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1. Introduction 

Accurate simulation of fracture in large-scale applications is hampered by both model and 
numerical algorithmic deficiencies.  These are often coupled.  The sophistication of a material 
model can be limited by available numerical methods, so algorithm improvements are often 
necessary before failure model improvements can be implemented.  A particular algorithmic 
feature explored in this report is allowing the fracture criterion to evolve based on the state of 
adjacent material.  

It is usually easier to propagate an existing crack than to nucleate a new one, and the crack 
propagation rate is generally controlled either by crack tip kinetic processes or by stress 
redistribution at the crack front.  Fracture models are traditionally considered to be local, which 
means that all of the information used to progress the material failure is contained in the close 
proximity of the material point.  While this is accurate if the crack tip is spatially resolved and 
the effects of the stress singularity are captured at neighboring material points, in typical  
large-scale analyses, the numerical discretization is comparatively coarse and the appropriate 
stress and strain concentrations are not generated ahead of the unresolved cracks.  Further, in a 
local model, a numerical quadrature point is unaware that fracture may exist at a neighboring 
quadrature point. 

The goal in this work is to provide information about the existence of fracture to neighboring 
elements in a finite element code and to adjust the failure criterion accordingly.  The approach is 
similar to the algorithm employed in Lagrangian simulations by Wilkins1 and more recently by 
Holmquist and Johnson2.  The development will be in the context of an Arbitrary Lagrange 
Eulerian (ALE) finite element code, although the algorithm is applicable to other numerical 
techniques. 

 

2. Approach 

The approach is a simple nonlocal scheme in which elements containing fractured material 
inform their neighboring elements of the earliest time when the fracture may arrive at the 
neighbor locations.  This enables two nonconventional fracture model features:  the failure 
criterion can be changed in the vicinity of a crack, and, through the timing of the criterion 
change, the fracture propagation rate can be controlled from element to element.  While the 
                                                 

1Wilkins, M. L.  Mechanics of Penetration and Perforation.  Int. J. Engng. Sci. 1978, 16, 793–807. 
2Holmquist, T. J.; Johnson, G. R.  A Computational Constitutive Model for Glass Subjected to Large Strains, High Strain 

Rates and High Pressures; Report No. 18.12544/023; Southwest Research Institute:  San Antonio, TX, 2010. 
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technique is nonlocal, it is implemented in an operator-split approach and is minimally disruptive 
to the finite element code.  The method has many components implemented within the traditional 
material model evaluations and a nonlocal component that involves resetting a history variable in 
neighboring elements. 

2.1 Computations During the Constitutive Model Evaluation 

The algorithm is illustrated using simple maximum principal stress failure criteria.  There are 
two distinct failure conditions.  One is for propagating failure in elements adjacent to material 
that has already fractured, 𝐹𝑝𝑟𝑜𝑝, and the other is for nucleating failure in regions remote from 
existing cracks, 𝐹𝑛𝑢𝑐.  Generally, 𝐹𝑛𝑢𝑐 > 𝐹𝑝𝑟𝑜𝑝, and the nucleation threshold can be much higher 
than the propagation threshold for ceramics and glasses.  The active failure criterion is assigned 
by a Boolean state variable within each element, 𝐴𝑐𝑟𝑖𝑡.  Failure within the element progresses 
when the maximum principal stress from an elastic stress update, 𝜎𝑃𝑚𝑎𝑥, exceeds the stress 
threshold: 
 𝜎𝑃𝑚𝑎𝑥 > 𝐹 (1 − 𝑓𝑒𝑥𝑡𝑒𝑛𝑡). (1) 

𝐹 represents the threshold from whichever failure criterion is active (𝐹𝑝𝑟𝑜𝑝 or 𝐹𝑛𝑢𝑐).  An  
extent-of-failure variable 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 is introduced to degrade the threshold strength within the 
element and control the stress reduction.  It is essentially a damage variable, but in this simple 
demonstration implementation, the elastic properties are not degraded with damage. 

The evolution of the failure extent variable within the constitutive model is intended to represent 
crack propagation across an element.  If the crack propagates at a speed 𝐶𝑐𝑟𝑘, the failure extent is 
updated by  
 𝑑𝑓𝑒𝑥𝑡𝑒𝑛𝑡 = 𝐶𝑐𝑟𝑘

𝐿𝑙𝑒𝑛
 𝑑𝑡, (2) 

where 𝐿𝑙𝑒𝑛 is a characteristic element length and 𝑑𝑡 is the time increment.  The failure extent 
variable is bounded, 0 ≤ 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 ≤ 1. 

