
Discrimination Between Child and Adult Forms
Using Radar Frequency Signature Analysis

THESIS

Stephanie R. Keith, Captain, USAF

AFIT-ENP-13-M-20

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.



AFIT-ENP-13-M-20

DISCRIMINATION BETWEEN CHILD AND ADULT FORMS

USING RADAR FREQUENCY SIGNATURE ANALYSIS

THESIS

Presented to the Faculty

Department of Engineering Physics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Physics

Stephanie R. Keith, B.S.

Captain, USAF

March 14, 2013

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.





AFIT-ENP-13-M-20

Abstract

In this thesis we develop a method to discriminate between adult and child radar

signatures. In particular, we examine radar data measured from behind a wall,

which introduces radar signal attenuation and multipath effects. To investigate the

child/adult discrimination problem in a through-wall, multipath scenario, a previously

developed free-space human scattering model was expanded to incorporate multiple

paths, and the effects of transmission through, and reflections from, walls and ground.

The ground was modeled as a perfectly reflecting surface, while the walls were modeled

as homogeneous concrete slabs. Twenty-five reflection paths were identified, involving

the direct paths, as well as reflected paths between the ground and an adjacent wall.

All paths included two-way transmission through an obstructing wall.

In addition to the model expansion, radar scattering measurements were collected

from human volunteers, both child and adult, in order to investigate the classification

of child and adult through-wall radar data. To our knowledge, this thesis is the first

published work that analyzes child radar scattering data. A classification accuracy

of above 95% was reached in both the time and frequency domains, indicating that,

with minimal processing, a high degree of certainty is achievable in characterizing a

subject behind a wall, in a real-world, multipath environment.
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DISCRIMINATION BETWEEN CHILD AND ADULT FORMS

USING RADAR FREQUENCY SIGNATURE ANALYSIS

I. Introduction

Medical imaging modalities often illuminate humans with electromagnetic radia-

tion in order to infer the properties of living tissue. With its longer wavelengths, radar

may be used to infer larger features such as head size and thigh length. Additionally,

similar to how a law-enforcement professional uses radar to determine the speed of

a driver, we can use radar to detect the speed of human limbs. Anthropologists use

measurements to characterize and classify groups of humans with similar features.

Radar data may be used in conjunction with physical measurements to build an age

classification tool that may ultimately provide a method of remotely characterizing

human activity.

Unlike optical sensors, radar systems need not rely upon line-of-sight or good

weather to perform well. Radar is capable of penetrating building materials, cloth,

and foliage due to its long wavelength, and thus is ideal for the detection of objects

behind barriers and other visual obstructions. Work has been done in imaging humans

using radar both from the standpoint of a moving platform [1], and through walls at

close range, from a stationary platform [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Through-wall

radar provides vital information about the situation inside buildings. The ability to

distinguish between types of people, such as adults and children, becomes especially

important in situations like the Sandy Hook Elementary school shooting, in which

law enforcement had no ability to determine where the children were located with

respect to the shooter. Although previous work has been done in both identifying

1



human activity and distinguishing male from female, no research has yet developed

models which discriminate between children and adults.

1.1 Problem

The problem tackled by this thesis is two-fold: multipath modeling and child/adult

classification. A human radar signature inside a building is complicated by clutter

due to obstructions and objects inside the building. Incorporating these varied effects

in a human radar signature model is difficult. Previous human scattering models have

included scattering due to humans in the presence of ground. The first part of this

thesis builds upon the work by Miranda, et al. [12, 13, 14, 15] to create a sphere-

cylinder representation of a human and a human radar scattering model, modified to

incorporate the multipath effects due to a corner, i.e., the ground and a wall adjacent

to the target.

The second part of the problem is the classification of the child or adult. This

project will identify features in the radar-scattering data that best distinguish a child

from an adult, and use a Support Vector Machine, a type of binary classification tool,

to classify the subjects based on these features. Finally, the results of the Support

Vector Machine will be explored using Principal Component Analysis to reveal the

relationship between child and adult classes.

1.2 Research Goals

In addition to the dual goals of developing the ground-wall human scattering model

and the classifier, experimental data will be gathered to validate the scattering model

and test the classification. The experiment setup will consist of a pair of concrete walls

arranged to form a corner. Human volunteers serve as the test subjects. Through-

the-wall radar-scattering data will be gathered from both children and adults.
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1.3 Overview

The remainder of this document is organized as follows: Chapter II provides a

review of previous research regarding the radar detection of humans and human clas-

sification methods. Chapter III details background material and lays the project’s

foundation. Chapter IV launches into the theory necessary to advance the project,

while Chapter V provides the research approach and experimental procedures. Chap-

ter VI details the results and their analysis and discussion, and, finally, Chapter VII

presents the conclusions, implications of the research, and suggestions for future work.
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II. Radar Detection of Humans and Human Classification

A significant effort has been made in identifying human subjects with radar data,

classifying their movements, and locating them through obstructions such as walls.

What follows in this chapter is an overview of recent research pertinent to the problem

of radar human detection, emphasizing those which provide the framework for this

thesis. Efforts in human line-of-sight radar detection are discussed first, along with

research in identifying characteristic human movements. Following this, we present a

discussion of through-the-wall radar imaging. This chapter concludes with prior work

in the classification of humans.

2.1 Line-of-Sight Human Detection via Radar

Detection of humans using radar typically employs Doppler radar. Doppler radar

takes advantage of the frequency shift of a moving target in order to isolate it from

background stationary objects, and thus suppress clutter. The Doppler signatures

of moving objects are typically divided into two categories: “simple” Doppler and

micro-Doppler. Simple Doppler refers to the overall motion of an object — its lateral

translation in space, for example. In our detection scenario, this motion would corre-

spond to a human or animal moving across a room. Micro-Doppler contributes to the

overall Doppler return signal and can be extracted from it. These micro-Doppler fea-

tures stem from the movement of individual components of the subject: the swinging

of arms and legs, for example, as well as the more subtle variations of physiologi-

cal movement — the small fluctuations of the body and skin due to breathing and

the beating of the heart. These micro-Doppler movements are small and difficult to

isolate from noise, yet the isolation has been done, and research is ongoing.

In many remote detection situations, a moving target can indicate a human pres-
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ence. However, the target may be also be another moving object or animal. In order

to reliably determine the presence of a human, work has been done to analyze the

features characteristic of human motion. Mainly, these distinguishing features are

present in the micro-Doppler. Because humans move in a fundamentally different

way from other animals, their micro-Doppler signatures are unique. Indeed, as re-

searchers have been able to distinguish between different species [16, 17], we may also

be able to distinguish individual humans. We expect that each person possesses a

unique set of “micro-motions” and so has his or her own “micro-Doppler signature”,

provided the individual micro-Doppler components could be resolved sufficiently [18].

The following subsections briefly describe efforts in line-of-sight motion detection.

First, we discuss the micro-Doppler motion of parts of the body. Then, physiological

monitoring is presented separately. A more specific application of micro-Doppler

signatures, physiological monitoring is considerably more difficult, requiring a much

wider bandwidth or higher frequency than other micro-Doppler motions.

Motion Detection

In many efforts to characterize the motion of humans, the radar spectrogram

has become the preferred method (Figure 1(a)). The spectrogram, generated by the

short-time Fourier transform (STFT) on time domain radar data, displays the various

component frequencies that comprise the motion of an object, including the motion

of the torso, arms, and legs. A human radar spectrogram varies depending on how

the subject moves and the way the subject carries objects [19, 2]. Resolution of

the different frequency components of the spectrogram improves as incident radar

wavelength shortens [2].

The spectrogram has been used as a measurement tool to create a realistic walking

model of a human with reasonable accuracy [20]. The spectrogram can be further
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(a) (b)

Figure 1. The Spectrogram and Cadence Frequency of a Walking Human. Plot (a)
displays the spectrogram of a walking human over a period of three seconds. The graph
is formed from short-time Fast Fourier Transforms of the radar data. The component
with the highest amplitude (shown in red) is associated with the torso, which has a
Doppler frequency near 100 Hz, correpsonding to a velocity of 1.4 m/s. The motion
of the arms and legs are seen in the sawtooth pattern above the torso component.
This motion produces a cadence frequency of about 2 Hz. The cadence frequencies are
shown in (b). The torso again produces the strongest intensity; its cadence frequency
is near zero due to its near-constant velocity. [Reprinted with permission from [16]].

evaluated using tools such as cadence frequency plots, which display periodic micro-

Doppler signals present in the spectrogram (see Figure 1(b)), in order to characterize

subjects using features such as speed, stride length, and body ratios to determine

actions, size, gender and species [21, 16, 22].

Gürbüz [21] cautions against applying the cadence frequency plot to estimate

subject parameters, especially with limited data of the subject or when noise and

clutter are present. The estimation works well when there is low noise and the subject

is close to the antenna, resulting in high signal-to-noise ratio. Parameter estimation

from the spectrogram is also sub-optimal for human subject reflections because the

signals have nonlinear phase. An alternative backprojection-style technique described

in [21] tends to be significantly more accurate when noise is present. Unfortunately,

the iterative technique is computationally intensive, rendering it impractical for real-

time detection. Cadence frequency plots appear to be useful for the study of human
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walking motion in controlled, laboratory settings, yet, again, care must be taken when

applying the method to real-world, complex scenarios.

Despite the drawbacks in the use of cadence frequency plots, the spectrograms

themselves are rich in information that characterizes the moving subject, in terms

of the component frequencies and shape of the spectrogram. The spectrograms of

individual limbs of a walking human have been isolated [2, 23], and those character-

izing different types of movements have been studied [7, 19, 23, 24]. This informa-

tion may be used to classify human activity [19, 24] (discussed later). Additionally,

improvements upon the basic spectrogram methods have been proposed, including

the reassigned joint time-frequency (RJTF) transform [2], and an approach using a

quadratic time-frequency S-method in conjunction with the Viterbi algorithm [18].

Physiological Monitoring

In this paper, physiological monitoring refers to the detection of the life signs of

a person — respiration and heartbeat — distinguishing this type of measurement

from the measurement of larger motion, such as translational or limb movement.

Physiological measurements can be obtained with other micro-Doppler measurements,

but they require an accurate radar system using a very wide bandwidth, or high

frequency, in order to resolve the motion of the chest and skin.

The interest in physiological monitoring lies in the possibility of detecting a per-

son’s life signs from a distance. Standoff detection can aid in locating disaster victims

trapped in rubble, who are unable to move, but can still breathe. Physiological mon-

itoring from a distance could aid the measurement of vital signs of those who cannot

have detectors placed directly on the skin, such as burn victims. It may also be

useful in law enforcement and military application in detecting people hidden behind

doors, in closets or containers, in assessing casualties from a distance when it may
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be dangerous to approach, and in monitoring vital signs through chemical or bio-

logical protection suits. These military applications have seen research as early as

the mid-1980s, under the term Radar Vital Signs Monitor (RVSM), developed by the

Georgia Tech Research Institute [25]. This monitoring system could detect heartbeat

and respiration up to 100 meters from the subject; however, it suffered at high ranges

due to clutter from moving foliage. Georgia Tech developed a later version in 1996

to evaluate Olympic athlete performance. Operating at 24.1 GHz, the new version

was able to detect the pressure wave propagating across the thorax from the pump-

ing of the heart. The display of this pressure wave served as a time domain radar

cardiogram [25].

Yarovoy [26], rather than using a single high-frequency tone, employed an ultra-

wide bandwidth of 11.7 GHz in order to carry out frequency spectrum analysis to

detect human respiration. This bandwidth provided a resolution of 1.3 cm, and was

sufficient for showing the difference in amplitude due to inhalation and exhalation

of the lungs in the time domain. Yarovoy also noted that minor movements of a

stationary human contributed greatly to the spectral variation of the radar return;

thus, a person could be detected, not only by respiration, but also by these small

movements.

Most applications of physiological monitoring via radar involve through-the-wall

detection and implementation of ultra-wide band radar, as used by Yarovoy. Ultra-

wide band radar and efforts in physiological through-the-wall detection are discussed

in the following section.

2.2 Through-the-Wall Radar Imaging

Radar applications most relevant to this thesis are those involving through-the-

wall detection of targets. Analysis of such radar signals provides information of
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Figure 2. Frequency Tradeoff (reproduced from [2]). Both plots display the simulated
STFT spectrogram of a human walking at 1.4 m/s toward a Doppler radar. The plot on
the left shows the results for a carrier frequency of 24 GHz — the resolution is superior,
with contributions by portions of the body easily identifiable and labeled. The plot
on the right displays results for a carrier frequency of 2.4 GHz. The micro-Doppler
components are blurred and difficult to distinguish.

activities occurring out of view of observers. Radar signal attenuation though walls

increases quickly as a function of frequency, so frequencies below 5 GHz are often used

[2], ideally restricting the bandwidth to the ultra-high frequency (UHF) range, about

500-1000 MHz, for best penetration. There is a trade-off, however, between Doppler

sensitivity and signal penetration: signal penetration improves with lower frequency,

but sensitivity and resolution improve at higher frequency. The difference in frequency

resolution was demonstrated by Ram [2] in the comparison of spectrogram simulations

of a walking human at carrier frequencies of 2.4 GHz and 24 GHz. As seen in Figure

2, the spectrogram of 24 GHz has better resolution of the micro-Doppler components,

but through-wall signal attenuation at this frequency is severe.

