on the left hand side. 

 
Figure 5. EMS set up in the lab. 
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A block diagram illustrating the EMS’s functional components and 

interconnections is shown in Figure 6. The EMS logic was implemented on a personal 

computer (PC) using Simulink’s standard features and an additional Xilinx toolbox. The 

blocks on the right-hand side of the Figure 6 represent the EMS’s inputs. The PC 

communicates with the FPGA through a universal serial bus (USB) port and an interface 

chip. The Simulink code was loaded from the PC onto the FPGA using Xilinx’s System 

Generator software. A program called Chipscope was used to manually control desired 

signals transferred between the FPGA and functional components on the PCB. The major 

functional EMS components are contained in the large rectangle in the center of the 

diagram, which represents the PCB. In addition to sending user-defined inputs from 

Chipscope, the logic embedded on the FPGA is also used to control the EMS. Sensors on 

the PCB make voltage and current measurements of connected devices and relay this 

information to the FPGA through an analog-to-digital (A/D) converter. The FPGA 

processes signals using embedded logic and sends control signals to the functional 

components on the PCB. These components include the insulated gate bipolar transistor 

integrated power module (IGBT IPM), transistor-to-transistor logic (TTL) interface, and 

liquid crystal display (LCD). The IGBT IPM enables the EMS to control the flow of 

power between the AC voltage source and H-bridge converter. Signals from the TTL 

interface connect or disconnect loads using relays. Information, such as real-time voltage 

or current measurements, is displayed on the LCD.  

 
Figure 6. EMS electronics diagram. 
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For the laboratory demonstration, the switching events depicted in Figure 4 were 

manually commanded. First, the source VsA was disconnected from the load. The current 

and voltage waveforms produced during the transition from VsA to the EMS as a voltage 

source are depicted in Figure 7. At 75 ms, the moment of the disconnect event, the EMS 

current stepped from 0 to 270 mArms as the EMS provided uninterrupted in-phase current 

to the load. In this experiment the EMS was programmed to produce a slightly lower 

voltage Vcfil than that of the grid. This allowed easy visual identification of the switching 

events depicted in Figure 7 and Figure 8. 

 
Figure 7. Experimental voltage and current measurements when VsA is 

disconnected. 

Next, the second power source, VsB, was connected to the load. The current and 

voltage waveforms produced during the transition from the EMS to VsB are depicted in 

Figure 8. At 73 ms, the instant when VsB was connected, Ils increased from 0 A to 270 

mArms, and IEMS dropped to 0 A. During this transition the load continued to receive 

uninterrupted in-phase current as shown by the Iload waveform in Figure 8. 
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Figure 8. Experimental voltage and current measurements when VsB is connected. 

C. MODELING THE EMS IN SIMULINK 

The EMS physics based model was implemented in Simulink, and then the results 

of the simulation were compared to those obtained in the laboratory experiment. The top 

level of the model is depicted in Figure 9. The most significant features of the EMS 

hardware were taken into consideration when designing the Simulink® model. The 

sources VsA, VsB and the H-bridge reference voltages were made in phase with one 

another for ease of modeling. In reality voltage sources are non-ideal and their 

frequencies drift slightly from the desired frequency. Therefore, the relative phases of 

two similar frequency voltage waveforms drift closer and farther apart over time. 

Eventually, the phase difference becomes so minimal that we consider two waveforms to 

be momentarily in phase. At this point a phase-locked loop could be used to synchronize 

the two voltages, or a switch could be closed to transition seamlessly between one 

voltage source and the other. By modeling the voltage sources in phase with one another, 

we get the same result, an in-phase voltage transition, without introducing the complexity 

of frequency drift or phase-locked loops. 
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The switches used to connect or disconnect VsA and VsB from the EMS are 

modeled as thyristors where the EMS provides the gate signals. For this simulation we 

wanted to disconnect VsA, operate the EMS in island mode, and then connect to VsB. For 

the purposes of this thesis, the term ‘island mode’ refers to the state of the EMS when it 

is disconnected from a generator. The thyristor was turned on at a Vcfil zero crossing in 

order to minimize power dissipation when the switch is closed. The thyristor can only 

turn off when current stops flowing through it, which corresponded to a zero crossing of 

source current IsA or IsB in our model. The same voltage source, labeled Generator 1 in 

Figure 9, was used to represent both VsA and VsB. The H-bridge inverter produced a 

constant 110 Vrms in island mode and did not supplement any current when the EMS was 

connected to a voltage source. 

 
Figure 9. Simulink model used to validate the lab experiment. 

The current and voltage waveforms produced by the simulation when VsA was 

disconnected are shown in Figure 10, and the simulated results when VsB was connected 
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are shown in Figure 11. These simulated waveforms compare favorably with those 

produced by the lab experiment in Figures 7 and 8, validating the Simulink model. In the 

simulation, we disconnected VsA at approximately 100 ms, shown in Figure 10. As with 

the experimental results from Figure 7, the EMS operated as a voltage source when we 

disconnected VsA and provided uninterrupted, in-phase, current to the load. We designed 

the model such that when the EMS was in island mode it produced a slightly lower output 

bus voltage as compared to when it was connected to a voltage source in order to reflect 

the EMS’s similar operation in hardware. 

During the transition from island mode to grid-connected mode the simulated 

results from Figure 11 aligned well to the lab results shown in Figure 8. In the simulation 

we connected VsB to the EMS at 92 ms. Once connected to VsB, the EMS ceased 

operating as a voltage source and the injected current IEMS went to zero. The output bus 

voltage Vcfil rose slightly from the island mode voltage of 110 Vrms to the grid voltage of 

116 Vrms. 

 
Figure 10. Simulated voltage and current measurements when VsA is disconnected. 
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Figure 11. Simulated voltage and current measurements when VsB is connected. 