The failure is treated as being isotropic, so there is not a unique way to reduce the stress such that 
the maximum principal stress satisfies equation 1.  Here, the pressure and von Mises equivalent 
stress at the time of initial failure are saved as history variables 𝑝𝑎𝑡𝐹𝑎𝑖𝑙 and 𝜎𝑎𝑡𝐹𝑎𝑖𝑙𝑣𝑚 , respectively.  
If the pressure is tensile (negative) following an elastic stress update, the pressure is reset to 
satisfy 
 𝑝 ≥ 𝑝𝑎𝑡𝐹𝑎𝑖𝑙(1 − 𝑓𝑒𝑥𝑡𝑒𝑛𝑡). (3)  

No pressure adjustment is necessary if the inequality is satisfied after the elastic stress update.  If 
the pressure is compressive, it is not reset.  Failed, dense, solid material can support pressure, so 
degrading a compressive pressure would not be consistent with the physics.  The deviatoric 
components of the stress tensor are reduced by the radial return algorithm, if necessary, such that 
the von Mises stress satisfies 

 𝜎𝑣𝑚 ≤ 𝜎𝑎𝑡𝐹𝑎𝑖𝑙𝑣𝑚 (1 − 𝑓𝑒𝑥𝑡𝑒𝑛𝑡). (4) 
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As with the pressure, the von Mises stress is not reset if it already satisfies the inequality 
following the elastic stress update.  With the exception of the multiple failure criteria, equations 
1–4 are a common means for controlling the failure rate within an element.  

The failure criterion is set by Boolean state variable 𝐴𝑐𝑟𝑖𝑡.  This variable defaults to 1 initially, 
representing undamaged material with failure criterion 𝐹𝑛𝑢𝑐.  It is initially set to 0 in elements 
containing significant defects that would fracture at the lower criterion, and set to 0 during the 
course of the calculation if an existing crack could have propagated into the element.  This 
element-to-element propagation, described in the following section, permits control of the crack 
speed.  

2.2 Nonlocal Aspects of the Algorithm 

The nonlocal aspect of the model is determining when to alter the failure criterion.  Each element 
is given a state variable 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙, representing the earliest time at which a nearby crack, traveling 
at the rate 𝐶𝑐𝑟𝑘, could arrive at the element centroid.  When the current time in the simulation 𝑡 
meets the condition 

  𝑡 > 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 −
1
2
𝐿𝑙𝑒𝑛
𝐶𝑐𝑟𝑘 

 . (5) 

𝐴𝑐𝑟𝑖𝑡 is set to 0, triggering the use of the 𝐹𝑝𝑟𝑜𝑝 failure criterion.  The subtracted term in 
equation 5 accounts for the crack arriving at the element perimeter, given that the 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 
variable is the arrival time at the element centroid.  The 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 variable is initially set to a value 
several times the time it takes a crack to propagate across an element.  If failure does not 
progress in an element during a time step, the 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 variable in that element is incremented by 
the time step size.  This keeps the arrival time well ahead of the current time to prevent 
premature switching of the failure criterion.  Setting of 𝐴𝑐𝑟𝑖𝑡 and the incrementation of 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 
by 𝑑𝑡 are performed during the constitutive model evaluation.  

The time of arrival variable 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is subject to a more dramatic reset in one of two ways.  First, 
if the failure extent 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 is zero (indicating that the material has not begun to fracture), and the 
failure criterion, equation 1, is just met for the first time during the current time step, 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is 
set to the current simulation time plus the time it would take the crack to arrive at the element 
centroid: 

 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = 𝑡 − 𝑑𝑡 + 1
2
𝐿𝑙𝑒𝑛
𝐶𝑐𝑟𝑘

 . (6) 

The adjustment by 𝑑𝑡 puts the crack inside the element boundary.  During this time step, 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 
is incremented by equation 2 for consistency with the arrival time.  Since 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 is no longer 
zero, this type of a reset can only occur once for each element.  This reset is done in the context 
of the constitutive model calculation. 
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The second way 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is reset is external to the material model when the code has access to all 
of the current element history variables.  For each element in which 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 > 0 (called the 
“seed” element here), the centroid-to-centroid distance 𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 is calculated to all adjacent 
elements that have not yet begun to fail, 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 = 0.  The earliest time for arrival of the crack at 
the centroid of these undamaged neighbor elements is then set by 

 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 = Min �𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙, 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙∗ + 𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑
𝐶𝑐𝑟𝑘

�, (7) 

where 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙∗  is the arrival time for the “seed” element, which has 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 > 0.  The minimum in 
equation 7 is necessary since multiple failed neighbors can reset 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 independently and the 
shortest time is desired.  The reset is only performed if 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 = 0, so the minimum arrival time 
in an element is not reset in this nonlocal computation if failure has already begun.  