A second property of through-the-wall radar imaging is employment of an ultra-

wide band spectrum. Ultra-wide band (UWB) radar provides superior resolution

and information content not available in a single frequency. The two characteristics

of UHF and UWB are the common properties behind good through-the-wall radar

imaging systems. Noise waveforms are also used, as they have properties suitable for

accurate and inconspicuous detection of subjects. [3]
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The next two sections briefly describe the merits of UWB radar and UWB noise

radar, as they apply to through-the-wall imaging, including prior efforts in through-

the-wall detection of humans using these types of systems.

Ultra-Wide Band Radar

Ultra-wide band (UWB) radar is defined as having a signal with a fractional

bandwidth greater than 20% [27]. The fractional bandwidth, ∆f , is defined as [27]

∆f =
2(fH − fL)

fH + fL
=
fH − fL
f0

(1)

where fH and fL are the upper and lower boundaries of the bandwidth, respectively,

and f0 is the average of the two frequencies. A wide bandwidth provides good range

resolution. For the bandwidth B = fH − fL, the range resolution ∆R is [28]

∆R =
c

2B
(2)

where c is the wave propagation speed (speed of light for EM waves in vacuum).

Additionally, depending on the ratio of wavelength to object size, the wide bandwidth

may provide information from different scattering regimes. For an object of size

l under incident radiation of wavelength λ, there are three regimes of scattering:

Rayleigh (λ >> l), resonance (λ ≈ l), and optical (λ << l). Provided the bandwidth

is large enough, the scattered signal can provide information about the object in all

three regimes [28].

Noise Radar

Random noise radar, although not applied in this thesis, is mentioned here due

to its advantages in through-the-wall detection. Random noise radar employs a non-
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periodic, incoherent waveform which provides two main advantages in radar detection.

The first is the suppression of range and Doppler ambiguity which allows unambiguous

high-resolution imaging [3, 28]. For example, for a periodic waveform with repetition

frequency fr, ambiguity in range occurs when the range R > Rrep = c/(2fr) [28]. A

non-periodic noise waveform has fr = 0, ensuring that the range ambiguity condition

is never met. The second advantage is the inherent low probability of intercept (LPI)

and low probability of detection (LPD) afforded by noise waveforms. Periodic pulses

of energy are easily detected and recognized by adversaries who would employ coun-

termeasures to avoid detection, such as jamming and interference. Noise waveforms,

on the other hand, are extremely difficult, if not impossible, to detect and jam. Since

they are featureless, such waveforms are ideal for covert, through-the-wall sensing in

hostile environments [3].

Coupled with UWB radar, a noise radar system appears to be the ideal in ac-

curate, through-the-wall, covert imaging. Such a system provides real-time Doppler

discrimination and target tracking at low cost, with high resolution that diminishes

the effects of multipath and clutter. The following sections will detail some of the

recent efforts in through-wall human detection, to include successes with noise radar.

Human Detection

Through-the-wall detection of humans began in the 1980s to search for signs of

life of survivors trapped during natural disasters [4]. Recent efforts in the detection

and tracking of humans include through-the-wall scenarios for military and law en-

forcement applications, particularly with random noise radar, and employing micro-

Doppler extraction; one portable system with a future backpack design was even

introduced in [4]. These experiments have been divided into two categories: motion

detection and physiological monitoring.
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Motion Detection

The motion detection problem includes the tracking of humans within a room

and identification of activities performed, a very difficult goal, particularly when

the human subject cannot be visually seen. Researchers at the University of Texas

investigated methods of gathering location information on multiple moving human

subjects, using a carrier frequency of 2.4 GHz [2]. Using Doppler discrimination, the

researchers were able to determine the azimuth direction of arrival (or bearing) of

the subjects, provided that each subject is moving at a different radial velocity with

respect to the radar. Their method was later extended to capture two-dimensional

azimuth-elevation and three-dimensional range-azimuth-elevation information. The

researchers found, however, that the probability of successful resolution of multiple

subjects drops off as the number of subjects increases [2].

Another through-wall motion tracking technique was described by Wang [5]. This

technique employs the subtraction of successive frames of cross-correlation signals

between each received and transmitted signal. In essence, it extracts the signals of

moving subjects — suppressing interference between transmit and receive antennas

and environmental clutter — and leaves only the moving subject (or multiple moving

subjects) to be displayed via a back projection algorithm. If the wall electrical pa-

rameters of dielectric constant and conductivity are unknown or incorrect, the image

of the moving subject is displaced a distance less than the system resolution, which

is usually acceptable.

Because human body motion is usually non-linear and non-stationary, Hilbert-

Huang transform (HHT) analysis proved a viable method of time-frequency analysis

and isolation of various movement profiles [6, 7]. This technique involves empirical

mode decomposition (EMD), which empirically identifies intrinsic oscillatory modes

(or intrinsic oscillatory mode functions, IMFs) that are defined by their time scales
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of oscillation. The original signal is decomposed into these IMFs, then Hilbert trans-

form is applied to derive the instantaneous amplitude and frequency of the IMF. The

time-frequency distribution of the IMF amplitude, i.e., the Hilbert spectrum, can then

be plotted, resulting in a spectrogram similar to the STFT spectrograms presented

previously. However, the HHT spectrograms have higher time and frequency reso-

lution and are better able to display fluctuations in repetitive movements of human

subjects, such as a waving arm. The STFT spectrogram is less capable of display-

ing these minute differences. HHT analysis is thus more appropriate in detecting

variations of movement in noisy environments, such as through-the-wall scenarios.

[6]

Individual IMFs contain unique oscillatory information present in a scene, so it is

possible to isolate individual movements, or combinations of movements, by separat-

ing IMFs that contain information of a particular movement of interest. Narayanan

[7] used the energy distribution across IMFs to characterize different through-wall

movements — such as standing and breathing, shuffling while seated, moving arms

rapidly up and down, and lifting large objects — and to differentiate them from

the absence of a human. Additionally, the IMFs were used to recreate the Doppler

signatures from the movement of different sections of the arm.

A relatively recent technology called the Radar Scope, developed by DARPA, was

a hand-held device capable of detecting movements as small as breathing through

a foot of concrete and 50 feet into a room [8]. Another DARPA technology, called

VisiBuilding, is a much more advanced system. It is intended to see through multiple

walls in order to image entire floor plans, as well as occupant and object locations,

as fully-usable, model-based diagrams rather than “radar blurs” common to most

imaging techniques [9].
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Physiological Monitoring

The detection of human physiological information is a difficult problem that be-

comes worse when attempted through barriers such as walls. Physiological movements

— the rise and fall of a person’s chest as they breathe, the beating of the heart and

the small, associated fluctuations produced in the skin — are very small compared to

limb movements. Thus, limitations on the use of physiological monitoring techniques

exist. A human subject must face the radar because the Doppler shift will be indis-

tinguishable otherwise. Additionally, the subject must be near to the separating wall.

Averaging is necessary to determine the central Doppler shift which takes additional

time. A through-the-wall detection system must necessarily be low-frequency to avoid

signal attenuation, yet the bandwidth to detect the small motions of breathing (3.75

cm resolution) is 4 GHz which is outside the range of low-frequency through-the-

wall systems. To remain in the low-frequency UHF band and still detect such small

movements, a single-tone frequency is needed. [6]

Several researchers have demonstrated the detection of physiological signals in a

through-the-wall scenario. Bugaev [10] measured the pulse rate and breathing rate of

a human subject behind a wall with a 2-GHz system. Bugaev was able to show the

increase in pulse rate due to the subject holding his breath for an extended period

of time thus experiencing oxygen starvation. Additionally, Bugaev showed that the

amplitude of breathing is much greater than that of the heart rate. Movements of

the body during speech were also recorded, and the possibility of speech recognition

via radar was indicated.

One technology field tested by 2000 was the RADAR Flashlight, developed by the

Georgia Tech Research Institute as the descendant of the RVSM systems that mea-

sured Olympic athletes. The system detects both body movement and the breathing

of subjects behind walls and other barriers, and was intended primarily for law en-
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forcement applications. The detection of involuntary respiration of subjects hidden

behind doors and walls during search scenarios is critical when the subject can not be

depended upon to voluntarily move, or in hostage situations when the subject may

be prevented from moving. Early versions of this system operated at 24.1 GHz; the

more recent prototype operated at 10.525 GHz. [11]

Using the HHT processing approach described earlier, Narayanan [3] and Lai [6]

employed an UWB noise wave form concealing a single 2-GHz tone in order to measure

the expansion and contraction of the chest cavity in breathing. The IMFs correspond-

ing to the Doppler frequency associated with human breathing were isolated and were

also used to distinguish cases when no human was present.

The HHT process may lend itself well to classification of human movements and

activity, provided enough measurements are taken. This concept, and others, will be

described in the next section.

2.3 Human Classification

Human classification involves the discrimination between different types of people,

based on various parameters, such as gender, age, or even activities being performed.

Additional classification efforts involve discrimination between humans, animals, and

vehicles. Discrimination via radar is mainly intended to address the challenging

question of determining human intent, so that accurate decisions may be based on

this information. Radar discrimination itself can be a difficult problem, because

of the need for a high signal-to-noise ratio in order to resolve what may be small

differences that characterize the desired classification scheme. For example, Gürbüz

[29] demonstrated a method of gender discrimination by extracting the thigh height

from cadence frequency plots derived from radar human spectrograms and employing

a Neyman-Pearson detector based on statistical human dimensions to classify the
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person as male or female. This technique suffers, however, from the inaccuracies

inherent in noisy spectrograms and cadence frequency plots.

Although this thesis will employ an age-based classifier to discriminate between

children and adults, movement-based classification is presented here, due to its rele-

vancy to the through-wall human detection problem.

Movement-Based Classification

Otero [16] developed a binary classification system, extracting features from the

cadence frequency plot of human spectrograms, in order to discriminate between

situations when a walking human was present, and when no one was present. The

correct classification rate was 88%, with no false alarms seen. Due to the significant

spectrogram differences between a human’s two-legged gait and an animal’s four-

legged gait, Otero was able to discriminate humans from animals. Such a multi-class

classifier, which can determine both the presence of a human, and distinguish human

signatures from those of animals, may be very useful in applications of security and

perimeter protection.

In addition to species differences, human radar spectrograms display noticeable

differences due to changes in movement and walking pattern of the subject. Ram

[2], using the RJTF transform, demonstrated such differences in a human carrying

a variety of objects: a corner reflector, metal box, and metal pole. Contributions

from the reflector and pole are seen in the spectrogram, as well as an altered walking

pattern due to the person carrying the box in both hands.

Kim [19] studied the spectrograms of seven human activities — running, walk-

ing, walking with a stick, crawling, boxing in place and while moving forward, and

sitting — in order to build a classifier to distinguish among them. A 2.4-GHz, line-

of-sight radar system was used, and six features extracted from the spectrogram of
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each movement to be processed with the classifier. Although the classifier could pro-

cess the entire spectrogram itself, such a method results in high-dimensional data, a

complex internal structure of the classifier, and a long training process. Paring the

data down to a subset of correctly chosen features, however, significantly reduces the

data dimensions while still maintaining the important characteristics of the spectro-

gram. Each of the chosen features, such as torso Doppler frequency, total bandwidth,

and Doppler offset, was identified with a specific characteristic of the motion of the

human. A Support Vector Machine (SVM), a type of binary classifier to be described

in greater detail in Chapter IV, was used together with a decision tree to classify

the spectrograms. Further analysis found that only four of the features were nec-

essary for classification accuracy above 90%. Researchers also tested a sequence of

activities with classification errors arising in the transition between activities, as ex-

pected. Through-wall measurements were briefly investigated with the finding that

the signal-to-noise ratio suffered and that micro-Doppler movements were much more

difficult to identify, particularly as the human subject moved further away from the

radar. Kim indicates, however, that improved hardware may result in significant

signal improvements.

A second effort using SVM classification was carried out by Fairchild [24], this

time using HHT analysis and the EMD algorithm to extract features from human

micro-Doppler signals for classification. Fairchild used a 750-MHz radar system, with

human subjects placed behind a wall. The SVM was paired with a one-against-all

method in order to handle multi-class classification. Six classes were identified: noise

or no subject, breathing or holding breath, swinging arms, picking up an object,

standing from a crouch, and miscellaneous movements. It was shown that the energy

distribution over the signal’s IMF components was unique to specific movements, and

an average classification accuracy of 83% was obtained.
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The work detailed above demonstrates successes in classification of human pres-

ence and activity. This thesis will add another component to the radar classification

problem: child-adult discrimination, which will provide further information about

potential situations within a building.
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III. Previous Work

This chapter describes the research that provides the project’s foundation. An

effort in age-based classification based on anthropometric measurements is briefly

discussed, followed by precursor work to this thesis. The development of the Miranda

human cylinder-sphere model is described, as adapted to this project. The Miranda

human scattering model will be explained in Chapter V after supporting background

is presented.

3.1 Age-Based Classification

Although efforts at discriminating adults from children via radar analysis are rela-

tively recent, there has been work to accomplish age-based discrimination using other

methods. This section describes efforts by Bowden [30] to develop a classification

model based on anthropometric measurements.

