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AFIT–ENG–DS–13–S–05

Abstract

The research goal involved developing improved methods for securing Pro-

grammable Logic Controller (PLC) devices against unauthorized entry and miti-

gating the risk of Supervisory Control and Data Acquisition (SCADA) attack by

detecting malicious software and/or trojan hardware. A Correlation Based Anomaly

Detection (CBAD) process was developed to enable 1) software anomaly detec-

tion–discriminating between various operating conditions to detect malfunctioning

or malicious software, firmware, etc., and 2) hardware component discrimination–

discriminating between various hardware components to detect malfunctioning or

counterfeit, trojan, etc., components.

Defense against software exploitation was implemented by 1) adopting a previ-

ously demonstrated capability that provides human-like discrimination of hardware

devices using information extracted from intentional Radio Frequency (RF) emis-

sions, and 2) adapting an RF-based verification methodology to exploit information

in unintentional PLC emissions to detect anomalous operation resulting from soft-

ware and/or hardware discrepancies and enhance SCADA security. Operational

status verification (normal versus anomalous) is demonstrated using experimentally

collected emissions from ten Allen Bradley SLC-500 PLCs executing custom Ladder

Logic Programs (LLPs) designed to support the research methodology.

Performance for verification-based software anomaly detection was evaluated

using the CBAD process. The CBAD verification process is sequence agnostic and

can be used with untransformed Time Domain (TD) or transformed inputs, including

those derived from untransformed TD, Hilbert transform (HT), and RF Distinct

Native Attribute (RF-DNA) features. Relative to performance using untransformed

TD sequences or RF-DNA features, CBAD performance using HT sequences was

superior with an arbitrary Receiver Operating Characteristic (ROC) curve Equal

xv



Error Rate (EER) benchmark of EERB≤10.0% achieved for all PLC devices at a

Signal-to-Noise Ratio (SNR) of SNR=0.0 dB; this benchmark was not achieved for

any PLCs using untransformed TD sequences or RF-DNA features.

Performance for verification-based hardware anomaly detection was evaluated

using a Generalized Relevance Learning Vector Quantized-Improved (GRLVQI) pro-

cess with two input sequences, including one derived from TD RF-DNA features

(NDim=156 dimensions) and one from Correlation Domain (CD) features (NDim=10

dimensions). For this assessment, ten Allen Bradley PLCs were divided into autho-

rized/authentic and rogue/unknown groups containing five devices each. The GR-

LVQI model was trained using sequences from all authentic devices and each device

in the unknown group was presented for verification against each of the authentic

devices (25 total anomaly assessments). The GRLVQI anomaly detection capability

was assessed using each of the two input sequence types and resultant performance

was comparable. At SNR=15.0 dB an average EER≈1.3% was achieved for TD

sequences as compared to an average EER≈1.6% for the CD sequences; both se-

quence types satisfied the EERB≤10.0% benchmark for all PLC devices. While the

EER value for TD sequences is 0.3% lower than CD sequences, the TD sequence

has nearly 16 times the number of elements as the CD sequence and a correspond-

ingly greater amount of computational resources would be required in an operational

implementation.

xvi



RADIO FREQUENCY BASED

PROGRAMMABLE LOGIC CONTROLLER

ANOMALY DETECTION

1. Introduction

This chapter introduces the research topic and outlines the motivation behind

the development of the Correlation Based Anomaly Detection (CBAD) process de-

scribed in later chapters. Section 1.1 provides a brief overview of the operational

Supervisory Control And Data Acquisition (SCADA) and Industrial Control System

(ICS) topology and vulnerabilities. It is further divided into two subsections: 1) Sec-

tion 1.1.1 describing the software-based vulnerability picture for SCADA/ICS and

2) Section 1.1.2 describing the potential for hardware-based security concerns. Sec-

tion 1.2 provides a brief description of existing research and technologies supporting

the current research effort. Section 1.3 provides a summary of the existing research

and technologies contributions.

1.1 Operational Motivation

Modern digital computing technology has led to a proliferation of computers

to nearly every aspect of daily operations for the United States Air Force (USAF)

and Department of Defense (DOD) as a whole. The modern US military is critically

dependent on computer hardware and digital communication systems to successfully

carry out their mission from checking email to ordering needed maintenance parts.

The advantages in efficiency through use of networked Information Technology (IT)

resources brings with it the cost of increased vulnerability to malicious cyber attacks.

The Air Force Computer Emergency Response Team (AFCERT) is the primary

agency responsible for protecting USAF network assets from attack. The AFCERT

1



reported nearly 2 million weekly alerts indicating potential cyber attacks against

USAF bases in the month of November, 2011 [99], highlighting the magnitude of

cyber threats facing networked IT systems. In addition to the potential attacks,

there have been over 150 verified incidents of “hackers” gaining access to information

system assets affecting the USAF mission in 2011 [99]. The threat of attack and

compromise of USAF information system assets directly affects nearly all aspects of

the USAF mission.

A key aspect of information systems usage is the communication systems link-

ing devices and networks. Data exchange occurs over computer networks (wired

and wireless) as well as over civilian communication networks (i.e., cellular/satellite

phone networks). The analysis and storage of potentially sensitive data is reliant,

to a large extent, on Commercial Off The Shelf (COTS) products either slightly

modified for military use or not altered at all. In order to ensure proper control

and verification of the data relevant to the military mission, it is essential that the

devices used to manage the data are trusted. Various vulnerabilities exist in the

communication systems and data processing hardware currently used in military ap-

plications. Although methods exist to protect hardware and communication signals

from exploitation, such as Anti-Tamper (AT) initiatives for hardware and data en-

cryption for communication systems, these methods are not sufficient to guarantee

the authenticity of computing platforms, programs, or communication nodes.

Another, less publicized, area of concern involves hardware-based vulnerabil-

ities. The focus on cheaper semiconductor devices, such as those at the core of

SCADA Programmable Logic Controllers (PLCs), has led to a heavy reliance on

overseas manufacturing that results in a greater risk of potentially damaging trojan

or counterfeit devices being deliberately used on PLC devices in critical applica-

tions [17,82]. For example, the DOD implemented a ban on the use of thumb drives

following concerns regarding virus transmission via the flash drive medium [8]. Mil-

itary Field Programmable Gate Array (FPGA) systems are prone to exploitation

2



given their reconfigurable nature. Even Integrated Circuits (ICs) fabricated for US

military use are vulnerable given the majority of manufacturing facilities are located

overseas. Although research has been focused towards combating the threat of hard-

ware and communication vulnerabilities [53,69,70,90], the verification of a hardware

platform, program, or communication node is critical to protecting and validating

the data used in carrying out every aspect of the USAF military mission.

Information Technology systems have also yielded unprecedented levels of au-

tomated, precise control of ICS operations for functions from waste water treatment

to nuclear power generation. ICS facilities maintain critical infrastructure capabili-

ties in the civilian and Government sectors. US Government policy states “Private

business, government, and the national security apparatus increasingly depend on

an interdependent network of critical physical and information infrastructures, in-

cluding telecommunications, energy, financial services, water, and transportation

sectors” [98]. Current ICS architectures are predominantly based on networked

digital computers that enable reliable monitoring and control of critical functions

within regionally localized and globally distributed operations [84]. One key ele-

ment of the ICS operation are SCADA systems. These provide centralized control

and monitoring via PLC devices, which are the gateway through which recent cy-

ber attacks have been orchestrated against high-profile ICS targets [95, 105]. The

majority of publicized attacks target software-based vulnerabilities to inflict dam-

age [12,13,33,44,60,93,94]. While the software vulnerabilities may lie within a PLC

or other SCADA component, PLCs represent the last component to operationally

implement kinetic effects caused by a cyber attack.

With such reliance on the critical functions performed by ICS assets and fa-

cilities, the SCADA and PLC systems employed must be secured from cyber attack

similar to how major IT systems are currently protected and secured. Unfortunately,

there exists a gap between the security options for ICS assets and IT systems. PLCs

tend to be specific purpose machines and often are out-dated by IT standards. There
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Figure 1.1: OSI 7-layer network model [7].

is not an availability of applications available for the PLCs aside from the applica-

tions needed to perform their specific tasks. There needs to be a method of detecting

altered or anomalous activity on SCADA and PLC hardware to thwart adversarial

attacks.

Consider the Open Systems Interconnect (OSI) model describing the differ-

ent levels of a system [106] shown in Fig. 1.1. The current focus on detection of

unauthorized or anomalous activity on information systems is through analysis of

the data within the Application (Layer 1) or Network (Layer 5) layers of the model.

In communication systems such as cellular phone systems and wireless networking,

data access and trust relationships are commonly verified via verification methods

operating in the Data Link Layer (Layer 2) of the OSI model. These verification cre-

dentials include Media Access Control (MAC) addresses for wireless network access
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and International Mobile Equipment Identity (IMEI) numbers for cellular networks.

These verification methods are far from foolproof. There exist tools and methods

allowing an individual to modify the verification credentials, allowing adversaries to

bypass the Data Link Layer control measures all together [61, 73, 104]. IT networks

employ firewalls and network Intrusion Detection Systems (IDS) components to de-

tect and block cyber attacks. IT systems employ virus detection and host-based IDS

programs to perform similar functions at the individual computer level. SCADA

and PLC systems are special purpose machines and do not have the general purpose

capabilities of most desktop or server computers in the IT realm. Additionally, it is

not uncommon to see ICS components, to include PLCs, installed and in operation

for decades. These PLCs do not have the functionality to run the virus detection or

IDS programs. This exposes the system to threats that have the potential to enact

substantial physical losses as in the case of StuxNet or the Springfield attacks.

The following sections address the research motivation in light of two primary

attack vectors used to exploit PLC vulnerabilities, including 1) Section 1.1.1 which

addresses software-based vulnerabilities, and 2) Section 1.1.2 which addresses hard-

ware-based vulnerabilities.

1.1.1 Software-Based Vulnerabilities. Network and computer security ex-

perts at McAfee predict 2013 will bring a shift in the cyber warfare picture that

includes increased activity in nation state’s becoming victims and targets of cyber

attacks [63]; McAfee suggests improving SCADA system defense by removing them

from the production network and placing them on a dedicated stand-alone network.

The motivation for removing SCADA systems from the production network is due in

part to the number of potential high-value critical infrastructure ICS targets (civilian

and military) using SCADA control via an unsecure network. The Air Force Civil

Engineering Center (AFCEC) states that ICS assets in the USAF and in industry

are “at best insufficiently protected from cyber threats” [100]. In acknowledgement

of the criticality of US ICS infrastructure, the US Government has prioritized the
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defense of these vulnerable assets through a Presidential Directive in 2003 [5] and

more recently through an Executive Order in 2013 [66]. Despite the focus on pro-

tecting ICS assets from malicious activity, they still remain vulnerable. Over 20

vulnerability alerts and advisories have been issued from the ICS Cyber Emergency

Response Team (ICS-CERT) in January of 2013 alone [46]. Therefore, protecting

vital ICS assets from the risk of cyber attack is essential and is a key component

used to mitigate the potential catastrophic consequences if an attack occurs.

SCADA systems typically monitor and control higher-level systems through

field-based devices called Remote Terminal Units (RTUs) or PLCs that physically

implement desired functionality. A PLC is a special purpose computer that per-

forms low-level ICS functions, such as collecting sensor data and operating physical

valves or switches [84]. While the PLC Operating System (OS) and communication

protocols are often proprietary, most current PLCs have the ability to operate on a

standard network. It is through these networks that malicious programs are loaded

onto vulnerable PLCs. A majority of electronic devices, including Personal Com-

puters (PCs) and network components, are protected to some degree from cyber

attacks through a variety of intrusion detection and/or anti virus programs. This

is in sharp contrast to PLC implementations, which have very limited protection

options due to proprietary design, limited processing power, and limited memory

that precludes direct use of standard PC and network anti virus programs [82]. Ad-

ditionally, many PLCs remain in service for decades due to the prohibitive cost of

re-engineering SCADA systems. Thus, PLCs become obsolete and unsupportable

relative to IT standards and capabilities that continually evolve to satisfy consumer

demands preventing the implementation of typical “bit-level” IT protective measures

in PLC devices. ICS facilities remain vulnerable to cyber attack as evidenced by re-

cently successful Stuxnet malware-based attack [105]. More recently, sophisticated

programs including ICS specific malware, such as Duqu and Flame, demonstrate a

continued need for SCADA and ICS defensive research. These malware programs
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contain computer code that targets SCADA and ICS functions through vulnerable

components [12,13,93,105]. Consequently, there is a vital need to implement a pro-

cess to detect malicious code installed on PLCs before the code can execute and

cause irreversible, catastrophic effects.

1.1.2 Hardware-Based Vulnerabilities. In addition to the high-profile soft-

ware-based attacks, concern also exists regarding hardware-based compromise or-

chestrated through trojan or counterfeit semiconductor or Integrated Circuit (IC)

devices. Semiconductor devices are prevalent and form the core of all computer sys-

tems in use today including those related to SCADA systems and ICS infrastructure.

Systems relying on secure semiconductor and IC devices are integrated within ICS

facilities and in use throughout DOD to process, store, and protect sensitive infor-

mation remain vulnerable to tampering by adversaries. Not all forms of attacks are

malicious in nature. Counterfeit, used, or sub-standard quality devices can fail in

critical applications, causing similar damage compared to a malicious attack. The

general term component substitution can be used to refer to the substitution of a

genuine, trusted component with a counterfeit, substandard, or trojan component.

This substitution can be made during manufacture, assembly, transport or even af-

ter operational deployment. Unfortunately, most organizations in the DOD do not

have the means to defend against counterfeit or trojan component substitution [4].

Estimates of the losses due to counterfeit semiconductor devices are staggering. The

losses are estimated at approximately $200B USD with about 10.0% of electronic

parts in use being counterfeit substitutions [65]. The intent of substitution varies

from malicious exploitation of DOD systems to increasing company profits by using

cheaper components. To combat the proliferation of potentially harmful IC devices

in DOD applications, the Defense Advanced Research Projects Agency (DARPA) is

attempting to combat potential trojans in DOD ICs manufactured in foreign coun-

tries as part of the Trusted IC program [17]. This program is technologically in its

7



infancy. Additional work is required to verify IC authenticity using non-destructive,

non-disruptive techniques that enable device verification during operation.

1.2 Technical Motivation

Traditional bit-level intrusion detection and anti virus programs monitor activ-

ity and assess system status using information in higher layers of the OSI model [106].

One possible solution is to change the focus of detection from the Application (APP)

and Network (NWK) layers to the Physical (PHY) layer. Detection of anomalous

activity in the Physical layer is dependent on the analysis of physical attributes of the

system operation, such as power consumption, heat, or Radio Frequency (RF) radi-

ation from a specific ICS device. Research efforts have proposed one such method of

detecting the anomalous behavior due to the presence of trojan hardware contained

in an IC package using Side Channel Analysis (SCA) methods to capture signals from

the outputs of the ICs [2]. This method could potentially be extended to identify and

categorize the operation of a known device. Although this method provided positive

results, it requires exercising all of the expected operations in order to effectively

identify the operations. Additionally, the IC would need to be isolated to minimize

effects of other components on the same circuit board. Other research efforts have

used a method of detecting anomalous operations through power analysis [28, 29].

Using a non-contact Electro-Magnetic (EM)-based instantaneous current probe, the

operating current is captured and used to estimate the power usage of the IC. The

probe must be placed at the power trace for the IC in question, which could change

for different implementations. Variations in power usage based on the variations in

IC manufacture, device temperature, and other components drawing power from the

same power trace can complicate the measure of current draw for the targeted IC.

What is needed is a validation method that does not require removal of the IC and

can non-destructively analyze the operations while limiting interference from other

system components. Detection and classification of devices and device operations
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based on RF attributes and qualities have been successfully demonstrated in a large

body of research [9, 11, 14–16, 18, 19, 21, 23–25, 27, 34, 39, 42, 49, 77, 79, 81, 103]. The

use of attributes from the RF emissions provides a means of detecting anomalous

activity on a wide range of systems without the limitations imposed by the lack of

PLC IDS and Anti Virus (AV) program capabilities. One proposed method of veri-

fying the identity of either a communication node or a hardware platform is through

collection, analysis, and classification of the RF energy emitted by the device. RF

Fingerprinting can be used to generate unique IDs for a given device based on its

physical attributes. A key advantage to RF Fingerprints is the relative difficulty

in spoofing or altering the RF Fingerprint for a device as compared to spoofing or

altering the network or hardware credentials.

At the core of PLCs (and most information systems technologies) are semi-

conductor IC devices. There are potential variabilities in materials, processes, and

environmental variables involved the semi-conductor manufacturing process. These

variances result in physical differences in IC devices even if the devices are designed

to be equivalent. Device testing limits the variance in devices sold to consumers by

testing to ensure the functional characteristics of the devices are within a defined

tolerance. Functional testing is a well researched and developed field [1, 54, 55].

Functional testing is generally limited to verifying the device outputs are correct

for the expected clock timing and voltage levels variance. Within the tolerance are

variances in performance that can be detected and quantified using specific test

equipment. The idea of Radio Frequency Distinct Native Attributes (RF-DNA) is

based on capturing, analyzing, and quantifying variance in RF emissions related to

variances in manufactured semi-conductor devices. The term RF “fingerprint” is

used to describe the RF-DNA values associated with a specific device.

RF fingerprints can be derived from two broad categories of RF emissions,

including Intentional RF Emissions (IRE) and Unintentional RF Emissions (URE).

Substantial research has been conducted using RF energy attributes to produce
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RF fingerprints for device verification [6, 11, 35, 37, 38, 57, 58, 75, 80, 91, 92, 97]. IRE

describes RF energy that is intentionally broadcast as part of a device’s function.

Examples of devices that broadcast IRE include wireless radios, IEEE 802.15 Blue-

tooth devices, cellular phones, and IEEE 802.11 WiFi networking devices. While

wireless communication devices make use of IRE to perform their primary function,

digital hardware devices also have URE related to the logic switching in the device.

URE describes RF energy that is unintentionally broadcast during device operation.

The URE is not beneficial to device operation and is considered a detriment as it

can interfere with normal operations. The operation of clock signals for IC circuits

is one contributor to the broadcast of URE from IC-based devices.

RF fingerprints have been used to identify and verify devices. The identification

of a device is a means of comparing a single RF fingerprint to a set of established

fingerprints and “classifying” the device as one of the previously analyzed devices

based on a comparison of the RF fingerprints. This is a one-to-many comparison

problem, meaning a single fingerprint is compared to multiple classified fingerprints

in order to properly identify the device. The verification of a device is a means

of comparing a single RF fingerprint to a single previously captured and analyzed

fingerprint and determining to what extent the two fingerprints are similar. This is a

one-to-one comparison problem meaning a single fingerprint is compared to a single

classified fingerprint in order to verify the device.

The following sections provide a brief overview of previous efforts in the field

of RF fingerprints for the purpose of classification and verification for both IRE and

URE RF signal responses.

1.2.1 Emission Collection. The use of Physical layer RF characteristics to

classify and verify wireless devices or operations has been well researched [6,25,36,

38, 58, 59, 68, 92, 96, 97, 102, 103]. Regardless of emission type (IRE or URE) being
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considered, RF fingerprinting and device classification generally involves a basic 5-

step process that includes [79,91]:

1. Signal Collection

2. Burst Detection

3. Feature Extraction

4. RF Fingerprint Generation

5. Device Classification

Each step of the process is tailored to the wireless technology and device char-

acteristics of the Device Under Test (DUT) as specified in the device design speci-

fications. The generic classification process provides a starting point for using RF

emissions to discriminate between devices or operations.

The subject of using Physical layer RF characteristics to classify and verify

URE devices has not been as well researched as the IRE case. There has been

research and work focused on leveraging differences in output signals from ICs to

verify authenticity of the physical design, but they do not consider URE RF signals

from the device itself [2, 53]. Recent research efforts provided some of the initial

work in the field of capturing the RF signals from the IC DUTs for the purpose of

classification and verification [10,11] differing from the IRE process primarily in the

collection portion of the process.

The targeted RF signals for URE device exploitation differ from IRE device

exploitation in that there is no specified design for the signal as there are for wireless

broadcast standards. Additionally, the URE signal is not intentionally broadcast and

so the average signal power is significantly lower than that of an IRE signal. The

signal is collected using an RF probe instead of an antenna. The collection specifics

and configuration (such as bandwidth and target frequency) are largely determined

by the DUT clock frequency and empirically developed based on observation of

captured RF signals.
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1.2.2 Fingerprint Generation. Once the signal for an IRE or URE DUT

has been collected, sampled, filtered, and stored, the fingerprint generation step of

the process is performed. The specific fingerprint generation process considered is

that used for AFIT’s RF-DNA work [10, 58, 79, 103]. The fingerprint generation is

largely device agnostic in that regardless of whether the signal is based on collection

against an IRE or URE DUT, the high-level methods used to generate the fingerprint

are identical. Changes to the process are limited to configuration of the tools used

to generate the fingerprints.

The fingerprints are based on statistical attributes of signal characteristics such

as amplitude, frequency, and/or phase. The statistical attributes include standard

deviation, variance, skewness, and kurtosis. Prior to the calculation of the signal

characteristics and statistical attributes, a variety of transforms can be performed

on the collected, sampled discrete signal dependent on the DUT signal qualities.

1.2.3 Device Classification. A majority of existing RF fingerprints research

involves the classification of the DUT based on previously examined data sets. The

process involves analyzing RF fingerprints for known devices. The fingerprints from

the known devices are used to train software known as a classifier. In essence, the

training establishes fingerprint characteristics aligning an unknown DUT fingerprint

to a previously established device class based on the results of the training process.

Classification of devices is a one-to-many comparison that typically leads to a

DUT being classified as one of the available known devices. The research goal is to

verify a PLC is operating “normally”. One of the difficulties in classification is to

define linear (when possible) or non-linear boundaries separating class fingerprints

with a certain degree of accuracy. The problem of verifying a PLC is operating

normally can be tackled as a two-class problem: normal operating condition class

or anomalous operating condition class. It is easier to define a linear boundary

for a two-class problem than a multi-class problem. However, a more direct and
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simpler solution may be the use of verification instead of classification for the goal

of monitoring PLCs for anomalous activity.