A subtle point for the time incrementation of 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is that its value is increased by the time step 
in the constitutive model evaluation if failure does not progress.  In other words, the 𝑑𝑡 
increment occurs when failure does not progress even if the material is partially failed, 
𝑓𝑒𝑥𝑡𝑒𝑛𝑡 > 0.  The purpose of 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 in an element with an existing crack is to monitor the time 
when the crack would finish traversing the element and enter a neighbor.  For a stalled crack, the 
time the crack would exit the element must be increased.  By incrementing 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 for stalled 
cracks, the arrival time in all of the surrounding undamaged elements will also increase during 
the nonlocal 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 reset.  

2.3 Efforts to Mitigate Advection Issues 

Eulerian or ALE calculations move material across element boundaries.  The algorithms are 
designed for accurate advection of smooth, continuous fields, and applying these same methods 
to the discrete variables associated with failure models can cause problems.  Discrete state 
variables can change abruptly across element boundaries. Advection algorithms average the state 
of material entering an element with the state of the remaining material, and the smeared result is 
often not meaningful for the algorithm.  Integer variables like 𝐴𝑐𝑟𝑖𝑡 must be either 0 or 1.  The 
advection result may not be proper even for real valued history variables, such as 𝑓𝑒𝑥𝑡𝑒𝑛𝑡.  This 
represents the fractional extent a crack has propagated across an element.  It is a decimal value in 
the element containing the crack tip, and it must be 0 in elements ahead of the crack and 1 in 
elements behind the crack.  It makes no sense to be 0.8 in one element and 0.05 in the neighbor 
ahead of the crack.  Hence, some additional checks and calculations are developed in the attempt 
to improve the behavior of the model during advection.  The following approach is, ultimately, 
not satisfactory, but it represents some progress in making the advected fields consistent. 

The strategy is to develop the midpoint crack arrival time state variable into a longer-range, 
smooth field that will advect more accurately.  Calculations based off of this state variable 
should be improved.  The 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 variable is propagated spatially by extending the seed elements 
in calculations using equation 7 to include all elements rather than only elements that have 
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begun to fail.  The 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 variable in elements adjacent to a fracture is set as previously 
described, and this serves as the seed for setting 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 in the next-near neighbor elements and 
so on.  This constructs a smooth, long-range gradient field, and 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is still set only in 
elements that have not yet begun to fracture.  That keeps 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 in actively failing elements near 
the current time.  There is a lag built into the propagation algorithm due to the step-by-step 
propagation of information.  However, the incrementation of 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 by 𝑑𝑡 advances an 
established gradient field uniformly in time, so the lag is evident only where the gradient is being 
established or modified. 

The value of 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 is capped at several element-to-element propagation times above and below 
the current time, since the gradients are only needed in the vicinity of the current time.  Capping 
the value at the lower end also circumvents problems where bits of material fractured much 
earlier in the calculation can contact pristine material through advection and significantly lower 
the 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 value. 

In Eulerian or ALE codes, there is often the opportunity to adjust the material state variables 
following advection to bring the material model into a consistent state.  During this adjustment, 
the smooth 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 values are used to redefine the more step-like 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 value.  

 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 =

⎩
⎪
⎨

⎪
⎧  0                                                         𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 > 𝑡 + 1

2
 𝐿𝑙𝑒𝑛
𝐶𝑐𝑟𝑘

− 𝜖

  1                                                        𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 < 𝑡 − 1
2

 𝐿𝑙𝑒𝑛
𝐶𝑐𝑟𝑘

+ 𝜖 
1
2

+  (𝑡 − 𝑡𝑎𝑟𝑟𝑖𝑣𝑎𝑙 )
𝐶𝑐𝑟𝑘
𝐿𝑙𝑒𝑛

              otherwise                        

�. (8) 

The 𝜖 is a small “fuzz” value intended to keep 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 values above the numerical noise.  In the 
latter case of equation 8, 𝑓𝑒𝑥𝑡𝑒𝑛𝑡 is subsequently checked to ensure that it lies between 0 and 1.  
A tolerance 𝛿 is placed on this check to truncate results that are close to the bounds.  The effect 
of this tolerance is described at the end of section 3.3.  