There is a difficulty in obtaining data on children. In research ethics law, children

are a protected population, so there is limited existing research data available, and

new data is difficult to obtain. Bowden found only one public domain database of

child anthropometric data, a 1977 study called “Anthropometry of Infants, Children,

and Youths to Age 18 for Product Safety Design”, provided by the National Institute

of Standards and Technology. [30]

The classification scheme in [30] targeted three groups: subjects under 96 months

of age, those between 96 and 144 months, and those over 144 months. A variety of

anthropometric measurements were used to develop a multiple linear regression equa-

tion to determine group recognition rates. The equation coefficients were determined

via sigma-plot software, and custom Labview software determined the rates.

The regression was originally carried out with all seventeen anthropometric mea-
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surements available. From these seventeen, two were identified as providing the bulk

of the accuracy in the multiple linear regression, with little gained by the addition of

the other variables. These two measurements were femur length and skull length. In

the dataset consisting of both the 1977 data and supplemental data from subjects 18

to 79 years of age, the accuracy of the regression in the two-variable case was about

91%. A similar experiment was done involving only two groups, divided at age 144

months. The two-variable regression accuracy for the two groups was about 96%.

The multiple linear regression model developed to achieve this two-group accuracy

was [30]

Age Group = 0.391 + 0.00400FL − 0.00459HL (3)

where FL is the femur length (buttock to knee length as given in the report), and

HL is the length of the head. An investigation into noise added to the measurements

indicated that accuracy does not begin to fall significantly until 4-8 cm of measure-

ment error is reached, indicating that classification based on reasonably accurate

measurement data can be fairly robust.

3.2 Small Human Discrimination

In [1, 12], Miranda developed an analytical radar scattering model of a human and

conducted a series of radar scattering measurements to verify the model. The model

consisted of an arrangement of spheres and cylinders representing a simplified human

form. This section details the results of Miranda’s 2012 experiments and describes

her human cylinder-sphere model and electromagnetic scattering model.

The experiments involved the radar measurements of two objects, dielectrically

similar to humans, referred to as “Green Man” (162 cm tall) and “Timmy” (84 cm)

in the plots. Both human surrogates were filled with a compound that simulates a

combination of muscle and fat in order to mimic the dielectric properties of humans.
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Figure 3. Radar Scattering from an Adult (“Green Man”) Substitute (reproduced from
[31]). Scattering amplitude in the range domain is displayed on the left; frequency
domain on the right. The wide peak in the center of the range domain indicates the
adult substitute — it is a much broader peak than that of the child substitute (Figure
4). The resonance region of the human substitute, 500-750 MHz, is displayed in the
plot on the right.

These objects were measured with a radar system operating at a frequency range of

250 MHz to 3 GHz. Measurements were taken at two elevation angles and multiple

azimuth angles. Characteristic measurement results are shown in Figures 3 and 4

[31]. The first figure displays the measurements for the adult “Green Man” in the

range and frequency domains, while the second displays the same domains for the

child “Timmy.”

In comparing the sets of plots for the adult and child substitutes, note that, in the

range domain, the radar return for the adult substitute is broader, and the noise floor

tends to be higher. The child substitute, on the other hand, has a much narrower

return, and the shape is less distinguishable. In the frequency domain, a resonance is

seen for both objects at about 500-750 MHz. This resonance region is worth noting,

because this thesis is concerned with radar frequencies of that range.

To further characterize radar scattering from adults and children, both human sur-

rogate models were digitally scanned to obtain their geometries in order to perform
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Figure 4. Radar Scattering from a Child (“Timmy”) Substitute (reproduced from [31]).
Scattering amplitude in the range domain is displayed on the left; frequency domain
on the right. The narrow peak in the center of the range domain indicates the child
substitute. The resonance region of the substitute, 500-750 MHz, is displayed in the
plot on the right.

numerical backscattering radar cross-section (RCS) simulations. The simulations were

carried out by Monopole Research located in California. These simulations demon-

strated elevation, azimuth, polarization, and frequency dependence of the RCS for

both the adult and child substitutes. Although elevation and radar polarization are

not tested in this thesis, the results are applicable to the overall problem of child-

adult discrimination. An example [32] of angular dependence of the RCS for vertical

polarization, displayed as cross-section domes, is shown in Figure 5. Only the results

for 0.5, 1.5, and 3.0 GHz are displayed.

To interpret these plots, the images can be viewed as if the object of interest is ob-

served from above, with a dome placed over the object. The relative value of the RCS

is then projected on this dome. Azimuth angles are plotted counterclockwise around

the dome, while elevation angles are plotted from the perimeter, at 5.5◦, toward the

center, ending at 45.5◦ elevation. From these plots, note that the RCS of both objects

increases with frequency. More interesting, however, is how the RCS of the adult and

child substitutes differ. In general, the child substitute has a RCS approximately 5
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Figure 5. Radar Cross Section Domes of Adult and Child Human Substitutes (re-
produced from [32]). Adult RCS ”partial domes” for selected radar frequencies are
displayed on the left (a); child RCS domes are displayed on the right (b). VV polar-
ization is used. Azimuth angles are plotted counterclockwise from 0◦ to 360◦, while
elevation angles increase from the perimeter to the center of each dome, over a range
of 5.5◦ to 45.5◦. The colorbar scale displays RCS magnitude in dB. The RCS of both
objects increase with frequency, though the adult substitute’s RCS is much higher,
with the difference between the child and adult RCS greater at lower frequencies. The
adult substitute’s RCS also has a greater oscillatory structure across the angular range
than does the child substitute.

23



dB lower than the adult substitute at high frequencies, with the difference increasing

toward low frequencies. The difference is more visible in comparing the upper and

lower plots of Figure 6. Additionally, there are fewer oscillations of the RCS across

the angular range for the child substitute than the adult substitute (best seen in Fig-

ure 5 at 1.5 GHz), and the adult substitute RCS appears to display more structure

with regard to frequency than the child substitute (Figure 6). Note, that in Figure 5,

the location of the maximum cross-sections, near azimuth 20◦ for the adult substitute

and azimuth 185◦ for the child substitute, are not due to a fundamental difference

in the objects themselves. They are due to the inconsistent rotation of the scanned

computer models of the objects: the adult substitute was rotated counterclockwise

about 20◦ and tilted slightly backward, while the child substitute was rotated coun-

terclockwise about 5◦ and tilted slightly forward [32]. Given the slight tilt and the

highest RCS on the perimeter near 5.5◦ elevation, it is seen that the highest scattering

from a human substitute occurs when the full silhouette of the object of interest is

presented to the radar.

The results of this project indicate a stronger frequency dependence in the RCS

for the child substitute than the adult substitute (Figure 6) and stronger VV than HH

scattering at low frequencies. Discrimination between the two objects of interest may

thus be best accomplished by considering the difference in magnitude and frequency

dependence of the RCS, or in the difference, particularly at low frequencies, in the

horizontal and vertical polarization RCS. [32]

These results can be explained by noting that the heights of the objects (162 cm

for the adult “Green Man” and 84 cm for the child “Timmy”), in the measured wave-

length range of 10-100 cm, fall within the transition region between low-frequency

Rayleigh scattering and high-frequency geometrical scattering regions. At low fre-

quencies, the Rayleigh-scattering RCS integrated over the angles behaves as ∼ f 4,

24



Figure 6. Frequency Dependence of the RCS of Adult (“Greenman”) and Child
(“Timmy”) Human Substitutes (reproduced from [32]). Frequency is plotted along
the horizontal azis; RCS (σ) on the vertical. The plot displays RCS averaged over a
small angular range near the maximum values of the RCS (as an illustration, consider
the lowest pair of plots in Figure 5, near azimuth 20◦ for (a) and azimuth 185◦ for (b),
where the maximum values lie). The lines show results for different polarizations — v
indicating vertical, and h indicating horizontal. The cross-polarization RCS are much
smaller, and are of less interest. The adult substitute’s RCS shows more structure than
that of the child, which is due to the angular distiribution of the RCS changing with
frequency, as in Figure 5 [32].
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leading to a large frequency dependence, particularly for the child substitute, which

is affected more by Rayleigh scattering at low frequencies than is the adult substitute.

Within this transition regime, the RCS is approximately proportional to the volume

of the object of interest at low frequencies, but proportional to the object’s surface

area at high frequencies. The transition between Rayleigh and geometrical scatter-

ing will take place at a wavelength proportional to the object’s size. Additionally, at

low frequencies and wavelengths near the object’s size, a vertically-oriented elongated

volume appears as an electric dipole, producing a larger radar return and a higher

RCS for vertical polarization than for horizontal. These observations are consistent

with the results of the project. [32]

3.3 Miranda Human Model

The Miranda human cylinder-sphere model is based on the work of Sarabandi

[14]. The model (Figure 7) consists of a prolate sphere and a pair of cylinders. At the

range of wavelengths this thesis is concerned with (0.375–0.75 m), the wavelengths

can penetrate deeper into the body than just the skin; this model is thus concerned

with the scattering from bone rather than skin, and the resonances that originate in

the ribcage area at these frequencies [1]. The prolate sphere represents the skull of a

human while the horizontal, middle cylinder represents the ribcage, with the outward

curve of the cylinder mirroring the outward curve of the human ribcage, seen from the

side, and the ends of the cylinder extending to include the upper arms on either side

of the ribcage. The horizontal cylinder does not include the abdomen or shoulders,

since the bone structures of these areas do not fit the design of the model. The

vertical cylinder represents the thighs/femurs of a human with legs placed together,

excluding the hips and knee caps.

For our discussion, let the first cylinder be the middle, horizontal volume desig-
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Figure 7. Miranda Human Model. In the Miranda Cylinder-Sphere Human Model,
a prolate spheroid represents the skull of a human, a horizontal cylinder represents
the ribcage area, and a vertical cylinder represents the thighs of a human with legs
together. The major and minor radii of the spheroid are rs2 and rs1, respectively. The
radius and length of the horizontal cylinder are rc1 and Lc1, and those of the vertical
cylinder are rc2 and Lc2. The perpendicular distance from the horizontal axis of cylinder
1 to the center of the spheroid is ρ1; the perpendicular distance from the same axis
to the center of cylinder 2 is ρ2. The parameters rs2, rs1 (head size) and ρ1, ρ2 (body
length) effectively determine the sizes of the cylinders. The model is also wavelength-
dependent. The diagram here depicts an acceptable scale model for a wavelength of
λ = 0.5625 m and an average human height of H = 1.7526 m (5 ft, 9 in).
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nated by radius rc1 and length Lc1. Let the second cylinder be the lower, vertical

volume designated by radius rc2 and length Lc2. The prolate sphere is the topmost

volume designated by minor radius rs1 and major radius rs2. These dimensions are

illustrated in Figure 7.

Now, an approximate analytical electromagnetic scattering solution from a cylinder-

sphere pair (or a cylinder and a second arbitrary scatterer, such as a second cylinder)

exists, if the following dimensional conditions are obeyed [14]:

ρ >
2r2

s

λ
,

L2
c

λ
≥ ρ >

2r2
c

λ
(4)

where ρ is the perpendicular distance from the axis of the first cylinder to the center

of the adjacent object (either the sphere or second cylinder, in this case), Lc is the

length of the first cylinder, rc is the radius of the first cylinder, and rs is the radius of

the sphere or characteristic dimension of the second object. The equation on the left

places the first cylinder in the far-field region of the adjacent object. The equation on

the right places the adjacent object in the near-field of the first cylinder with respect

to the cylinder’s length, and in the far-field with respect to the cylinder’s radius.

In the case of the Miranda human model, we obtain two sets of equations from

(4). The first set applies to the horizontal cylinder and the prolate sphere:

ρ1 >
2r2

s1

λ
, ρ1 >

2r2
s2

λ

L2
c1

λ
≥ ρ1 >

2r2
c1

λ

(5)

where rs1 and rs2 are the minor and major radii of the prolate sphere, respectively; Lc1

and rc1 are the length and radius of the horizontal cylinder; and ρ1 is the perpendicular

distance from the axis of the horizontal cylinder to the center of the prolate sphere.

Similarly, the second set of equations, which applies to the horizontal and vertical
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cylinders is

ρ2 >
2r2

c2

λ
, ρ2 >

2L2
c2

λ

L2
c1

λ
≥ ρ2 >

2r2
c1

λ

(6)

where rc2 and Lc2 are the radius and length of the vertical cylinder, and ρ2 is the

perpendicular distance from the axis of the horizontal cylinder to the center of the

vertical cylinder. Both sets of equations, (5) and (6), must be satisfied.

This model is not only wavelength-dependent but also dependent on the size of

the human one chooses to model, as all dimensions must be representative of the

dimensions of a realistic human. To determine proper dimensions, the dimensions of

the head, rs1 and rs2, serve as the best anchor points, as the size of an adult human

head is relatively constant. Note that ρ1 and ρ2 will always be equal to some constant

length dependent on the size of the human model:

ρ1 + ρ2 = C (7)

With these restrictions in place, we can determine maximum and minimum sizes for

the radii and lengths of the cylinders and further narrow down the dimensions with

respect to what is appropriate for a human of the size we have chosen to model. For

a range of wavelengths, λmin to λmax, an appropriate ρ1 and ρ2 chosen based on the

constant C, and rs1, rs2 known, the maximum rc1 becomes the lesser of

rc1,max =

√
λmin ∗ ρ1

2
or rc1,max =

√
λmin ∗ ρ2

2
(8)

the minimum Lc1 becomes the greater of

Lc1,min =
√
λmax ∗ ρ1 or Lc1,min =

√
λmax ∗ ρ2 (9)
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and the maximum rc2 and Lc2 are

rc2,max =

√
λmin ∗ ρ2

2
, Lc2,max =

√
λmin ∗ ρ2

2
(10)

Limitations of the Model

In practice, the limiting dimension is Lc1, and, to a lesser extent, Lc2. Realistically,

ρ1 will be less than ρ2, but a longer ρ2 will drive up the length of cylinder 1 until the

model breaks and becomes unrepresentative of a human. A longer wavelength will

also increase the length of cylinder 1. Thus, a balance must be struck between ρ1,

ρ2 and λmax. When ρ1 and ρ2 are limited by the dimensions of the human body, an

upper limit is placed on wavelength λmax.