D. CHAPTER SUMMARY 

A small-scale hardware-based experiment was conducted to verify that the EMS 

could successfully transfer from an external power source to its H-bridge inverter in 

island mode and then back to a voltage source. The results confirmed that the EMS was 

able to provide uninterrupted power to the load using either source and throughout the 

handoff events. Next, a physics based model of the EMS was developed and 

implemented in Simulink. The model produced voltage and current waveforms in Figures 

10 and 11, which replicated those from the lab experiment in Figures 7 and 8. 
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III. EMS FUNCTIONALITY 

A. DESIGN PRINCIPLES 

Traditionally, generators are connected directly to sets of loads or power 

distribution buses such that a generator supplies power to its loads independently from 

other generators and loads [3]. This traditional architecture is illustrated in Figure 12 for 

two generator-load nodes. The generators operate continuously, and their power demand 

fluctuates depending upon the operational state of connected loads. 

 
Figure 12. Two generator and load nodes. 

An alternative method of connecting loads to power sources is by using the EMS. 

This configuration, shown in Figure 13, allows the EMS to make power source selection 

decisions based upon programmable logic, real-time load power demand, and battery 

bank state of charge. 

The design principles for EMS employment are to:   

• Provide uninterrupted power to critical loads at all times 

• Shed non-critical loads when necessary to maintain power to the critical 
loads 

• Use the battery bank to supplement power as necessary 

• Utilize the battery bank or the smallest generator possible to supply power 
to the loads 

 



 16 

 
Figure 13. Combined loads connected to the EMS. 

For the EMS-based design, loads were categorized into two categories, non-

critical and critical. A non-critical load is one that may be turned off for a short period of 

time with minimal impact to its user. For example, we consider a refrigerator a non-

critical load because it can be turned off for 60 seconds without significantly impacting 

the temperature of the food inside. Air conditioners or ECUs are also non-critical and can 

be shed momentarily with minimal impact on daily business. On the other hand, critical 

loads include anything that must remain energized in order to satisfy a mission 

requirement or ensure safety. Allowing the EMS to suddenly secure overhead lighting 

poses a safety concern, for instance, and disrupting power to a computer can result in data 

loss or damage. The EMS has two distinct AC buses, one for the critical loads and one 

for the non-critical. Each of these buses is controlled by a thyristor and supplies 120 Vrms 

AC power to the respective loads. 

B. EMS LOGIC 

When operating in island mode, the EMS must recognize when the load demand 

exceeds the battery bank’s power capability and take corrective action. One course of 

action the EMS may take is to connect to a generator. In this case the load demand  
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dictates whether the EMS will choose the smaller or larger generator. In the unlikely 

event that both generators have failed, the EMS will shed the non-critical bus in order to 

preserve power to the critical load bus using the batteries. 

Another scenario arises when the EMS is connected to a generator and the load 

increases above the generator’s capacity. Depending on the magnitude of the power 

deficit, the EMS has several options from which to choose in order to correct the 

condition. If the battery bank has sufficient capacity the EMS can supplement current 

through the H-bridge inverter, bringing the power demand of the generator back within 

its operating capacity. Alternately, if the batteries are discharged or unable to satisfy the 

power deficit, the EMS can connect to a larger generator, assuming one is available. 

Before a handoff from one generator to another the EMS must briefly shed the non-

critical loads. This step is necessary to ensure that the critical loads continue to receive 

power when the EMS briefly enters island mode. Once the desired generator is connected 

the EMS re-enables the non-critical bus and normal operation resumes. If the largest 

available generator is connected and the EMS cannot satisfy the load demand even with 

the help of supplemental EMS current, the EMS must shed the non-critical bus to 

preserve power to the critical loads. 

Many variables and thresholds exist that govern the operation of the EMS in light 

of the aforementioned scenarios. For example, the battery bank’s state of charge 

determines in part whether or not the EMS can operate in island mode or inject 

supplemental current. As the batteries discharge, a point is reached where the EMS must 

recharge them using a generator. Another important consideration is the delay time 

between EMS logic decisions switching states. Consider the case where the EMS is 

connected to the larger of two generators, and then assume the load demand increases 

beyond the generator’s capacity even when the EMS injects maximum rated 

supplemental current. In order to preserve power to the critical loads, the EMS has to 

shed the non-critical load bus. With the non-critical load bus shed, the power deficit is 

alleviated. The question remains, though, how long should the EMS wait to attempt re- 
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connecting the non-critical bus?  This question, and many more like it, posed challenges 

in the design of the EMS logic. In order to organize the major logic decisions, the flow 

charts shown in Figure 14 and Figure 15 were developed. 
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Figure 14. Logic flowchart for EMS when generator is at or below 100 percent capacity. 



 19 

 
Figure 15. Logic flowchart for EMS when generator is over 100 percent capacity. 
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C. EMS POWER CALCULATION 

One of the primary metrics that influenced the design of the EMS studied in this 

thesis was the power demand placed upon the source generator. It was necessary that the 

EMS was able to calculate power flowing from the source generator in real time. Before 

we determined how the EMS could make this calculation within the context of a complex 

microgrid, a simpler circuit model facilitated a fundamental understanding power 

calculation. The circuit presented in Figure 16 contains three elements: an ideal 110 Vrms 

60 Hz voltage source, a 240 µF capacitor, and a 10 Ω resistive load. 

 
Figure 16. Simple RC circuit 

The goal in analyzing the simple resistor-capacitor (RC) circuit was to determine 

how much real power the voltage source provided. One way of achieving this was to use 

graphical analysis based upon the voltage and current waveforms produced from the 

voltage source. The circuit was simulated in the Simulink run-time environment. One 

cycle of the steady state source voltage and current waveforms is reproduced in Figure 

17.  
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Figure 17. RC circuit source voltage and current. 

The voltage and current waveforms in Figure 17 have peak values of 155.5 V and 

10.45 A, respectively. Since the Vsrc and Isrc are pure sinusoids, their respective root-

mean-square (RMS) values are given by 

 ,    
2 2

peak peak
rms rms

V A
V A= =  (3) 

From Equation 3 the respective voltage and current RMS values are 110 Vrms and 

7.4 Arms. The voltage and current waveforms are displaced in time by 2.2 ms. We can 

express this 2.2 ms time difference in terms of a phase angle θD by 

 (time delay)(frequency)(360 )Dθ = ° , (4) 

or for the values from our specific example, 

 (2.2ms)(60Hz)(360 ) 48Dθ = ° ≈ ° . (5) 

Isrc leads Vsrc, therefore θD=+48°. The graphical relationship between the 

magnitudes and angular difference between the current and voltage from Figure 17 is 

depicted in Figure 18.  
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Figure 18. Isrc and Vsrc with phase angle θD. 