The fracture model and nonlocal algorithm setting the state variables were implemented in 
Lawrence Livermore National Laboratory code ALE3D.3  The nonlocal method is quite similar 
to element-to-element lighting time algorithms for explosive burn, so much of the infrastructure 
was already in place.  It is anticipated that implementation would be similarly straightforward in 
other codes with similar features.

                                                 
3Nichols, A. L., Ed.  Users Manual for ALE3D:  An Arbitrary Lagrange/Eulerian 2-D and 3-D Code System; Lawrence 

Livermore National Laboratory:  Livermore, CA, 2009. 
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3. Results 

The ability of the model to control the failure propagation rate is illustrated through plane-strain 
crack growth simulations in which limiting fracture propagation speeds are specified as 2 and 
4 mm/µs.  The geometry of the brittle target plate is a 100 × 100 mm square with a 20-mm deep 
crack on the right side, as shown in figure 1.  The element size is 0.25 mm in the x and y 
directions, in both the plate and the in projectile.  The plate is impacted by a 10-mm-wide by 
20-mm-long block of steel at 0.1 mm/µs. 

 

 

Figure 1.  Initial plane-strain configuration 
showing the target plate, the projectile, 
and the initial crack at the right side. 

The plate has a density of 3.9 cm3 and is modeled with a Murnaghan equation of state with a 
reference bulk modulus of 228 GPa.  The pressure dependence of the bulk modulus is 2.0 and the 
Gruneisen parameter is set to 2.  The shear modulus is 152 GPa.  The critical principal stress for 
fracture nucleation is set to 30 GPa, which is never reached in these simulations.  The critical 
principal stress for propagating existing fractures is set to 200 MPa.   

The compressive stress wave initiating at the impact site traverses to the right, where it reflects 
off of the surface as a tensile wave.  The tensile wave interacts with the preexisting crack, and 
the crack grows.  Given the simple nature of the fracture model, the cracks tend to follow the 
mesh, but some cracks are driven hard enough to run skew to the mesh.  The obvious mesh 
dependence is not important for current purposes, as the goal is to demonstrate control of the 
fracture propagation rate and the influence of advection on the failure.



 7 

3.1 Fracture Rate Control 

The ability of the algorithm to control fracture rate is illustrated for Lagrangian simulations in 
figure 2.  Figures 2a and 2b show the fracture configuration at 35 and 50 µs, respectively, after 
impact in simulations with the fracture velocity limited to 2 mm/µs.  Given this speed and the 
time increment between the frames, the most a crack would have been permitted to progress 
between these two frames is 30 mm, less than one-third of the distance across the plate.  
Examining the crack propagating to the left in figures 2a and 2b, the distance progressed appears 
to follow the growth restriction.  Figures 2c and 2d show the fracture configuration at the same 
times, but with a limiting fracture velocity of 4 mm/µs.  It is evident that the cracks are growing 
faster, as permitted. 

 

 

Figure 2.  Fracture configurations at 35 and 50 µs for plane-strain simulations with failure propagation rates 
restricted to 2 and 4 mm/µs. 

Note that controlling the failure propagation rate also affects the failure pattern.  Overall, the 
slower propagation rate appears to create more regions where the failure pattern is spread 
spatially.  Also, the cracks do not appear to follow the mesh as readily when the propagation rate 
is more restricted.  When the propagation rate is slower, the stress is not relieved as quickly or 

 

 

2 mm/µs 
@ 35 µs 

2 mm/µs 
@ 50 µs 

4 mm/µs 
@ 35 µs 

4 mm/µs 
@ 50 µs 

(a) (b) 

(c) (d) 
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focused as tightly along the mesh lines ahead of the cracks.  This provides the crack an 
opportunity to grow in other directions rather than following the mesh. 

In general, the cracks tend to propagate along mesh lines because the failure criterion is reduced 
along the mesh direction earlier than it is reduced along the diagonal.  