The model created for this thesis is based on the dimensions of an average human,

1.7526 m (5 ft, 9 in) tall. The distance between the center of the head and the

midpoint on the thigh, C, was estimated to be 0.98 m. Taking into account the

wavelength, subject height, and dimension C, and targeting ρ1 to locate the center of

the horizonal cylinder roughly in the center of the ribcage, we arrived at the following

model dimensions:

Table 1. Miranda Human Model Chosen Values

λ = 0.5625 m
H = 1.7526 m (5 ft, 9 in), C = 0.98 m

Parameter
Value

(m) (in)
rs1 0.0762 3
rs2 0.1143 4.5
ρ1 0.4 15.75
ρ2 0.578 22.76
rc1 0.1143 4.5
Lc1 0.5702 22.45
rc2 0.1345 5.3
Lc2 0.4022 15.83
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Table 1 and the guidelines for arriving at these values represent our contributions

to the Miranda human cylinder-sphere model. In investigating the magnitudes of the

parameters for various wavelengths, we found that the upper limit on the wavelength

for a realistic 5-ft, 9-in human was roughly the midpoint of our range, λ = 0.5625 m.

This wavelength puts the minimum Lc1 at 0.57 m, and the maximum Lc2 at 0.40 m.

The minimum Lc1 is just within a realistic limit, if our subject is holding the arms

slightly apart from the sides of the body, as if working on some task. Conversely, the

lower limit on the wavelength for a human of the same size is about 0.32 m. Although

this lower limit sets the minimum Lc1 at a more comfortable length, the maximum

Lc2 is now at 0.304 m (roughly 1 ft), which is at the lower boundary of what might

be seen as a realistic thigh length, according to U.S. anthropometric data [33]. Other

populations may have alternate boundaries.

Thus, for an average human height, the Miranda cylinder-sphere human model

is limited to a wavelength range of about 0.32–0.56 m, which corresponds to the

resonance region of the human body, as seen in Section 3.2.

This chapter has discussed prior work in determining the dependence of a human

age-based classifier upon two primary anthropometric dimensions: femur length and

head length (Equation (3)). We have also described precursor work of radar-based,

child-adult discrimination, as well as the development of the Miranda human cylinder-

sphere model. The Miranda human model is based on Equation (4). Our contribution

to the Miranda human model is the adaption of the model to an average adult male of

1.7526 m (5 ft, 9 in), and the identification of appropriate representative dimensions

of the three volumes that comprise the model.
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IV. Theory

This chapter presents the theoretical background for the concepts addressed in this

paper. The first section describes the radar range equation as a brief introduction

to radar concepts, followed by the derivation of the scattered field from a dielectric

object which provides the basis for the Miranda scattering model and our multipath

expansion. Further background material, the fundamental development of the scat-

tered field representation, beginning with the wave equation, and the Support Vector

Machine as our classification method are developed in Appendices A and B.

4.1 Radar Range Equation

The radar equation is a fundamental model used in the design of radar systems.

It relates the main components of the radar — the transmitter, receiver, and antenna

— to the object of interest and surrounding environment, in order to determine

the maximum range of the radar system. The radar equation not only calculates

maximum range, but also various parameters affecting system performance. Using

this equation, a radar system designer balances the performance of the radar with

the design constraints imposed by the system, with the goal of optimizing the system

within given parameters. [34]

For background we shall present the derivation of the radar equation as seen in

Skolnik’s Introduction to Radar Systems [34]. To develop the radar equation, we

first consider the simplest case of the isotropic antenna which radiates uniformly in

all directions. The power transmitted by the antenna is Pt, and the radial distance

from source to observer is R. The power density at some distance R is then the

total radiated power divided by the surface area of a sphere with radius equal to that
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distance:

Φiso =
Pt

4πR2
(11)

A directive antenna, however, does not radiate in all directions equally but rather

concentrates the radiated power Pt in one direction. The equation for an isotropic

antenna is then modified by the antenna gain:

Gt =
maximum power density radiated by a directive antenna

power density radiated by a lossless isotropic antenna with the same power input

(12)

Antenna gain is a measure of the increased power density radiated in one direction

as compared to that from an isotropic antenna. We now have the equation for a

directive antenna:

Φtrans =
PtGt

4πR2
(13)

Now, place an object in the field of the antenna. Only a portion of the energy

radiated by the antenna will be intercepted by the object of interest. Since the

intercepted energy will then be reradiated in many directions, only a portion of the

intercepted energy will return to the receiver. The radar cross section (RCS) of the

object is dependent upon the incident power density and determines the power density

returned to the receiver. The RCS corresponds to the effective area that intercepts

the radiated power and scatters it isotropically. Given an RCS σ, the reflected power

is:

Pref = Φtransσ =
PtGt

4πR2
σ (14)

The power scattered by the object is again reduced by the surface area of a sphere to

determine the power density at the receiver distance:

Φrec =
Pref
4πR2

=
PtGtσ

(4π)2R4
(15)
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Finally, the receiving antenna will only capture a portion of the scattered energy

incident upon it. The received signal power Pr is:

Pr = ΦrecAe =
PtGt

4πR2

σ

4πR2
Ae (16)

where Ae is the effective area of the receiving antenna, given by Ae = ρaA; A is the

physical area of the antenna and ρa is the aperture efficiency. If this equation is solved

for R, the maximum range Rmax is given when Pr equals the minimum detectable

signal Pr,min. Then we obtain the radar range equation:

Rmax =

[
PtGtσAe

(4π)2Pr,min

] 1
4

(17)

Antenna gain is related to the effective area of the antenna by:

G =
4πAe
λ2

(18)

where λ is the wavelength. With this expression in mind, the radar equation can

be rewritten to incorporate the gain of the receiving antenna in place of its effective

area:

Rmax =

[
PtGtGrλ

2σ

(4π)3Pr,min

] 1
4

(19)

where Gt and Gr are the transmitting and receiving gains, respectively.

Equations (17) and (19) are two different versions of the simple, or fundamental,

form of the radar range equation. They do not completely describe the performance

of real radar systems, where other phenomena come into play, such as propagation

factors, atmospheric attenuation, receiver noise, and various losses and efficiencies.

The radar equation can also be modified to suit other radars, like continuous wave

and pulse Doppler radar, as well as specific radar applications, such as surveillance,
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tracking, synthetic aperture, and HF over-the-horizon radars. In general, the simple

form of the radar equation predicts an upper value of range up to a factor of two

or more greater than the true value. However, it remains useful in determining how

different parameters will affect the maximum range of the radar, particularly when

additional terms are considered. [34]

4.2 Scattered Fields: Derivation

This section builds a representation of the scattered field from a dielectric object,

following the method in Yeh [13]. Additional material that provides a necessary

background to this section may be found in Appendix A.

First, the scattered fields due to the sources J+ (electric surface current) and M+

(magnetic surface current) are represented in terms of the vector potentials A and F ,

as in [13]:

E
s

= −∇× F − 1

iωε0
(∇×∇× A) (20)

H
s

= −∇× A− 1

iωµ0

(∇×∇× F ) (21)

where

A =
1

4π

∫
S

J+e
ik
∣∣∣r−r′ ∣∣∣∣∣r − r′∣∣ dS (22)

F =
1

4π

∫
S

M+e
ik
∣∣∣r−r′ ∣∣∣∣∣r − r′∣∣ dS (23)

J+ and M+ are given by (151) and (152), r is the position vector from the origin

(internal to S) to a field point, r
′

is the vector from the origin to the source, and

wavenumber k = 2π/λ. In the following derivation drawn from [13], the time variation

e−iωt is assumed for simplicity, as is assumed for the derivation in Appendix A, Section
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1.2. Substituting (22) and (23) into (20) gives [13]

E
s
(r) = −∇× 1

4π

∫
S

(E+ × n̂)e
ik
∣∣∣r−r′ ∣∣∣∣∣r − r′∣∣ dS− 1

iωε0

∇×∇× 1

4π

∫
S

(n̂×H+)e
ik
∣∣∣r−r′ ∣∣∣∣∣r − r′∣∣ dS


(24)

Applying A×B = −B×A, and substituting R =
∣∣r − r′∣∣, followed by the free space

Green’s function g(kR) = eikR/(4πR), results in [13]

E
s
(r) = ∇×

∫
S

(
n̂× E+

)
g(kR)dS −∇×∇× 1

iωε0

∫
S

(n̂×H+)g(kR)dS (25)

The expression for the total electric field is then

E
i
(r) + E

s
(r) =


Etot(r) for r outside S

0 for r inside S

(26)

Equation (26) demonstrates the Equivalence Principal. We see that, inside S, the

scattered field must cancel the incident field, and [13]

−Ei
(r) = E

s
(r) = ∇×

∫
S

(
n̂× E+

)
g(kR)dS −∇×∇× 1

iωε0

∫
S

(n̂×H+)g(kR)dS

(27)

Now we can make use of the results from Appendix A, Sections 1.2 and 1.3. As

in 1.2, the incident electric field can be represented by

E
i
(r) =

∑
nm

Dnm(anmM
(1)

nm(kr) + bnmN
(1)

nm(kr)) (28)

where Dnm is a normalization constant, and anm, bnm are expansion coefficients. Mnm

and Nnm are given by

Mnm(kr) = ∇× rΨnm (29)
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Nnm(kr) =
1

k
∇×Mnm(kr) (30)

with

Ψnm = f(r, θ, φ)e−iωt (31)

f(r, θ, φ) =
∞∑
n=0

zn(kr)

[
an0Pn(cos θ) +

n∑
m=1

(anm cosmφ+ bnm sinmφ)Pm
n (cos θ)

]
(32)

as in (144). The transform Pm
n (cos θ) is the associated Legendre function, and zn(kr)

is a spherical Bessel function. Inside S, where solutions must be finite at r = 0, we use

Bessel functions of the first kind: zn(kr) = jn(kR) and where jn(kr) is given by (142).

These solutions of the first kind are denoted by the superscript 1 in (28). Outside S,

where solutions must describe outgoing waves, the solutions involve spherical Bessel

functions of the third kind: zn(kr) = h
(1)
n (kr) = jn(kr) + inn(kr) (given by (142) and

(143)). Solutions of this type will be denoted by the superscript 3. The normalization

constant is [13]

Dnm = εm
(2n+ 1) (n−m)!

4n(n+ 1)(n+m)!
, εm =


1 if m = 0

2 if m > 0

(33)

and, since we assume the incident field is a plane wave, we can use the expansion

coefficients for a plane wave as given by Stratton [35] (note that these coefficients are

not presented in [13]):

an =
2n+ 1

n(n+ 1)
in (34)

bn = −in+1 2n+ 1

n(n+ 1)
(35)

However, these coefficients are those appropriate for the expression for the field in

Equation (123). Because Equation (28) contains the constant Dnm, we must find

the new representation of the expansion coefficients, and do so simply by dividing
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Stratton’s equations by Dnm:

anm =
an
Dnm

=
in

εm

4(n+m)!

(n−m)!
(36)

bnm =
bn
Dnm

=
−in+1

εm

4(n+m)!

(n−m)!
(37)

The right side of Equation (27) can be expanded in the following terms [13]:

(n̂× E+)g(kR) = (n̂× E+) · G (38)

(n̂×H+)g(kR) = (n̂×H+) · G (39)

where G(kR) is the free space Green’s dyadic [13]

G(kR) =
ik

π

∑
nm

Dnm[M
(3)

nm(kr>)M
(1)

nm(kr<) +N
(3)

nm(kr>)N
(1)

nm(kr<)] (40)

where r> is the greater of r and r
′
, and r< is the lesser. As mentioned before, the

superscript 3 indicates the presence of spherical Bessel functions of the third kind.

Now, the expansions (28), (38), and (39) can be substituted back into Equation

(27). As stated in [13], these equations converge for all r inside S, so this expansion

of (27) is valid inside S. Applying this substitution, and carrying out the repeated

curl operations ∇×M = kN and ∇×N = kM , we get

−
∑
nm

Dnm[anmM
(1)

nm(kr) + bnmN
(1)

nm(kr)]

=
ik2

π

∫
S

[
(n̂× E+) ·

∑
nm

Dnm[N
(3)

nm(kr>)M
(1)

nm(kr<) +M
(3)

nm(kr>)N
(1)

nm(kr<)]dS

− i
(
µ0

ε0

)1/2

(n̂×H+) ·
∑
nm

Dnm[M
(3)

nm(kr>)M
(1)

nm(kr<) +N
(3)

nm(kr>)N
(1)

nm(kr<)]
]
dS

(41)
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where the substitution k = ω
√
µ0ε0 in the third line has been made for simplification.