The real power for the example RC circuit is given by 

 cos( )rms rms DP V I θ= , (6) 

or for our specific example, 

 (110 )(7.4 )cos(48 ) 544.7 Wattsrms rmsP V A= ° =  (7) 

While Equation 6 can only be used for sinusoidal steady state analysis, a more 

general equation for real power P, which correlates to its definition as “average power,” 

is given by  

 
0

0

1 ( ) ( )
t T

t

P i v d
T

τ τ τ
+

= ∫ , (8) 

where T is the period in seconds, t0 is an arbitrary time, i(τ) is the instantaneous current in 

amps, and v(τ) is the instantaneous voltage in volts. 

An advantage of Equation 8 over other equations for real power is that RMS and 

displacement power factor calculations are not required. This becomes especially useful 

when the current contains frequencies other than the fundamental; in other words, when it 

is periodic but not sinusoidal. Since the EMS handles currents and voltages that are 

periodic but are not always purely sinusoidal, Equation 8 was used as the method of real 

power calculation to implement in the EMS. 
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The first four cycles of voltage and current for the circuit in Figure 16 are shown 

in Figure 19. At time zero, we energized the circuit and steady-state operation was 

reached by the second cycle. The real-time power calculation of real power using 

Equation 8 is shown in Figure 20.  

 
Figure 19. Voltage and current produced by energizing the circuit from Figure 16. 

 
Figure 20. Real-time power calculation for voltage and current from Figure 19.  

Notice from Figure 20 that the power measurement converges to the correct 

value, 545 W, at the end of one time period T in steady state operation. To obtain a more 

useful plot of real power, a sample-and-hold operation is applied at the end of each cycle 

to create Figure 21.  
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Figure 21. Sample and hold values after each cycle from Figure 20.  

The simulation accurately determined the real power flowing through our circuit 

after each cycle as shown in Figure 21. However, the sample and hold algorithm 

introduced a one cycle delay. Under transient conditions the real power calculation we 

implemented in our EMS model adds one cycle time of lag to the circuit’s settling time. 

At a an operating frequency of 60 Hz, one cycle takes 16.7 ms, which we allowed as a 

tolerable delay terms of EMS design and functionality. The Simulink implementation of 

the power calculation from Equation 8 is shown in Figure 22. 

 
Figure 22. Average power calculation algorithm employed by the EMS model. 

D. BATTERY BANK 

The EMS can use energy stored in the battery bank to supplement load current 

when a generator is connected or to potentially provide all of the load power when the 

EMS is in island mode. Factors such as the battery bank’s storage capacity, the maximum  
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rated battery current, and semiconductor ratings limit the EMS’s actual power capability. 

For the purpose of this model we considered the size of the battery pack as the most 

significant limiting factor. 

1. Battery Technology 

Numerous energy storage technologies exist that can serve the purpose of the 

EMS battery bank. Some of the most widely used technologies are illustrated in Figure 

23, which illustrates rated power and discharge time of installed systems. 

 
Figure 23. Discharge time and rated power of energy storage technologies. From 

[12]. 

Some of the battery choices shown in Figure 23 are lithium-ion, nickel-cadmium, 

and nickel-metal hydride. These rechargeable batteries have been widely used in portable 

electronics due to their high energy density. Lead acid batteries, while typically installed 

in higher-power applications than the EMS, also have desirable characteristics that make 

them a good choice as the building block of the EMS battery bank. Lead acid batteries  
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have been used in automobiles for quite some time and are widely available around the 

globe. In addition, their cost per cycle is comparable to nickel-cadmium and lithium-ion 

as shown in Figure 24. 

 
Figure 24. Energy storage technology efficiency over lifetime in cycles. From [12]. 

A more detailed analysis of competing battery technologies remains a worthwhile 

endeavor but was outside the scope of this thesis. For the sake of continuing with the 

study of the EMS in this thesis, the Genesis NP12–12 rechargeable sealed lead-acid 

battery was chosen as the storage technology of choice based upon our familiarity with 

them in a laboratory setting. 

2. EMS Battery Bank Size and Weight 

A portion of the Genesis NP12–12 specification sheet is depicted in Figure 25. 

Battery capacity, measured in Amp-hours (Ah), is a function of draw time shown in the  
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specification sheet under the “nominal capacity” heading. It was instructive to estimate 

the size, weight, cost and other important features of battery bank capable of producing 1 

kW of power. 

The battery bank design was based upon a maximum of six hours of continuous 

battery draw time. The rationale behind this decision was based upon the assumptions 

about what a load profile would look like. It was predicted that the EMS could power the 

load using batteries alone during times of minimal load demand. It was further predicted 

that the period of minimal load demand was likely to occur at night when people were 

sleeping and fewer appliances were operating, and six hours was a conservative time 

period for how long an average person sleeps. 

 
Figure 25. Genesis NP12–12 rechargeable lead-acid battery specifications. 
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The battery power rating was calculated from average current and average voltage 

off of the specification sheet. The battery specification sheet in Figure 25 shows a linear 

relationship between the power draw time and amp-hour rating between across the five, 

10, and 20-hour draw times under “nominal capacity.” Interpolation for a draw time of 

six hours gave a battery capacity of 10.6 Ah. Dividing 10.6 Ah by six hours yields an 

average battery current of 1.78 A. 

The battery voltage at the end of discharge between the five and 10-hour draw 

times, under the “nominal capacity” heading in Figure 25, is 10.2 and 10.5 volts, 

respectively. For a six hour draw period, linear interpolation between the five and 10-

hour draw times gives a discharged battery voltage of 10.26 V. Battery voltage as a 

function of time is shown in Figure 26 along with an annotation for the average voltage 

over the six hours. 

 
Figure 26. Battery voltage during a six hour draw period. 