1.2.4 Device ID Verification. One goal for capturing RF emissions and

extracting RF fingerprints is to verify a device’s bit-level ID; this is related to device

verification which is commonly used for granting network access. Verification is a

one-to-one comparison of an unknown DUT fingerprint to a known device fingerprint

with a goal of determining if the unknown DUT is the known device. This process

can be compared to using a photo identification card to verify an individual’s identity.

Using RF fingerprints for DUT ID verification is not as well researched as

using RF fingerprints for device classification. Previous research efforts were able to

demonstrate the use RF fingerprints to verify PIC microcontroller semi-conductor

devices [11] and wireless devices [76]. The process of comparing RF fingerprints to

verify a device’s ID parallels the procedures used for biometric human ID verification.

Biometric classification and verification provides a well-established framework that

is well-suited to the challenge of verifying PLC operations [48].

Following the general biometric verification process using RF fingerprints, pre-

vious researchers were able to accurately verify specific PIC microcontroller devices

with better than 99.5% accuracy [11]. This success highlights the potential appli-

cability for using verification-based methods to assess PLC device operational state

(normal or anomalous).

1.2.5 Correlation and Matched Filtering. Previous RF fingerprinting pro-

cesses relied heavily on classification methods. While effective, the implementation

of these classification methods can become computationally expensive for a large

number of classes and/or RF fingerprint characteristics. Yet, work continues and

there exists multiple efforts aimed at quantifying and reducing the computational

complexity of classification processes [3, 43]. The complexity of classification pro-
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cesses is of concern when implementing the processes on information systems with

limited processing power such as mobile platforms or systems with power constraints.

One potential alternative to approaching the problem involves using relatively

simple correlation-based methods for classification. Correlation is a key function

that is commonly used in optimal implementations of matched filtering for estimat-

ing digital communication symbols [72, 85]. Additionally, the correlation function

has found use in image processing and other fields requiring identification of sig-

nals where signal noise may be an issue [20]. Correlation is conceptually a straight

forward function with a well-defined complexity. Correlation provides an attrac-

tive alternative for classification given its simplicity and predictable computational

complexity.

1.3 Research Contributions

The research goal involved expanding the knowledge base of Physical layer

methods being developed to reliably detect anomalous and/or malicious activity

within ICS components. Specifically, the research objectives included developing

a general verification-based anomaly detection approach to support both 1) soft-

ware anomaly detection-discriminating between various operating conditions to de-

tect malfunctioning or malicious software, firmware, etc., and 2) hardware component

discrimination-discriminating between various hardware components to detect mal-

functioning or counterfeit, trojan, etc. ICs. As summarized in Table 1.1, AFIT

research contributions in the Radio Frequency Intelligence (RFINT) field have been

made in several technical areas. Previously undefined acronyms that are used in

the table include: Time Domain (TD), Spectral Domain (SD), Correlation Domain

(CD), Multiple Discriminant Analysis/Maximum Likelihood (MDA/ML), General-

ized Relevance Learning Vector Quantized-Improved (GRLVQI), and Learning From

Signals (LFS).
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1.4 Document Organization

The remaining chapters are organized as follows. Chapter 2 provides back-

ground information regarding SCADA and ICS systems, PLCs, Ladder Logic Pro-

grams (LLPs), network/PLC vulnerabilities, spurious RF signal collection, post-

collection processing, the correlation operation, the Hilbert transform, and device

verification. Chapter 3 provides details on the methodology used for this research

effort including signal collection and processing, the CBAD process, the RF-DNA

process, the specific devices and LLPs used for this research, and the verification

metrics presented to measure performance. Chapter 4 presents the results of the

methodologies from Chapter 3 including verification performance for CBAD and

RF-DNA processes for (TD) and Hilbert transformed waveforms. Chapter 5 pro-

vides a summary of the research results and potential future research efforts.
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Table 1.1: Relational mapping between RFINT Technical Areas in Previous related
work and Current AFIT research contributions. The × symbol denotes specific areas
addressed.

Technical Area Previous Work Current Research

Addressed Ref # Addressed Ref #

TD Features × [57, 58,76,77] ×
[91, 92,102,103] [86–89]

SD Features × [10, 11,81,103]

CD Features × [91, 92] × [86–89]

Emission Type

Intentional (IRE) ×
[57, 58,76,81]
[91, 92,102,103]
[21,39,40,42]

Unintentional (URE) × [9–11] × [86–89]

Burst ×
[57, 58,76,81]
[91, 92,102,103]
[21,39,40,42]

Continuous × [9–11] × [86–89]

High SNR ×
[57, 58,76,81]
[91, 92,102,103]
[21,39,40,42]

Low SNR × [9–11] × [86–89]

Classification/Verification Processes

MDA/ML ×
[57, 58,77,81]
[91, 92,102,103]

[9–11,21]

GRLVQI × [57, 58,77,81] ×
LFS × [39–42]

Dimensional Reduction Analysis (DRA)

MDA/ML × [39, 57,58,77,81]

GRLVQI × [56, 77,81] ×
LFS × [39–42]

Verification

Electronic Components × [9–11] × [89]

Authorized Wireless Devices × [21, 77,81]

Rogue Wireless Devices × [21, 77,81]

Device Operations × [86–88]
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2. Background

This chapter provides background information on the topics associated with the

research in support of developing a single verification-based anomaly detection ap-

proach supporting: 1) software anomaly detection-discriminating between various

operating conditions to detect malfunctioning or malicious software, firmware, etc.,

and 2) hardware component discrimination-discriminating between various hardware

components to detect malfunctioning or counterfeit, trojan, etc. Integrated Circuits

(ICs). For the purpose of the research, verification is the validation of a claimed

identity for either an operating condition or hardware component.

Section 2.1 provides background on Supervisory Control and Data Acquisition

(SCADA) and Industrial Control System (ICS) and outlines the relationship be-

tween Programmable Logic Control (PLC) devices and the Ladder Logic Programs

(LLPs) used to control them. Section 2.2 provides background related to SCADA

and ICS vulnerabilities. Section 2.3 outlines the general emission collection and

post-collection processing used for Time Domain (TD) signals. Section 2.4 provides

a description of the two primary signal processing methods implemented in the re-

search, including correlation in Sect. 2.4.1 and the Hilbert transform in Sect. 2.4.2.

The chapter concludes with Sect. 2.5 which provides details on the verification-based

anomaly detection process and Receiver Operating Characteristic (ROC) curve met-

rics used for quantifying verification process performance.

2.1 SCADA and ICS Applications

As used in this document, the term SCADA refers to the entire collection

of hardware, software, and network elements that directly support monitoring and

control of ICS functions and facilities. ICS functions and facilities include, but

are not limited to, manufacturing, power generation, waste-water treatment, and

transportation control. SCADA systems are constructed in a hierarchical manner
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with supervisory systems providing monitoring and top-down control of field devices,

such as PLCs and Remote Terminal Units (RTUs). Field devices are used to collect

telemetry, which may be used to control field device operations or transmitted to a

Human Machine Interface (HMI) for observation and recording. PLC functionality

is controlled through LLPs which are computer programs written in a PLC specific

programming environment. While HMIs play an important part in overall SCADA

functionality and operation, PLCs and their controlling LLPs were the focus of this

research effort.

2.1.1 Programmable Logic Controller (PLC). PLC devices are used to im-

plement low-level functions within a SCADA system. At the simplest level, PLCs

collect various sensor inputs, run LLP operations using the input values, and as-

sign outputs based on the program results. A PLC device is typically comprised of

a microprocessor/microcontroller, associated Random Access Memory (RAM) and

firmware for executing the LLPs, input connections for collecting sensor data, out-

put connections for controlling physical electro-mechanical devices (relays, valves,

motors, etc.), and communication connections for interfacing with other devices or

for direct human interaction.

Relative to current main-stream Information Technology (IT) products, the

microprocessor, RAM, and firmware used in a majority of currently deployed PLCs

are outdated and lagging in performance. Thus, they are not capable of execut-

ing programs such Host-based Intrusion Detection System (HIDS) software that is

commonly used in IT applications to provide internal defense against malicious or

unauthorized programs. PLCs are installed within a variety of physical environments

that prioritize robustness over computational capability and require relatively simple

hardware with demonstrated reliability and resilience to harsh environmental effects.

The unique hardware of PLCs necessitates specially designed Operating System (OS)

software for interfacing between the hardware and the user-implemented LLPs. The

defensive security programs and processes that are commonly implemented in tradi-
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tional IT systems are not applicable to PLCs due to the hardware differences between

traditional IT systems and PLCs [82]. Thus, SCADA field devices do not benefit

from a large body of research and technologies aimed at improving IT security.

2.1.2 Ladder Logic Program (LLP). LLP implementation allows users to

control the processing of PLC inputs and outputs. The LLP language is unique to the

PLC/SCADA environment and is largely based on the physical design of relays that

were used prior to introducing PLCs to control ICS functionality. Figure 2.1 shows

an example of an LLP as programmed in the Allen Bradley RSLogix R⃝ programming

environment consisting of Move (MOV) and Square Root (SQR) LLP operations. As

presented, these programs are structured as inputs on the left and operations/outputs

on the right. Apart from branching capability that is inherently supported in PLCs,

the LLPs fundamentally operate in sequential order. For the PLC devices considered

under this research, the execution of experimental LLPs was strictly sequential with

no recursive calls or nested function included; this ensured that PLC operation was

deterministic and that resultant research conclusions were based on experimentally

repeatable execution.

Figure 2.1: Representative LLP constructed in the Allen Bradley RSLogix R⃝ pro-
gramming environment consisting of a single MOV and SQR operation. Program
rungs in the ladder are executed sequentially from left-to-right, top-to-bottom.
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LLP programs are inherently repetitive, with each repeated execution cycle

beginning at the top LLP rung and ending at the last program rung. Each execution

of the LLP is called a scan. For each LLP scan, the inputs are all processed and read

into memory first. The outputs are then logically computed and stored in internal

registers based on the logic of the LLP. The final step of the LLP scan is to assign

all computed outputs to the actual, physical outputs of the device. The PLC then

begins the next scan at the top rung of the LLP. While branches may exist in the

LLP, recursive calls or do-while loops are not permitted as the scan is fundamentally

a linear left-to-right, top-to-bottom, progression through the LLP.

2.1.3 Human Machine Interface (HMI). HMIs provide a means for users to

observe, monitor, and control ICS functions. HMIs are fundamentally software pack-

ages installed and executed on standard Personal Computers (PCs). HMI software is

programmed to interact with PLCs and other field devices through IT network media

using SCADA communication protocols such as the Object Linking and Embedding

(OLE) process control. While PLCs represent one means through which malicious

events can be physically enacted upon the system, the HMIs represent an easy means

for malicious software to be loaded onto victim PLCs [12, 13, 93, 94]. For example,

attacks similar to Stuxnet obfuscate the operator’s view of the victim PLC status

by using altered LLPs that replace legitimate LLPs stored on the PLC [105]. De-

spite the vulnerability, HMIs remain essential and provide valuable insight into ICS

facility functions by assimilating data from various Remote Terminal Units (RTUs)

and PLCs and presenting it in a customizable format to ICS facility operators.

While HMIs pose a potential vulnerability, the fact that a majority of the HMIs

are built from standard IT components significantly mitigates the threat. Widely

available IT security programs, tools, and methods are applicable to the majority of

HMI systems. Additionally, the communication networks consist of Commercial Off

The Shelf (COTS) IT devices and protocols. There may be proprietary protocols

operating between field devices, but these protocols typically operate over standard
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IT infrastructure and can be monitored for potentially destructive activity similar

to how standard protocols are monitored [64].

2.2 SCADA and ICS Vulnerabilities

SCADA and ICS systems remain vulnerable to a variety of attacks and methods

of compromise. The ICS Cyber Emergency Response Team (ICS-CERT) maintains a

list of hundreds of vulnerabilities specifically affecting SCADA and ICS components

and systems [45]. The vulnerabilities affect multiple devices within the SCADA

hierarchy, including both PLCs and HMIs. HMI hardware implementations are

largely based on traditional IT systems and benefit from the substantial research in

IT network defense. HIDS programs offer a means to detect unauthorized programs

on HMI systems and Anti Virus (AV) software provides another avenue for detecting

and removing malicious code on traditional IT systems. As stated in Sect. 2.1.1,

PLCs are largely vulnerable in this respect due to a lack of defensive software or

methods inherent in their design. Malicious threats such as Stuxnet exploit this

vulnerability to inject malicious unknown code into SCADA systems.

The PLC field devices pose a particularly alarming threat due to the lack of

general purpose processing capability, proprietary nature of the devices, and the

long tech-refresh cycles for installed devices. The LLPs introduced in Sect. 2.1.2

are focused on providing industrial monitoring and control functions and are not

general purpose enough to effectively implement AV or IDS functions, leaving the

PLC devices vulnerable.

Extensive research effort has been applied to secure traditional Information

Technology (IT) systems and networks by controlling access and detecting malicious

programs, or malware, in the higher layers of the network Open Systems Intercon-

nect (OSI) model, i.e., the Data Link Layer (DLL) through the Application (APP)

layer. Bit-level credentials, such as Media Access Control (MAC) addresses and

International Mobile Equipment Identity (IMEI) numbers control, control network
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access while AV and Intrusion Detection System (IDS) software protects IT systems

from malware. Had the IT protection methods been available for PLCs at the time

of attack, the adverse effects of Stuxnet [105] and Duqu [93] malware-based attacks

may have been mitigated. The programs offering defense of commodity IT assets

are generally not implementable on the majority of PLCs and other ICS components

within SCADA systems; therefore, the goal is to find alternative defense mechanisms

that can be implemented on PLCs and other ICS components that are currently vul-

nerable. One specific alternative has emerged that exploits Radio Frequency (RF)

emissions to achieve human-like discrimination of hardware devices using PHY Layer

information extracted from either unintentional or intentional RF emissions to aug-

ment bit-level network access control measures [11, 18,25,58,79,102].

2.3 RF Emission Collection

Signal collection is the process of capturing and storing the Device Under Test

(DUT) signal. The signal collection can either be accomplished using an antenna for

Intentional RF Emissions (IRE) exploitation or using an EM probe for Unintentional

Radiated Emanation (URE) exploitation. In either case, the equipment and process

must be tailored to the specific target and signal attributes desired. Previous RF-

based research can be broadly categorized based on the type of emission(s) exploited.

IRE energy comes from devices that intentionally broadcast or emit RF radiation in

support of their primary “by design” function (e.g., cellular phones, pagers, wireless

Local Area Network (LAN) adapters, etc. URE energy comes from devices that emit

RF radiation as an unintended by-product or “side-effect” of their primary function;

the majority of electrical Integrated Circuit (IC) components emit some amount of

RF radiation during the course of normal operation.

IRE RF signals are broadcast at a carrier frequency specified by the specific

design of the DUT broadcast technology. The carrier frequency is typically much

higher than the frequency bandwidth of the DUT RF signal [85]. For example IEEE
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802.15 Bluetooth communications, use the Industrial, Scientific, and Medical (ISM

RF band residing at a carrier frequency of fC=2.4 GHz, but the Bluetooth signal has

a bandwidth of less than 500 MHz [47]). Signals sampled at the carrier frequency

of fC=2.4 GHz would require substantial storage and bandwidth if sampled and

stored at the Nyquist-Shannon criteria (sample frequency fS≥2fC). Therefore, the

signal is down-converted after initial capture to a lower frequency with lower storage

requirements. This down-converted signal meets the Nyquist-Shannon criteria for

the DUT RF signal adjusted to account for the carrier frequency.

For a collection against an IRE device, critical collection aspects include the

antenna used to receive the signal and the receiver used to format and store the

signal. Additionally, even with the same receiver, different signal technologies will

require different collection settings such as center frequency, filter bandwidth, sam-

pling rate, and signal gain. Storage and processing also require specific collection

methods and settings. Environmental conditions also have an effect on the collec-

tion as temperature and RF interference both impact captured signal. Previous RF

Fingerprinting efforts have taken steps to limit the environmental impact such as

operating the collection receiver from within a climate controlled automobile [25]

or performing the collections indoors [79]. Although an uncontrolled environment

presents a challenge to collecting IRE signals, other researchers have had success in

collection and fingerprinting in an operational test environment with limited or no

control over potential interference or environmental effects [34, 102].

Collecting against URE parallels the collection against IRE devices, but re-

quires different equipment and collection methods. There exists invasive and non-

invasive techniques for RF capture from URE devices. Given the goal of RF finger-

printing, to accurately identify hardware or operations, most collections will require

non-invasive collections. One method of non-invasively collecting a URE signal is

by using an Electro Magnetic (EM) probe. Previous related research has exploited

differences in electrical responses collected directly from various IC connecting pins
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(power, timing, control, data, etc.) to verify physical design authenticity [2, 28];

physical contact assessment. These methods are unlike RF-based method adopted

for this research whereby RF emissions are collected from operating ICs using a near-

field probe placed in close proximity to the DUT [11,52]; non-contact electromagnetic

assessment.

The RF signal must still be sampled for the purpose of storing and analyzing.

The signal characteristics are based on physical attributes of the DUT and not spec-

ified design, so the sampling rate is determined empirically by analyzing the signals

collected from the DUT. As in the case of IRE collection, the sampled signal may

be filtered by a Low Pass Filter (LPF) to increase the overall Signal-to-Noise Ratio

(SNR). Because the URE broadcast is not based on a specific design, the values for

the LPF are determined empirically based on the spectral characteristics of the DUT

URE RF signals. Another difference between the URE and IRE collection process is

the burst detection. The IRE signals considered are transmitted in bursts containing

well documented regions. The URE signals construction is an artifact of the oper-

ational design and it does not follow any structured arrangement or organization.

Therefore, much of the time range for the Region Of Interest (ROI) is determined

empirically based on visual examination of collected signals.

As mentioned previously, the equipment used to collect RF signals in support

of fingerprinting differ for specific collections. For example, the signal specific equip-

ment would include tuned antennas for IRE or EM detection equipment such as a

near field probe for URE collection. In addition to the equipment required to capture

the RF signals on the physical layer, the signal data must be collected and stored

for future processing.

The URE fingerprinting research field has less subject matter and research

than the IRE research field. There have been no less than four AFIT research

efforts in the field of IRE related to GSM, 802.11x, and 802.16 technologies. To the

best of the author’s knowledge there has only been one dedicated AFIT research
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effort related to the field of URE fingerprinting. Therefore, while the RF Signal

Intercept and Collection System (RFSICS) collection metrics referenced above span

multiple research efforts and wireless technologies, the AFIT-specific metrics for

URE Fingerprinting are obtained from the previous PIC microcontroller work [10].

For the collection of URE data, recent AFIT efforts have used a Riscure near-field

probe in place of an antenna for IRE and capture/store the data using a LeCroy

104-Xi-A Oscilloscope. A filter was implemented between the near-field probe and

the oscilloscope to filter signals greater than 1 GHz. Since URE devices do not

intentionally broadcast an RF signal at an advertised frequency, as is the case with

IRE devices, the data collection settings are based on clock cycles and empirical

results. The target PIC devices operate at a clock rate of 29.48 MHz. However, the

collection was performed at a sampling rate of 2.5 Gsps (satisfying Nyquist sampling

criteria for signals less than 1.25 GHz) in order to allow post-collection simulations

using the extra data [10].

2.3.1 Near-Field RF Probe. RF energy can be collected using a typical

far-field antenna (common for IRE collections) or in the near-field using a specific

variant called an RF probe (common for URE collections). The near-field RF probes

used for this research were manufactured by Riscure and composed of a tuned, cal-

ibrated conductive coil and low-noise amplifier. RF probe performance is primarily

characterized by its bandwidth and spatial resolution, where bandwidth represents the

frequency range over which the probe is sufficiently sensitive to collect RF emissions

of interest and spatial resolution is the physical area extent over which the probe

maintains this sensitivity.

2.3.2 Digital Sampling. A continuous, real-world signal contains an infinite

number of values between any two points in time and would require an infinite

amount of storage and processing power to analyze. Therefore, the continuous RF

signal broadcast from the DUT must be sampled for storage and analysis. Sampling
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involves converting the continuous signal to a discrete representation for storage and

analysis. The collection hardware is configured to sample the RF frequencies at a

sampling rate meeting the requirements of the Nyquist-Shannon theorem [67].

Following near-field probe collection, the analog emission responses are digi-

tally sampled for subsequent storage and post-collection processing. Under Nyquist

criteria, the collected analog response must be sampled at a rate of fs≥2×fM , where

fM is the maximum frequency extent of the RF response. For emissions collected

here, the maximum frequency extent was limited by placing an in-line RF filter be-

tween the Riscure near-field probe and the LeCroy oscilloscope (o’scope) used as the

receiver. The RF filter bandwidth is determined by the spectral points at which the

signal’s power (S) is attenuated by SA≤3.0dB.

In addition to sampling frequency fs, another critical aspect in the sampling

process is quantization of TD signal samples. Quantization involves mapping a con-

tinuous analog variable (collected RF emission) into a discrete digital variable. The

voltage range and bit-depth define the analog-to-digital mapping process. For exam-

ple, an input voltage range of V ∈[0, 2.55] V gets mapped to an 8-bit digital variable

and provides the ability to discern between 28=256 total discrete voltage levels in

quantization increments of q=2.55/(256 − 1)=0.01 V. The resultant mapping of a

continuous input voltage to a discrete variable inherently introduces quantization

error into the digitized sample values. The adverse effects of quantization error vary

with application and efforts using identical equipment as this research successfully

discriminated between hardware devices while experiencing no adverse quantization

effects [9–11]. Given this motivation, the effect of quantization error was not ad-

dressed or analyzed under this research. The specific bit-depth and sampling rate

implemented under this research are discussed in further detail in Chapter 3.

26



2.4 Post-Collection Processing

The primary post-collection processing methods used for this research were

based on Correlation and the Hilbert transform. Collectively, these methods are the

basis of the Correlation-Based Anomaly Detection (CBAD) process that is intro-

duced under this research and serves as the core signal processing engine.