We can find additional expressions for the coefficients anm and bnm by matching

corresponding M
(1)

nm and N
(1)

nm terms. Through matching, we find that [13]

−anm =
ik2

π

∫
S

[
(n̂× E+) ·N (3)

nm(kr
′
) + i

(
µ0

ε0

)1/2

(n̂×H+) ·M (3)

nm(kr
′
)

]
dS (42)

−bnm =
ik2

π

∫
S

[
(n̂× E+) ·M (3)

nm(kr
′
) + i

(
µ0

ε0

)1/2

(n̂×H+) ·N (3)

nm(kr
′
)

]
dS (43)

with r> = r
′

because r
′
> r inside S.

As stated in [13], the solutions of (42) and (43) guarantee that the total field is

zero within S, which is required, due to the Equivalence Principal. These equations

can also provide a solution for the surface currents n̂ × E+ and n̂ × H+, which can

then be substituted into (25) in order to obtain the scattered field. However, this

substitution assumes scattering from a perfect conductor, while the scattering from

a dielectric object is needed. The second part of the problem, dielectric scattering,

will now be explored.

Once again expanding the electric field in terms of characteristic vector functions,

the internal field of the dielectric is written [13]

Eint(k
′
r) =

∑
nm

(cnmM
(1)

nm(k
′
r) + dnmN

(1)

nm(k
′
r)) (44)

where cnm and dnm are again unknown coefficients. The dielectric wavenumber k
′

=

ω(µε)1/2, where µ and ε are the absolute permeability and permittivity, respectively,

of the medium. They are related to the relative and vacuum values by µr = µ/µ0

and εr = ε/ε0, where the subscript r denotes the relative values. Substituting for the

absolute values, the dielectric wavenumber can be obtained in terms of the relative

values and the vacuum wavenumber: k
′

= (µrεr)
1/2k. Now that the electric field is
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specified, we can obtain the magnetic field [13]:

H int(k
′
r) =

1

iωµ
∇× Eint(k

′
r) =

k
′

iωµ

∑
nm

(cnmN
(1)

nm(k
′
r) + dnmM

(1)

nm(k
′
r))

= −i
(
εrε0
µrµ0

)1/2∑
nm

(cnmN
(1)

nm(k
′
r) + dnmM

(1)

nm(k
′
r))

(45)

In order to determine the coefficients cnm and dnm, the boundary conditions at the

surface must be examined. But, first, a combined index σ is introduced, which will

now incorporate n and m for more condensed notation. σi will denote the combined

indices for the field internal to the surface (as in (44) and (45)), and σe will denote

the indices for the external field, as in prior equations.

The boundary conditions require the tangential components of the fields to be

continuous at the surface of the dielectric [13]:

n̂×Hext = n̂×H int n̂× Eext = n̂× Eint (46)

where the subscript ext denotes the external fields, and int the internal fields. The

curl operation is applied to (44) and (45) to determine the tangential component of

the internal fields at the surface, applying the change in subscript notation [13]:

n̂× Eint(k
′
r
′
) =

N∑
σi

(cσin̂×M
(1)

σi (k
′
r
′
) + dσin̂×N

(1)

σi (k
′
r
′
)) (47)

n̂×H int(k
′
r
′
) = −i

(
εrε0
µrµ0

)1/2 N∑
σi

(cσin̂×N
(1)

σi (k
′
r
′
) + dσin̂×M

(1)

σi (k
′
r
′
)) (48)

Equations (47) and (48) are now substituted into Equations (42) and (43) because of
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the equality in (46). For the first 2N terms of −anm = −aσe, we obtain

−aσe =
ik2

π

∫
S

[
N

(3)

σe (kr
′
) · (cσin̂×M

(1)

σi (k
′
r
′
) + dσin̂×N

(1)

σi (k
′
r
′
))

+

(
εr
µr

)1/2

M
(3)

σe (kr
′
) · (cσin̂×N

(1)

σi (k
′
r
′
) + dσin̂×M

(1)

σi (k
′
r
′
))

]
dS

(49)

In order to simplify this expression, the cσi and dσi terms can be grouped. Considering

only the cσi term, we have

ik2

π
cσi

∫
S

[
N

(3)

σe (kr
′
) · n̂×M (1)

σi (k
′
r
′
) +

(
εr
µr

)1/2

M
(3)

σe (kr
′
) · n̂×N (1)

σi (k
′
r
′
)

]
dS (50)

Applying A · (B × C) = B · (C × A) = −B · (A× C), and separating terms, we get

−ik
2

π
cσi

∫
S

[
n̂·N (3)

σe (kr
′
)×M (1)

σi (k
′
r
′
)

]
dS−ik

2

π
cσi

(
εr
µr

)1/2 ∫
S

[
n̂·M (3)

σe (kr
′
)×N (1)

σi (k
′
r
′
)

]
dS

(51)

which can then be condensed to

[
−iK − i

(
εr
µr

)1/2

J

]
cσi (52)

where [13]

K =
k2

π

∫
S

[
n̂ ·N (3)

σe (kr
′
)×M (1)

σi (k
′
r
′
)

]
dS

J =
k2

π

∫
S

[
n̂ ·M (3)

σe (kr
′
)×N (1)

σi (k
′
r
′
)

]
dS

(53)

Similarly, the remaining cσi and dσi terms for both aσe and bσe can be condensed, so

we obtain [13]

−iaσe =

[
K +

(
εr
µr

)1/2

J

]
cσi +

[
L+

(
εr
µr

)1/2

I

]
dσi (54)
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−ibσe =

[
I +

(
εr
µr

)1/2

L

]
cσi +

[
J +

(
εr
µr

)1/2

K

]
dσi (55)

for σe = 1, 2, . . . , N , with (53) and [13]

L =
k2

π

∫
S

[
n̂ ·N (3)

σe (kr
′
)×N (1)

σi (k
′
r
′
)

]
dS

I =
k2

π

∫
S

[
n̂ ·M (3)

σe (kr
′
)×M (1)

σi (k
′
r
′
)

]
dS

(56)

Thus, a set of compact expressions for aσe and bσe has been obtained, in terms of

I, J,K, L. These equations can then be solved for the expansion coefficients of the

internal field, cσi and dσi, which can then be used in (47) and (48) to find n̂ × Eint

and n̂×H int, which, in turn, are finally substituted into (25) to obtain the scattered

field [13]:

E
s
(kr) =

N∑
σe=1

[pσeM
(3)

σe (kr) + qσeN
(3)

σe (kr)] (57)

where [13]

pσe = −iDσe

N∑
σi

{[
K ′ +

(
εr
µr

)1/2

J ′

]
cσi +

[
L′ +

(
εr
µr

)1/2

I ′

]
dσi

}
(58)

qσe = −iDσe

N∑
σi

{[
I ′ +

(
εr
µr

)1/2

L′

]
cσi +

[
J ′ +

(
εr
µr

)1/2

K ′

]
dσi

}
(59)

and [13]

I ′ =
k2

π

∫
S

[
n̂ ·M (1)

σe (kr
′
)×M (1)

σi (k
′
r
′
)

]
dS

J ′ =
k2

π

∫
S

[
n̂ ·M (1)

σe (kr
′
)×N (1)

σi (k
′
r
′
)

]
dS

K ′ =
k2

π

∫
S

[
n̂ ·N (1)

σe (kr
′
)×M (1)

σi (k
′
r
′
)

]
dS

L′ =
k2

π

∫
S

[
n̂ ·N (1)

σe (kr
′
)×N (1)

σi (k
′
r
′
)

]
dS

(60)

Note that the difference between the primed I, J,K, L and the unprimed is the pres-
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ence of solutions of the first kind versus the third.

The expression for the scattered field contains solutions of the third kind (M
(3)

σe

and N
(3)

σe ), which contain spherical Hankel functions. These Hankel functions can

be represented in terms of the exponential eikr, allowing us to pull the term out

and express the scattered field in terms of the vector far-field amplitude times the

exponential [13]:

E
s
(kr) = F (θs, φs/θi, φi)

eikr

r
, kr →∞ (61)

where F (θs, φs/θi, φi) is the vector far-field amplitude dependent on the directions of

the incident (θi, φi) and scattered (θs, φs) fields.

The differential scattering cross section is [13]

σD = lim
r→∞

[
4πr2Ss(θs, φs)

Si(θi, φi)

]
(62)

where the scattered power density, Ss(θs, φs) is [13]

Ss(θs, φs) =
|F (θs, φs/θi, φi)|2

2Z0r2
, Z0 =

√
µ0/ε0 (63)

and the incident power density, Si(θi, φi) is [13]

Si(θi, φi) =
|Ei|2

2Z0

(64)

Finally, combining these two expressions in (62), with E
i

having unit amplitude, the

differential cross section becomes [13]

σD = 4π|F (θs, φs/θi, φi)|2 (65)
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The derivation of this scattering representation for a dielectric object, particularly

within the resonance regions, provides the basis and understanding for Dr. Miranda’s

scattering model and its through-wall, multipath adaption, presented in the next

chapter. Of particular importance is Equation (57) and its associated coefficients.

This equation becomes the foundation of our expansion into the multipath represen-

tation, discussed in the following chapter, Section 5.1.
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V. Research Approach

This chapter describes the approach to the research, as well as considerations

leading to certain design decisions. The first section develops the scattering model,

the second provides the experimental setup, methods, and procedures, and, finally,

the third section presents data processing methods.

The purpose of this project is the development of a child-adult discrimination

method via through-the-wall radar. To accomplish this purpose, two main objectives

are explored. The first is the development of a through-wall radar scattering model

appropriate to a corner space — that is, the ground and an adjacent wall — using

the Miranda sphere-cylinder human representation.

The second objective is the investigation of feature sets for child-adult, through-

wall classification. In this investigation, radar data of both children and adults will

be obtained in through-the-wall experiments. Features will be extracted from the

experimentally-obtained radar data and fed into a Support Vector Machine in order

to classify the radar data as that of a child or adult. The performance of the SVM

on different processed data will be examined.

5.1 Scattering Model

The scattering model builds directly upon the work presented in Barber and Yeh

[13] as described in Chapter IV, Section 4.2, as well as Miranda’s modification of the

work. The Miranda model will be presented first, which models the direct path only.

The adaptation to the through-wall, multipath scenario will be presented next.
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Miranda Direct-Path Scattering Model

The direct-path scattering model combines the scattering of multiple objects,

whose size parameters must obey the cylinder-sphere model described in Chapter

III, Section 3.3. For this human model, we have three dielectric objects: the prolate

sphere and the two cylinders. Drawing from Equation (57), the scattering for these

three objects is the sum of the scattering from the individual objects:

E
s
(kr) =

3∑
j=1

N∑
σe=1

[pjσeM
(3)

jσe(kr) + qjσeN
(3)

jσe(kr)] (66)

where r̄ is the vector denoting the path from the origin to the field point P . Now, for

the scattering from multiple objects, this expression is an approximation, involving

only the sum of the scattering from individual objects. A more general form involves

the secondary scattering from each pair of objects — that is, the scattering from

object j due to the scattering from object i. For a number of scattering objects K

located at r̄1, r̄2 . . . r̄K , a transmitting antenna located at r̄T and a receiving antenna

located at r̄R, the scalar field that incorporates this secondary scattering can be

represented as [1]

Es(θi, θs) =
K∑

i,j=1

∫
Sij

|Aij|
eikΦij

RiRj

dSij (67)

where Φ = Ri+Rj, Ri(j) =
∣∣r̄i(j) − r̄T (R)

∣∣, |Aij| is the amplitude of the scattering from

object j due to object i, and Sij represents the space through which the scattering due

to the object pairs propagates. Es is dependent on the angles θi and θs, describing the

incident and scattered vectors from a central reference. For K = 3, as in the human

cylinder-sphere model, we obtain a sum of six terms. When i = j, we recover the

scalar field from (66) due to the sum of the scattering from each individual object.

In the next subsection, we consider the direct-path scattering model extended to

multiple paths.
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Figure 8. Four-Path Reflections (reproduced from [15]). (a) The direct path, no ad-
ditional reflections; (b) scattering from the ground to object of interest, and back to
the receiver; (c) the reverse of (b), from the object to ground, and back; (d) the most
indirect path, reflecting from the ground in both directions.

Multipath Scattering Model

When the source and objects of interest are considered to exist in free space,

with no obstructions or surrounding surfaces, Equations (66) or (67) are sufficient

to describe the electromagnetic scattering. However, when an object is separated

from the source by an obstruction such as a wall, and located near surfaces such as

walls and ground, the scattered electromagnetic energy is affected by these additional

surfaces. Whenever a wave is incident upon a surface, a portion will be reflected, and

a portion transmitted, leading to losses and attenuation of the signal. Hence, the

multipath extension of the Miranda scattering model will incorporate the effects of

barriers and reflecting surfaces. The expansion due to multiple reflecting paths will

be explored first, followed by the incorporation of transmission and reflection losses.