Next, the average battery power was calculated over the six hour time by 

multiplying the battery’s average voltage and average current. This resulted in a power of  

 

 



 29 

(1.78 A) (11.13 V), or 19.8 W, per battery. Based on an approximate value of 20 W per 

battery, it was concluded that 50 batteries were required to provide 1 kW of power for six 

hours. 

The EMS can charge the battery bank whenever a generator is connected and its 

capacity exceeds the load power demand. The battery specification sheet limits the 

battery charging current to 3 A and the charging voltage to 15 V for a maximum of 

charging power of 45 W per battery. Therefore, for 50 batteries the maximum allowable 

charging power is 2.35 kW. The 50 batteries necessary to provide 1 kW for six hours 

weigh a total of 441 pounds and occupy a space 3 feet wide by 3.5 feet long by 6 inches 

tall. At approximately $25 per battery, the total cost for the batteries is $1,250. 

E. CHAPTER SUMMARY 

Traditional employment of two generators and their associated loads was 

compared to a microgrid architecture built around the EMS. Four principles guide EMS 

logic design, the most vital being the EMS’s requirement to provide uninterrupted power 

to critical loads. EMS power source selection decisions are based upon system states such 

as load demand, generator capacity, and battery bank SoC. A simple RC circuit was used 

to illustrate the chosen method of power calculation used in the EMS model. Various 

battery technologies were introduced, and the lead-acid battery was used ultimately 

chosen to form the basis of the EMS battery bank. Size, weight, and cost were estimated 

for a lead-acid battery bank capable of providing 1 kW for six hours. 
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IV. SAMPLE SCENARIO USED TO APPLY EMS 
FUNCTIONALITY 

A. INTRODUCTION 

In this chapter overall generator fuel consumption was compared for two different 

power architectures. The loads remained the same in the two architectures and included 

small appliances such as laptop computers, overhead light-emitting diode (LED) lighting, 

radios, and battery chargers as well as higher power appliances like a refrigerator, an 

ECU, and a microwave oven. A simple power architecture was chosen consisting of two 

generators and their respective loads and then compared to optimized an architecture 

using an EMS. 

B. TWO POWER ARCHITECTURES 

The generators are assumed to be single-phase, 120 Vrms, 60 Hz, diesel powered 

synchronous machines. In the traditional architecture, the two generators provided power 

for two distinct sets of loads independent from one another. We estimated a combined 

peak power demand 4 kW for the small appliances connected to smaller generator based 

upon load data from [3]. The larger generator was responsible for powering larger loads 

such as an air conditioner and refrigerators with a peak power demand of 16 kW. 

The next decision regards the size of the generators needed for our control case. 

One method of determining generator capacity is by calculating the sum of the peak 

power requirements of all connected loads and choosing a generator slightly larger as to 

ensure an excess power margin. In the military, utilities Marines typically select a 

generator such that the sum of all connected loads at peak power represents only 80 

percent of the generator’s capacity [11], a paradigm we called the 80-percent rule. Using 

the 80-percent rule as our guide for the traditional scenario, we selected a 5 kW capacity 

for Generator 1 and a 20 kW capacity for Generator 2. The layout of the two generators 

and their respective loads is shown in Figure 27. 
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Figure 27. Generators and loads used in the traditional scenario. 

The second architecture used the EMS to interface between the generators, loads, 

and a battery bank. The block diagram of the EMS-based architecture is shown in Figure 

28. 

 
Figure 28. Generators and loads connected by the EMS. 
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It is important to note that for our EMS-based scenario, we replaced the 20 kW 

generator from Figure 27 with a 15 kW generator in Figure 28. We chose a smaller 

generator for two reasons. First, under the traditional scenario the intent behind limiting 

generator output by 20 percent of its total capacity is to create a safety margin for 

transient conditions that may place additional demand upon the generator. However, 

modern generators such as those employed by the Marine Corps are designed to handle 

sustained operation at 100 percent and are capable of “absorbing transient loads above 

their rated load without harm to the system” [11]. Reviewing the trend between generator 

loading and efficiency in Figure 2 reveals that limiting generator loading to 80 percent 

results in sub-optimal generator efficiency. Furthermore, under-utilizing a generator for 

extended periods of time results in a higher probability of failure when the load is 

increased [11]. Therefore the 80 percent maximum loading constraint imposes an 

unnecessary cost in terms of limited fuel efficiency and increased maintenance. 

Second, the EMS enabled us to use a smaller generator because it offered the use 

of batteries to supply additional power or shed the non-critical loads during transient peak 

power situations. A tradeoff existed between how much power we could supplement with 

batteries and how heavy and expensive the bank of batteries would be. We chose a 

battery pack consisting of 150 Genesis NP12–12 lead acid batteries. This battery pack 

weighs roughly 1,200 pounds and measures 3 feet wide by 3.5 feet long by 1.5 feet tall. 

Compared to the traditional scenario, the added weight of the battery pack is partially 

offset by 550 pounds, which is the difference between the 15 kW and 20 kW generators. 

At full charge this battery pack is capable of providing 3 kW for six hours. 

While we intend to use the battery pack as a primary power source during long 

periods of low load demand, the battery bank is also capable of providing much higher 

power. For example, at full charge each individual battery can sustain a one hour draw 

rate shown of 7.2 A, as shown in Figure 25. The average voltage over a one hour period, 

as the batteries discharge from 12 V down to 9.6 V, is 10.8 V. Therefore, each battery can 

provide (7.2 A) (10.8 V) = 77.8 W. Using 150 batteries our battery pack can provide  
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(150) (77.8 W) = 11.7 kW for one hour. Even higher power draw is possible for shorter 

discharge durations since the maximum sustained current per battery is 40 A, and the 

maximum short duration current is 360 A. 

C. NOTIONAL 24-HOUR LOAD PROFILE 

Based on sampled load data from that is shown in Figure 29. This notional load 

profile is just one of many scenarios that could be applied to the EMS and is useful in 

illustrating room for optimization under traditional generator employment. 

 
Figure 29. Notional 24-hour load demand profile. 