3.2 Arrival Time Field 

The crack arrival time field is depicted in figure 3 for the 4-mm/µs propagation rate calculation. 
The time is 35 µs, which corresponds to the color cyan in the plots.  The zoomed region in figure 
3b is taken from the upper left of figure 3a.  The plots show that the arrival time field is smooth 
and continuous for future times.  In the narrow areas where the crack is actively extending, the 
color scale is continuous to times earlier than the present.  However, most of the dark blue 
elements are adjacent to cyan.  This color scale discontinuity indicates crack surfaces that have 
not propagated for the last several time steps.  Since the arrival time is updated only with the 
gradient algorithm in elements with no damage, times in the past do not get set by the gradient 
algorithm.  They are only truncated to keep the time from lagging too far behind the current time. 

 

 

Figure 3.  Plot of the earliest possible time of arrival of the fracture at 35 µs for the 4-mm/µs fracture propagation 
speed:  (a) full field and (b) enlargement of active branch near the upper left. 

 
While it would be beneficial to have arrival times continuous into the past to provide smoother 
fields for advection, attempts to set the previous arrival times in the gradient algorithm created 
feedback loops that altered the future times as well.  Further development in this area is needed. 

3.3 Advection Effects 

The same model geometry is used to evaluate the effects of advection on the solution.  For the 
applications and brittle materials targeted with this model construct, it is anticipated that the 
deformation and material motion through the mesh will be small prior to fracture and that large 

 

(a) (b) 
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deformation is possible after initial fracture.  Fracture patterns from three simulation approaches 
are shown in figure 4:  the first is a pure Lagrangian calculation, the second a Eulerian 
calculation where the penetrator is moving into an initially stationary target, and the third an 
Eulerian calculation where the target moves to the left into a stationary rod.  The difference 
between the two Eulerian calculations is the range of motion of the material through the mesh.  
When the target is initially stationary, much of the fracture occurs before the target begins 
moving appreciably to the right.  When the target is initially moving, the cracks all traverse 
several elements of the Eulerian mesh.  

 

 

Figure 4.  Numerical diffusion of fracture field as a function of extent of advection:  (a) Lagrange simulation, no 
advection; (b) Eulerian with initially stationary target, little advection; and (c) Eulerian with target 
moving into projectile, significant advection. 

Fine cracks, many an element in width, span the Lagrangian target in figure 4a.  The cracks 
maintain their width and location in the target over time, which is consistent with the physics of 
fractured materials.  The fracture pattern is similar in the Eulerian simulation with the initially 
stationary target, figure 4b.  The material is almost Lagrangian because the target starts to 
accelerate downstream only as the momentum is transferred from the projectile.  There is some 
growth in the width of the vertical cracks as the advection algorithm smears the cracks 
horizontally.  This advection-related crack diffusion is greater on the right side of the plot where 
cracks formed earlier and have been in motion longer.  The cracks also grow wider as the 
simulation progresses. 

The initially moving Eulerian target, figure 4c, shows significant crack diffusion with mesh 
motion.  The algorithm setting the minimum time of arrival in a smooth gradient did not prevent 
spreading of the discontinuous crack field.  Close inspection of the results shows that the arrival 
time algorithm was partially successful.  On the crack flank that is advancing into the mesh (left 

 

 
Lagrangian Eulerian, moving projectile Eulerian, moving target 

a) b) c) 

(a) (b) (c) 
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side of the vertical cracks in figure 4c), the arrival time gradient moves with the material and the 
𝑓𝑒𝑥𝑡𝑒𝑛𝑡 calculated from equation 8 behaves as desired.  The extent, representing the location of 
the crack flank, is between 0 and 1 only in one element at a time, so that the leading edge of the 
crack flank is tracked as a sharp interface.  The error occurs on the trailing crack flank.  The 
minimum in the algorithm setting the crack arrival time continually resets the timing of the 
gradient, and the gradient stays approximately fixed to the stationary mesh.  Hence, the 
downstream crack flank stays fixed in space due to the calculations in equation 8.  This is no 
better than applying the advection directly to integers.  

If the trailing crack flank could be differentiated from the leading flank, the algorithm could be 
modified to treat the upward gradient in failure times differently, and the trailing edge of the 
crack would also move through the mesh.  While this information exists for upwinding of 
advected variables, it is not directly available in the data constructs where the nonlocal 
calculations are performed.  

If the tolerance 𝛿, associated with the last of equation 8, is set large compared to the advection of 
𝑓𝑒𝑥𝑡𝑒𝑛𝑡 through the mesh, the leading edge of the crack can also be fixed to the mesh rather than 
moving with the material.  Therefore, this value should be kept small enough to remove only the 
numerical round-off from the computation. 