2.4.1 Correlation. The correlation processing used here extends beyond

traditional digital communication system applications and is more consistent with

what is commonly used in image processing and other fields requiring signal identifi-

cation in noisy environments [20]. Given two discrete complex-valued sequences x[n]

and y[n], the kth-lag element of the auto-correlation (Rxx[k]) and cross-correlation

(Rxy[k]) sequences are given by,

Rxx[k] =
∑
n

xnx
∗
n−k , (2.1)

Rxy[k] =
∑
n

xny
∗
n−k , (2.2)

respectively, where * denotes the complex conjugate. From an a-posterior proba-

bility perspective, classification and verification are related processes that can be

independently implemented [11]. However, existing classification processes require

considerable resources for a large number of classes and/or class features. Con-

siderable work has been dedicated to quantifying and reducing the computational

complexity of such processes [3,43]. Still, concern remains for implementation using

systems having limited or modest computing capability. Correlation-based methods

are a less computationally intensive alternative for addressing these concerns and the

foundation of optimal matched filtering applications, with one prevalent implemen-

tation being the estimation of digital communication symbols [72]. Classification

processes vary greatly in the execution cost, but the correlation process operational
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cost is predictable and well bounded. The operational performance using two discrete

sequences, say x[n] and y[n] of length N , is computable and analytically bounded

by

O(RXY [x[n], y[n]]) ∼ O(N2). (2.3)

where O(·) denotes the computational time complexity.

2.4.2 Hilbert Transform. The Hilbert Transform (HT) is commonly used

in audio signal processing applications to stabilize signal amplitude (envelope) esti-

mation [31,71]. The HT of continuous signal xs(t) is given by [30,32]

H(t) = xs(t)~
1

πt
=

1

π
P.V.

∫ ∞

−∞

x(τ)

t− τ
dτ , (2.4)

where ~ denotes convolution and P.V. denotes the Cauchy principal value. Now

letting x[n] be a periodic sequence of N consecutive time samples of xs(t), elements

of the Discrete Hilbert Transform (DHT) are given by [50]

H[n] =
2

N

∑
k Odd

xs(k)cot
( π

N

)
(n− k) ; n Even , (2.5)

H[n] =
2

N

∑
k Even

xs(k)cot
( π

N

)
(n− k) ; n Odd . (2.6)

Of importance to this research is that the near-field probe and o’scope collection

process described in Sect. 2.3.2 yields real-valued samples of the collected emis-

sion. Thus, the DHT process in (2.5) and (2.6) is readily implemented using the

MATLAB R⃝ hilbert function. Strictly speaking, the MATLABR⃝ hilbert func-

tion returns a complex analytic signal representation with the real In-phase (I)

components being the original input sequence and the imaginary Quadrature (Q)

components being the input sequence with a 90◦ phase shift [62]. The imaginary
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Quadrature components represent the results of performing the Hilbert transform of

the original real sequence. The corresponding instantaneous amplitude response of

the real-valued input signal is simply found by taking the magnitude of each complex

I-Q pair and has the same length as the original sampled response.

2.5 Verification-Based Discrimination

The verification-based discrimination process used for this research is consistent

with the methodology used for biometric identity verification [48]. As implemented

here, the one-to-one verification process includes a comparison the DUT’s current

unknown state (as captured in a current RF fingerprint) with a stored reference

fingerprint from the same device operating in a known state. This process and fin-

gerprints from untransformed time domain URE signals had been previously used to

verify PIC micro-controller operation (software discrimination) and to discriminate

between PIC micro-controller ICs (hardware discrimination) [11]. The process in

these earlier works was adopted here to support an anomalous vs. normal assess-

ment methodology. In this case, an anomaly is any type of response, behavior, etc.,

that is not deemed normal and which may occur as a result of hardware and/or soft-

ware failure, degradation, or modification; the focus here was on detecting software

anomalies through verification of the operating condition response.

By implementing the general biometric verification process in support of hard-

ware anomaly detection, PIC micro-controller identities have been verified to better

than 99.5% accuracy [11]. These previous results increased the envisioned proba-

bility of success for the proposed anomalous vs. normal assessment methodology

described in Chapter 3 using more complicated PLC-based SCADA device operations

with a goal toward determining the DUTs current operational state. The verification

process is implemented by presenting all current observations as normal operation

regardless of the actual (unknown) operation and making a final declaration of nor-

mal or anomalous. Relative to possible verification outcomes in other verification
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and detection work [11,48,83], Table 2.1 shows there are four possible outcomes from

the normal vs. anomalous declaration process. In the context of successful Anomaly

Detection, the True Anomaly Detection outcome represents success.

Table 2.1: Normal vs. Anomalous Verification Outcomes: A device’s current oper-
ational state is assessed by claiming Normal and making a final declaration based
on operational credential analysis with a goal of achieving reliable True Anomaly
Detection.

Actual Claimed Declared Outcome

Normal Normal Normal True Normal Verification
Normal Normal Anomaly False Anomaly Detection
Anomaly Normal Normal False Normal Verification
Anomaly Normal Anomaly True Anomaly Detection

2.5.1 ROC Performance Assessment. Quantitative performance assess-

ment of the verification-based anomalous vs. normal assessment is based on ROC

curve analysis as commonly used for binary classification problems such as biometric

verification [11, 48]. In this case, verification threshold tV is set based on training

and used to declare (rightly or wrongly) that the current operating condition is nor-

mal (verification) or anomalous (detection). For assessment outcomes in Table 2.1,

ROC curves are generated by varying tV over its valid range and recording the True

Anomaly Detection Rate (TADR) (anomalous conditions correctly declared anoma-

lous) and the False Anomaly Detection Rate (FADR) (normal conditions incorrectly

declared anomalous) for each variation in tV . The resultant ROC curve is plotted as

TADR versus FADR as threshold tV varies. The Equal Error Rate (EER) point is

the point on the ROC curve at which FADR=1 − TADR=FNV R (False Normal

Verification Rate). The EER provides a single metric for comparing two detection

methods, with a lower EER indicating a more effective detection method.
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3. Methodology

This chapter provides details on the methodology implemented to conduct the re-

search and generate results presented in Chapter 4. The Correlation Based Anomaly

Detection (CBAD) process is used to detect anomalous Programmable Logic Con-

troller (PLC) operating conditions, with a goal of reliably differentiating between

desired normal (Norm) and undesired anomalous (Anom) operating conditions. In

an operational environment an anomalous operating condition could be triggered by

software and/or hardware failure, degradation, etc. Thus, a single verification-based

anomaly detection approach was developed here to support 1) software anomaly de-

tection–discriminating between various operating conditions to detect malfunctioning

or malicious software, firmware, etc., and 2) hardware component discrimination–

discriminating between various hardware components to detect malfunctioning or

counterfeit, trojan, etc., Integrated Circuits (ICs).

Software anomaly detection capability is assessed in Chapter 4 using the pro-

posed CBAD process with three specific collected, sampled, and post-collection

processed input sequence types: 1) Time Domain (TD) PLC emission sequences

2) Hilbert transformed PLC TD emission sequences, and 3) Radio Frequency Dis-

tinct Native Attribute (RF-DNA) feature sequences. Hardware discrimination capa-

bility is likewise assessed in Chapter 4 using a Generalized Relevance Learning Vector

Quantization-Improved (GRLVQI) process with two specific collected, sampled, and

post-collection processed input sequence types: 1) RF-DNA feature sequences ex-

tracted from TD PLC sequences, and 2) CBAD Correlation Domain (CD) feature

sequences extracted from Hilbert transformed TD PLC sequences. Details for the

PLC devices, PLC Norm and Anom Ladder Logic Programs (LLPs), RF emission

collection and processing, and the CBAD and GRLVQI verification process are pro-

vided in the following sections.
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3.1 PLC Device Description

Chapter 4 results are based on experimentally collected RF emissions from

ND=10 Allen Bradley SLC-500 05/02 Central Processing Unit (CPU) PLC devices.

The Device Under Test (DUT) to PLC identity (ID) mapping is presented in Ta-

ble 3.1. The PLC devices are all the same make and model and were chosen for

proof-of-concept demonstration given they 1) are readily available commercially,

2) they are prominently used in industry, and 3) their primary Micro Controller

Unit (MCU) has similar clock speed and internal data bus structure to other MCU

used in previous related efforts [10, 11].

Table 3.1: Device Under Test (DUT) to PLC Identity ID Mapping and Class ID
Assignment Based on Device Labeling and Logos.

DUT ID MCU Label MCU Logo PLC ID Class ID

DUT1 NXP None WQ 1
DUT2 NXP None WV 1
DUT3 None Philips KG 2
DUT4 None Philips QI 2
DUT5 Philips Philips KV 3
DUT6 Philips Philips OV 3
DUT7 Philips Philips RG 3
DUT8 None Philips ZC 4
DUT9 None Philips ZZ 4
DUT10 Signetics & Intel Signetics ZA 5

The selected PLC devices are visually discernable and were categorized into

classes based on different labeling characteristics. An additional means for quali-

tatively categorizing devices is through visual analysis of RF emission spectral in-

tensity–a graphical representation of maximum Power Spectral Density (PSD). For

assessment here, spectral intensity plots were generated by collecting NB=400 emis-

sions from each device executing an arbitrary LLP using a Low Pass Filter (LPF) to

mitigate aliasing effects. The LPF had an effective bandwidth of WLP≈81.0 MHz.

Considering an arbitrary sampled TD sequence havingNs total samples, x[n]={x[ni],

x[n2], ..., x[nNs ]}, the corresponding PSD components |X[n]| can be obtained using
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a Discrete Fourier Transform (DFT) given by [72],

X[n] =
1

Ns

Ns∑
k=1

x[n]e−jΦ(Ns,k,m) : 1 ≤ m ≤ Ns , (3.1)

where

Φ(Ns, k,m) =

(
2π

Ns

)
(k − 1)(m− 1) : 1 ≤ m ≤ Ns . (3.2)

The PLC spectral intensity plots (20×20 max[|X[n]|] values) were generated

using (3.1) and (3.2) for all ND=10 devices using NB=400 total emission collections,

with one emission collected from each of (NX=20)×(NY=20)=400 uniformly spaced

points on a rectangular grid over the DUT surface. The resultant spectral intensity

plots are shown in Fig. 3.1 and provide an alternate, qualitative means of assigning

DUTs to classes. Each point on the 2D plots represents the max[|X[n]|] of the PSD

series associated with the emission collected at that location. Note that Device RG

is assigned to Class 3 based on DUT markings in Table 3.1, but bears a closer

resemblance to devices in Class 1 when considering its spectral intensity in Fig. 3.1.

Figure 3.1: Spectral intensity plots generated as emission maximum PSD responses
over a 20×20 uniform grid above the PLC MCU surface. Plots enable qualitative
device classification base on visual analysis of emission characteristics. With one
exception, responses here confirm the PLC class assignments in Table 3.1 which
are based on device label markings; the RG PLC response here is visually more
consistent with Class 1 vs. the Class 3 table assignment.
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3.2 PLC Operating Conditions

PLC emissions were collected for a single Norm and two Anom operating con-

ditions using the experimental LLPs shown in Fig. 3.2. Prior to collecting PLC

responses using the methods described in Sect. 3.4, the PLC devices were pre-

programmed with the desired LLP which was then executed repeatedly until halted

through user intervention. Two major LLP variants were implemented for demon-

stration, including an 1) NOP=5 version and 2) NOP=10 version for each of the

Norm, Anom #1 and Anom #2 operating conditions (six total LLPs). The LLPs

were executed repeatedly and emissions collected from the PLC until power was

turned off or execution was terminated through user intervention.

3.2.1 Ladder Logic Program: NOP=5. The first LLP variant is used to

demonstrate the feasibility of CBAD processing using NOP=5 LLP operations and

consists of a specific order of Move (MOV ) and Square-Root (SQR) commands

that operate on data within the PLC memory. While not graphically illustrated, the

results after each executed operation are saved to registers within the PLCs before the

next operation is executed. As shown in Fig. 3.2, the anomalous operating condition

programs were generated from the Norm operating condition program by reordering

(Anom #1) and replacing (Anom #2) specific operations. These anomalous program

conditions are intended to mimic potentially disruptive and/or malicious alterations

as shown in . As seen in Fig. 2(a), the Norm LLP consists of alternating MOV and

SQR operations: {MOV, SQR,MOV, SQR,MOV }. These were chosen to contrast

a relatively short operation (MOV ) with a more computational demanding operation

(SQR) in an effort to simplify the first attempt at detecting software anomalies.

The Anom #1 operating condition LLP was created by reordering the N2=2nd

and N3=3rd operations. The resulting LLP consists of: {MOV, MOV, SQR, SQR,

MOV }. The Anom #2 operating condition LLP was created by replacing the
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N4=4th operation (SQR) with a MOV operation. The resulting LLP consists of:

{MOV, SQR, MOV, MOV, MOV }.

3.2.2 Ladder Logic Program: NOP=10. The second LLP variant consists of

NOp=10 total PLC operations and includes a specific order of Move (MOV ), Square-

Root (SQR), Add (ADD), Multiply (MUL), Subtract (SUB), Divide (DIV ), Negate

(NEG), Convert To Binary Coded Decimal (TOD), and Convert From Binary

Coded Decimal (FRD) commands that operate on data within the PLC memory.

While not graphically illustrated, the results after each executed operation are saved

to registers within the PLCs before the next operation is executed. The operations

were selected to exercise the available math functions for the selected PLCs. As

shown in Fig. 3.2, the anomalous operating condition programs are generated from

the Norm operating condition program by reordering (Anom #1) and replacing

(Anom #2) specific operations. These anomalous program conditions are intended

to mimic potentially disruptive and/or malicious alterations as shown in Fig. 3.2.

The Anom #1 operating condition LLP was created by reordering the N5=5th

and N6=6th operations. The resulting LLP consists of: {MOV, SQR, ADD, MUL,

DIV, SUB, NEG, TOD, FRD, SQR}. The Anom#2 operating condition LLP was

created by replacing the N4=4th operation (MUL) with an ADD operation. The

resulting LLP consists of: {MOV, SQR, ADD, ADD, SUB, DIV, NEG, TOD,

FRD, SQR}.

3.3 CBAD Processing Overview

The CBAD process was implemented as illustrated in Fig. 3.3 and used to

perform verification-based anomaly detection using five distinct sub-processes:

1. RF Emission Collection–emissions are collected from each PLC operating under

Norm and/or Anom conditions as required to support both software anomaly

detection and hardware component discrimination assessment.
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(a)

(b)

Figure 3.2: Normal (Norm) and Anomalous (Anom) ladder logic programs for
(a) NOP=5 and (b) NOP=10 operating conditions. Anomalous conditions are in-
duced through reordering (Anom #1) and replacement (Anom #2) of selected op-
erations.

2. Data Segregation–sequences are divided into independent “Training” (xTng[n])

and “Testing” (xTst[n]) sets; this distinction is adopted here for consistency

with terminology used in the pattern recognition community [22].

3. Normal Reference Sequence Generation–normal reference sequence xN [n] in

Fig. 3.3 is generated using Normal “Training” data in xTng[n].

4. Cross-Correlation CNC [k] Generation–CNC [k] is generated using the selected

xN [n] reference sequence and a given Collected sequence xC [n] to be verified.
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Figure 3.3: Correlation-Based Anomaly Detection (CBAD) process for verifying
that the Current unknown sequence XC [n] is a result of either a) Normal operating
conditions (declared when zV≤tV ) or b) Anomalous operating conditions (declared
zV>tV ). The claimed condition is always normal and implemented using a correla-
tion reference of XR=XN [89].

5. Verification Test Statistic Generation–verification test statistic zV is generated

using a selected Difference Function f∆ and correlation Difference C∆[k], i.e.,

zV=f∆(C∆[k]).

6. Establish Verification Threshold–verification threshold tV is determined and set

using CBAD “Training” statistics {zV [n]} under Norm operating conditions.

7. Verification Declaration–test statistic zVTst
is compared with the established

verification threshold tV and a declaration made such that zVTst
≤tV→Norm

and zVTst
>tV→Anom.

More details for each of these CBAD processing steps are provided in Sect. 3.8.

3.4 RF Emission Processing

Experimentally collected PLC emissions were used to form required input se-

quences for CBAD and RF-DNA processes. RF emissions were collected using a

Riscure RF probe attached to a LeCroy 804Zi Oscilloscope. All DUT RF emissions

were collected at sample frequency of fs=250 MSps using a near-field probe having

a baseband bandwidth of WBB=500 MHz. Following the collection and sampling of
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the emissions, they are post-collection processed using MATLABR⃝ functions. The

processing includes filtering, downconverting, and decimating the emissions prior to

using the emissions as input sequences for the CBAD process. The following sections

provide details related to the processing and collection of the RF emissions.

3.4.1 Collection and Sampling. The frequency of interest for the RF collec-

tions against URE devices in previous research efforts had been selected based on the

harmonics of the clock frequency for the target devices [10,11]. The observed MCU

clock frequency in the Allen Bradley PLCs was fCLK=18.5 MHz, with the strongest

frequency component spectrally aligned with a clock harmonic. As seen in Fig. 3.4,

this component is manifest near the HCLK=3rd MCU clock harmonic for the Allen

Bradley PLCs considered and has a targeted collection frequency of fc=55.5 MHz.

To ensure the targeted signal frequency is collected in compliance with Nyquist cri-

Figure 3.4: Representative normalized PSD for the PLC WQ device showing a
distinct peak response at f≈55.3 MHz.

teria, the signal is sampled at a rate of fs=250MSps. To minimize aliasing caused by

frequency components f≥125 MHz, the signal is filtered after collection by the RF

probe and prior to sampling using a passive inline LPF having a cutoff frequency of

fCO=81.0 MHz such that all frequency components greater than fCO are attenuated

by 3.0dB or greater. The attenuation for frequency values of interest is shown in

Fig. 3.5. The collected, filtered, sampled RF emission is stored as a sequence of

real values representing the measured voltage of the signal as sampled at each time
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region. The real values are stored as 8-bit integers. The signal collection and storage

process, from collecting using the RF probe, to storage as integer sequences is per-

formed in real-time. Following the collection and storage, the signals are processed

using MATLAB R⃝ prior to being used as inputs for the CBAD process.

Figure 3.5: Impulse frequency response of the fCO=81.0 MHz LPF. The filter is
designed to mitigate adverse aliasing effects by attenuating frequency components
above f≈125 MHz by at least 29.5dB.

3.4.2 PLC Mainboard Mounting. Prior to emission collection, the DUT

must be placed in a position such that the near-field probe can be placed in close

proximity to the MCU on the PLC Mainboard. The PLCs, as manufactured, do not

provide space for placement of the probe due to obstruction caused by the casing.

All mainboards were removed from their casing for the purpose of this research

effort. The entire PLC device plugs into a backplane, which provides power and

communication between PLC modules. In order to provide room to place the probe,

the PLC mainboards are connected to the backplane using a set of extension cables.

All PLCs are connected using the same set of cables, which must be unplugged from

one DUT and plugged into the next between DUT emission collections. The PLC

mainboards are placed on a probe table providing support for the mainboard and
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the ability to move the probe in three dimensions spatially. The probe table provides

precise placement of the probe, but does not have a native ability to repeat probe

placement positions between collections. A probe placement routine was used to

reliably place the probe prior to each collection. The probe placement routine is

discussed in Sect. 3.4.3. The collection configuration can be seen in Figure 3.6.

Figure 3.6: Picture of XYZ near-field probe station used for collecting PLC emissions.

3.4.3 RF Near-Field Probe Placement. Course near-field probe placement

was determined once per DUT during initial testing and physically marked for re-

peated placement during subsequent collections. The alignment to a physical marker

is not precise enough to avoid altering the collected emissions between collection

sessions where the DUT must be removed from the probe table and replaced for col-

lection. Probe placement was performed through a two step process that included

1) Course Placement–the probe is placed a predetermined location on the device

surface, and 2) Refined Placement–the probe is repositioned based on RF emission

analysis.

The physical location is defined on each device such that the same position

is used for every device relative to each device’s physical attributes. To limit the

variation between collection locations on the devices, the probe is placed in a location
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such that two lines, parallel to the physical edges of the PLCMCU, but perpendicular

to each other, are tangential to the edge of the probe. Figure 3.7 shows the physical

location where the probe is placed.

Figure 3.7: The red perpendicular lines are tangent to the near-field probe (blue
dot) and identify the location used for PLC MCU emission collection.

The specific probe placement is determined by collecting emissions at NL=100

locations on a (DX=10)×(DY=10) dimensional grid over a (xm=0.75 cm)×(ym=0.75 cm)

square region on the MCU surface. At each location i, a single alignment location

sequence xai [n] is collected. The sequence is collected during the PLC execution or

scan of an alignment LLP. The alignment LLP uses the MOV and SQR PLC opera-

tions. The alignment LLP consists of an ordered sequence ofNOP=6 PLC operations:

{MOV, SQR, MOV, SQR, MOV, SQR}. The collected sequences are processed

using the same process and method as is implemented for the post-collection pro-

cessing detailed in Sect. 3.5. The details of the processing are not critical to the

understanding of the probe placement routine, but it is important to note that they

match those implemented during the training and testing of the CBAD Process.

Recall the alignment LLP consists of alternating MOV and SQR operations.

An alignment reference LLP is used in conjunction with the alignment LLP to select

the probe position prior to collecting emissions from the PLC MCU. The alignment

reference LLP consists of a single MOV and SQR operation. The sampled, discrete

alignment reference signal xR[n] is collected while the reference LLP is executed by
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the PLC and it represents a single scan of the alignment reference LLP. While there

are NL=100 alignment sequences, {xA1[n], xA2[n], ..., xA100 [n]], there is only a single

alignment reference signal xR[n].

Correlation was the foundation of this research and plays a critical role in

nearly every aspect of CBAD processing, including probe placement and alignment.