The critical loads in this scenario are the lower power loads, which are connected 

to the smaller generator in the traditional scenario shown in Figure 27, or to the critical 

load bus if using an EMS. In the sample scenario we assumed the critical loads remain 

relatively constant throughout the day, reflected by the dashed red line in Figure 29. The 

blue dashed line represents the power demanded by the non-critical loads. As shown in 

Figure 27, the non-critical loads in this scenario are connected to the larger generator, or 

if using the EMS, they are connected to the non-critical bus. The sum of the critical and 

non-critical loads is the total load demand and is shown by a solid green line. 
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Throughout the day the total load demand ranges from 1.5 kW at night up to 9 

kW during the afternoon. The total load demand is greatest during the afternoon, which 

correlates to the warmest time of the day when air-conditioners and ECUs are most often 

running. 

We assumed that under the traditional generator employment both generators run 

around-the-clock. We considered this method of employment as our control case to 

which we compare the EMS-enabled microgrid later in Chapter V. Based on the logic 

presented in Chapter III, we programmed our Simulink model EMS to make power 

source selection decisions. The model, along with its initial conditions file, is contained 

in Appendix A and B. The power source selection decisions depended upon very few 

user inputs that consisted of the maximum power rating of each connected generator and 

maximum desired power that the EMS may draw from the battery pack. To test the EMS 

logic, we condensed the 24-hour load profile from Figure 29 and into a 1.5 second 

version shown in Figure 30. 

 
Figure 30. Twenty-four hour load demand profile from Figure 29 condensed to a 1.5 

second version for use simulation. 
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Using a series of steps, we simulated different sized resistive loads switching on 

and off according to the power steps presented in the load profile. Applying the desired 

load profile from Figure 30 to the EMS model yielded the actual load profile in Figure 

31. The step events from Figure 30 are identified in Figure 31 as well as the maximum 

power thresholds used by the EMS logic for the battery pack, Generator 1, and Generator 

2. 

 
Figure 31. Load profile produced by the simulation, using the desired loads in Figure 

30. 

Important system states are shown in Figure 32 corresponding to the power 

profile and event numbers shown in Figure 31. 
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Figure 32. EMS states according to the events identified in Figure 31. 

Event 1 corresponds to the initial startup of the system. Only the critical loads are 

energized at the beginning of the simulation, accounting for a constant 1.5 kW power 

demand as shown in Figure 31. Since the 1.5 kW load is within our designed maximum 

continuous battery power of 3 kW, the EMS uses the battery as the only source of power 

to the loads. Accordingly, both Generator 1 and Generator 2 remain disconnected and the 

EMS acts a voltage source and supplies current to the load as seen in the top and center 

plots in Figure 32, respectively. 

The first step increase in total load power occurs at Event 2 in Figure 31 and 

corresponds to non-critical loads switching on and drawing 4.6 kW of power. The sum of 

the constant 1.5 kW critical loads and the 4.6 kW demand of the non-critical loads during 

this time yields a total power of 6.1 kW. At Event 2, the total load demand of 6.1 kW 

exceeds the 3 kW battery limitation. However, the EMS does not immediately take 

corrective action, as evidenced by the unchanged states at Event 2 in Figure 32. We 

implemented a timer to prevent the EMS from taking a corrective action unless a power 

threshold remains exceeded for at least 0.10 seconds. The reason we implemented such a 
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delay is to prevent transient power spikes from altering the operational state of the EMS. 

Therefore, after 0.10 seconds have elapsed following Event 2, wherein the load power 

continues to exceed the battery’s desired 3 kW limit, the EMS initiates a handoff from the 

battery pack to a Generator 1. The EMS selects Generator 1 as the desired generator, vice 

Generator 2, because the design goals we outlined in Chapter III state that the EMS 

should always choose the smallest generator possible to power the load. The combination 

of Generator 1’s 5 kW capacity, plus the additional battery capacity of 3 kW, is sufficient 

to power the 6.1 kW sensed load. 

In a hardware implementation of the EMS, a handoff from the battery pack or a 

generator to another generator begins with the EMS sending a startup signal to desired 

generator. Once the desired generator is operational the EMS continues with the first step 

of the handoff we modeled, shedding the non-critical load bus. 

The handoff decision resulting from Event 2 triggers the EMS to shed the non-

critical load bus. However, the EMS only sheds the non-critical load temporarily, and the 

EMS restores it as soon as it connects Generator 1. After EMS sheds the non-critical bus, 

it continues to operate in island mode until Generator 1’s voltage is in phase with the 

output bus and at a zero-voltage crossing. At the zero-crossing the EMS connects 

Generator 1 using a thyristor. In our model, we assumed both generators were always 

running and in-phase with the output bus voltage in order to minimize the duration of the 

simulation. 

The shed event is evident by a dip in non-critical load power and the 

corresponding total load demand following Event 2 in Figure 31. In a real-life scenario 

the shed event is important because it may take significant time before Generator 1 is 

turned on, fully operational, in phase with the output bus voltage, and connected to the 

EMS. The non-critical bus shed prevents the batteries from supplying a greater power 

level than intended during this time. Since our model used in-phase and always-on 

voltage sources for generators, the period of time between generator handoffs spans only 

16.7 ms, equal one period of the 60 Hz voltage waveform. The EMS’s power calculation 

never reaches steady-state and, therefore, is inaccurate during load-shedding between  
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power source hand-offs. However, the total power does significantly decrease following 

Event 2 in Figure 31, and had the hand-off event taken even one cycle longer, the total 

power measurement would reflect the correct 1.5 kW value. 

Once the EMS connects Generator 1, the total load is 1.5 kW since the non-

critical bus is shed, which is within the capacity of Generator 1 alone. Hence, the EMS 

stops supplying current to the load. This occurs just after 0.4 seconds as seen by the 

momentary transition from EMS current “on” to “off” in the bottom plot in Figure 32 . 

After a short delay resulting from turning the non-critical load bus thyristor on, the total 

load returns to 6.1 kW. In this state the EMS draws 1.1 kW from the battery pack to 

maintain Generator 1 at 100 percent capacity. 