 

4. Summary and Conclusions 

A nonlocal algorithm has been described for controlling failure propagation rates in Lagrangian 
finite element calculations.  It is an implementation of a procedure used by Wilkins1 for ceramics 
several decades ago and more recently by Holmquist and Johnson.2  When implemented in a 
massively parallel finite element code for Lagrangian simulations, the method is successful in 
controlling fracture propagation rates with minimal computational overhead. 

A method was explored to improve advection of fracture in Eulerian and ALE codes by 
propagating the earliest time of arrival of the crack several elements away from the crack 
surface.  This created a smooth gradient field that would advect more accurately than spatially 
discontinuous state variables associated with fracture.  This technique was marginally successful, 
and it was determined that it is necessary to treat the leading edge and trailing edge of this 
gradient field differently.  The leading flank of a propagating crack advanced as intended, while 
the trailing edge did not.  These results suggest a path forward, but further research into 
advection of discontinuous fields is needed.  The current method is anticipated to be well suited 
for materials that become finely comminuted behind the failure front, and accurate representation 
of discrete cracks is not required. 



 
 
NO. OF NO. OF 
COPIES ORGANIZATION COPIES ORGANIZATION 
 

 11 

 1 DEFENSE TECHNICAL 
 (PDF) INFORMATION CTR 
  DTIC OCA 
  8725 JOHN J KINGMAN RD 
  STE 0944 
  FORT BELVOIR VA 22060-6218 
 
 1 DIRECTOR 
 (HC) US ARMY RESEARCH LAB 
  IMAL HRA 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 1 DIRECTOR 
 (PDF) US ARMY RESEARCH LAB 
  RDRL CIO LL 
  2800 POWDER MILL RD 
  ADELPHI MD 20783-1197 
 
 2 SANDIA NATL LABS 
 (PDF) S SCHUMACHER 
  E HARSTAD 
  MS 0836 
  PO BOX 5800  
  1515 EUBANK SE 
  ALBUQUERQUE NM 87185-0836 
 
 2 SANDIA NATL LABS 
 (PDF) J NIEDERHAUS 
  E STRACK 
  MS 1323 
  PO BOX 5800  
  1515 EUBANK SE 
  ALBUQUERQUE NM 87185-1323 
 
 3 LAWRENCE LIVERMORE NATL LABS 
 (PDF) R MCCALLEN 
  A NICHOLS 
  A ANDERSON 
  PO BOX 808  L-098 
  7000 E AVE 
  LIVERMORE CA 94550 
 
 2 LAWRENCE LIVERMORE NATL LABS 
 (PDF) D FAUX 
  N BARTON 
  PO BOX 808  L-140 
  7000 E AVE 
  LIVERMORE CA 94550 
 

 1 US ARMY TANK-AUTOMOTIVE  
 (PDF) RSRCH DEV & ENGRNG CTR 
  AMSRD TAR 
  R RICKERT 
  MAIL MIL 
  6501 E 11 MILE RD  
  WARREN MI 48397-5000 
 
 1 US ARMY ARDEC 
 (PDF) S RECCHIA 
  RDAR MEF E 
  BLDG 94 
  PICATINNY ARSENAL NJ 07806-5000 
 
 2 NAVSEA DAHLGREN 
 (PDF) C DYKA 
  M HOPSON 
  6138 NORC AVE STE 313 
  DAHLGREN VA 22448-517 

 
ABERDEEN PROVING GROUND 

 
 16 DIR USARL 
 (PDF) RDRL WML B 
   B RICE 
  RDRL WMM 
   J BEATTY 
  RDRL WMM B 
   G GAZONAS 
   B LOVE 
  RDRL WMP 
   S SCHOENFELD 
  RDRL WMP B 
   S SATAPATHY 
  RDRL WMP C 
   R BECKER 
   S BILYK 
   T BJERKE 
   J CLAYTON 
   B LEAVY 
  RDRL WMP D 
   R DONEY 
   D KLEPONIS 
   H MEYER 
   S SCHRAML  
   G VUNNI 
 



 

 12 

INTENTIONALLY LEFT BLANK. 


	Contents
	List of Figures
	1. Introduction
	2. Approach
	2.1 Computations During the Constitutive Model Evaluation
	2.2 Nonlocal Aspects of the Algorithm
	2.3 Efforts to Mitigate Advection Issues

	3. Results
	3.1 Fracture Rate Control
	3.2 Arrival Time Field
	3.3 Advection Effects

	4. Summary and Conclusions