In a multipath environment, the received signal can be thought of as the sum of

the multiple paths to and from the object, caused by reflections of the transmitted
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and scattered signals from surrounding surfaces. In a simple example, which consists

of the radar system, an object of interest, and the ground, there are four possible

paths as shown in Figure 8: (a) the most direct path from the radar to the object,

which is the case of a target in free space; (b) the path from the radar, reflecting from

the ground to the object, and back to the receiver; (c) the reverse of this path; and

(d) the most indirect path, which is from the radar, to the ground, object, back to

the ground, and finally to the receiver. Of these four paths, we expect the most direct

path to give the strongest return because it is the shortest and involves no reflections

or absorptions from surfaces other than the object. The most indirect path can be

expected to give the weakest return, because it is the opposite case — the longest

path with the most reflections and absorptions. [23]

Our experiment, described in Section , introduces a corner arrangement: not only

transmission through an obstructing wall, but also reflections from an adjacent wall

and ground. The wall through which the radar system radiates can provide reflections,

but, for the purposes of the model, the obstructing wall will be assumed to simply

attenuate the signal. Therefore, in order to determine the multiple paths to the object

of interest, we consider the source, the adjacent wall, the ground, and the object only.

A simple notation to represent the paths is constructed: S = source, W = wall, G =

ground, and T = object (i.e., target); the path from source to imaged object is then

represented as ST. Thus, the four round-trip paths of the previous example can be

represented:

Table 2. Paths Between Object of Interest and Ground

Path A (most direct) STS
Path B SGTS
Path C STGS
Path D (least direct) SGTGS

A similar arrangement is given considering only the wall and the imaged object:
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Table 3. Paths Between Object of Interest and Wall

Path E SWTS
Path F STWS
Path G SWTWS

And, finally, the arrangements considering the wall, ground, and imaged object,

allowing the wall and ground to be struck only once before and/or after the object,

are:

Table 4. Paths Involving Multiple Reflections Between Wall and Ground

# Reflections: 2 3 4

Path Order Path Order Path Order
H SWGTS N SWGTGS V SWGTGWS
I SWTGS O SWGTWS W SWGTWGS
J SGWTS P SWTGWS X SGWTGWS
K SGTWS Q SWTWGS Y SGWTWGS
L STWGS R SGWTGS
M STGWS S SGWTWS

T SGTGWS
U SGTWGS

Thus, there are 25 possible paths from the source to the object, and the total

scattering is the sum of the scattering along all paths. Only those paths that are the

direct reverses of each other are the same length, such as paths B and C, or W and

X, for example.

Because the energy from the radar is attenuated as ∼ 1/R2, and by the loss of

transmission through surrounding surfaces, we assume that the longest paths — those

with the highest numbers of reflections — will contribute the least to the sum, and,

so, we neglect them to simplify calculations. We will consider only those paths from

Tables 2 and 3, and the paths from Table 4 with two reflections, for a total of thirteen

paths.

The representation of the scalar field, now, is relatively simple, as we incorporate
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Figure 9. Reflection and Transmission Between Two Media. The incident and reflected
fields are EI and ER, respectively; the transmitted field is ET . The index of refraction,
permittivity, permeability, for media 1 is n1, ε1, and µ1, while those for media 2 are
labeled with the subscript 2. The subscripts I, R, T denote the angles of incidence,
reflection, and transmission, respectively.

the additional paths:

Es(θi, θs) =
L∑
p=1

K∑
i,j=1

∫
Sij

|Aij|
eikΦpij

RpiRpj

dSij (68)

where L is the number of paths chosen to model between the objects of interest and

source. The phase Φij and distances between the scattering objects and transmit-

ter/receiver Ri(j) now depend upon the path taken.

This representation assumes perfect transmission through the wall and perfect

reflections from the other surfaces. Since this is not generally the case, we now apply

the Fresnel equations for the amplitude of an electromagnetic wave.

Consider a monochromatic plane wave incident on a surface, as shown in Figure

9. For standard wall materials, we assume that the relative permeability is µr = 1.

We can represent the incident wave as [36]

ĒI(r̄, t) = Ē0Ie
i(k̄I ·r̄−ωt) (69)
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The reflected and transmitted waves have similar expressions. According to the Fres-

nel equations, the reflected and transmitted amplitudes are related to the incident

amplitude by the reflection and transmission coefficients [36]:

E0R = r‖(⊥)E0I , E0T = t‖(⊥)E0I (70)

where E0R and E0T are the reflected and transmitted amplitudes respectively, E0I is

the incident amplitude, and the reflection and transmission coefficients, r and t, are

labeled by the subscripts ‖ or ⊥ to denote parallel or perpendicular polarization of

the incident wave. Parallel polarization is within the plane of incidence, shown as the

x-z plane in Figure 9. Perpendicular polarization is perpendicular to this plane.

The coefficients are [36]

r‖ =
n2 cos θi − n1 cos θt
n2 cos θi + n1 cos θt

(71)

r⊥ =
n1 cos θi − n2 cos θt
n1 cos θi + n2 cos θt

(72)

t‖ =
2n1 cos θi

n2 cos θi + n1 cos θt
(73)

t⊥ =
2n1 cos θi

n1 cos θi + n2 cos θt
(74)

where the index of refraction of the first medium is n1 and that of the second medium

is n2. For unpolarized radiation, we assume an equal mix of parallel and perpen-

dicular polarizations and take the average of the polarized reflection or transmission

coefficients:

r =
r‖ + r⊥

2
, t =

t‖ + t⊥
2

(75)

The relationship between the incident angle θi and transmitted angle θt is governed
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by Snell’s law:

sin θt
sin θi

=
n1

n2

(76)

and the index of refraction of a material can be found by the relation

n =
c

v
=
√
εrµr (77)

where c is the speed of light in vacuum, v is the speed of the electromagnetic wave in

the material, and εr, µr are the relative permittivity and permeability of the material

respectively.

Using these equations and the knowledge that the un-reflected or un-transmitted

wave is related to the reflected or transmitted wave simply by the reflection or

transmission coefficients, we can incorporate these coefficients into our expression

of the scalar field. Let tij = titj represent the combined, round-trip transmission for

one path, through an obstructing wall in the forward (i) and return (j) directions,

which depends on the path taken and the objects of incidence and scattering, and

r = r1r2 . . . rB is now the combined reflection coefficient due to the total number of

reflections B in one path. The individual reflections r1, r2, . . . , rB also depend upon

the object of incidence (if moving toward the imaged object) or object of scattering

(if returning to the receiver). Then the scalar field Es becomes

Es(θi, θs) =
L∑
p=1

K∑
i,j=1

tpijrpij

∫
Sij

|Aij|
eikΦpij

RpiRpj

dSij (78)

Not only do the individual reflections r1, r2, . . . , rB and transmissions ti, tj depend

upon the path and incident or scattering objects, but also upon the polarization.

Hence, the parallel, perpendicular, or average polarization expressions must be used

accordingly.
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Extending the multipath concept, as well as the transmissions and reflections, to

Equation (66), we have

E
s
(kr) =

L∑
p=1

K∑
j=1

tpjrpj

N∑
σe=1

[ppjσeM
(3)

pjσe(kr) + qpjσeN
(3)

pjσe(kr)] (79)

Now, the combined transmission and reflection coefficients depend only upon the

path, object of incidence (the incident and scattering object are the same, since

i = j), and polarization. Expanding the coefficients ppjσe and qpjσe, the remainder of

the expression for the scattered field is

ppjσe = −iDσe

N∑
σi

{[
K ′pj +

(
εr
µr

)1/2

J ′pj

]
cpjσi +

[
L′pj +

(
εr
µr

)1/2

I ′pj

]
dpjσi

}
(80)

qpjσe = −iDσe

N∑
σi

{[
I ′pj +

(
εr
µr

)1/2

L′pj

]
cpjσi +

[
J ′pj +

(
εr
µr

)1/2

K ′pj

]
dpjσi

}
(81)

where

I ′pj =
k2

π

∫
S

[
n̂ ·M (1)

pjσe(kr
′)×M (1)

pjσi(k
′
r′)

]
dS

J ′pj =
k2

π

∫
S

[
n̂ ·M (1)

pjσe(kr
′)×N (1)

pjσi(k
′
r′)

]
dS

K ′pj =
k2

π

∫
S

[
n̂ ·N (1)

pjσe(kr
′)×M (1)

pjσi(k
′
r′)

]
dS

L′pj =
k2

π

∫
S

[
n̂ ·N (1)

pjσe(kr
′)×N (1)

pjσi(k
′
r′)

]
dS

(82)

The coefficients cpjσi and dpjσi are found by solving the system of equations

−iajσe =

[
Kpj +

(
εr
µr

)1/2

Jpj

]
cpjσi +

[
Lpj +

(
εr
µr

)1/2

Ipj

]
dpjσi (83)

−ibjσe =

[
Ipj +

(
εr
µr

)1/2

Lpj

]
cpjσi +

[
Jpj +

(
εr
µr

)1/2

Kpj

]
dpjσi (84)
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where

Kpj =
k2

π

∫
S

[
n̂ ·N (3)

pjσe(kr
′)×M (1)

pjσi(k
′
r′)

]
dS

Jpj =
k2

π

∫
S

[
n̂ ·M (3)

pjσe(kr
′)×N (1)

pjσi(k
′
r′)

]
dS

Lpj =
k2

π

∫
S

[
n̂ ·N (3)

pjσe(kr
′)×N (1)

pjσi(k
′
r′)

]
dS

Ipj =
k2

π

∫
S

[
n̂ ·M (3)

pjσe(kr
′)×M (1)

pjσi(k
′
r′)

]
dS

(85)

Finally, the expressions for Mpjσ(r) and Npjσ(r) are given by

Mpjσ(kr) = ∇× rfσ(r, θpj, φpj) (86)

Npjσ(kr) =
1

k
∇×Mpjσ(kr) (87)

fσ(r, θpj, φpj) =
∞∑
n=0

zn(kr)

[
an0Pn(cos θpj) +

n∑
m=1

(anm cosmφpj + bnm sinmφpj)P
m
n (cos θpj)

]
(88)

where σ denotes the combined mn index. θ and φ denote the scattered elevation

and azimuth angles, respectively, and depend upon the path p, imaged object j, and

source; and r̄ is primed when referring to a source, and unprimed when referring to

the field point. The spherical Bessel function zn(kr) is either the first or third kind

(Hankel function), depending on the superscript of M or N .

Equation (79), together with supporting Equations (80)-(88), is our final repre-

sentation of the scattering from an object in a corner wall scenario. This theoretical

contribution may be used for any arrangement of K volumes comprising an object,

and any number of paths L between the radar source and scattering volumes. These

expressions will be used in future work to model the electromagnetic scattering of

a human as represented by the Miranda cylinder-sphere model, in a corner-wall ar-

rangement with the scattering paths given by Tables 2 and 3, and the two-reflection

paths of Table 4.
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5.2 Experimental Setup

The test locations and radar equipment were provided by the Air Force Research

Lab (AFRL), Wright-Patterson AFB. Two locations at AFRL were tested. Prelimi-

nary line-of-sight radar tests were carried out at the Human Signatures Lab at AFRL’s

RHXBA both to replicate a more realistic, cluttered environment, and to accommo-

date additional researchers who desired to operate experiments in conjunction with

ours when the children subjects were available. The initial radar equipment operating

at 1 Watt was able to resolve objects of interest, despite the noise and clutter of the

location. However, this equipment was requisitioned for other projects, and we were

only able to obtain a milliwatt system for the remainder of our study. At such low

power, the high noise level of the location was unmanageable. Extensive efforts were

made to determine cause of the noise and times of the day when it might drop to a

manageable level. These efforts were unsuccessful: Unfortunately, the tests for causes

were inconclusive, and the low noise time periods remained unreliable.

Restrictions to operate at the original location were lifted, however, so, in light

of the noise levels, the experiment was moved to RYM’s Indoor Range, an anechoic

chamber lined with radar-absorbing foam. Signals were much-improved in this new

location, so all human testing was performed here.

An ultra-wide band, UHF frequency range is used in this project. The chosen

range was deemed ideal for through-wall penetration, 400 MHz to 800 MHz, based

on prior work of Schmitt [37]. From Equation (1), this range provides a fractional

bandwidth of 66.7%, which fits the definition of UWB radar. The range resolution at

this bandwidth, from Equation (2), is 0.375 m, sufficient for resolving two adjacent

humans, as long as they are outside this range.

The following subsections describe the experimental setup in the Indoor Range in

detail, covering the equipment and testing environment. We then discuss consider-
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Figure 10. Equipment Used. The above photograph displays the equipment, as it
was arranged in the Indoor Range. The transmitting and receiving antennas were
located behind a concrete wall (framed by plywood, so the concrete is not visible in
this image), and aimed along a path parallel to an adjacent wall (on the right, not
shown). The Agilent VNA provided and received the radar signals, while the laptop
was used to control the turntable and download radar data. The pale blue pyramids
are the absorbing foam, surrounding the entire setup, and a stack of foam was placed
between the antennas in order to cut down some of the interference between them.

ations made in choosing wall material and building the wall, and conclude with the

process of working with human volunteers, particularly children.

Equipment

The radar system used is a simple, two-antenna system powered by a Vector Net-

work Analyzer (VNA). Originally, a Doppler radar system was to be used. However,

this system was not available for this thesis, so the static, non-Doppler VNA system

was used instead.

The equipment is displayed in Figure 10. The VNA used is an Agilent 8714ES

RF Network Analyzer, capable of operating at a range from 300 kHz to 3000 MHz.

During all experiments, it operated at 0 dBm (1 mW) power, in S21 (transmission)
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Figure 11. IRA-3Q (Receiving) Antenna Pattern. The realized gain as a function of
frequency and azimuth is shown on the top left, and as a function of frequency and
elevation on the top right. The realized gain at 600 MHz, the center of our 400-800
MHz frequency range, is shown below, as functions of azimuth and elevation.