The correlation process is analytically described from a random process perspective

in Sect. 2.4.1. For the purpose of this research a tailored correlation process is

implemented. Considering two real-valued discrete input sequences, x[n] having Nx

samples and y[n] having Ny samples with Ny≤Nx, the j
th element of cross-correlation

sequence Cxy[k] as implemented in this research is calculated as

Cxy[kj] =
Nx∑
i=1

x[ni] · y[nj+i] : 1 ≤ j ≤ Ny −Nx . (3.3)

An automated, repeatable approach for evaluating responses from the NL=100

probe locations on the DUT was needed to select a location that was best-suited for

emission collections. The evaluation criteria are derived from the aligned correlation

sequence CAi
[k] resulting from the correlation process equation (3.3) using the ith

alignment emission xai [n] and the alignment reference emission xR[n] as inputs. For

the ith alignment sequence xAi
[n] having Na samples and reference emission xR[n]

having Nr samples, the jth element of the ith alignment correlation sequence CAi
for

the ith probe location is calculated as

CAi
[kj] =

Nr∑
i=1

xR[ni] · xAi
[nj+i] : 1 ≤ j ≤ Na −Nr . (3.4)

Correlation sequence peaks provide a measure of performance for each poten-

tial probe position. The alignment reference LLP sequence xR[n] consists of a single

{MOV, SQR} sequence as compared to the three {MOV, SQR} sequences in the

alignment LLP sequence xA[n]. For each emission collected, NP=3 peaks are ex-
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pected in the CA[k] sequence given that the alignment LLP consists of the reference

LLP repeated NP=3 times. The probe position on the (DX=10)×(DY=10) dimen-

sional grid was selected based on a voting process that considers three values for each

of the NL=100 alignment correlation sequences: 1) the maximum correlation value,

2) the mean value of the highest NP=3 correlation peaks, and, 3) the sum of the

highest NP=3 correlation peaks. A probe position producing the highest value for

two of the three criteria is used as the position for emission collection. For cases when

no single emission satisfies this criteria, the probe position yielding the maximum

mean correlation of the highest three peaks is used.

3.4.4 PLC LLP Triggering. A trigger was used to initialize RF emission

collections based on a Light Emitting Diode (LED) output voltage (VLED=5.0 V)

assigned as a physical PLC register output during the first MOV operation in each

LLP. This output was toggled during each scan by a square wave having an ap-

proximate 50% duty cycle and scan frequency of fScn=1/(2×TScn) where TScn is the

approximate time it takes to complete a single LLP scan. Both the leading and

trailing edge of the square wave were used as a trigger. Since the PLC outputs are

assigned at the end of a scan, the triggered collections actually began just prior to the

start of a subsequent scan with square wave period (TScn) providing an approximate

measure of collected scan duration.

3.5 Post-Collection Processing

Following the collection, sampling, and storage the emissions are post-collection

processed using MATLAB R⃝. Before the post-collection process can begin the se-

quences are converted from the native Riscure Inspector R⃝ software format to a

MATLAB R⃝ compatible format. This is accomplished using code developed in sup-

port of previous AFIT Unintentional Radiated Emission (URE) research efforts [9].

The code was implemented in its original, unaltered state and so is not discussed in

detail for this research effort.
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Once the collected emissions are converted to a MATLAB R⃝ compatible format,

post-collection processing can be performed using four primary steps: 1) down-

conversion to an Intermediate Frequency (IF), 2) digital bandpass filtering, 3) down-

sampling using proper decimation, and 4) applying the selected transform to obtain

the final sequence used for verification. Each of these processes are described in

greater detail in the following sections.

3.5.1 Down-Conversion and Bandpass Filtering. Following collection and

storage of the input sequences, the signals were processed using MATLAB R⃝ to isolate

specific frequency components of interest, down-convert the signals to near-baseband,

and properly decimate to signals to reduce computational overhead of subsequent

processing. The emissions were digitally filtered after collection using an 8th-order

Butterworth bandpass filter with a center frequency of fBP=55.5 MHz and −3.0dB

bandwidth of WBP=1.0 MHz. The frequency response of the filter is presented in

Fig. 3.8. The center frequency was empirically selected based on observing emissions

Figure 3.8: Impulse frequency response of the digital 8th-order Butterworth bandpass
filter having a center frequency of fBP≈55.5 MHz and a −3.0 dB bandwidth of
WBP≈1.0 MHz.
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from all PLC devices as the third MCU clock harmonic (fc=3×fCLK=55.5 MHz).

The center frequency and bandwidth were selected based on analysis of center fre-

quencies fc={18.5, 37.0, 55.5, 74.0} MHz as aligned to the first four clock harmonics

for the observed MCU clock frequency fCLK=15.5 MHz and −3.0 dB bandwidths

of BWBP={1.0, 2.0, 3.0, 4.0, 5} MHz. The analysis demonstrated that the selected

bandwidth and center frequency provided the best performance in accurately dis-

criminating between the MOV and SQR PLC operations. Operation discrimination

performance was assessed using the CBAD process to generate test statistics with a

single training reference sequence and multiple test sequences from the ND=6 PLCs

that were initially purchased to support the research effort; these are the WQ, WV,

RG, KG, KV, QI devices identified in Table 3.1.

3.5.2 Sub-Sampling/Proper Decimation. Based on spectral analysis and

in accordance with Nyquist criteria, the down-converted bandpass TD responses

were properly decimated by a factor of 20 to produce sub-sampled sequences at

fs=12.5 MSps for post-collection processing. By down-converting the filtered signal

to fIF=2.0 MHz, the original signal content in f∈[55.0, 56.0] MHz is relocated to a

down-converted range of f∈[1.0, 3.0] MHz. With the frequency content of interest

centered at fIF=2.0 MHz, the signal was filtered using a LPF having a −3.0 dB

cutoff frequency of fLPF=3.5 MHz and the impulse response seen in Fig. 3.9. The

filtered signal is decimated by a factor of 20, reducing the number of signal samples

yielding a final sampling rate of fs=12.5 MSps for the down-converted signal.

3.5.3 Signal-to-Noise Ratio Scaling. The experimentally collected emis-

sions consisted of two components, including the 1) desired signal component xs[n],

and an 2) undesired background noise component xB[n]. It was assumed the sig-

nal and noise components are independent and that xs[n] is generally determinis-

tic and xB[n] is a random process; under these assumptions the collected response

xC [n]=xs[n]+xB[n] is a random process. One research objective involved assessing
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Figure 3.9: Impulse frequency response of the digital 8th-order Butterworth LPF
having a −3.0dB bandwidth of WLP≈3.5 MHz.

verification-based anomaly detection performance under varying SNR conditions

given that SNR variation commonly occurs in operational environments given in-

herent RF channel variation between the RF source and collection receiver. The

SNR is calculated as the ratio of average signal power (Ps) to average noise power

(PN) expressed in Decibels (dB).

To mitigate the need for repeated emission collections at varying distances and

channel conditions, the SNR variation effects were simulated by adding like-filtered,

power scaled Additive White Gaussian Noise (AWGN) noise realizations xN [n] to as-

collected, filtered PLC emissions xC [n]. The resultant “as evaluated” sequence that is

used for performance assessment and analysis is given by xA[n]=xs[n]+xB[n]+xN [n]

where xN [n] has been appropriately power-scaled to achieve the desired analysis

SNRA. The average power in an arbitrary complex sequence y[n] having Ny can be

estimated using,

Py ≈
1

Ny

Ns∑
i=1

y[ni]y[ni]
∗ , (3.5)
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where * denotes complex conjugate. When y[n] is real-valued (3.5) becomes,

Py ≈
1

Ny

Ns∑
i=1

y[ni]
2 . (3.6)

Considering that real-valued PLC collections were used for this research, the ex-

pression in (3.6) was appropriate for calculating required average powers and AWGN

power scale factors. Given a desired SNRA with xA[n]=xs[n]+xB[n]+xN [n] repre-

senting the analysis sequence, the average power in xA[n] and its components can

be calculated using (3.5) and are denoted by PA, Ps, PB, and PN for the respective

xA[n], xs[n], xB[n], and xN [n] sequences. Assuming all components of xA[n] are in-

dependent, the total average power in xA[n] is PA=Ps+PB+PN and SNRA can be

calculated using

SNRA = Ps/(PB + PN) . (3.7)

Given that Ps and PB can be estimated for experimentally collected emissions,

the SNRA expression in (3.7) is used to solve for the required PN in xN [n] using

PN = (Ps/SNRA)− PB , (3.8)

which in turn is used to calculate the corresponding power scale factor for AWGN

noise realizations, i.e., xN [n]≈
√
PN xAWGN [n] for xAWGN [n] : N [0, 1].

Each collection of “as evaluated” xA[n] analysis sequences at SNRA that are

input to the CBAD process was generated using a total of NNz independent, like-

filtered AWGN realizations for xN [n]. Thus, for a performance assessment based on

NB collected emission sequences {xC1[n], xC2[n], ..., xCNB
[n]} there are a total of

NZ=NB×NNz sequences used for each SNRA considered.
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3.6 Sequence Transformation

Prior to inputting sequences into the CBAD process, the sequences are trans-

formed using one of three methods implemented under this research: 1) an absolute

value function, 2) a Hilbert transform function, and 3) an RF-DNA transform. In ad-

dition, the resultant absolute value and Hilbert transform sequences are normalized

to produce x[n] which is input to the CBAD process. For sequence x[n], normaliza-

tion of the ith element is given by

x[ni] =
x[ni]

max(x[n])
. (3.9)

The absolute value function is the simplest and transforms a given emission sequence,

x[n], by computing the magnitude of each sequence element. This process is well-

known and does not warrant additional discussion. The Hilbert transform and RF-

DNA Transform methods are more complicated and discussed further in the following

sections.

3.6.1 Hilbert Transform. The CBAD verification process is agnostic to

what the sequence elements represent and the above process is applicable for all real-

valued sequences x[n]. Thus, the sequences can be generated as either the magnitude

of untransformed real valued TD sequences (|x[n]|) or as the magnitude of Hilbert

transformed TD responses (|H[x[n]]|). The transition to |H[x[n]]| sequences was

motivated by previous research showing that anomaly detection capability using

|x[n]| sequences is negatively impacted by cross-collection variance in RF emissions.

The observed misalignment (cross-collection time registration) of data sets was often

less than ±10 TD samples, yet resultant variation degraded verification performance

considerably. Thus, as in audio signal processing applications the Hilbert transform

is used to stabilize signal’s amplitude estimates, [32,71].

Recall the frequency components of interest are constrained in a frequency

range centered around fc=55.5 MHz with a bandwidth of WBW=1MHz. Similar to
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the work in [101], the Hilbert transform provides a means of estimating an ampli-

tude envelope for a narrowly determined frequency range. The amplitude estimate

sequence is obtained from the Hilbert transformed sequence by calculating the mag-

nitude of the complex pair representing each element of the Hilbert transformed

sequence. The Hilbert transform in (2.4) effectively shifts the phase of a continuous

signal by ϕ=π/2 radians for all frequency components. The MATLAB R⃝ hilbert

function is used to generate the transformed discrete sequence H[x[n]] for a given

real-valued sequence x[n]. The hilbert function in MATLAB R⃝ returns a complex

time analytic representation of the signal having In-phase (I) and Quadrature (Q)

components. The magnitude response of a discrete Hilbert sequence |H[x[n]]| rep-

resents the instantaneous amplitude or envelope of the discrete sequence x[n]. The

input sequence to the CBAD process is the magnitude of the Hilbert Transformed

sequence |H[xs[n]]|, which is the same length as the TD sequence x[n]. Consider a

Hilbert transformed sequence generated using the hilbert function, H[xs[n]. Any

element H[xs[ni]] of the sequence consist of both real, Hre[xs[n]] and imaginary,

Him[xs[n]] components representing the In-Phase and Quadrature components of

the real signal. The amplitude estimate sequence |H[x[n]]| is defined for any ele-

ment |H[x[ni]]| by calculating the 2-norm with each real-imaginary pair considered

a vector

|H[x[ni]]| = || < Hre[xs[ni]], Him[xs[ni]] > ||2

=
√

(Hre[xs[ni]])2 + (Him[xs[ni]])2
(3.10)

A representative magnitude TD |x[n]| sequence is shown in Fig. 3.10 along

with its corresponding magnitude |H[x[n]]| sequence.

3.6.2 RF-DNA Transform. The RF-DNA transform was implemented

according to the process in [9, 21, 39, 58, 76, 102] and was used in this research to

reduce the dimensionality of the input sequences and identify those signal attributes
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Figure 3.10: Representative responses for the first two LLP operations (SQR and
MOV ) under Norm operating conditions: (Top) Magnitude of TD |x[n]| sequence
and (Bottom) corresponding Magnitude of Hilbert transform |H[x[n]| sequence.

that aid in the discrimination of hardware devices. The RF-DNA transform is a

mechanical process calculating sequence attributes without reliance or dependance

on the source of the sequence. It has been used previously on sequences representing

TD, Spectral Domain (SD), and Time-Frequency (T-F) sequences [11, 42, 81]. For

the purpose of this research effort, the RF-DNA was performed on TD emissions

only.

RF-DNA reduces the dimensionality of the TD sequences by calculating sta-

tistical values (standard deviation σ, variance σ2, skewness γ, and kurtosis κ) for

instantaneous sequence attributes (amplitude a, phase ϕ, frequency f) over NR spec-

ified signal regions for an arbitrary input sequence x[n]. Features are calculated for

each specified region of the sequence and concatenated together to form an RF-DNA

fingerprint fTD representing the entire sequence x[n].

Each collected DUT emission collected for this research was stored as a real-

valued TD sequence x[n]. Given that the RF-DNA process is inherently base on

complex IQ input sequences, the collected x[n] here were converted to complex IQ se-

quences of the form xIQ[n]=xre[n]+xim[n] using the hilbert function in MATLAB R⃝.

Composite RF-DNA fingerprints were generated from selected sequences using the

following steps:

1. A given sequence xIQ[n] is divided into NR equal length contiguous subregions.
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2. Within a given subregion, the mean µ value is calculated and subtracted from

all subregion samples to minimize the impact of collection bias.

3. The desired instantaneous feature sequence(s) (phase ϕ[n], amplitude a[n],

and/or frequency f [n]) is calculated for the subregion samples.

4. Selected statistical attributes of standard deviation σ, variance σ2, skewness

γ, and/or kurtosis κ are calculated using all samples within the subregion.

5. The resultant statistical attributes are concatenated to form a single Regional

Fingerprint sequence with elements arranged in order of signal feature and

statistical attribute.

6. Steps 2-4 are repeated for each subregion of x[n] and the NR Regional Finger-

print sequences are concatenated to form the Composite Fingerprint sequence

for x[n].

The following sections provide more detail for each of the processes used to generate

a Composite Fingerprint sequence for a TD xIQ[n] sequence.

3.6.2.1 Instantaneous Feature Calculation. The first step in generat-

ing an RF-DNA fingerprint from a TD signal is calculation of selected instantaneous

signal features for the sampled TD signal. For the element xIQ[ni]=xre[ni] +xim[ni],

the instantaneous a[ni], phase ϕ[ni], and frequency f [ni] sequence elements were

calculated using [103]

a[ni] =
√

x2
re[ni] + x2

im[ni] , (3.11)

ϕ[ni] = tan−1

[
xim[ni]

xre[ni]

]
, xre[ni] ̸= 0 , (3.12)

f [ni] =
1

2π

[
dϕ[ni]

dni

]
, (3.13)

where 1 ≤ i ≤ Nx and Nx is the total number of elements in xIQ[n].
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For consistency with previous research, the TD sequences in (3.11)–(3.13) are

centered and normalized using (3.9); centering simply removes the sequence mean

(µ) prior to normalization. The ith element of the centered and normalized sequences

ac[ni], ϕc[ni], and f c[ni] are calculated using [76]

ac[ni] =
a[ni]− µa

max
1≤j≤Nx

(ac[nj])
, (3.14)

ϕc[ni] =
ϕ[ni]− µϕ

max
1≤j≤Nx

(ϕc[nj])
, (3.15)

f c[ni] =
f [ni]− µf

max
1≤j≤Nx

(fc[nj])
, (3.16)

where 1 ≤ i ≤ Nx and Nx is the total number of elements in xIQ[n].

The resultant ac[ni], ϕc[ni], and f c[ni] sequences are divided into NR specified

regions prior to calculating the desired statistics of standard deviation σ, variance

σ2, skewness γ, and/or kurtosis κ for the signal attribute sequences. Additionally,

the statistics can be calculated over the entire signal response (union of all subre-

gion samples). The final Composite Fingerprint sequence for xIQ[n] is formed by

concatenating all subregions statistics, and the entire region statistics if generated.

This is illustrated in Fig. 3.11 which shows an abstract representation of RF-DNA

fingerprint generation using an arbitrary feature sequence [103].

3.7 Region of Interest Selection

When processed according to Sect. 3.5, the resultant sequences represent the

emission data across an entire LLP scan. Previous efforts that targeted URE re-

sponses were based on experiments where the researcher had precise control of the

devices being analyzed [10, 11]. As previously discussed, the PLC scan includes

not only the logic operations explicitly defined by the LLP, but also includes the
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1 2 3 4 5 NR - 1 NR

NR + 1

fR3
σ – Std Deviation

σ2 – Variance

γ – Skewness

κ – Kurtosis

fR3 = [ σR3, σ
2
R3, γR3, κR3 ]

Arbitrary Feature Sequence

Figure 3.11: Abstract representation of RF-DNA fingerprint formation for an arbi-
trary sequence divided into NR subregions [103]. Standard deviation (σ), variance
(σ2), skewness (γ), and/or kurtosis (κ) are commonly used as RF-DNA features.

process of evaluating the physical device input values and assigning physical device

output values. Additionally, the PLC device also must perform low-level Operating

System (OS) functions such as system memory management and interrupt polling.

Significant portions of the RF emission signal are not directly attributable to the

LLP operations as seen in Fig. 3.12. The signal attributable to the specified LLP

operations must be extracted from the entire scan signal to produce a Region Of

Interest (ROI). A representative signal collected from an entire scan with the ROI

highlighted is pictured in Fig. 3.12. Once the ROI has been identified in a single

scan signal, it must be successfully and automatically extracted from the scan signal

content. Previous research efforts have involved IRE with clear, definable commu-

nication bursts that are clearly separable from the channel noise [34, 39, 76, 97, 102].

Considerable research has been dedicated to detecting and extracting bursts from

communication signals [35,56,58]. The signals considered for this research effort are

URE signals collected from operational PLC equipment, which have a more contin-

uous broadcast model as opposed to the burst broadcast model of communication

IRE devices. Additionally, the structure in the TD and SD for URE emissions is not

specified or engineered to be collected and processed and are significantly different in
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Figure 3.12: Representative TD collected sequences from a PLC device operating un-
der Norm and Anom conditions as indicated. The highlighted ROI regions represent
the response of one full LLP scan.

both domains for different semiconductor devices. These attributes of URE signals

provide a unique challenge when extracting the ROI for use in hardware or software

anomaly detection.

A correlation-based approach is used in this research in extracting the ROI.

Each implemented LLP begins with an alignment reference comprised of the {MOV,

SQR} LLP operation sequence previously used for probe placement. The {MOV,

SQR} sequence is used to detect the beginning of the ROI, containing operation

attributable signal content. Each LLP used in this research concludes with either a

MOV or SQR operation, designating the termination of the operation attributable

signal content. It is important to make a distinction to the use of LLP operations

to detect ROIs and PLC outputs to trigger the collection. Because outputs values

are assigned after the logical operations are performed, the physical trigger used

to initiate the collection of emissions is not aligned to the operation attributable

signal content. Additionally, unpredictable operations performed by the PLC MCU

preclude the use of a static alignment method.
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The following steps are performed on each collected, stored, and post-collection

processed signal xC [n]. The signal resulting from collections against the {MOV,

SQR} LLP, xAS[n] is referred to as the alignment start reference. The alignment

reference signal consists only of signal content attributable to the {MOV, SQR}

operations, extracted from a representative collected signal prior to the alignment

process. The signal resulting from collections against either a {SQR, MOV } LLP

(for NOP=5) or {SQR} LLP (for NOP=10), xAE[n] is referred to as the alignment

end reference. The alignment reference and conclusion reference are collected from

the same DUT as the sequences that are the source of the ROIs. The correlation

process is identical to the correlation process (3.3) used in the probe alignment pro-

cess discussed in Sect. 3.4.3. The goal, in this case, is to provide a means of not only

extracting the ROI from the burst, but also to ensure the operation attributable con-

tent of the ROIs are not corrupted by non-operation attributable signal content. In

addition to the non-attributable signal content exhibited in Fig. 3.12, the PLC DUT

also performs OS and system maintenance functions that may occur between the

execution of the LLP operations. pristine ROIs are those containing only operation

attributable signal content while corrupted ROI contain non-attributable content.

The ROIs are extracted and declared pristine or corrupted for a single collected

sequence xC [n] and alignment reference sequences xAS[n] and xAE[n] according to

the following:

1. Consider collected sequence xC [n]={xC [ni]}, i=1, 1, ..., NC and two alignment

reference sequences denoted by xAS[n]={xAS[ni]}, i=1, 2, ..., NAS, and

xAR[n]= {xAR[ni]}, i=1, 2, ..., NAR, with all based on collections from the the

same DUT.

2. The xC [n], xAS[n],and xAE[n] sequences are all collected and post-collection

processed using identical methods, i.e., filtering, down-sampling, and sequence

transformation.
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3. Two alignment signals are used:

1) xA1[n]={xAS[n1], xAS[n2], ..., xAS[nNASSamp
]} and

2) xA2[n]={xAE[nAESamp], xAE[n2−1], ..., xAE[n1]}.

4. The sequence xC [n] is divided into two sequences:

1) xC1[n]={xC [n1], xC [n2], ..., xC [nNCSamp
]} and

2) xC2[n]={xC [nCSamp], xC [n(2−1)], ..., xC [n1]}.

5. Cross correlation sequence CC1,A1[k] is calculated using (3.3) with the xC1[n]

and xA1[n] sequences as inputs. The value max(CC1,A1[k])=CC1,A1[kiMax1
] and

index for the maximum value iMax1 are found and stored. The value iStart=iMax1

represents the estimated sample number for the ROI start.

6. Cross correlation sequence CC2,A2[k] is calculated using (3.3) with the xC2[n]

and xA2[n] sequences as inputs. The value max(CC2,A2[k])=CC2,A2[kiMax2
] and

index for the maximum value iMax2 are found and stored. The value iMax2

represents the estimated number of samples from the end of signal xC [n] to the

end of the ROI. The estimated end of the ROI is iend=NCSamp− iMax2 samples

from the beginning of the signal xC [n].

7. For each signal xC [n] three criteria are used to select the ROIs:

1) Maximum correlation value for ROI start CMS=max(CC1,A1[k])

2) Maximum correlation value for ROI end CME=max(CC2,A2[k])

3) Estimated length in samples of the ROI NROIEst=iend − iStart.