Another load step increase occurs at Event 3 in Figure 31 as a result of an 

increased non-critical load demand. The non-critical load steps from 4.6 kW to 7.5 kW, 

causing the total load to increase from 6.1 kW to 9 kW. A total load of 9 kW is greater 

than the 8 kW of power available, which takes into account 5 kW from Generator 1 and a 

maximum of 3 kW from the battery pack. The over-power condition remains for longer 

than 0.1 seconds and thus triggers the EMS to take corrective action. The EMS initiates a 

handoff from the 5 kW generator to the 15 kW generator by first shedding the non-

critical load bus. The load shed signal is apparent as the bottom plot goes high at 

approximately 0.72 seconds in Figure 32. Concurrently, the total load demand decreases 

toward 1.5 kW in Figure 31 since the non-critical loads are disconnected. Approximately 

16.7 ms after the EMS disconnects Generator 1 it connects to Generator 2. After 

Generator 2 is connected the EMS stops supplementing current because Generator 2 has 

15 kW of capacity and the load is only 1.5 kW. The EMS current turn-off event is shown 

by the middle plot going low after Event 3 in Figure 32. With Generator 2 connected, the 

EMS connects the non-critical bus, and the total load returns to 9 kW. Generator 2 has 6 

kW of excess capacity since it serves a 9 kW load but has 15 kW of capacity. In this 

situation, the excess capacity can be used to recharge the battery pack. 

The non-critical load demand drops from 7.5 kW to 4.6 kW at Event 4 in Figure 

32. As a result the total load decreases from 9 kW to 6.1 kW. After 0.1 seconds at the 

total power level of 6.1 kW, the EMS initiates a handoff from the larger generator to the 
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smaller generator. As with previous handoffs the EMS first sheds the non-critical bus, 

shown in the bottom plot stepping from “connected” to “disconnected” just after 1 second 

in Figure 32. With the non-critical bus shed the EMS disconnects Generator 1 and enters 

island mode, evident by the EMS current changing from “off” to “on” in Figure 32. Next, 

the EMS connects Generator 1. With Generator 1 connected the EMS turns off the 

current source since the load is 1.5 kW and Generator 1 has 5 kW capacity. Next, the 

EMS re-connects the non-critical load bus, and the total power increases from 1.5 kW to 

6.1 kW in Figure 31. After 0.1 seconds at a 6.1 kW of load demand the EMS supplies 1.1 

kW of supplemental current in order to maintain Generator 1 at 5 kW of loading. 

Finally, at Event 5 all of the non-critical loads turn off and the total load demand 

reduces to just the 1.5 kW critical load. After 0.1 seconds at 1.5 kW the EMS’s logic 

dictates a handoff from Generator 1 to the battery pack. With Generator 1 disconnected, 

the EMS enters island mode and supplies the load current as seen at 1.33 seconds in 

middle plot of Figure 32. If the EMS sensed the battery state of charge was lower than a 

defined threshold value it would instead remain connected to Generator 1 and use the 

excess power capacity to recharge the battery bank. 

In summary, the model demonstrated that through varying modes of operation the 

EMS continuously provided critical load power. The only case not covered in this 

simulation is the scenario where the total power demand exceeds that of the 15 kW 

generator and 3 kW of supplemental EMS current drawn from the battery pack. If this 

happens the EMS must shed the non-critical bus until the total load demand decreases 

below 18 kW. However, based on trends from [3] it is unlikely that all of the connected 

loads will operate simultaneously at their peak power requirements. 

D. CHAPTER SUMMARY 

An example scenario to the two power architectures introduced in Section A of 

Chapter III was applied in this chapter. The scenario included two sets of loads, their 

respective peak power requirements, and a notional power profile over a 24-hour period. 

Generator sizes used in the traditional method of generator employment were based up on 

80 percent of the total peak load to which they were connected. The EMS-enabled 
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architecture took into account the battery bank’s capability to supplement generator 

power in order to enable the use of a 15 kW generator in place of a 20 kW generator. The 

24-hour load profile was condensed into 1.5 seconds and used in a simulation that 

modeled EMS’s operation. A detailed analysis of EMS states showed that the EMS was 

able to continuously power the critical loads while receiving power from the smallest 

capable generator or entirely from the battery bank as appropriate. 
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V. RESULTS AND CONCLUSION 

A. RESULTS 

The goal of this thesis was to demonstrate how an EMS-enabled microgrid saves 

fuel as compared to the traditional method of generator employment. The total fuel 

consumed by generators using the traditional method and the EMS-enabled method of 

generator employment are compared in this chapter. For the traditional scenario, the 24-

hour power profile from Figure 29 was applied to the generator setup shown in Figure 27. 

We chose a 5 kW generator and a 15 kW generator for the EMS-enabled architecture 

with the critical and non-critical loads connected to the EMS as shown in Figure 28. 

We used fuel flow data from [13] and [14] to estimate fuel flow equations for the 

5 kW, 15 kW and 20 kW generators with respect to their operating points. The plot of 

each generator’s estimated fuel flow in gallons per hour (gph) as a function of its 

operating point is shown in Figure 33. 

 
Figure 33. Plots of estimated fuel flow curves for the 5 kW, 15 kW and 20 kW diesel 

generator. After [13] and [14]. 
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Best-fit, first-order equations for the fuel flow plots from Figure 33 are presented 

in Table 1. Each generator in the first column has a corresponding fuel rate f(x) measured 

in gallons per hour (gph) on the same row. The subscript applied to f(x) corresponds to 

the rating of the generator to which the equation applies, and the variable x is the 

operating point of the generator expressed as a percentage value from 0 to 100. 

Table 1.   Generator fuel flow equations. 
Generator Size Fuel Flow (gph)

5 kW f5(x) = 0.0046x + 0.113
15 kW f15(x) = 0.0098x + 0.2419
20 kW f20(x) = 0.0169x + 0.4163  

Each generator’s loading as result of traditional generator employment is shown 

throughout the 24-hour profile in Figure 34. We calculated respective generator fuel flow 

at each power level using the corresponding fuel flow equation in Table 1. Multiplying 

each generator’s fuel flow by the duration of time at that rate gave us the fuel consumed 

for that period. These steps as well as the total fuel consumed in the 24-hour period using 

traditional generator employment are shown in Table 2. 

 
Figure 34. Generator loading using traditional generator employment. 
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Table 2.   Twenty-four hour fuel consumption using traditional generator employment. 