.

mode. An ultra-wide band, UHF frequency range was employed at 400 - 800 MHz.

The two antennas available for the experiment were commercial-off-the-shelf (COTS)

Farr Fields, LC antennas, a model TEM-1 and a model IRA-3Q. The model TEM-1

is capable of transmitting from 0.586 GHz to 20.1 GHz and was used as the output,

or transmitting, antenna. The IRA-3Q was used as the input, or receiver, because it

possessed the wider frequency range spanning 250 MHz to 20 GHz. The gain for the

receiver is shown in Figure 11. Both antennas were connected to the VNA via SMA

connectors. A laptop was networked to the VNA via an Ethernet cable in order to

obtain data files from the VNA for processing.

A small turntable, built and provided by Matrix Research Associates (MRA),

was used as the platform for all human subjects. The VNA is capable of recording
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only static, non-Doppler signals from objects. Therefore, several angular views of

the subjects were taken, in order to better characterize their radar signatures, as any

particular view of a human subject could be presented to a radar system in real-

world scenarios. The turntable facilitates the gathering of data at precise angular

increments. It is fully capable of rotation through 360◦, as well as supporting the

weight of an adult human; it rotated at a slow, stable speed to prevent unbalancing

of the subject. We hardwired the turntable to a power supply and controlled it,

through a USB cable, by the laptop mentioned above. The controlling software,

customized by MRA, ran in LabView.

Subject Environment

The layout of the experimental setup is illustrated in Figure 12. An array of eight

concrete wall sections were built from 4”x8”x16” solid concrete blocks and arranged

in a corner shape in order to test the through-wall, multipath scattering model. These

walls were built by MRA. Because they form a temporary structure, the walls were

constructed on pallets, in sections three blocks wide (roughly 48” or 1.2 m) and eleven

blocks tall (88” or 2.2 m), for maneuverability. The 4-inch dimension was used as

the thickness of the wall. Two wall sections formed the short side of the corner

arrangement, where the radar system was placed (seen in the left side of Figure 12),

and six sections form the long side of the corner (bottom of the figure).

The testing location was the anechoic chamber of the Indoor Range at AFRL,

Wright-Patterson, AFB. The concrete walls were placed in a corner of the chamber,

blocking off a testing area of about 5.7 m x 9.4 m, measured from the inside surface of

the concrete walls to the walls of the anechoic chamber. The concrete walls formed a

corner of about 2.54 m x 7.3 m; the opposite sides of the testing area were bordered by

radar absorbing foam. We laid a layer of thick aluminum foil on the floor between the
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Figure 12. Experimental Setup. Custom-built concrete wall sections were erected
in a corner arrangement as seen above. There were eight wall sections, built out of
4”x8”x16” solid concrete blocks; wall sections were 1.2 m wide x 2.2 m tall x 0.087
m thick (the 0.14 m thickness presented in the figure includes supporting plywood on
either side of the concrete blocks). Two of the sections form the short length of the
wall on the left of the figure; six of the sections form the long side on the bottom. The
antennas were placed 1.2 m apart, centered on the short wall, with a 0.17-m thickness
of absorbing foam between them (unlabeled in the figure). The ground was covered
with a layer of thick aluminum foil to present a uniform surface. An edge of concrete at
the side of the range opposite the radar was left uncovered to reduce corner reflections
between the ground and foam. A boundary of absorbing foam borders the sides of the
range opposite the concrete walls. The walls opposite the concrete walls are covered
with absorbing foam, as well. The turntable, upon which human subjects stood, was
located between the two antennas, at a distance of 6.8 m.
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concrete walls and the foam in order to present a uniform ground surface. A concrete

surface was our preference; however, the Indoor Range possesses large, metal grating

in the concrete floor, which would introduce anomalies in the radar signals. The

need for a uniform ground surface took precedence over the desire for concrete, so

the entire surface was covered. At the far end of this radar range, a small strip of

the original concrete surface was left uncovered. This uncovered concrete had the

effect of presenting a somewhat more gradual transition from the reflecting surface of

the aluminum to the absorbing foam and, thus, reducing the amplitude of the peak

caused by the corner reflection at the boundary there.

The antennas were placed in the center of each of the two concrete wall sections,

in the left side of Figure 12, separated by 1.2 m. They were placed as close as possible

to the concrete wall, given the positioning of the tripods, at 0.12 m. The antennas

were located on the pallets supporting the walls, which placed them at 1.19 m above

the floor, roughly chest-height with an adult standing on the turntable. A 0.17-m

thick piece of absorbing foam was placed between the antennas to reduce some of the

interference between them, but a great deal of interference was still seen. However,

the human subject was located outside the range of the residual interference, so the

amount did not hamper the detection of the subject.

The turntable was placed between the two antennas at a distance of 6.8 m. In

preliminary testing, large reflection peaks were seen from the corner boundary be-

tween the ground and the absorbing foam and from a location at roughly 5 m (cause

as yet unidentified). The subject location was chosen to lie between these two peaks

for ease of identification and to aid in data processing. Additionally, this distance

places the subject in the far field of the antennas which was desired; the assumption

that the incident field is a plane wave can then be reasonably made. For antennas

physically larger than half the wavelength of the emitted radiation (which holds for
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Figure 13. Radar Range. The radar range is viewed from the opposite side of the
short concrete wall seen in Figure 10. The long, adjacent wall is seen, along with the
turntable on which the human subjects were positioned. The ground is layered with a
thick aluminum sheet, and absorbing foam surrounds the perimeter.

Figure 14. Radar Range and Wall Exterior. Another view of the radar range is seen,
displaying the construction of the concrete walls. These walls were built in sections,
made of solid concrete blocks sandwiched between plywood and braced by additional
wood. The construction avoids any metal hardware within the plane of the wall; hard-
ware is used only in the top and the base of the wall. Additional absorbing foam can
be seen, which lines the walls and ceiling of the chamber.
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our wavelength range of 0.375-0.75 m), the distance to the far field is given as

dFF ≥
2D2

λ
(89)

where dFF is the far field distance, D is the largest dimension of the transmitter, and λ

is the wavelength of the emitted radiation. The largest dimension of the transmitting

TEM-1 antenna is 0.61 m (24 in). Considering our shortest radiated wavelength of

0.375 m, the greatest distance to the far field is 1.98 m. Thus, the turntable is well

within the far field region.

Because the base of the turntable is solid metal, we hoped that placing absorbing

foam around the base would help to minimize its radar signal. However, additional

peaks were formed due to the corner reflection between ground and foam. These

additional reflections were less desirable, so the additional foam was not used. Instead,

we chose to subtract the radar signal of the turntable from those of the subjects during

the data processing. Photographs of the range displaying the turntable, walls, and

surrounding foam are shown in Figures 13 and 14.

Wall Considerations

Next, we will discuss decisions made regarding wall material, construction, porta-

bility, and safety. One of the primary goals of this thesis is to model the through-wall,

multipath scattering from a human subject. To validate this model, an appropriate

wall needed to be constructed for these experiments. Two main considerations went

into the selection of material for this wall: the need for a relatively high permittivity

to make a multipath model valuable, and the need for a material similar to that used

in typical cost-efficient construction.

Propagation of electromagnetic energy through materials depends on the permit-

tivity and the conductivity of the materials. For most building materials, conductivity
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Figure 15. FDTD Concrete Wall Wave Propagation Simulation (reproduced from [2]).
a) Homogeneous concrete wall, b) inhomogeneous cinder block wall. For the simulation,
both walls were 30 cm, and relative permittivity was 5; a 2.4 GHz sinusoidal source
was placed 30 cm from the wall. A well-behaved, spherical wavefront through the solid
concrete wall is observed, while the wavefront through the cinder block wall is complex
and displays reverberation near the wall. [2]

is low, so permittivity primarily determines the propagation. Concrete has a compar-

atively high permittivity, compared to materials such as wood. The permittivity of

concrete is frequency dependent — it increases with lower frequencies — and varies by

composition and moisture content. The composition also varies by supplier. Relative

permittivities for concrete vary between 4.5–11 [38, 39, 40, 41].

Given the choice between solid concrete blocks and hollow cinder blocks, the solid

concrete was determined to be the material of choice. To simplify modeling, we

wanted to have as homogeneous a material as possible, and we expected the large

air holes in cinder blocks to introduce unwanted reflections. Ram [2] demonstrated

finite difference time domain (FDTD) simulations for both a homogeneous concrete

wall and an inhomogeneous cinder block wall (See Figure 15). For this simulation, a

2.4 GHz sinusoidal source was used, the wall thickness was 30 cm, and the relative

permittivity was five. As can be seen in Figure 15, the wavefront through the solid
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concrete wall remains well-behaved and spherical. The wavefront through the cinder

block wall, on the other hand, is complex and shows reverberation near the wall,

though it does approach a well-behaved spherical front in the far field. To avoid

the complexities introduced by the cinder blocks, solid concrete blocks were chosen

as the wall material. These blocks were standard, commercially available, pre-made

4”x8”x16” solid concrete. The relative permittivity of the concrete used in these

blocks was estimated to be about 5-6, based on examination of several papers [38, 39,

40, 41].

Due to the size and weight of the concrete wall sections, custom pallets were

built to provide the level, durable surface needed to build the sections on, as well as

to transport them. Each wall section was located along one edge of its pallet, and

extra concrete blocks were built and sealed into the base of the pallet to provide the

counterbalance necessary to prevent the wall from tipping. This design resulted in a

very safe, sturdy construction. Additionally, the use of metal hardware and fasteners

was minimized in the plane of the wall, to prevent anomalous reflections. Metal

hardware was used only in the pallets and at the very top of the wall.

Institutional Review Board/Subject Considerations

In order to carry out radar tests on human subjects, Institutional Review Board

(IRB) approval is required. The radar was independently tested for safe power levels,

and the testing environment was deemed safe for all participants. Additionally, the

child tests required the presence of an ombudsman acting as an impartial observer.

Extensive coordination was required between these parties, the children and their

parents, and care must be taken to plan for this task in future work.

For the duration of the child experiments, the child’s parent was required to be

in eye-contact with his/her child. To meet this requirement, two locations, chosen
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to not interfere with the child’s radar signal, were designated as optional observing

locations for the parent. One location was about 1 m to the side of the transmitting

antenna; the second location was several meters beyond the turntable, and around

the corner of the wall, out of direct line of sight of the radar. We determined that

each location was sufficiently far from the subject that possible scattering from the

parent would not greatly interfere with the subject’s signal.

Because of the static nature of the VNA, a continuous 360◦ image of a subject was

not possible, so multiple azimuth measurements were made. We did not expect the

subjects, particularly the children, to maintain a stationary position for an extended

period of time, so every effort was made to minimize time spent on the turntable.

We assumed that humans are bilaterally symmetric with respect to electromagnetic

radiation, so only an azimuth range of 180◦, front to back, was required. This range

was divided into 30 segments of six degrees each for adequate azimuthal resolution,

so 31 radar “images” were taken of each subject (30 segments plus the initial starting

point). For adequate frequency resolution, we decided that the maximum number

of frequency points allowed by the VNA in our bandwidth, 1601, was needed. At

this number of points, the VNA takes several seconds to save data. Averaging each

radar image was possible in order to reduce spurious signals, but, since this procedure

tacks on several additional seconds per collection, it was not done. Additionally, the

internal space of the VNA could hold not quite half of the 31 files, so transferring

these files to free space during the test took extra time. With these considerations,

efficient operation of the VNA and turntable set the minimum time for one subject at

about 15 minutes. Subjects could, of course, request that the test stop at any time.

Since children were more likely to be unable to stay in one position than adults were,

a half-way break time was offered. Footprints were placed on the turntable surface

to help the subject return to the same position that was left.
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5.3 Experimental Methods and Procedures

Each experiment consisted of measuring the through-wall radar scattering data of

a human subject. Thirteen adults and ten children were measured. Each subject (or

the child’s guardian), was given a consent form to read and sign, their tasks explained,

and were offered opportunities to voice any questions or concerns. Afterward, several

physical anthropometric measurements were taken and recorded, along with age, for

possible correlation with radar data. The measurements were identified only with a

letter, F or M to indicate female or male, and a number. Child data was kept separate

from adult data. The measurements were done with a tape measure and a flexible

measuring tape, over the subject’s clothing. They are as follows:

• Height

• Arm length, measured from the tip of shoulder to the tip of middle the finger

• Leg length, measured from the top of the leg, where the leg bends from the hip

when lifted, to the floor

• Two torso measurements: around the shoulders and around the waist/belly

• Head circumference, measured just above the brows

The average measurements and age ranges are displayed in Table 5. After collecting

the measurements, the subject was led to the turntable to begin the radar tests.

Before each block of tests for the day, the calibration of the VNA was ensured, as

well as the following operating parameters:

• Frequency range set to 400–800 MHz

• S21 transmission (S21 is the response at port 2 due to a signal at port 1,

essentially the forward transmission)

• Averaging set to OFF

• Number of Points set to 1601
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Table 5. Average Anthropometric Measurements.

Range or Avg. Value

Measurement
Adult Child

(years or inches)

Age 20-52 5-12
Height 69.6 52.8

Arm length 27.6 20
Leg length 37.1 26.9

Shoulder circ. 47.4 32
Stomach circ. 39.6 23.8

Head circ. 23 20.8

• Save format set to ASCII, Touchstone (saves the real and imaginary components

of the signal)

After clearing the buffer in the custom LabView turntable software via the laptop

and setting the rotation to 6◦, the experiment was ready to begin.