The preceding steps are repeated for all NB potential sequences

PXC [n]={xC1 [n], xC2 [n], ..., xC1 [n]} to generate sets of criteria values associated with

the signals. Potential sequences are those that are still considered as candidates for

contributing a non-corrupted ROI. Let CMS[n]={CMS[n1], CMS[n2], ..., CMS[nNB
]}

be the set of maximum correlation values for the ROI start such that CMS[nk] is

the maximum correlation start value for the collected sequence xCk
[n], Similarly,

let CME[n]={CME[n1], CME[n2], ..., CME[nNB
]}, be the set of maximum correlation

values for the ROI end generated from the NB collected sequences and
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NROIEst[n]={NROIEst[n1], NROIEst[n2], ..., NROIEst[nNB
]} be the set of estimated

ROI sample length for the collected sequences. Once the criteria have been calculated

for all signals considered, the following steps are used to assign a rank to the signals

so they can be sorted in order of priority: from those most pristine to those most

corrupted. The criteria are used to remove sequences from the list PXC [n] based on

evaluation of the criteria for the sequences.

The first step in extracting sequences that are not corrupted by non-attributable

content involves removing sequences based on estimated ROI length NROIEst[n].

Initially, all collected sequences are considered equal and kept in a set of poten-

tial sequences PXC [n]={xC1 [n], xC2 [n], ..., xCNB
[n]}. For each collected sequence

xCk
[n],1 ≤ k ≤ NB the estimated ROI length is compared to an established thresh-

old. It is assumed that the ROIs from sequences corrupted by the non-operation

attributable content will be longer, in samples, than those that do not contain the

extra content and sequences with an estimated ROI length exceeding the established

threshold are removed from the potential sequence list PXC [n]. The threshold is es-

tablished based on the mean and standard deviation values for the estimated ROI

length. Consider the mean µROIEst and standard deviation σROIEst values for the

estimated ROI sample length set NROIEst[n]. A sequence xCk
[n] is removed from the

set of potential sequences PXC [n] if the estimated ROI length exceeds the threshold

NROIEst[nk]>µROIEst + 0.3σROIEst. This threshold was empirically chosen to offer

an acceptable balance of removing sequences with potentially corrupted ROIs and

keeping an adequate number of sequences for evaluation of the CBAD process.

Following removal of sequences that exceed the threshold

NROIEst[n]>µROIEst + 0.3σROIEst, the remaining sequences in the list are assigned a

rank rx[n] based on the maximum start and end correlation values CMS and CME.

A sequence, xCk
[n] in the list PXC is assigned rank rx[nk]=µMS,ME[nk]. The value

µMS,ME[nk] is the mean of the 2-element set {CMS[nk], CME[nk]}, the maximum cor-

relation values for the estimated start and end of the ROI for sequence xCk
[n]. The
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remaining sequences in the potential sequence set PXC [n] are restructured in descend-

ing order such that PXC [n1] is the sequence with the maximum value for µ(MS,ME)[n].

Sequences considered for evaluation are taken from the sorted set PXC [n]. For a de-

sired number of selected sequences NSel, the set of ordered sequences

PSel[n]={PXC [n1], PXC [n2], ..., PXC [nNSel
], } is used for evaluation of the process.

Once the final list of NSel selected sequences

PSel[n]={PSel[n1], PSel[n2], ..., PSel[nNSel
]} has been established, the ROIs must be

extracted. The ROIs are extracted based on the sample index iStart where the max-

imum start correlation value was found. The ROI length NROI is established based

on empirically observed ROI length for a representative sequence. For a sequence

xC [n]=PSel[nk]={xC [n1], xC [n2], ..., xC [nNs ]} with a maximum start correlation in-

dex iMax the ROI xROI [n]={xC [niMax
], xC [niMax+1], ..., xC [niMax+NROI−1]}.

3.8 CBAD Processing

The CBAD overview was presented in Sect. 3.3 and more details are pro-

vided here on key processing steps. The first step involved collecting RF emission

sequences from each DUT operating under Norm, Anom #1, and Anom #2 op-

erating conditions. For CBAD evaluation under this research, the collections were

performed for ND=10 PLC devices executing both the NOP=5 (Sect. 3.2.1) and

NOP=10 (Sect. 3.2.1) LLPs; the actual number of LLP operations is not significant

for the remaining discussion in this section. The sequences are collected and stored

as outlined in Sect. 3.4 and post-collection processed as outlined in Sect. 3.5.

The CBAD process is presented once, but is repeated for each device and at

each desired SNR independently. The Normal reference sequence is only generated

once and is not scaled for different SNR values.

3.8.1 Testing and Training Set Generation. The ROIs are extracted from

the collected and processed bursts as outlined in Sect. 3.7. The number of ROIs
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selected varied from NB=1 collected ROI selected for an initial proof of concept to

NB=1000 ROIs selected for the final results. The number of collected sequence ROIs

is not significant to the discussion of the process. The ROIs are separated into two

independent “Training” (xTng[n]) and “Testing” (xTst[n]) data sets; the “Training”

and “Testing” distinction adopted here for consistency with terminology used in the

pattern recognition community [22]. The training sequences were selected based

on an interleaved pattern. Assume a total of NB=1000 ROIs are in the set xC [n]

and %Tng=5% are selected as training sequences; a total of NTng=50 are used as

training sequences. In any situation where the value for %Tng and NB do not result

in an integer number, the number is rounded down to the nearest integer. Using an

interleaved selection pattern, the training set xTng[n] is constructed from sequences

in xC [n] by taking every other sequence (e.g., the odd numbered ones) out of xC [n].

The remaining NTst=NB-NTng sequences in xC [n] (e.g., the even numbered ones) are

placed in the testing set xTst[n].

While the CBAD process is trained only on the Normal sequences, the train-

ing and testing selection process is performed on the Normal and Anomalous sets

such that all testing sets have the same number of sequences. For clarity, let the

normal test set be xTstN [n], the anomalous condition#1 test set be xTstA1[n] and the

anomalous condition#2 test set be xTstA2[n]. The normal condition training set is

xTng[n] since there are no training sets for the anomalous condition.

For each desired SNR, the NTst Norm, Anom #1 and Anom #2 testing se-

quences are each added to NNr AWGN realizations for a total of

NTestRlz=NTst × NNr sequences used as testing sequences. For the purpose of this

CBAD process discussion, the focus is on a single SNR, device, operating condition

permutation. The steps in the CBAD process are implemented identically irrespec-

tive of what input sequences are used.
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3.8.2 Reference Sequence xR[n] Generation. The next step is to generate

the Normal Reference sequence xR[n] in Fig. 3.3 using the NTng normal sequences

contained in the “Training” data set xTng[n]. Recall, the training set is composed

entirely of sequences for the normal condition LLP Norm. As functionally denoted

in (3.17), the CBAD process accepts two inputs, a Reference sequence XR[n] and

an unknown Collected sequence xC [n], and outputs a single real-valued output test

statistic (zV ) or

zV = CBAD (xN [n], xC [n]) . (3.17)

The CBAD function is first used with input “Training” sequences xTng[n] to

generate the desired Normal operating sequence xN [n]. After setting the reference

xR[n]=xN [n] as illustrated in Fig. 3.3, the CBAD function is then used to generate

the collection of “Testing” verification test statistics zV . The reference sequence

xR[n]=xN [n] sequence is generated as follows:

1. Construct a set of NPot=NTng + 1 potential reference sequences xPot[n] con-

sisting of the NTng “Training” sequences xTng[n] and the sequence X̄Pot[n] cal-

culated as an average of NTng sequences. The final normal reference sequence

xN [n] is selected from the set of potential sequences xPot[n].

z̄Vi
=

NPot−1∑
j=1

CBAD
(
xN [n] = xPoti [n], xC [n] = xPotj [n]

)
NPot − 1

: i = 1, 2, ..., NPot; j = 1, 2, ..., NPot; i ̸= j .

(3.18)

2. Consider the set of average statistic values resulting from the process in Step 2

zV [n]. The selected reference sequence is the potential reference sequence that,

when used as a reference sequence, yields the minimum average verification

statistic

xN [n] = xPoti [n] ∋ z̄V [ni] = min (z̄V [n1], z̄V [n2], ..., z̄V [nNPot
]) . (3.19)
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Once the Norm reference is selected, it is used as the reference sequence for

the remainder of CBAD processing.

3.8.3 Test Statistic zV Generation. The cross-correlation sequence CNC [k]

is generated for each test sequence using the selected xR[n] reference sequence and

test Sequence xTst[n] to be verified. This part of the process is completed for every

sequence in the test sequence set, but is presented for a single sequence to clearly out-

line the process. The resultant CNC [k] is then subtracted from the auto-correlation

sequence CNN [k] to generate the correlation difference sequence as C∆[k]=CNN [k]-

CNC [k].

For a reference sequence xR[n] and test sequence xTst[n] of equal size Ns, the

correlation difference sequence C∆[k] consists ofNCorrSamp=2Ns−1 samples. In order

to support the binary decision of declaring the sequence anomalous or normal the

correlation difference sequence C∆[k] is used to generate a single statistic value zV .

The verification test statistic zV is calculated using a pre-selected difference function

(f∆) and C∆[k] as zV=f∆(C∆[k]). For all results presented here, the difference

function is implemented as f∆=|C∆[k]|, i.e., a simple 2-norm magnitude operation.

Once the CBAD statistics have been generated, the input sequences xTst[n],

xTng[n], and xR[n] are no longer used.

3.8.4 Verification Threshold Determination. The next step in the CBAD

process is to establish the desired verification threshold tV . There are three CBAD

statistic sets resulting from the previous step in the CBAD process: 1) the statistic

set for the Norm operating condition zV N [n], 2) the statistic set for the Anom #1

operating condition zV A1[n], and 3) the statistic set for the Anom #2 operating

condition zV A2[n]. Recall, each set is the same size and contains NTst statistics.

The interleaved selection of testing and training sequence sets was repeated for

the statistic set zV N [n]. The threshold value tV was established using the collection
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of training verification test statistics zV Tng[n] and corresponding Probability Mass

Function (PMF) PZV
(zV Tng). For a desired FADRD performance the threshold tV

was set such that the following is satisfied,

P [ZPTng > tV ] = FADRD , (3.20)

where ZPTng is the random variable with a distribution defined by the observed PMF

PZV
(zV Tng) for the set of test statistics zV Tng[n].

3.8.5 Anomalous vs. Normal Declaration. Declaring input sequence xTst[n]

as being Norm or Anom was based on test statistics zV Tst derived from xTst[n]. The

final declaration is made using a simple comparison of input test statistic zV Tst with

the established Verification Threshold tV according to

zV Tst < tV → xTst[n] : Normal

zV Tst > tV → xTst[n] : Amomalous .
(3.21)

3.9 LLP Operation-by-Operation Processing

The CBAD process in Sect. 3.8 operates on entire input sequences and cal-

culates a single CBAD statistic for the entire waveform. An alternate method for

calculating CBAD statistics is to use multiple reference sequences consisting of stored

sequences for each LLP operation in the Norm operating condition. The anomalous

LLPs used to generate the collected emissions differ in either NOP=1 (Anom #2)

or NOP=2 operations (Anom #1) from the Norm operating condition LLP Norm.

The length, in samples, for the altered LLP operation dictates the number of sam-

ples that are different in the anomalous emissions. This step in the research effort

focused on leveraging knowledge of the normal operating sequence using NOP=10

unique reference signals to evaluate each LLP operating region for anomalous (dif-

ferent form the normal) behavior. Figure 3.13 shows the |H[x[n]]| emission sequence
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with the NOP=10 operations clearly depicted. The change in emissions due to a

Figure 3.13: Emission sequences with NOP=10 LLP operations being clearly at-
tributable to specific subregions. Operations highlighted in red represent changes
that were made to the Norm LLP to simulate anomalous operating conditions in
the Anom #1 and Anom #2 LLPs.

single altered operation may not be enough to surpass the detection threshold tV .

Therefore, an Operation-by-Operation CBAD process is employed where each oper-

ation is weighted equally when making the decision to declare anomalous or normal

regardless of the actual ratio of total samples the operation-attributable signal oc-

cupies.

The operation-by-operation implementation of the CBAD detection process

computes multiple CBAD statistics arranged in a sequence or CBAD statistics vector

< zV1 , zV2 , ..., zVNOP
> where NOP is the number of LLP operations in the normal

operating condition program. The CBAD statistics are calculated for each of the

Norm LLP operation regions seen Fig. 3.13. Each delineated operation region has

a reference emission used to calculate the CBAD statistic for that operation region.

The NOP Norm operations clearly align with the operation-by-operation regions

while the Anom #1 and Anom #2 operations do not.
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Figure 3.14 illustrates the flow of the Operation-by-Operation CBAD process

showing parallel CBAD statistic calculations used to generate the NOP CBAD statis-

tics vector. The function fZ(·) used to reduce the CBAD statistics vector < zV1 , zV2 ,

..., zVNOP
> is the 2-norm magnitude function | < zV1 , zV2 , ..., zVNOP

> |. The end

result is still a single CBAD statistic used to declare the operating condition normal

or anomalous based on a threshold tV .

Figure 3.14: Parallel CBAD processing used to perform LLP operation-by-operation
correlation. The branch test statistics (zi) are used to form a composite CBAD test
statistic vector for final verification assessment, with a 2-norm magnitude used to
make the final Norm or Anom declaration.

3.10 Performance Evaluation

Verification performance was evaluated for this research using 1) True Anomaly

Detection Rate (TADR) vs. SNR performance curves, and 2) traditional Receiver

Operating Characteristic (ROC) curves generated by plotting False Anomaly Detec-

tion Rate (FADR) vs. TADR based on discrete PMFs formed using selected test

statistics.

3.10.1 Performance Curves. The TADR vs. SNR performance curve is

generated by plotting the TADR for each SNR considered. Before the TADR values
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can be calculated, a threshold tV must be established to determine what statistic

values result in an anomalous declaration and what statistic values result in a normal

declaration. Each SNR value considered has a unique threshold value tV calculated

for use with sequences at that SNR. The threshold tV is calculated at each SNR value

considered to provide FADR=10.0%. The arbitrary Benchmark TADRB=90.0% is

used to determine the SNR value used for ROC curve generation.

3.10.2 CBAD Statistical PMFs. The experimental PMF derived from the

calculated CBAD statistics is used to generate the ROC curves. The PMFs are

experimentally determined and are generated in keeping with accepted random pro-

cess and signals methods [51]. It is also used to provide a qualitative measure of

separation between CBAD statistic values associated with the different operating

conditions or hardware devices. The PMFs are experimentally generated and de-

pend on a selection of a specific SNR value. The selected SNR value is the lowest

valued SNR that satisfies the benchmark TADRB=90.0% as specified in the previous

section.

3.10.3 ROC Curve Assessment. The ROC curves are generated in keeping

with accepted biometric standards and methods [48]. The ROC curve is generated

using the results of the experimental PMF calculations. A ROC curve consists of

data plotted for FADR vs. TADR and provides a means of comparing detectors

based on the Equal Error Rate (EER). The EER is the point at which the two errors

associated with verification (FADR and False Normal Verification Rate (FNVR) are

equal in keeping with accepted biometric verification standards and practices. [48].

The arbitrary benchmark for the EER is EERB=10.0%. This goal is determined by

the relationship of the FNVR and the performance benchmark of TADRB=90.0%:

FNV R=1− TADR.

ROC curves are generated by varying the threshold tV and calculating the

FADR and TADR values for each variation in threshold. Consider a set of normal
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CBAD statistics zN [n] with NZN elements and a set of anomalous CBAD statistics

zA[n] with NZA elements. Let tV [n] be the set of NV threshold values arranged in

ascending order such that tV [ni]<tV [nj], 1≤i<j≤NV , i̸=j. Considering the union of

Norm zN [n] and Anom zA[n] CBAD statistics,

zU = {zN [n1], zN [n2], ..., zN [nNZN
], zA[n1], zA[n2], ..., zA[nNZN

]} , (3.22)

Let tVR[n] be the set of threshold values used to generate the ROC curve. The

number of threshold values in the set tV [n] is dictated by the desired ROC resolution.

For this research, a total of NV=100 threshold values were sufficient for ROC curve

analysis. The set of NV=100 threshold values tV [n] used to generate the ROC curve

is based on the values in zU where tV [n1] is set equal to the minimum value of zU ,

tV [n1] = min{zU} , (3.23)

and the remaining elements are defined by

tV [ni] = tV [n(i−1)] +
(max{zU} −min{zU})

NV − 1

: i = 2, 3, ..., NV .

(3.24)

3.11 GRLVQI Processing

A majority of the initial research activity focused on software anomaly detec-

tion–discriminating between various operating conditions to detect malfunctioning

or malicious software, firmware, etc. However, an important parallel avenue of re-

search developed to support hardware device discrimination–discriminating between

various hardware components to detect malfunctioning or counterfeit, trojan, etc.,

Integrated Circuits (IC).

It was determined that the proposed verification-based anomaly detection pro-

cess was well-suited for the hardware device discrimination task and initial proof-of-
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concept demonstration was conducted using the GRLVQI process developed in [76];

the process was not modified under this effort so the minimal details are presented

here. The GRLVQI process is inherently signal agnostic and can accept any type of

sequence as input. For demonstrations here, two specific types of input sequences

were considered: 1) TD feature sequences and 2) Correlation Domain (CD) feature

sequences. The TD feature sequences fTD[n] were generated using the RF-DNA

process in Sect. 3.6.2 with NR=12 subregions plus the total response, all three in-

stantaneous features, and all four statistics, for a total of NF=156 features in each

Composite Fingerprint sequence.

To demonstrate hardware device discrimination, a single LLP was used to gen-

erate sequences for multiple PLC devices with goal of maintaining constant operating

conditions to ensure discrimination was based on device hardware. TheNOP=10 LLP

for Normal operating conditions was used to generate the RF-DNA fTD[n] feature

sequence for use in the hardware discrimination portion of the research.

In addition to TD feature sequences, the GRLVQI method of verification

was evaluated using CD feature sequences fCD[n] that were generated using the

Operation-by-Operation CBAD process described in Sect. 3.9. Instead of creating a

single CBAD statistic zV , a collection of CBAD statistics {z1V , z2V , ..., zN10V } were

generated using NOp=10 LLPs. These CBAD statistic sequences

fCD[n]={z1V , z2V , ..., zN10V } were used an input sequences for GRLVQI verification

performance assessment.

Performance of the GRLVQI process was evaluated for both TD fTD[n] and

CD fCD[n] feature sequences using ROC curves and benchmark performance criteria

presented in Sect. 3.10.3.
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4. Results

This chapter provides research results for software anomaly detection and hardware

component discrimination based on the methodology presented in Chapter 3. Sec-

tion 4.1 first introduces the various Programmable Logic Controller (PLC) response

sequences used for generating results and assessing performance. Results for soft-

ware anomaly detection via verification using the Correlation Based Anomaly De-

tection (CBAD) process are presented in Section 4.3 for Time Domain (TD) PLC

input sequences, Section 4.4 for statistical Radio Frequency Distinct Native At-

tributes (RF-DNA) input sequences, and Section 4.5 for Hilbert transformed input

sequences. The chapter concludes with Section 4.6 which demonstrates hardware

component discrimination via verification using a Generalized Relevance Learning

Vector Quantization-Improved (GRLVQI) classification process with both TD and

Correlation Domain (CD) statistical features as inputs.

4.1 PLC Response Sequences

The experimental methodology described in Chapter 3 is first used to demon-

strate applicability of the CBAD process for reliably detecting anomalous software

operating conditions. This is done using the specific ladder logic programs described

in Section 3.2 and collected signals described in Section 3.7.

Results for this research are based on unintentional TD emissions collected

from Allen Bradley SLC-500 PLC Central Processing Unit (CPU) modules. These

emissions are sampled, stored, and post-collection processed using the methodology

and configurations specified in Chapter 3. The emissions are collected from selected

PLC devices executing NOP=5 and NOP=10 Ladder Logic Program (LLP) opera-

tions. The term burst is introduced as a general term to refer to a collected, sampled,

and post-collection processed emission. Specific details of the LLPs used to generate

PLC emissions are provided in Section 3.2.
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There are four types of PLC response sequences generated from the experimen-

tally collected TD emissions and each was used in some manner to evaluate CBAD

and/or GRLVQI processes. The four sequences included: 1) the TD magnitude

response sequences |x[n]|, 2) the magnitude of Hilbert transformed TD response se-

quence |H[x[n]]|, 3) the statistical RF-DNA TD response sequence fTD[n] and 4) the

CD response sequence fCD[n]. All four types of sequences served as input sequences

for evaluation and were derived from PLC bursts as described in Chapter 3.

4.2 Performance Evaluation Criteria

Three evaluation criteria were used to assess software anomaly detection perfor-

mance relative to an arbitrary Benchmark (B) defined by 1) Signal-to-Noise Ratio

(SNRB), 2) True Anomaly Detection Rate (TADRB), and 3) Equal Error Rate

(EERB). The following steps were used to derive resultant performance metrics

relative to the established benchmark:

1. Generate verification results for varying SNR using a given anomaly detection

method and input sequence type pairing and plot SNR vs. TADR.

2. Determine the lowest SNR at which the plotted TADR=TADRB. An ar-

bitrary TADRB≥90.0% benchmark was chosen here for assessment. The cor-

responding SNRB at which TADR=TADRB is used for Receiver Operating

Characteristic (ROC) curve generation.

3. Generate a ROC curve by plotting False Anomaly Detection Rate (FADR)

vs. TADR at SNRB. The corresponding Equal Error Rate (EER) point is de-

termined as the point on the ROC curve at which FADR=FNV R=1−TADR

where FADR is the False Anomaly Detection Rate. An arbitrary benchmark

of EERB≤10.0% was chosen here for assessment.

Performance: A given anomaly detection method and input se-
quence pair is deemed inadequate if it does not achieve the arbitrary
TADRB≥90.0% or EERB≤10.0% benchmarks.
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4.3 Software Anomaly Detection: TD Sequences

The first evaluations of the CBAD process were conducted using TD magnitude

sequences |x[n]| derived from sampled, post-collection processed PLC emissions as

described in Section 3.5; the input TD sequences are simply transformed by taking

the magnitude of each sample (|x[n]|), with no Hilbert transform applied. Two

methods were initially used to evaluate the plausibility of using CBAD processing to

detect changes in the PLC operating condition: 1) NB=1 TD magnitude sequence

|x[n]| combined with NNr=200 Additive White Gaussian Noise (AWGN) realizations

to achieve the desired Analysis Signal-to-Noise Ratio (SNRA), and 2) NB=60 TD

magnitude sequences |x[n]| combined with NNr=10 AWGN realizations to achieve

the desired analysis SNRA. For both methods only one PLC device was used to

generate |x[n]| input sequences.