 
Determining the generator loading for the EMS-enabled method of generator 

employment required additional calculations as compared to the traditional method 

because the battery pack’s state of charge factors into EMS power source selection logic. 

We maintained a tally of the battery pack’s state of charge throughout the 24-hour 

scenario from Figure 29. The battery bank’s total energy storage capacity is given by 

 0 0totalE P t= , (9) 

where Etotal is the battery pack’s total useable energy in Joules, P0 is the sustained power 

the EMS may draw from the battery pack in Watts, and t0 is the duration in seconds over 

which P0 is drawn. The amount of energy drawn from the battery pack is given by 

 drawn draw drawnE P t= , (10) 

where Edrawn is the energy drawn in Joules, Pdraw is the amount of power the batteries are 

providing in Watts, and tdrawn is the duration of time in seconds over which Pdraw is 

sustained. The difference between Etotal and the sum of Edrawn for varying power levels 

gives the energy remaining in the battery pack Eremaining. The battery bank’s state of 

charge is expressed as a percentage given by 

 100%remaining

total

E
SoC

E
= . (11) 

The Simulink model used in Chapter IV did not track the battery bank state of 

charge since the scenario lasted only 1.5 seconds. However, in the 24-hour scenario it 

was important that we tracked the state of charge, which we did manually. First, we 

 

Power Source Time of Day
Duration 

(hrs)
Generator 
Load (kW)

Generator 
Operating 

Point
Fuel Flow 

(gph)

Fuel 
Consumed 

(gal)
5 kW Gen 0000-2359 24 1.5 30.0% 0.251 6.024

20 kW Gen 0000-0500 5 0 0.0% 0.4163 2.0815
0500-1000 5 4.6 23.0% 0.805 4.025
1000-1430 4.5 7.5 37.5% 1.05 4.725
1430-1930 5 4.6 23.0% 0.805 4.025
1930-2359 4.5 0 0.0% 0.4163 1.87335

TOTAL: 22.75385
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calculated the battery pack’s total energy storage capacity Etotal using Equation 9 where 

P0 was 3 kW and t0  was 6 hours, which resulted in Etotal=64.8 MJ. EMS logic remained 

the same as in Chapter IV with one exception. If the EMS sensed a situation where a 

connected generator had a power capacity greater than the load demand, it would first 

charge the batteries up to 100 percent SoC before handing off to a smaller power source.  

The EMS logic from Chapter IV combined with the battery bank state of charge 

tracking resulted in the load profile shown in Figure 35. Boxed regions define different 

EMS generator and battery modes. It is important to note that while load shedding does 

indeed occur between generator handoffs, it is not depicted due to the short amount of 

time it takes to handoff generators relative to the 24-hour time scale. 

 
Figure 35. Twenty-four hour profile using EMS-enabled generator employment. 

The regions identified in Figure 35 correspond to information contained in the 

rows in Tables 3 through 5. A summary of which generator the EMS selected, the battery 

bank’s mode of operation, and the battery bank’s SoC is shown in Table 3. More detailed  
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data concerning our calculation of the battery bank’s SoC is shown in Table 4. The total 

fuel consumption resulting from using the EMS-enabled architecture to supply power to 

the 24-hour load profile is tabulated in Table 5. 

Table 3.   EMS operational states corresponding to regions identified in Figure 35. 

Region
Time of 

Day

Load 
Demand 

(kW)
Generator 
Selected

Generator 
Load (kW)

Battery 
Mode

Battery 
Load 
(kW)

Initial 
SoC

Final 
SoC

1 0000-0500 1.5 NONE 0 Supply 1.5 100.0% 58.3%
2 0500-1000 6.1 5 kW 5 Supply 1.1 58.3% 27.8%
3 1000-1210 9 15 kW 15 Charge -6 27.8% 100.0%
4 1210-1430 9 15 kW 9 Off 0 100.0% 100.0%
5 1430-1930 6.1 5 kW 5 Supply 1.1 100.0% 69.4%
6 1930-2105 1.5 5 kW 5 Charge -3.5 69.4% 100.0%
7 2105-2359 1.5 NONE 0 Supply 1.5 100.0% 75.6%  

Table 4.   Battery bank SoC corresponding to regions identified in Figure 35. 

 

Table 5.   Twenty-four hour fuel consumption using the EMS-enabled generator 
employment. 

Region
Selected 

Generator
Duration 

(hrs)
Generator 
Load (kW)

Generator 
Operating 

Point
Fuel Flow 

(gph)

Fuel 
Consumed 

(gal)
1 NONE
2 5 kW 5 5 100% 0.573 2.865
3 15 kW 2.17 15 100% 1.23 2.6691
4 15 kW 2.33 9 60% 0.83 1.9339
5 5 kW 5 5 100% 0.573 2.865
6 5 kW 1.57 5 100% 0.573 0.89961
7 NONE

TOTAL: 11.23261  
 

 

Region
Duration 

(hrs)
Battery 

Load (kW)

Intial 
Capacity 

(MJ)

Energy 
Drawn 
(MJ)

Remaining 
Capacity 

(MJ) Initial SoC Final SoC
1 5 1.5 64.8 27.0 37.8 100.0% 58.3%
2 5 1.1 37.8 19.8 18.0 58.3% 27.8%
3 2.17 -6 18 -46.8 64.8 27.8% 100.0%
4 2.33 0 64.8 0.0 64.8 100.0% 100.0%
5 5 1.1 64.8 19.8 45 100.0% 69.4%
6 1.57 -3.5 45 -19.8 64.8 69.4% 100.0%
7 2.92 1.5 64.8 15.8 49.0 100.0% 75.6%



 47 

Comparing the total fuel consumption by the generators used in the traditional 

scenario to those used in the EMS-enabled scenario validates this thesis. The EMS 

managed the available power sources such that the load demand was met using a total of 

11.23 gallons of fuel over the 24-hour period. In contrast, the traditional method of 

generator employment resulted in the generators consuming 22.75 gallons of fuel. The 

EMS enabled a fuel savings of 50.6 percent over the traditional scenario. 