Notation: Unless noted otherwise, SNR is used exclusively to repre-
sent SNRA throughout the remainder of the document.

Presentation: Subsequent use of NNr notation refers to the total
number of independent, randomly generated AWGN noise realizations
{xB1[n], xB2[n], ...xBNr[n]} used to power-scale selected sequences to
evaluate performance at the desired SNR.

4.3.1 Single Device, NB=1, NOp=5. The anomaly detection process was

initially assessed using a single (NB=1), representative PLC TD magnitude sequence

|x[n]| from the PLC operating under Norm, Anom #1, and Anom #1 conditions

using NOP=5 operations. For the single response detection, the same burst with

varying analysis SNR was used for both training and testing. This was done to

demonstrate the impact of SNR variation and noise degradation on CBAD per-

formance without the effects of input signal variation being present. The initial

demonstration was performed on a single PLC device denoted as WQ. The anomaly
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detection process was repeated for SNR∈[−30.0, 30.0] dB using NNr=200 AWGN

noise realizations per SNR. This yielded a total of Nz=200 independent CBAD

verification statistics (zV ) for each operating condition at each SNR considered.

Figure 4.1 shows anomaly detection SNR vs. TADR performance for

SNR∈[−30.0, 30.0] dB. As indicated, the TADRB≥90.0% benchmark is achieved

for SNR≥−10.0 dB. Based on these results, anomaly detection ROC performance

was evaluated at SNR=−10.0 dB using TD magnitude sequence |x[n]| and the same

conditions as used for Fig. 4.1 results; the PLC operating under Norm, Anom #1,

and Anom #1 conditions using NOP=5 LLP operations. ROC performance results

are presented in Fig. 4.2 and reflect EER≤3.2% which meets the EERB≤10.0%

benchmark.

Figure 4.1: SNR vs. TADR performance using TD magnitude sequence |x[n]| for
NB=1 burst with the PLC operating under Norm, Anom #1, and Anom #1 con-
ditions using NOP=5 LLP operations. The TADRB>90.0% benchmark is achieved
for SNR≥−10.0 dB.

4.3.2 Single Device, NB=60, NOp=5. The anomaly detection process per-

formed in Section 4.3.1 was repeated using NB=60 TD sequences per operating
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Figure 4.2: Anomaly detection ROC curve for the SNR=−10.0 dB operating point
in Fig. 4.1. Results generated using the TD magnitude sequence |x[n]| with NB=1
burst and the PLC operating under Norm, Anom #1, and Anom #1 conditions
using NOP=5 LLP operations. The EERB≤10.0% benchmark is achieved.

condition for the Norm, Anom #1, and Anom #1 NOP=5 operating conditions.

There were NTng=3 bursts selected as training burst, leaving NTst=57 bursts per

operating condition for CBAD processing evaluation. As in the single response case,

the multiple response process was repeated for SNR∈[−30.0, 30.0] dB and contains

representative bursts collected from the WQ device. For each SNR considered,

anomaly detection was based on NNr=10 AWGN noise realizations per SNR. This

yielded a total of Nz=570 test statistics for each operating condition at each SNR

considered.

Figure 4.3 shows SNR vs. TADR performance for SNR∈[−30.0, 30.0] dB.

The TADRB≥90.0% benchmark is not achieved for any SNR considered. This is

due to variation in the NB=60 TD waveforms. Each burst represents a unique,

collected signal with content that, while attributable to the operations in the LLP,

is not identical to the content in the other bursts. The CBAD process is designed to

detect variations from the normal conditions. TheNTst=57 test input sequences vary
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enough from the NTng=3 training input sequences that even the Norm sequences

are incorrectly declared anomalous.

Figure 4.3: SNR vs. TADR performance using TD magnitude sequence |x[n]| for
NB=60 bursts with the PLC operating under Norm, Anom #1, and Anom #1
conditions using NOP=5 LLP operations. The TADRB>90.0% benchmark is not
achieved for any SNR∈[−30.0, 30.0] dB.

Based on results in Fig. 4.3, ROC curve performance was assessed at SNR

=30.0 dB for the multiple response TD waveform bursts. Although TADR perfor-

mance did not achieve the TADRB≥90.0% benchmark for any SNR considered,

SNR=30.0 dB yielded the highest TADR performance and was chosen to complete

ROC analysis. As seen in Fig. 4.4, the EERB≤10.0% benchmark is not achieved for

SNR=30.0 dB.

Figure 4.5 shows experimentally derived Probability Mass Function (PMF)

P [ZV=zV ] for the pool of test statistics under Norm, Anom #1 and Anom #2

operating conditions using NB=60 TD bursts and NNr=10 AWGN noise realizations

scaled to achieve SNR=30.0 dB. Due to variation in collected waveform responses

under specified operating conditions, the variance in zV here is greater than what was

observed for the NB=1 case. As the PMF response indicate, the Norm condition
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Figure 4.4: Anomaly detection ROC curve for SNR=30.0 dB operating point in
Fig. 4.3. Results obtained using TD magnitude sequence |x[n]| for NB=60 bursts
with the PLC operating under Norm, Anom #1, and Anom #1 conditions using
NOP=5 LLP operations. The EERB≤10.0% benchmark is not achieved.

zV range significantly overlaps the range of zV for both Anom #1 and Anom #2

conditions. The zV ranges for normal and anomalous operations overlap and are not

completely separable for any SNR considered.

Performance: The Untransformed TD Sequences were insufficient
for reliably detecting anomalous operating conditions and the desired
benchmark performance was not achieved using multiple bursts [87,89].

4.4 Software Anomaly Detection: RF-DNA Sequences

Failure of the software anomaly detection process when using multiple collected

PLC emissions motivated the need for an alternate representation of anomalous

and normal operating conditions. Previous research efforts have found success in

classification and verification processes based on using statistical features extracted

from collected waveforms [11, 58, 79, 102]. The next step in this research effort was
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Figure 4.5: Representative PMFs for the PLC WQ device operating under Norm,
Anom #1 and Anom #2 operating conditions using NB=60 TD bursts and NNr=10
AWGN noise realizations scaled to achieve SNR=30.0 dB. There is significant over-
lap between the anomalous PMF zV and normal PMF zV ; perfect anomalous-normal
separation and reliable verification is not achievable.

to consider using sequences formed from the statistical features of the waveforms as

the input to the anomaly detection process.

As stated in Section 3.3, the anomaly detection process is signal agnostic and

can operate on any discrete input sequence. For the feature-based anomaly detection

process, the set of input sequences {xN [n], xR[n], xC [n]} are a series of values rep-

resenting the statistical attributes of a given TD sequence, i.e., {fTDN [n], fRDN [n],

fCDN [n]}, respectively. As outlined in Section 3.6.2, the Feature Extraction and

Statistical Fingerprint Generation processes are used to create a Composite Finger-

print based on the collected emission [11, 103]. The Composite Fingerprint reduces

the dimensionality of the sequence used in the anomaly detection process. The TD

sequences considered for this research are represented by an ND=7500 dimensional

vector, where the dimensionality is a function of the sampling rate fs and time length
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TWF of the TD emission 4.1.

ND = fs × TWF (4.1)

The process is graphically depicted in Fig. 3.11 and produces an ND=156 di-

mensional vector using NR=12 sub regions and the total signal, NStat=4 statistical

attributes per region, and NFeat=3 signal attributes per region (4.2). The compos-

ite fingerprint feature vector fTD[n] serves as the input sequence to the anomaly

detection process.

ND = (NR + 1)×NStat ×NFeat (4.2)

4.4.1 Single Device, NB=60, NOp=5. The anomaly detection process in

Section 4.3.2 was repeated using the same NB=60 bursts per operating condition

for the Norm, Anom #1, and Anom #1 NOP=5 conditions. There were NTng=3

bursts per operating condition selected for training and NTst=57 bursts per operat-

ing condition selected for testing to evaluate CBAD processing. The multiple burst

processing was repeated for SNR∈[−25.0, 25.0] dB using NNr=10 AWGN noise re-

alizations per SNR. This yielded a total of Nz=570 test statistics for each set of

RF-DNA feature vectors {fTD1[n], fTD2[n], ...fTD570[n]} under each operating condi-

tion at each SNR considered. The process varies from the TD Waveform process

in that a Composite Fingerprint fTD is generated for each of the waveforms. The

Composite Fingerprint is used as the input sequence to the anomaly detector.

Figure 4.6 shows the resultant SNR vs. TADR for SNR∈[−25.0 25.0] dB. As

indicated, the TADRB≥90.0% benchmark is achieved for SNR≥8.2 dB.

Based on performance in Fig. 4.6, ROC curve performance for the NB=60

case was assessed for SNR=8.2 dB. The resultant ROC curve in Fig. 4.7 shows

EER≤10.0% which satisfies the EERB≤10.0% benchmark.

TD waveform magnitude sequences |x[n]| are not an effective input for the

CBAD process due to variation between collected bursts. When evaluating the po-
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Figure 4.6: SNR vs. TADR performance using TD magnitude sequence |x[n]| for
NB=60 bursts with the PLC operating under Norm, Anom #1, and Anom #1 con-
ditions using NOP=5 LLP operations. The TADRB>90.0% benchmark is achieved
for SNR≥8.2 dB.

tential for using the RF-DNA features as input sequences, a specific feature sequence

fRTD was selected as the reference based on observed TADR performance. The re-

sults indicate that using the RF-DNA features fTD[n] as input sequences results

in improved performance when compared to using the TD waveform magnitude se-

quences as inputs when the reference burst is specifically selected based on analysis

of the normal and anomalous bursts. The envisioned approach is for the training to

rely on the known normal bursts only.

Figure 4.8 shows TADR results for SNR∈[−30.0, 30.0] dB using the CBAD

reference selection process to automatically select the reference training burst train-

ing on observed normal conditions only. The TADRB≥90.0% benchmark is not

achieved for any SNR∈[−30.0, 30.0] dB.

The resultant TADR performance in Fig. 4.8 is poorer than the TADRB≥90.0%

benchmark for all SNR considered. Given that SNR=30.0 dB yielded the highest

TADR, it was used to generate the ROC curve results for the NB=60 case shown in
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Figure 4.7: Anomaly detection ROC curve for SNR=8.2 dB operating point in
Fig. 4.6. Results obtained using TD RF-DNA feature sequences fTD[n] for NB=60
bursts with the PLC operating under Norm, Anom #1, and Anom #1 conditions
using NOP=5 LLP operations. The EERB≤10.0% benchmark is achieved.

Fig. 4.9. TheEERB≤10.0% benchmark is not achieved for any SNR∈[−30.0, 30.0] dB.

Using the feature-based detection, the selection of the reference burst substan-

tially affects performance. In the envisioned use-case, the reference would be built

based on observed normal operation using an automated process. A more robust

method of detecting anomalous behavior is required.

Performance: The RF-DNA Feature Sequences were insufficient for re-
liably detecting anomalous operating conditions and the desired bench-
mark performance was not achieved using multiple bursts [87,89].

4.5 Software Anomaly Detection: Hilbert Sequences

The failure of the anomaly detection process for multiple collected response

waveforms using waveforms and the lack of robust characteristics when using fea-

tures necessitates another means of representing the anomalous and normal operating
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Figure 4.8: SNR vs. TADR performance using TD magnitude sequence |x[n]| for
NB=60 bursts with the PLC operating under Norm, Anom #1, and Anom #1 con-
ditions, NOP=5 LLP operations, with training only based on Norm input sequences.
The TADRB>90.0% benchmark is not achieved for any SNR∈[−30.0, 30.0] dB.

conditions. Recall the Hilbert transform used in audio signal processing applications

to stabilize signal’s amplitude estimates [31,71]. The next step in this research effort

is to evaluate the feasibility of using the Hilbert transform to improve anomaly detec-

tion performance. The Hilbert transform is performed as specified in Section 3.6.1 on

TD waveform sequences, x[n] to generate Hilbert transformed magnitude sequences,

|H[x[n]]|. The input sequence for TD-Based anomaly detection is the magnitude

of the collected real-valued TD emission, |x[n]|. For brevity, the sequences are de-

noted as TD sequences |x[n]| to differentiate from corresponding Hilbert sequences

|H[x[n]]|.

4.5.1 Single Device, NB=60, NOp=5. To evaluate the impact of using noise

degraded signals in the anomaly detection process, the CBAD process is performed

using Hilbert transformed magnitude input sequences |H[x[n]]| generated by taking

the Hilbert transform of TD waveform sequences combined with AWGN sequences
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Figure 4.9: Anomaly detection ROC curve for SNR=30.0 dB operating point in
Fig. 4.8. Results obtained using TD RF-DNA feature sequences fTD[n] for NB=60
bursts with the PLC operating under Norm, Anom #1, and Anom #1 conditions
using NOP=5 LLP operations. The EERB≤10.0% benchmark is not achieved.

to for SNR∈[−30.0, 30.0] dB as in the waveform input sequence analysis. There are

a total NB=60 TD waveforms with NTng=3 bursts selected as training burst, leav-

ing NTst=57 bursts per operating condition for CBAD processing evaluation. For

each SNR considered, the anomaly detection process used NNr=10 AWGN realiza-

tions per SNR. This yielded a total of Nz=570 Hilbert sequences and associated

CBAD test statistics for each permutation of operating condition, device, and SNR

considered.

Figure 4.3 shows results for the anomaly detection process when the TD se-

quences are used as inputs. Using the TD sequences results in an unacceptable

anomaly detection rate of TADR≤90.0% for all SNR considered.

The anomaly detection process was repeated using the same NB=60 collected

PLC emissions per operating condition, per device, under the Norm, Anom #1, and

Anom #1 operating conditions. The same SNR and same AWGN noise realizations
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were used for each operating condition and each device to generate the Hilbert

magnitude sequences {|H[x1[n]]|, |H[x2[n]]|, ...|H[x60[n]]|}.

Figure 4.10 shows results for the TADR at SNR∈[−30.0, 30.0] dB when the

Hilbert sequences |H[x[n]]| are used as inputs. The TADRB≥90.0% benchmark is

achieved for SNR≥0.0 dB.

Figure 4.10: SNR vs. TADR performance using Hilbert magnitude sequences
|H[x[n]]| for NB=60 bursts with the PLC operating under Norm, Anom #1
and Anom #1 conditions using NOP=5 LLP operations, with training only based
on Norm input sequences. The TADRB>90.0% benchmark is achieved for
SNR≥0.0 dB.

Based on performance in Fig. 4.10, ROC curve performance for the NB=60

case was assessed for SNR=0.0 dB. The resultant ROC curve in Fig. 4.11 shows

that the EERB≤10.0% benchmark was achieved.

4.5.2 Ten Devices, NB=1000, NOp=10. Previous results were based on

input sequences x[n] from a single PLC device (WQ) using the NOP=5 LLP opera-

tions shown in Fig. 2(a). For the following results, the device pool was increased to

NDev=10 PLC devices {WQ,WV,KG,QI,KV,OV,RG,ZC,ZZ,ZA} of the same
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Figure 4.11: Anomaly detection ROC curve for SNR=0.0 dB operating point in
Fig. 4.10. Results obtained using Hilbert magnitude sequences |H[x[n]]| for NB=60
bursts with the PLC operating under Norm, Anom #1, and Anom #1 conditions
using NOP=5 LLP operations. The EERB≤10.0% benchmark is achieved.

brand and model number as summarized in Table 3.1. Additionally, the LLPs used

for simulating Norm, Anom #1, and Anom #2 operating conditions was based on

the NOP=10 operations shown in Fig. 2(b).

To evaluate the impact of using noise degraded signals with the anomaly de-

tection process, CBAD processing was performed using Hilbert transformed input

sequences |H[x[n]]| generated by taking the Hilbert transform of TD waveform se-

quences combined with AWGN sequences for SNR∈[−30.0, 30.0] dB as in the wave-

form input sequence and previous Hilbert Transform-based emissions. Results in

previous sections were based on either NB=1 or NB=60 bursts. The anomaly detec-

tion process was performed using NB=1000 collected PLC emissions per operating

condition per device for the Norm, Anom #1, and Anom #2 operating conditions.

A total of NTng%=5% or NTng=50 Hilbert sequences were selected as training bursts,

leaving NTst=950 sequences per operating condition for the CBAD processing eval-

uation. For each SNR considered, the anomaly detection process was implemented
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using NNr=10 AWGN noise realizations per SNR. This yielded Nz=9500 total

test statistics for each permutation of operating condition, device, and SNR con-

sidered. The same SNR levels and AWGN noise realizations for each operating

condition for each device at each SNR were used to generate the Hilbert test se-

quences {|H[x1[n]]|, |H[x2[n]]|, ...|H[x950[n]]|}.

Figure 4.12 shows results for the TADR at SNR∈[−30.0, 30.0] dB when the

Hilbert sequences |H[x[n]]| are used as inputs. The TADRB≥90.0% benchmark is

achieved for SNR≥5.0 dB and all NDev=10 devices.

Figure 4.12: SNR vs. TADR performance using Hilbert magnitude sequences
|H[x[n]]| for NB=1000 bursts with all PLCs operating under Norm, Anom #1 and
Anom #1 conditions using NOP=10 LLP operations, with training only based on
Norm input sequences. The TADRB≥90.0% benchmark is achieved for all devices
at SNR≥5.0 dB.

Based on performance in Fig. 4.12, ROC curve performance for the NB=1000

case was assessed for SNR=5.0 dB. The resultant ROC curve in Fig. 4.13 shows that

the arbitrary EERB≤10.0% benchmark is achieved for all NDev=10 considered.

Anomaly detection ROC curves for SNR=5.0 dB operating point in Fig. 4.13

demonstrate results obtained using Hilbert magnitude sequences |H[x[n]]| forNB=1000
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Figure 4.13: Anomaly detection ROC curves for SNR=5.0 dB operating point in
Fig. 4.12. Results obtained using Hilbert magnitude sequences |H[x[n]]| forNB=1000
bursts with the PLCs operating under Norm, Anom #1, and Anom #1 conditions
using NOP=10 LLP operations. The EERB≤10.0% benchmark is achieved for all
devices.

bursts with the PLCs operating under Norm, Anom #1, and Anom #1 conditions

using NOP=10 LLP operations. The EERB≤10.0% benchmark is achieved for all

devices.

Performance: The Hilbert Transform Feature Sequences with cross-
operation CBAD processing were sufficiently robust for reliably de-
tecting anomalous operating conditions. The desired TADRB≥90.0%
and EERB≤10.0% performance benchmarks were achieved using
1) NB=60 sequences for SNR≥0.0 dB, and 2)NB=1000 sequences for
SNR≥5.0 dB.

The operation-by-operation CBAD processing in Sect. 3.9 effectively weights

the differences for each operation (as quantified by CBAD statistic zV ) equally ir-

respective of how much of the total operating condition sequence is attributable to

the specific operation.
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Figure 4.14 shows results for the TADR at SNR∈[−30.0, 30.0] dB when the

Hilbert sequences |H[x[n]]| are used as inputs and CBAD statistics are calculated

for each operation region {RegOP1, RegOP2, ..., RegOP10}. The TADRB≥90.0%

benchmark is achieved for SNR≥0.0 dB for all NDev=10 considered. This repre-

sents a gain of SNRGain=5.0 dB when compared with the results without using the

operation-by-operation process.

Figure 4.14: SNR vs. TADR performance for Operation-by-Operation CBAD Pro-
cessing using Hilbert magnitude sequences |H[x[n]]|. Results for NB=1000 bursts
with all PLCs operating under Norm, Anom #1 and Anom #1 conditions using
NOP=10 LLP operations. The TADRB>90.0% benchmark is achieved for all devices
at SNR≥0.0 dB.

Based on performance in Fig. 4.14, ROC curve performance for the NB=1000

case was assessed for SNR=0.0 dB. The resultant ROC curve in Fig. 4.15 shows an

EER≤6.3% for all NDev=10 devices and the EERB≤10.0% benchmark is achieved.

Anomaly detection ROC curves for Operation-by-Operation CBAD Processing

at SNR=0.0 dB operating point are shown in Fig. 4.15. Results are obtained using

Hilbert magnitude sequences |H[x[n]]| for NB=1000 bursts with the PLCs operating
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Figure 4.15: Anomaly detection ROC curves for Operation-by-Operation CBAD Pro-
cessing at SNR=0.0 dB operating point in Fig. 4.14. Results obtained using Hilbert
magnitude sequences |H[x[n]]| for NB=1000 bursts with the PLCs operating under
Norm, Anom #1, and Anom #1 conditions using NOP=10 LLP operations. The
EERB≤10.0% benchmark is achieved for all devices.

under Norm, Anom #1, and Anom #1 conditions using NOP=10 LLP operations.

The EERB≤10.0% benchmark is achieved for all devices.

Performance: The Hilbert Transform Feature Sequences with
operation-by-operation CBAD processing were sufficiently robust for re-
liably detecting anomalous operating conditions. The TADRB≥90.0%
and EERB≤10.0% benchmarks were achieved using NB=1000 se-
quences for SNR≥0.0 dB; a 5.0 dB gain relative to performance using
cross-operation CBAD processing.

4.6 Hardware Component Discrimination

Results in the preceding sections focused on software anomaly detection in PLC

devices–discriminating between various operating conditions to detect malfunction-

ing or malicious software, firmware, etc. A complementary application emerged as

the research progressed and the verification-based anomaly detection process was ap-
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plied to support hardware component discrimination–discriminating between various

hardware components to detect malfunctioning or counterfeit, trojan, etc., Integrated

Circuits (IC) such as commonly used in PLCs.

Hardware component discrimination was assessed using the GRLVQI process

as developed and verified in [76]; the process was implemented here as published

without any modification. From a fundamental classification perspective, the GR-

LVQI model development and verification process is “signal agnostic” and can accept

any collection of input sequences. Thus, for consistency and comparison with pre-

vious software anomaly detection results, two different input sequence types were

considered for hardware component discrimination: 1) Time Domain (TD) feature

sequences and 2) Correlation Domain (CD) feature sequences.

The TD RF-DNA sequences fTD[n] were generated in the same manner de-

scribed in Sect. 4.4 and contained ND=156 features. The statistical features were

generated using the RF-DNA process in Sect. 3.6.2 with TD x[n] sequences as inputs.