B. CONCLUSION 

We made many educated presumptions in the conduct of this thesis in order to 

overcome information gaps and move forward with the research. These ranged from the 

load profile used in our scenario to the generators’ fuel flow rates with respect to loading. 

In addition our modeling assumed certain ideal factors such as lossless power electronics 

and perfectly sinusoidal voltage sources, which do not exist in real life. However, the 

purpose of this thesis was to explore the concept of employing generators in a more 

efficient manner. To this end we compared our two scenarios fairly using the same 

assumptions for both scenarios where a decision had to be made. 

The 24-hour load profile we used in this thesis might seem unrealistic; that is, a 

set of loads with a 20 kW peak requirement never reached above 9 kW in our scenario. 

Surprisingly, though, such under-utilization is quite common [15]. Data collected in the 

field shows that FOBs contain as much as 115 kW of generator capacity for total load 

profiles that, in reality, seldom reach above 45 kW [3]. We feel that the EMS serves a 

purpose in larger microgrid architectures above 20 kW as well. Excessive generation 

capacity drives traditional military generator employment, but in reality these generators 

never operate in the most efficient manner because doctrine limits them to 80 percent 

loading at best. As demonstrated in this thesis, the EMS enables generators to run up to 

100 percent with the battery pack ensuring additional power is available when needed. 

Future investigations into the role of alternative and renewable energy sources in 

the EMS architecture will prove enlightening as well. For example, the EMS may 

incorporate solar or wind power to charge the battery pack, alleviating some of that 

requirement from the generators. 
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In a grid-connected setting, the EMS can improve power quality of one’s home by 

injecting harmonic-cancelling current. Furthermore, the EMS can allow a homeowner to 

draw power from the utility grid during times of the day when electricity rates are lower, 

at night for instance, and store energy in the batteries. Then, during the most expensive 

time of the day, the EMS can supplement household load demand using the energy stored 

in the batteries, thereby reducing the amount of electricity drawn from the grid. 

  



 49 

THIS PAGE INTENTIONALLY LEFT BLANK 



 50 

APPENDIX: SIMULINK MODEL 

A. INITIAL CONDITION FILE 

%% Simulation 
useHbridge=0; 
  
tstep=(1.666667e-5);  % Roughly 1000 samples per cycle 60Hz cycle 
tstop=1.5; 
if useHbridge 
    tstep=tstep/10; 
end 
  
wc=2*pi*5;  % LPF used twice in series to calculate 
            % RMS values for current/voltage 
  
%% Generator 1 
Gen1Rating = 5e3; 
V_Gen1_rms = 120; 
fGen1 = 60; % Generator 1 frequency (Hz) 
Ls1=300e-6; 
Rs1=0.01; 
  
%% Generator 2 
Gen2Rating = 15e3; 
V_Gen2_rms = 120; 
fGen2 = 60; % Generator 2 frequency (Hz) 
Ls2=300e-6; 
Rs2=0.01; 
  
%% Battery Bank (For 6 hour draw period) 
BattRating = 3e3; 
  
%% Loads 
  
% Current Slew Rate 
SlewRate = 1000; 
  
% Critical Loads 
R_crit = 120^2 / 1.5e3; 
  
% Non-critical Loads 
R_step1 = 120^2 / 4.6e3; 
ton_step1 = 0.3; 
toff_step1 = 0.6; 
  
R_step2 = 120^2 / 7.5e3; 
ton_step2 = 0.6; 
toff_step2 = 0.9; 
  
R_step3 = 120^2 / 4.6e3; 
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ton_step3 = 0.9; 
toff_step3 = 1.2; 
  
%% EMS Circuit 
Lems=1160e-6; 
Rems=0.1; 
  
%% EMS as Voltage Regulator 
V_EMS_rms = 120; 
  
%% EMS as Supplemental Current Source 
EMS_supp_gain = .5; 
Supp_current_min_thresh = 5; % Below this RMS load current EMS will not  
                             % supplement any current 
Supp_current_max = 10; %A_rms 
  
%% Output Bus Capacitor 
Cfil=12e-6; 
  
%% -----H-Bridge Model----- 
%EC3150 Software lab#5 - H-bridge inverter - Dr. Giovanna Oriti  
%initial condition file for model ec3150_software_lab5.mdl 
  
Kp_v=0.06;  
Ki_v=5000;  
sw_freq=15000; 
%vo_ref=120*sqrt(2)*2/pi; 
% turns=28/115; 
%Rload=2000; 
%Vdc=130; original in lab 
Vdc=250; 
%Lin=3.22e-3;  %it includes the leakage inductance of the 60Hz xfmr, 
               % which is 3mH 
  
PWM_mode=0; %A 1 is Bipolar PWM. A 0 is Unipolar PWM. 
%tstep = 1e-6; 
% Lfil=1160e-6; 
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B. SYSTEM AND SUBSYSTEMS 

 
Figure 36. Model overview. 
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Figure 37. Critical load bus. 

 
Figure 38. Non-critical load bus. 
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Figure 39. Power meter 

 
Figure 40. Power meter -> averaged_I_times_V. 
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Figure 41. Thyristor driver. 

 
Figure 42. Thyristor. 
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Figure 43. Generator. 
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Figure 44. EMS. 
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Figure 45. EMS -> Output bus calculation. 
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Figure 46. EMS -> EMS current calculation. 
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Figure 47. EMS -> EMS current calculation -> inductor current. 

 
Figure 48. EMS -> EMS current calculation -> Island_mode. 
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Figure 49. EMS -> EMS current calculation -> PI_control. 

 
Figure 50. EMS -> EMS current calculation -> PWM. 
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Figure 51. EMS -> EMS current calculation -> supplemental I_EMS*. 

 

 
Figure 52. EMS -> EMS current calculation -> supplemental I_EMS* -> RMS. 
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Figure 53. EMS -> EMS current calculation -> supplemental I_EMS* -> RMS -> RMS computation clock. 

 
Figure 54. EMS -> EMS current calculation -> supplemental I_EMS* -> RMS -> RMS_computation. 
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Figure 55. EMS -> EMS current calculation -> supplemental I_EMS* -> RMS -> RMS_computation -> triggered subsystem. 
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