GRLVQI performance was also assessed using CD feature sequences fCD[n] that were

generated using the Operation-by-Operation CBAD process in Sect. 3.9. Instead of

creating a single CBAD statistic zV , a vector of CBAD statistics {z1V , z2V , ...zN10V }

was generated from the NOp=10 LLPs. These resultant CBAD statistical sequences

fCD[n]={z1V , z2V , ...zN10V
} were used as inputs for GRLVQI verification performance

assessment.

4.6.1 GRLVQI Verification: TD Sequences. The initial hardware dis-

crimination is performed using RF-DNA features extracted from the TD waveform

sequences {x1[n], x2[n], ...xNB
[n]}, NB=1000. There are a total of NTng=500 TD

waveform sequences used, leaving NTst=500 TD waveforms for testing. The train-

ing and testing waveforms are combined with NNr=10 AWGN realizations per x[n]

sequence.
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Devices were divided into two arbitrary classes, including the 1) authorized

hardware devices ({WQ, WV, KV, OV, RG}) and the unauthorized 2) rogue hard-

ware devices ({KG, QI, ZA, ZC, ZZ}). For this research, authorized devices refers

to the set of hardware devices {WQ, WV, KV, OV, RG} which are considered nor-

mal or non-anomalous while rogue devices refers to the set of hardware devices

{KG, QI, ZA, ZC, ZZ} which are considered anomalous. In reality, all devices

are assumed to be non-counterfeit and are purchased through normal commercial

channels. For both Authorized Device Verification and Rogue Device Rejection as-

sessment the GRLVQI verification model was developed using only authorized device

training sequences. In addition, when performing Rogue Device Rejection assessment

achieving the EERB≤10.0% benchmark is equivalent to achieving a Rogue Rejection

Rate (RRR) of RRR>90.0%.

RF-DNA features were were extracted using the processes of Feature Extraction

and Statistical Fingerprint Generation are used to create a Composite Fingerprint

based on the waveform [11, 76, 103] and outlined in Section 3.6.2. The Composite

Fingerprint reduces the dimensionality of the sequence used in the anomaly detection

process. The waveform sequences considered for this research are represented by an

ND=15880 dimensional vector. The dimensionality of the waveform-based sequence

vector is based on the sampling rate fs and time length TWF of the TD waveform

using 4.1.

The process graphically demonstrated in Fig. 3.11 results in a ND=156 di-

mensional vector using NR=12 sub regions and the total signal, NStat=4 statistical

attributes per region, and NFeat=3 signal attributes per region (4.2). The compos-

ite fingerprint feature vector serves as the input sequence to the anomaly detection

process.

The Authorized Device Verification capability of GRLVQI processing was first

evaluated using TD RF-DNA sequences fTD[n] with the {WQ, WV, KV, OV, RG}

PLCs serving as authorized devices, i.e., devices from which emission sequences are
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extracted and used for model development. Recall that in the general verification

process in Chapter 3 dictates that each device or operation has a claimed identity

and actual identity. Figure 4.16 shows Authorized Device Verification ROC curve

results for SNR=15.0 dB using TD feature sequences fTD[n] as input to the GRLVQI

process. The claimed and actual identities are equal. The ROC curve results are a

measure of how similar an authorized device resembles the other authorized devices

in the test as compared to how closely the device resembles itself. A low EER

equates to a device with a unique set of features that are not commonly mistaken

for features from another device. A high EER equates to a device that with a set

of features that are similar to the other devices in the test.

For the case of authorized device discrimination, the EERB≤10.0% benchmark

is achieved for all of the devices at SNR=15.0 dB.

Figure 4.16: GRLVQI hardware component discrimination ROC curves for Autho-
rized Device Verification using the {WQ, WV, KV, OV, RG} PLCs with TD RF-
DNA sequences fTD[n]. Results for SNR=15.0 dB using NB=1000 bursts with the
PLCs operating under Norm, Anom #1, and Anom #1 conditions using NOP=10
LLP operations. The EERB≤10.0% benchmark is achieved with EER≤4% for all
devices.
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The GRLVQI process was next evaluated to assess Rogue Device Rejection

capability using TD RF-DNA sequences fTD[n] with the {WQ, WV, KV, OV, RG}

PLCs serving as rogues, i.e., devices which have not been previously seen nor used for

authorized device model development. Figure 4.17 shows Rogue Devices ROC curve

results for SNR=15.0 dB using TD features as in the GRLVQI process. The claimed

and actual device IDs are not the same and the ROC curve results are presented

as represent DevX:DevY (Actual :Claimed) ID pairs. The GRLVQI process was

evaluated with each one of the rogue devices presenting a claimed ID for all five

authorized devices. Thus, there were a total of 25 DevX:DevY ID pairs considered.

For visual clarity, the legend is not displayed in Fig. 4.17. The ROC curve results are

a measure of how much a rogue device resembles an authorized devices in the test. A

low EER indicates a rogue device is unlikely to be falsely verified as an authorized

device. A high EER indicates a rogue device is likely to be accepted/authorized as

an authorized device.

For the case of Rogue Device Rejection, the EERB≤10.0% benchmark was

achieved at SNR=15.0 dB for all of device pairs. For all devices except the KG:WQ

pair, the EER≤3.0%. For the KG:WQ pair, the EER≈9.0%. This is a result of

RF-DNA features from device KG being most similar to the WQ RF-DNA features

and there is a higher likelihood that rogue KG would be being falsely verified as

authorized device WQ than any other rogue device being falsely verified as another

authorized device.

4.6.2 GRLVQI Verification: CD Sequences. The second and final hard-

ware discrimination evaluation is performed using CBAD statistics extracted from

the Hilbert Transform sequences {|H[x1[n]]|, |H[x2[n]]|, ..., |H[xNB
[n]]||}, NB=1000

combined with NNr=10 AWGN realizations per x[n] sequence, authorized hardware

devices ({WQ, WV, KV, OV, RG}) and rogue hardware devices ({KG, QI, ZA,

ZC, ZZ}). For this research effort, the term authorized devices refers to the set of

hardware devices {WQ, WV, KV, OV, RG}, which are considered normal or non-
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Figure 4.17: GRLVQI hardware component discrimination ROC curves for Rogue
Device Rejection using TD RF-DNA sequences fTD[n]. The DevX:DevY leg-
end notation has been omitted for visual clarity. Results are for SNR=15.0 dB
using NB=1000 bursts with the PLCs operating under Norm, Anom #1, and
Anom#1 conditions using NOP=10 LLP operations. The EERB≤10.0% benchmark
is achieved for all cases. The highest EERKG:WQ≈9.0% is for the pair KG:WQ –a
consequence of KG and WQ RF-DNA features being most similar.

anomalous. The term rogue devices refers to the set of hardware devices {KG, QI,

ZA, ZC, ZZ}, which are considered anomalous.

Previously, statistical RF-DNA features were successfully used as the input

sequences for GRLVQI processing. For this research, the input sequences are gen-

erated using the CBAD process to generate a set of CBAD CD statistics {z1V , z2V ,

..., zNOpV }, NOp=10 with each CBAD statistic generated from the signal content

for one of the operations in the LLP. Each CBAD statistic was generated using the

process described in Section 4.5.2. As is the case for the RF-DNA feature extrac-

tion, the CBAD statistic process reduces the dimensionality of the sequence used in

the anomaly detection process. The waveform sequences considered for this research

are represented by an ND=15880 dimensional vector. The dimensionality of the

waveform-based sequence vector is based on the sampling rate fs and time length

91



TWF of the TD waveform 4.1. The CBAD statistic vectors are ND=10 dimensional

vectors. When compared to the TD RF-DNA features, the CBAD CD RF-DNA

features are less than 1/15th the size for identical input x[n] sequences.

The Authorized Device Verification capability of GRLVQI processing was next

evaluated using CD RF-DNA sequences fCD[n] with the {WQ, WV, KV, OV, RG}

PLCs serving as authorized devices, i.e., devices from which emission sequences are

extracted and used for model development. Figure 4.18 shows the authorized devices

ROC curve for SNR=15.0 dB with TD features input to the GRLVQI process. The

claimed and actual identities are equal.

For the case of authorized device verification, the EERB≤10.0% benchmark

is achieved for all of the devices except for devices {KV, WV } at SNR=15.0 dB.

CBAD statistic vectors for authorized devices KV and WV are similar to other

authorized devices in the test.

The final GRLVQI assessment included Rogue Device Rejection capability us-

ing CD RF-DNA sequences fCD[n] with the {KG, QI, ZA, ZC, ZZ} PLCs serving

as rogue devices, i.e., devices which have not been previously seen nor used for autho-

rized device model development. Figure 4.19 shows rogue device ROC curve results

for SNR=15.0 dB using CBAD statistic vectors as input to the GRLVQI process.

As in the RF-DNA features case, there are a total of NPerm=25 permutations when

considering Actual :Claimed identity pairs for authorized device set {WQ, WV, KV,

OV, RG} and rogue device set {KG, QI, ZA, ZC, ZZ}.

For the case of rogue device detection, the EERB≤10.0% benchmark is achieved

for all of the devices pairs at SNR=15.0 dB. As is the case for RF-DNA features,

the CBAD statistic vectors for device KG are most similar to the CBAD statistic

vectors for the authorized devices. Device KG most closely resembling WQ equating

to a higher likelihood of the rogue device KG being falsely verified as the authorized

device WQ than the other authorized device.
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Figure 4.18: GRLVQI hardware component discrimination ROC curves for Autho-
rized Device Rejection using the {WQ, WV, KV, OV, RG} PLCs with CD feature
sequences fCD[n]. Results for SNR=15.0 dB using NB=1000 bursts with the PLCs
operating under Norm, Anom #1, and Anom #1 conditions using NOP=10 LLP
operations. The EERB≤10.0% benchmark is achieved for all devices except {KV,
WV }–a consequence of KV and WV CD features being relatively similar to other
authorized devices.

Performance: With the exception of assessments involving the CBAD
features for {KV, WV } devices and authorized device discrimination,
GRLVQI processing using both TD RF-DNA and CD CBAD input
sequences was effective for verifying authorized device IDs with the
EERB≤10.0% benchmark achieved for SNR=15.0 dB. The {KV, WV }
device CBAD features were insufficiently distinct from each of the au-
thorized devices. Both TD RF-DNA and CD CBAD input sequences
were effective for performing Actual :Claimed rogue ID assessment, with
the EERB≤10.0% benchmark achieved for SNR=15.0 dB.
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Figure 4.19: GRLVQI hardware component discrimination ROC curves for Rogue
Device Rejection using CD RF-DNA sequences fTD[n]. The DevX:DevY legend
notation has been omitted for visual clarity. Results are for SNR=15.0 dB using
NB=1000 bursts with the PLCs operating under Norm, Anom #1, and Anom #1
conditions using NOP=10 LLP operations. The highest EERKG:WQ≈9.0% is for the
pair KG:WQ –a consequence of KG and WQ CD features being most similar.
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5. Conclusion

This chapter provides a summary of research activity and results for development

and demonstration of a verification-based anomaly detection approach that supports

1) software anomaly detection–discriminating between various operating conditions

to detect malfunctioning or malicious software, firmware, etc., and 2) hardware com-

ponent discrimination–discriminating between various hardware components to de-

tect malfunctioning or counterfeit, trojan, etc., Integrated Circuits (IC).

Section 5.1 provides a research summary in support of providing results and

conclusions for 1) the proposed Correlation Based Anomaly Detection (CBAD) pro-

cess in Sect. 5.2 which was used to assess device operating condition discrimination

and 2) the Generalized Relevance Learning Vector Quantized-Improved (GRLVQI)

process in Sect.5.3 which was used to assess hardware component discrimination.

The chapter concludes with recommendations for future research in Sect. 5.4 which

are motivated by the research developments and demonstrations completed herein.

5.1 Research Summary

Supervisory Control And Data Acquisition (SCADA) systems remain vulner-

able to malicious cyber attacks [13, 33, 44, 60, 93, 94] and are an integral element of

critical infrastructures in the United States and around the world. They are responsi-

ble for controlling activities from waste-water treatment to nuclear power generation.

The concern over these vulnerabilities is greatest when considering the critical na-

ture of SCADA when integrated within an Industrial Control System (ICS). The

current and previous US presidents have highlighted the critical nature of SCADA

security through presidential directives and executive orders directing efforts toward

securing critical infrastructure facilities and systems [5, 66]; despite this motivation

and related technical advancements legacy SCADA systems remain vulnerable.
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One key vulnerability rests within Programmable Logic Controller (PLC) de-

vices that are used to implement low-level SCADA and ICS functions such as op-

erating valves, monitoring temperatures, activating relays, etc. PLCs provided the

avenue through which recent SCADA cyber attacks have been orchestrated [12,105]

and are particularly vulnerable for two primary reasons: 1) PLCs run proprietary

Operating Systems (OS) software using limited/minimal hardware; this precludes

the use of Anti Virus (AV) or Intrusion Detection System (IDS) Programs, and

2) PLC devices and implementation architectures may stay in operation for decades;

the lack of upgrades keep them vulnerable even as well-publicized exploits emerge.

The 7-layer Open System Interconnect (OSI) model provides a common means

for describing various levels of networked infrastructure functionality [7]. While

most methods securing networked systems from attack reside within the upper Net-

work (NET) or Application (APP) model layers, this approach is problematic for

many fielded systems due to the limited on-board computing resources within PLC

devices. One avenue of augmenting Network/Application layer security is by ex-

ploiting information in the lower Physical (PHY) layer. This is one focus area

of AFIT’s Radio Frequency Intelligence (RFINT) program that has developed a

solid knowledge base on targeting and exploiting PHY layer attributes to address

bit-level security augmentation, device discrimination, and Side Channel Analysis

(SCA) [9–11,21,39–42,56–58,74,77,79,81,91,92,103].

The goal of this research was to expand AFIT’s RFINT technology base by de-

veloping and analyzing a process for reliably detecting anomalous activity in SCADA

PLC devices using PHY layer attributes. This was addressed using a verification-

based approach for both software anomaly detection and hardware component dis-

crimination using the proposed CBAD for detecting anomalous PLC activity. The

CBAD process was introduced to detect anomalous behavior that differs from ob-

served normal behavior by verifying normal operations and detecting anomalous

operations; a binary declaration process where a cause-independent determination
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of abnormal is desired. The CBAD process is inherently sequence agnostic and was

demonstrated for a variety of input sequence types: Time Domain (TD) [86, 87],

Radio Frequency Distinct Native Attribute (RF-DNA) features [87], and Hilbert

transformed TD sequences [88].

Additional research contribution was made by leveraging previous GRLVQI [76,

78] and Radio Frequency Distinct Native Attribute (RF-DNA) [9,11,77,81] research

to assess hardware component discrimination capability. In this case, the CBAD

process was used to detect anomalous behavior that differs from normal behavior

by verifying authentic hardware devices and detecting rogue hardware devices. The

GRLVQI process was evaluated using both TD RF-DNA features and Correlation

Domain (CD) features.

Performance of verification-based software anomaly detection and hardware

component discrimination capability was assessed by 1) evaluating Signal-to-noise

Ratio (SNR) vs. True Anomaly Detection Rate (TADR), 2) selecting a desired

TADR, and 3) generating a Receiver Operating Characteristic (ROC) curve at the

corresponding SNR. The resultant ROC curve Equal Error Rate (EER) point, i.e.,

the point at which the two errors associated with verification are equal was arbitrarily

chosen for comparative assessment as common in the biometric verification [48].

Assessment Criteria: The arbitrary performance bench-
marks for characterizing anomaly detection performance included
TADRB≥90.0% and EERB≤10.0%.

5.2 CBAD Software Anomaly Detection

A variety of input sequences were used to evaluate the CBAD process for soft-

ware anomaly detection using operating condition discrimination, each measured

against two arbitrary benchmarks: 1) the lowest SNR value at which the CBAD pro-

cess and given input sequence type combination yielded TADR≥90.0% and 2) ROC

curve EER≤10.0% for the CBAD process when calculated at the SNR for which
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TADR≥90.0% is achieved. All processing included the addition of like-filtered Ad-

ditive White Gaussian Noise (AWGN) realizations that were power scaled to achieve

the desired SNR in the input sequences and, in the case of a single response, simulate

multiple collected emissions.

A total of six different types of sequences were input to CBAD processing to as-

sess software anomaly detection capability. Except for the one noted exception under

Type #5, all sequences were used for cross-operation CBAD processing assessment.

1. Single TD Waveform Sequence: The |x[n]| sequence was derived from a given

Device Under Test (DUT) for each operating condition (Norm, Anom #1, and

Anom #1) generated using NOP=5 Ladder Logic Program (LLP) operations

and NNz=200 AWGN realizations.

2. Multiple TD Waveform Sequences : A total of NB=60 TD |x[n]| were de-

rived from a single DUT for each operating condition (Norm, Anom #1, and

Anom #1) generated using NOP=5 LLPs and NNz=10 AWGN realizations.

3. Multiple RF-DNA Feature Sequences : A total of NB=60 RF-DNA feature se-

quences were generated from TD waveform sequences x[n] collected from a

single DUT for each operating condition (Norm, Anom #1, and Anom #1)

generated using NOP=5 LLPs and NNz=10 AWGN realizations.

4. Multiple Hilbert Transforms/Single DUT : A total of NB=60 Hilbert trans-

formed sequences |H[x[n]]| were generated from a single DUT for each operat-

ing condition (Norm, Anom #1, and Anom #1) generated using the NOP=5

LLPs and NNz=10 AWGN realizations.

5. Multiple Hilbert Transforms/Multiple DUTs : A total of NB=1000 Hilbert

transformed sequences |H[x[n]]| were generated from NDev=10 DUTs for each

operating condition (Norm, Anom #1, and Anom #1) using NOP=10 LLPs

and NNz=10 AWGN realizations for both cross-operation and operation-by-

operation CBAD processing assessment.
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Results for cross-operation CBAD processing using Type #1 and Type #2

TD sequences were mixed, with Type #1 sequences achieving the TADRB≥90.0%

and EERB≤10.0% benchmarks for all SNR∈[−30, 30]. However, performance using

Type #2 TD sequences was considerably poorer with TADRB≥90.0% never achieved

over the same range of SNR [87, 89].

Performance: The Untransformed TD Sequences were insufficient
for reliably detecting anomalous operating conditions and the desired
benchmark performance was not achieved using multiple bursts [87,89].

Given unacceptable performance using untransformed TD sequences, Type #3

RF-DNA feature sequences were evaluated next and performance compared against

the benchmarks. Results here were favorable with the TADRB≥90.0% and EERB≤10.0%

benchmarks achieved for SNR≥8.2 dB. However, these benchmarks were achieved

using a specific manually selected reference sequence based on CBAD performance

analysis for both Normal Verification and Anomaly Detection using each potential

reference sequence. This training approach is unrealistic for the intended purpose of

detecting unknown anomalies, but the results provide the most optimistic measure

of achievable performance. The CBAD process was subsequently retrained using

only the Norm sequences and the resultant CBAD processing failed to meet the

TADRB≥90.0% benchmark for all SNR∈[−30.0, 30.0] dB.

Performance: The RF-DNA Feature Sequences were insufficient for re-
liably detecting anomalous operating conditions and the desired bench-
mark performance was not achieved using multiple bursts [87,89].

The Hilbert transform-based Type #4 and Type #5 sequences were next con-

sidered given that Hilbert transforms have been successfully used in audio process-

ing applications to stabilize signal amplitude estimates [32, 71]. Type #4 results

were favorable with the TADRB≥90.0% and EERB≤10.0% benchmarks achieved for

SNR≥0.0 dB. While being likewise favorable, Type #5 results were somewhat poorer
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with the TADRB≥90.0% and EERB≤10.0% benchmarks achieved for SNR≥5.0 dB

when using cross-operation CBAD processing.

Performance: The Hilbert Transform Feature Sequences with cross-
operation CBAD processing were sufficiently robust for reliably de-
tecting anomalous operating conditions. The desired TADRB≥90.0%
and EERB≤10.0% performance benchmarks were achieved using
1) NB=60 sequences for SNR≥0.0 dB, and 2)NB=1000 sequences for
SNR≥5.0 dB.

The final CBAD performance evaluation was performed using Type #5 se-

quences with operation-by-operation CBAD processing to assess anomaly detection

capability. In this case, the sequences were divided into NReg=NOP=10 regions based

on the number of samples within each operation region. Resultant Type #5 sequence

assessment included successful TADR≥90.0% and EER≤10.0% benchmark perfor-

mance at SNR≥0.0 dB. Relative to cross-operation CBAD processing results intro-

duced earlier, this represents a “gain” of 5.0 dB in performance–measured here as

the reduction in required SNR, expressed in dB, for two methods based on identical

inputs to achieve the same benchmark performance.

Performance: The Hilbert Transform Feature Sequences with
operation-by-operation CBAD processing were sufficiently robust for re-
liably detecting anomalous operating conditions. The TADRB≥90.0%
and EERB≤10.0% benchmarks were achieved using NB=1000 se-
quences for SNR≥0.0 dB; a 5.0 dB gain relative to performance using
cross-operation CBAD processing.

5.3 GRLVQI Hardware Component Discrimination

Two different input sequences were considered for GRLVQI processing: TD

Statistical RF-DNA Features and CD Statistical CBAD Features. GRLVQI process-

ing enabled Dimensional Reduction Analysis (DRA) such that the originalNS=15880

dimensional input TD waveform sequences x[n] were reduced to NDRA=156 dimen-

sional RF-DNA Feature Sequences and NDRA=10 dimensional CBAD Feature Se-

quences based on GRLVQI feature relevance rankings.
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The DRA input sequences were generated using TD waveform sequences col-

lected from NDev=10 PLC devices. For evaluating GRLVQI performance the de-

vices were arbitrarily grouped into a set of five authorized devices {WQ, WV, KV,

OV, RG} and five rogue devices {KG, QI, ZA, ZC, ZZ}. GRLVQI processing

results were analyzed using ROC curves with EER providing a single measure of

performance. ROC curves were used for making two assessments: 1) Authorized De-

vice Verification–an assessment of how discernable the authorized devices are from

each other, and 2) Rogue Device Detection–an assessment of how discernable a non-

authorized device is from each of the authorized devices. A single benchmark criteria

of EERB≤10.0% was used to evaluate the GRLVQI process for the RF-DNA and

CD feature sequence inputs.

For authorized device ID verification, the EERB≤10.0% was achieved for all of

the authorized devices at SNR=15.0 dB using the TD RF-DNA sequences. Using the

CD CBAD input sequences for authorized device ID verification, the EERB≤10.0%

was achieved for three of the authorized devices at SNR=15.0 dB; devices {KV,

WV } were the exception and only achieved EERB≈18% (KV ) and EERB≈24%

(WV ) at the same SNR. Rogue device detection performance met both performance

benchmarks. The EERB≤10.0% benchmark achieved for all of the Actual :Claimed

device pairs for both input sequence types at the same SNR. The generally poor

performances for assessments involving device {KV, WV } was attributed to their

CBAD features being similar to the other authorized devices {KV,OV,RG}.

Performance: With the exception of assessments involving the CBAD
features for {KV, WV } devices and authorized device discrimination,
GRLVQI processing using both TD RF-DNA and CD CBAD input
sequences was effective for verifying authorized device IDs with the
EERB≤10.0% benchmark achieved for SNR=15.0 dB. The {KV, WV }
device CBAD features were insufficiently distinct from each of the au-
thorized devices. Both TD RF-DNA and CD CBAD input sequences
were effective for performing Actual :Claimed rogue ID assessment, with
the EERB≤10.0% benchmark achieved for SNR=15.0 dB.
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5.4 Future Research Recommendations

Research results here provide proof-of-concept demonstration for employing the

proposed CBAD process in many anomaly detection applications, i.e., any binary

problem space where a cause-independent determination of abnormal is required.

Verification-based anomaly detection was performed here using TD RF-DNA fea-

tures, with Hilbert transformed sequences input to 1) the CBAD process to assess

software anomaly detection capability, and 2) the GRLVQI process to assess hard-

ware component discrimination capability. The success of demonstrations here pro-

vides opportunity for expanding verification-based approaches and several avenues

of future research are recommended.

1. Alternate Signal Transforms: The analysis here focused on Hilbert transform

and RF-DNA transform features derived from TD waveform responses. Action-

able verification and anomaly detection information may also reside in other

domains, including a) some that have been considered for other signal types

and applications, e.g., 1D Spectral Domain (SD) and various 2D Wavelet, Ga-

bor, etc., or b) some which have yet to be discovered. Features from these

alternate domains, and their impact on CBAD and GRLVQI process, could

be considered and may provide improvement relative to Hilbert and RF-DNA

features considered here.

2. Extension to CBAD Far-Field Features: The CBAD features here were derived

exclusively from near-field emissions and used primarily for verification, with

some brief discussion of how classification may be implemented. A wide variety

of wireless signals have been considered in related classification and verification

research using far-field emission collections. Given that CBAD processing is

inherently sequence agnostic, CBAD features could be easily extracted from

far-field emissions to assess classification and verification. Wireless signals,

particularly, present a promising avenue for future investigation given their

standard-compliant, engineered waveform structure.
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3. Alternate RF-DNA Region of Interest Selection and Segmentation: Currently,

RF-DNA features are extracted from identically sized, evenly distributed re-

gions within a waveform sequence. These RF-DNA features are then concate-

nated to form the entire RF-DNA sequence. By allowing the regions to be

arbitrarily defined, the calculation of signal attributes and statistic features

can be tailored to specific regions of the Intentional Radiated Emissions (IRE)

or Unintentional Radiation Emissions (URE). Assuming different signal paths

are used for different IRE and URE regions, use of arbitrary regions allows

targeting of specific components within a device, offering more potential for

uniquely identify and discriminating between devices.

4. Non-Binary Device Operation Assessment: Development of the binary anomaly

versus normal verification-based assessment process revealed that unique wave-

form “shapes” can be directly attributed to device operations, e.g., the PLC

execution of (MOV ) and square-root (SQR) commands produced distinct

emission responses. Additional research could leverage this unique operation-

to-waveform response mapping to identify and extract the embedded/pro-

grammed code being executed by the device on an operation-by-operation ba-

sis. A simple implementation may include parallel matched-filtering such as

commonly used for digital communication symbol estimation [72], with each

parallel filter branch matched to a specific software operation response.

5. Alternate IC Devices/Near-Field Probing: Research here was based solely on

emissions collected from the P80C32UFAA microcontroller on the PLC main-

board using a single near-field probe. The research could be expanded upon by

considering a) emissions from an alternate IC on the PLC mainboard collected

with a single near-field probe, b) emissions from the same or alternate IC on

the PLC mainboard using multiple near-field probes or a near-field probe ar-

ray, or, c) emissions collected simultaneously from multiple ICs on the PLC

mainboard using either a single near-field probe or near-field probe array.
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6. Extension to Wired Emission/Waveform Responses: As developed and demon-

strated, the CBAD process is inherently sequence agnostic and can process se-

quences derived from any signal, system, etc., including emissions/waveforms

associated with network traffic. There is ongoing SCADA field bus assessment

work at AFIT and related Ethernet device work outside of AFIT [26] that may

benefit from CBAD processing and which could prove valuable for identifying

undesired, potentially malicious activity.

7. Extension to Environmental Effects: As developed and demonstrated, the

CBAD process is focused on software and hardware anomalies based on RF

emissions from IC devices. In addition to changes due to the anomalies men-

tioned here, factors such as temperature, device age, and humidity may also

alter the collected RF emissions. Features from varied environments could be

considered to evaluate the performance of the CBAD process under varying

environmental conditions.
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29. González, C., and J. Reed. “Power fingerprinting in SDR integrity assessment
for security and regulatory compliance,” Analog Integr. Circuits Signal Process.,
69 (2-3):307–327 (Dec 2011).

30. Hahn, S. “Comments on “A Tabulation of Hilbert Transforms for Electrical
Engineers”,” Communications, IEEE Transactions on, 44 (7):768 (1996).

31. Hahn, S. Hilbert transforms in signal processing . Artech House signal processing
library, Artech House, 1996.

32. Hahn, S. The Transforms and Applications Handbook (3 Edition). Boca Raton,
FL: CRC Press, Jan 2010.

33. Hale, G. Stuxnet Effect: Iran Still Reeling . Technical Report, August 2011.

34. Hall, E., J. Budinger, R. Dimond, J. Wilson, and R. Apaza. “Aeronauti-
cal Mobile Airport Communications System Development Status.” Integrated
Communications Navigation and Surveillance Conference (ICNS), 2010 . A4–1
–A4–15. may 2010.

35. Hall, J., M. Barveau, and E. Kranakis. “Detection of Transient in Radio Fre-
quency Fingerprinting using Signal Phase.” Proceedings of IASTED Interna-
tional Conference on Wireless and Optical Communications (WOC ’03). 2003.

36. Hall, J., M. Barveau, and E. Kranakis. “Radio Frequency Fingerprinting for
Intrusion Detection in Wireless Networks,” IEEE Transactions on Dependable
and Secure Computing , 1–1–35 (2005).

37. Hall, J., M. Barveau, and E. Kranakis. “Detecting Rogue Devices in Bluetooth
Networks Using Radio Frequency Fingerprinting.” Proceedings of the IASTED
International Conference on Communications and Computer Networks (CCN
’06). Oct 2006.

38. Hall,J. “Enhancing Intrusion Detection in Wireless Networks using Radio Fre-
quency Fingerprinting.” In Proceedings of the 3rd IASTED International Con-
ference on Communications, Internet and Information Technology (CIIT . 201–
206. Kranakis, 2004.

39. Harmer, P., and M. Temple. “An improved LFS Engine for Physical Layer
Security Augmentation in Cognitive Networks.” Computing, Networking and
Communications (ICNC), 2013 International Conference on. 719–723. 2013.

107



40. Harmer, P., M. Temple, M. Buckner, and E. Farquahar. “Using Differential
Evolution to Optimize ’Learning fromSignals’ and Enhance Network Security.”
Proceedings of the 13th Annual Conference on Genetic and Evolutionary Com-
putation. GECCO ’11. 1811–1818. New York, NY, USA: ACM, 2011.

41. Harmer, P., M. Temple, M. Buckner, and E. Farquhar. “4G Security Us-
ing Physical Layer RF-DNA with DE-Optimized LFS Classification.,” JCM ,
6 (9):671–681 (2011).

42. Harmer, P., M. Williams, and M. Temple. “Using DE-Optimized LFS Process-
ing to Enhance 4G Communication Security.” Computer Communications and
Networks (ICCCN), 2011 Proceedings of 20th International Conference on. 1
–8. Aug 2011.

43. Ho, T., and M. Basu. “Complexity Measures of Supervised Classification
Problems,” Pattern Analysis and Machine Intelligence, IEEE Transactions on,
24 (3):289 –300 (Mar 2002).

44. Hodson, H., “Hackers Accessed City Infrastructure via SCADA,” Nov 2011.

45. ICS-CERT. ICS-CERT Homepage. Technical Report.

46. ICS-CERT. ICS Monitor . Technical Report, US Department of Homeland
Security, 2013.

47. IEEE. IEEE Std 802.15.1-2005 . Technical Report, IEEE, 2005.

48. Jain, A., A. Ross, A., and S. Prabhakar. “An Introduction to Biometric Recog-
nition,” Circuits and Systems for Video Technology, IEEE Transactions on,
14 (1):4 – 20 (Jan 2004).

49. Jana, S., and S. Kasera. “Wireless Device Identification with Radiometric
Signatures.” ACM 14th Int’l Conf on Mobile Computing and Networking (MO-
BICOM08). Sep 2008.

50. Kak, S. The Discrete Finite Hilbert Transform. Technical Report, Indian
Institute of Technology, Sep 1975.

51. Kay, S. Intuitive Probability and Random Processes using MATLAB . Springer,
2005.

52. Keller, W., and B. Pathak. Integrated Circuit with Electromagnetic Energy
Anomaly Detection and Processing . Technical Report 20120223403, 2012.

53. Kim, L., and J. Villasenor. “A System-On-Chip Bus Architecture for Thwart-
ing Integrated Circuit Trojan Horses,” Very Large Scale Integration (VLSI)
Systems, IEEE Transactions on, 19 (10):1921 –1926 (Oct 2011).

54. Kim, Y., V. Agrawal, and K. Saluja. “Multiple Faults: Modeling, Simulation
and Test.” Design Automation Conference, 2002. Proceedings of ASP-DAC

108



2002. 7th Asia and South Pacific and the 15th International Conference on
VLSI Design. Proceedings.. 592 –597. 2002.

55. Kim, Y., V. Agrawal, and K. Saluja. “Combinational Automatic Test Pat-
tern Generation for Acyclic Sequenctial Circuits,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, 24 (6):948 – 956 (Jun
2005).

56. Klein, R. Application of Dual-Tree Complex Wavelet Transforms to Burst De-
tection and RF Fingerprint Classification. PhD dissertation, Air Force Institute
of Technology, Sep 2009.

57. Klein, R., M. Temple, and M. Mendenhall. “Application of Wavelet-Based RF
Fingerprinting to Enhance Wireless Network Security,” Jour of Communica-
tions and Networks , 11 (6):544; 12; 114–555 (Dec 2009).

58. Klein, R., M. Temple, M. Mendenhall, and D. Reising. “Sensitivity Analysis
of Burst Detection and RF Fingerprinting Classification Performance.” IEEE
International Conference on Communications, 2009. ICC ’09.. 1 –5. Jun 2009.

59. Kuciapinski, K., M. Temple, and R. Klein. “ANOVA-based RF DNA analysis:
Identifying Significant Parameters for Device Classification.”Wireless Informa-
tion Networks and Systems (WINSYS), Proceedings of the 2010 International
Conference on. 1 –6. Jul 2010.

60. MacKenzie, H. Shamoon Malware and SCADA Security What are the Im-
pacts? . Technical Report, Tofino Security, Sep 2012.

61. Mateti,P. Hacking Techniques in Wireless Networks (1 edition Edition), 3 . The
Handbook of Information Security, chapter 138, 991– 1001. Hoboken, NJ: John
Wiley, 2005.

62. Mathworks, “Discrete-time Analytic Signal Using Hilbert Transform.” Website.

63. McAfee Labs. 2013 Threats Predictions . Technical Report, McAfee, 2012.

64. McMinn, L., and J. Butts. “A Firmware Verification Tool for Programmable
Logic Controllers.” Critical Infrastructure Protection VIVI , edited by J. Butts
and S. Shenoi. Springer, Heidelberg, 2012.

65. NASA. EEE Parts Bulletin. Technical Report, NASA, May/Jun 2011.

66. Obama, B. Executive Order : Improving Critical Infrastructure Cybersecurity .
Technical Report, The White House, Washington DC: U.S. Government, Feb
2013.

67. Oppenheim, A., and R. Schafer. Discrete-Time Signal Processing (3rd Edition).
Upper Saddle River, NJ, USA: Prentice Hall Press, 2009.

109



68. Paar, C., T. Eisenbarth, M. Kasper, T. Kasper, and A. Moradi. “KeeLoq and
Side-Channel Analysis-Evolution of an Attack.” Fault Diagnosis and Tolerance
in Cryptography (FDTC), 2009 Workshop on. 65 –69. Sep 2009.

69. Paul, J., S. Stone, Y. Kim, R. Bennington. “A Method and FPGA Architecture
for Real-Time Polymorphic Reconfiguration.” Field-Programmable Technology,
2007. ICFPT 2007. International Conference on. 65 –71. Dec 2007.

70. Porter, R., S. Stone, Y. Kim, J. McDonald, and L. Starman. “Dynamic Poly-
morphic Reconfiguration for Anti-tamper Circuits.” Field Programmable Logic
and Applications, 2009. FPL 2009. International Conference on. 493 –497. Sep
2009.

71. Potamianos, A., R. Potamianos, P. Maragos, and P. Maragos. A Comparison of
the Energy Operator and the Hilbert Transform Approach to Signal and Speech
Demodulation. Technical Report, School of Electrical & Computer Engineering,
Georgia Institute of Technology, 1994.

72. Proakis, J. Digital Communications . McGraw-Hill, 2000.

73. Rahman, M., and H. Imai. “Security in Wireless Communication,” Wireless
Personal Communications , 22 :213–228 (2002). 10.1023/A:1019968506856.

74. Ramsey, B., M. Temple, and B. Mullins. “PHY Foundation for Multi-Factor
ZigBee Node Authentication.” Global Communications Conference (GLOBE-
COM), 2012 IEEE . 795–800. 2012.

75. Reising, D., “Classifying Emissions from Global System for Mobile (GSM)
Communication Devices Using Radio Frequency (RF) Fingerprints,” 2009.

76. Reising, D. Exploitation of RF-DNA for Device Classification and Verification
Using GRLVQI Processing . PhD dissertation, Air Force Institute of Technology,
2012.

77. Reising, D., and M. Temple. “WiMAX Mobile Subscriber Verification using
Gabor-Based RF-DNA Fingerprints.” Communications (ICC), 2012 IEEE In-
ternational Conference on. 1005–1010. 2012.

78. Reising, D., M. Temple, and J. Jackson. “Dimensionally Efficient ID Verifica-
tion of OFDM-Based Devices Using GRLVQI Processing,” Journal on Selected
Areas in Communications, IEEE (2012, UNDER REVIEW).

79. Reising, D., M. Temple, and M. Mendenhall. “Improved Wireless Security for
GMSK Based Devices Using RF Fingerprinting,” Int. J. Electron. Secur. Digit.
Forensic, 3 :41–59 (Mar 2010).

80. Reising, D., M. Temple, and M. Mendenhall. “Improving Intra-Cellular Security
Using Air Monitoring with RF Fingerprints.” Wireless Communications and
Networking Conference (WCNC), 2010 IEEE . 1 –6. Apr 2010.

110



81. Reising, D., M. Temple, and M. Oxley. “Gabor-based RF-DNA Fingerprinting
for Classifying 802.16e WiMAX Mobile Subscribers.” Computing, Networking
and Communications (ICNC), 2012 International Conference on. 7 –13. Feb
2012.

82. S. Das, K. Kant, N. Zhang. Handbook on Securing Cyber-Physical Critical
Infrastructure.. Kaufmann, M, 2012.

83. Scarfone, K., and P. Mell, “Guide to Intrusion Detection and Prevention Sys-
tems,” Feb 2007.

84. Shaw, W. Cybersecurity for SCADA Systems (1 Edition). Tulsa, OK: PennWell
Corporation, 2006.

85. Sklar, B. Digital Communications: Fundamentals and Applications . Prentice
Hall, 2009.

86. Stone, S., and M. Temple. “RF-Based Anomaly Detection for PLCs.” Sixth
Annual IFIP Working Group 11.10 International Conference on Critical In-
frastructure Protection. 2012.

87. Stone, S., and M. Temple. “RF-Based Anomaly Detection For PLCs in Critical
Infrastructure Applications,” International Journal of Critical Infrastructure
Protection, 5 (2):11–33 (Jul 2012).

88. Stone, S., and M. Temple. “Detecting Anomalous SCADA Operation Using
RF-Based Hilbert Transforms,” International Journal of Critical Infrastructure
Protection, 5 (2):11–33 (Jul 2013).

89. Stone, S., and M. Temple, and R. Baldwin. “RF-Based PLC IC Design Verifi-
cation.” 2012 DMSMS & Stand Conf. (DMSMS12). Nov 2012.

90. Stone, S., R. Porter, Y. Kim, and J. Paul. “A Dynamically Reconfigurable Field
Programmable Gate Array Hardware Foundation for Security Applications.”
ICECE Technology, 2008. FPT 2008. International Conference on. 305 –308.
Dec 2008.

91. Suski, W., M. Temple, M. Mendenhall, and R. Mills. “Radio Frequency Finger-
printing Commercial Communication Devices to Enhance Electronic Security,”
Int. J. Electron. Secur. Digit. Forensic, 1 :301–322 (Oct 2008).

92. Suski, W., M. Temple, M. Mendenhall, and R. Mills. “Using Spectral Fin-
gerprints to Improve Wireless Network Security.” Global Telecommunications
Conference, 2008. IEEE GLOBECOM 2008. IEEE . 1 –5. Dec 2008.

93. Symantec Security Response. W32.Duqu: The Precursor to the Next Stuxnet .
Technical Report, Symantec, 2011.

94. Symantec Security Response. W32.Stuxnet Dossier . Technical Report, Syman-
tec, 2011.

111



95. Tsang, R. Cyberthreats, Vulnerabilities and Attacks on SCADA Networks .
Technical Report, Goldman School of Public Policy, 2009.

96. Ureten, O., and N. Serinken. “Detection of Radio Transmitter Turn-On Tran-
sients,” Electronics Letters , 35 (23):1996 –1997 (Nov 1999).

97. Ureten, O., and N. Serinken. “Wireless Security Through RF fingerprint-
ing,” Electrical and Computer Engineering, Canadian Journal of , 32 (1):27 –33
(Winter 2007).

98. U.S. Congress. USA PATRIOT ACT of 2001 (U.S. H.R. 3162, Public Law
107-56). Technical Report, Washington DC: U.S. Government, Oct 2001.

99. USAF AFCERT. AFCERT Operations Metrics . Metrics, San Antonio, TX:
USAF, Dec 2011.

100. Watley, T., “Memorandum for LDRD Proposal Review Committee,” Jun 2012.

101. Wetula, A. “A Hilbert Transform Based Algorithm for Detection of a Complex
Envelope of a Power Grid Signals an Implementation,” Electrical Power Quality
and Utilisation, Journal , XIV (2):13–18 (2008).

102. Williams, M., M. Temple, and D. Reising. “Augmenting Bit-Level Network
Security Using Physical Layer RF-DNA Fingerprinting.” GLOBECOM 2010,
2010 IEEE Global Telecommunications Conference. 1 –6. Dec 2010.

103. Williams, M., S. Munns, M. Temple, and M. Mendenhall. “RF-DNA Finger-
printing for Airport WiMax Communications Security.” Network and System
Security (NSS), 2010 4th International Conference on. 32–39. Sep 2010.

104. Wright, J. Detecting Wireless LAN MAC Address Spoofing . Technical Paper,
Johnson & Wales University, 2003.

105. Zetter, K. How Digital Detectives Deciphered Stuxnet, the Most Menacing Mal-
ware in History . Technical Report, Jul 2011.

106. Zimmermann, H. “OSI Reference Model–The ISO Model of Architecture
for Open Systems Interconnection,” Communications, IEEE Transactions on,
28 (4):425 – 432 (Apr 1980).

112



REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

12–09–2013 Doctoral Dissertation Sep 2010-Sep 2013

Radio Frequency Based
Programmable Logic Controller

Anomaly Detection

Stone, Samuel J., Capt, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765 DSN: 785-3636

AFIT–ENG–DS–13–S–05

Air Force Research Laboratory, AFMC
Attn: AFRL/RY (Dr. Vasu Chakravarthy)
2241 Avionics Circle, Bldg 620
WPAFB OH 45433-7734
(937)528-8269
Vasu.Chakravarthy@wpafb.af.mil

AFRL/RY

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

This dissertation introduces research activity and results for development and demonstration of a verification-based Programmable Logic
Controller (PLC) anomaly detection approach that supports 1) software anomaly detection and 2) hardware anomaly detection. The
Correlation Based Anomaly Detection (CBAD) process developed here is used to detect software-based anomalies, while the Generalized
Relevance Learning Vector Quantized-Improved (GRLVQI) process previously established is used to detect hardware-based anomalies. A
benchmark of EER≤10.0% is used to measure performance for both hardware and software anomaly detection. The CBAD process using
Hilbert transformed Time Domain (TD) input sequences met the benchmark of EERB≤10.0% at SNR=0.0 dB. Untransformed TD
sequences and RF-DNA sequences, when used for the CBAD process, did not meet the performance benchmark. The GRLVQI process using
TD feature and Correlation Domain (CD) input sequences met benchmark of EERB≤10.0% at SNR=15.0 dB. At SNR=15.0 dB an
average EER≈1.3% was achieved for TD sequences as compared to an average EER≈1.6% for the CD sequences. While the EER value for
TD sequences is 0.3% lower than CD sequences, the TD sequence has nearly 16 times the number of elements as the CD sequence and a
correspondingly greater amount of computational resources would be required in an operational implementation.

RF-DNA, RF Fingerprinting, GRLVQI, SCADA, ICS, Critical Infrastructure, Verification, Cyber Security

U U U UU 131

Dr. Michael A. Temple

(937) 255-3636,x4279, michael.temple@afit.edu