A typical experiment began with the subject on the turntable, facing the antennas

through the concrete wall, at 0◦. The command “START” was given, which indicated

to the subject that the signal was about to be recorded. At this command, the

subject was requested to maintain a stationary, natural position with arms at sides,

facing forward. After the data was recorded, the command “REST” was given. This

command indicated that the turntable would be advanced 6◦ and that the subjects

could move as they liked. We asked that the subjects not shift their feet in order to aid

in returning to the former stationary position when the next ”START” command was

given. The test proceeded with alternating START and REST commands, for 31 total

positions, until the last position was reached at 180◦. For child subjects, parents were

offered the option of relaying the commands to their child. The option of a “Simon

Says” game was suggested in order to help make the process more enjoyable and the

child more likely to participate effectively.

67



Two minor delays in each data collection were experienced as a result of trans-

ferring data files from the VNA’s internal memory to an external drive via the net-

worked laptop. Additional short delays were possible due to occasional hang-ups in

the turntable software. These hang-ups did not interfere with the operation of the

turntable itself, but they did require that the turntable be unplugged from the laptop

and plugged back in, in order to reset the software.

Once the data collection was complete, the radar data was transferred to a secure

hard drive for safe keeping and data processing. The procedure for the data processing

is explained in the following section.

5.4 Data Processing

All data processing was accomplished in Matlab. The processing of the radar

data aided in identification of the subject in the data, as well as identification of

radar characteristics of the subject, such as resonance regions. Additionally, we ex-

plored various processing workflows before applying the SVM classifier, in order to

determine the type of processing that allows the SVM to operate at peak performance.

Processing generally included windowing, filtering, and sphere calibration, as well as

isolation of only the data points immediately surrounding the subject, in the range

(time) domain. Further, to reduce the dimensionality of the data with the goal of

minimizing the training process, certain characteristic features of the range domain

data were chosen for testing, as well. In general, background subtraction was not per-

formed, as it would have removed the effects of the walls in the data. Additionally,

background subtraction may not be available in many real-world scenarios. In some

of the processing, however, the subtraction of the turntable signal was done. The

primary processing steps of windowing, filtering, and sphere calibration are described

below, followed by the isolation of surrounding data points and feature extraction.
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Windowing

The application of a data window is useful in situations where low-level signals

become masked by contributions from nearby high-level signals, causing the lower

signals to be difficult to identify. Data windowing isolates the signal of interest while

gracefully degrading the contribution of nearby secondary signals. [42]

Due to the signals from the walls, floor, and boundaries between the floor and the

absorbing foam, windowing was chosen as the primary data processing step in order

to better separate the signals of the human subject from the environment. To provide

graceful degradation, the window used was a Hamming window [42]:

w(k) =


0.54 + 0.46 cos πk

M
if |k| ≤M

0 if |k| > M

(90)

where M is the length of the window. We applied the built-in function hamming in

Matlab to the frequency domain data.

Filtering

Windowing in the frequency domain filters in the range domain and visa versa,

so we will refer to windowing in the range domain as filtering. Due to through-wall

effects and radar system resolution, the subject at 6.8 m appeared in the radar data

at about 8.1 m. The filter was centered at this location and is displayed in Figure 16.

In order to include additional reflections due to the area immediately surrounding the

subject, the filter width chosen was 3 m, with a taper to zero at 5-m width found to

produce a satisfactory result. The filter was created with Matlab’s firpm and freqz

functions, and multiplied against the range-domain data. In Figure 16, the Ideal filter

is the smooth, step-like function. The Matlab firpm filter is the oscillatory function.
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Figure 16. Matlab Filter. The frequency filter was designed with Matlab’s firpm and
freqz functions. Shown as a window in the range domain, each filter spans the full range
of the inverse Fourier transformed data (range/time domain), but only the range of
interest is displayed here, showing the difference between the ideal filter (smooth line),
and the accepted filter produced by the Matlab functions (oscillatory line). This filter
provides a 30 dB suppression of data surrounding the subject location.

Sphere Calibration

Mie scattering is an analytical solution to Maxwell’s equations based on the scat-

tering of electromagnetic radiation from a sphere. Because we can calculate the Mie

scattering from a sphere in free space, the comparison of this scattering solution to the

measured scattering of a sphere in some other environment can demonstrate how that

environment impacts the scattering of the sphere. The difference between the Mie

and measured scattering, once known, can also approximate the difference between a

human subject measured in the same environment, and the “perfect” scattering from

a human subject that would be observed in free space. The following calibration

technique is based on [43].

Let us call the measured scattering from a sphere in our chosen environment Ssph,

and the calculated Mie scattering from a sphere of the same size SM . The ratio
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between these is the calibration factor CF :

Ssph
SM

= CF (91)

During the experiment, Ssph was collected from a 25-cm calibration sphere, in the

same environment as our test subjects, with the corner-wall setup. Thus, because the

calculated scattering SM is that of a sphere in free space, the calibration factor will

essentially remove the effects of the walls from the calibrated human radar data.

Now, the measured scattering from a human subject in our chosen environment

is Smeas and the “perfect” scattering from the same subject in free space is Sp. Em-

ploying the approximation that these two scattering profiles are related by the same

calibration factor, we have:

Sp =
Smeas
CF

(92)

Thus, we can determine the “perfect” scattering of our subject with knowledge of the

measured scattering of the subject, the measurement of a calibration sphere in the

same environment, and calculation of the Mie scattering from that sphere.

When our scattered signal is represented by the received signal power from Equa-

tion (16), reproduced here,

Pr =
PtGt

4πR2

σ

4πR2
Ae (93)

the signal ratio becomes a ratio of the radar cross sections σ of the subjects. Fur-

thermore, when operating in log-magnitude, the ratio becomes a simple subtraction.

Since this calibration includes the effect of the walls, this processing method is

not ideal for comparing the differences between child and adult subjects when the

impacts of the through-wall and wall scattering are under consideration. However, it

can be employed to observe the changes that the through-wall environment makes on

the radar signature of a person.
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Feature Extraction

Feature extraction refers to the isolation of certain features seen in the data which

represent the essential characteristics of the subject’s radar signatures. Feature ex-

traction can be done in either the time or the range domain; here, it was done in the

range domain.

A simple method of feature extraction is simply the isolation of the data points

near the peak representing the subject’s location in the range domain. This extrac-

tion is similar to another window applied to the time domain (filtering in the previous

discussion), but points other than those of interest are thrown out, rather than having

their amplitudes suppressed. For this simple isolation, seventeen points were chosen,

spanning the width of three peaks — those of the subject, the reflection at the bound-

ary between the aluminum flooring and the absorbing foam behind the subject, and

another reflection in front of the subject. These features were chosen based on the

idea that the presence of the subject may have the most influence on its immediate

surroundings due to multiple reflections. The other points were discarded.

Another attempt at feature extraction was the determination of values describing

the main peak of the subject in the range domain: the magnitude of the subject’s

peak and the two nearby peaks, the height of the subject’s peak, referenced from the

valleys on either side, and the width of this peak. These values represent six features

in total.

There were not any recognizable features in the frequency domain for the through-

wall data, so manual feature extraction was not applied directly to this domain.

However, when this data is calibrated using the Mie scattering, resonance peaks are

observed, which may allow for feature extraction. The goal of the classifier, however,

was to classify when effects of through-wall scattering are present. Because Mie

calibration reduces these effects, feature extraction was not used on this data.
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5.5 Principal Components Analysis

Principal Components Analysis (PCA) is a common statistical technique to iden-

tify patterns in data with high dimension, and to express the data in a way that

illustrates those patterns. A graphical representation of the data can be achieved

by reducing the dimensions of the data to allow plotting in two or three dimensions.

In our particular case, the radar data is high dimensional, consisting of 1601 dimen-

sions — one for each frequency step from 400 to 800 MHz. Since the Support Vector

Machine also operates in a high-dimensional space, it does not allow the convenient

visualization of the data to show the derived hyperplane boundary that separates data

classes. In contrast, PCA aids in reducing data dimensionality to allow a visual rep-

resentation of the data, and any separation that exists, provided this separation can

be expressed in two or three dimensions. The following briefly describes the steps of

PCA. These steps are reproduced from Smith’s A Tutorial on Principal Components

Analysis [44], with some change in notation.

Suppose our data consists of measurements xi, where i = 1, . . . , n, where n is the

total number of measurements. For each measurement, we can represent a specific

data point as xij, where j = 1, . . . ,m is the dimension of the measurement. In the

example of the radar data, each measurement xi consists of the scattering data for a

single azimuthal view of a subject, and the dimensions 1, . . . ,m are the value at each

frequency step for that azimuthal view.

The first step of PCA is to subtract the mean from each data dimension [44]. We

can represent our entire data set as a matrix D, with each measurement a row vector
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i, and each column a dimension j of the data:

D =


x11 x12 x13 . . .

x21 x22 x23 . . .

...
. . .

 (94)

Each dimension can be represented generally as dj, so that the mean of each dimension

is d̄j. We then subtract the dimensional mean from each column and obtain the mean

adjusted data matrix:

Dadj,ij = Dij − d̄j (95)

The second step is to find the covariance matrix of the data [44]. The covariance

measures the variation of the dimensions with respect to each other. The elements of

the m×m covariance matrix C are given as

Cpq = cov(xp, xq) =
1

n− 1

n∑
i=1

(xip − d̄p)(xiq − d̄q) (96)

where the elements Cpq are the covariances of the columns or dimensions j = p and

j = q of the data matrix D.

The next step is the calculation of the eigenvectors and eigenvalues of the covari-

ance matrix. This will allow the expression of the data in terms of the orthogonal

eigenvectors rather than the original dimensions, which may or may not be orthogonal.

Additionally, the eigenvectors describe patterns in the data, and those eigenvectors

with the largest eigenvalues describe the strongest patterns. The highest eigenvalue

is then the principal component of the data set. [44]
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5.6 Classification Process

Classification of the radar scattering data involved the use of the Support Vector

Machine (SVM) program created by Erdmann [45]. A Support Vector Machine is a

binary classification tool and its concept is described in Appendix B.

The SVM trains on a subset of the data, and tests on another subset, which

is distinct from the training set. In order to train on the data, adult vectors were

identified with a classification of −1, and child vectors a classification of +1. The

SVM then tested on an unclassified set of the data, and compared its success with

the known classification vector to determine its accuracy.

In order to generalize the performance of the SVM, the classifier was run for four

different combinations of testing and training data, with the testing set comprising

25% of the adult vectors and 25% of the child data vectors, and the training set

comprising the other 75% of both adult and child data vectors, for each combina-

tion. The training sets did not contain any of the data from their corresponding

test sets. These sets are visually illustrated in Figure 17. The accuracies for all four

combinations were averaged in order to determine the overall accuracy of the SVM.

This classification was done for various data processing methods. In the time

domain (consisting of 1601 points), the levels used were unprocessed data, windowed

data, windowed plus filtering, and windowed and filtering combined with Mie calibra-

tion. These four levels were also tested with frequency domain data. Additionally,

a set of windowed and filtered data was isolated to seventeen data points surround-

ing the subject’s range domain peak for another classification attempt. The final

classification attempt involved a set of six features extracted from the range domain

windowed data.

75



Figure 17. SVM Implementation Procedure. Each classification attempt followed the
procedure illustrated above. Both the child and adult data were divided into fourths,
which represented blocks of data that would test the SVM. For a single SVM run, one
fourth of both the child and adult data was tested on, with the remaining 3/4 acting
as training data. Four SVM runs were accomplished, each run testing on a different
fourth of the data. The accuracies from the four runs were averaged to determine the
overall accuracy. This process characterized the procedure for classifying the data at
each processing level.
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5.7 Procedure Summary

The summary of the above experimental procedures is as follows:

1. Ensure calibration of radar equipment; set operating parameters (Section 5.3).

2. Introduce tasks to the volunteer, explain the consent form and have the form

signed.

3. Take anthropometric measurements (Section 5.3).

4. Lead the volunteer to the turntable.

5. Take radar measurements following the “START/REST” procedure (Section

5.3).

6. Continue from #2 with testing additional volunteers as needed.

7. Process radar data: windowing, filtering, Mie calibration, and/or feature ex-

traction (Section 5.4).

8. Perform SVM classification of radar data (Section 5.6).

9. Perform PCA analysis of radar data (Section 5.5).

The radar scattering profiles, Support Vector Machine classification, Principal

Components Analysis results, and final discussion are presented in the next chapter.
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VI. Results and Discussion

This chapter presents the results of the through-wall adult and child radar mea-

surements, in both the frequency and range (time) domains. These scattering profiles

are processed for better visual identification of the subject, and application of Mie

calibration recovers the free space human scattering profile for comparison with the

through-wall profile. Support Vector Machine (SVM) classification is done for various

processing levels in order to determine the processing necessary for ideal SVM perfor-

mance, and to determine the success rate of identifying a child or adult presence from

behind a wall. This method was initially chosen because of the availability of exist-

ing SVM code and because it is a common classification method. Finally, Principal

Component Analysis (PCA), a statistical technique for examining high-dimensional

data, is performed on selected processing levels in order to aid the investigation into

the SVM performance.

The first section displays typical child and adult measurements seen during the

experiment, and the second section reports the classification results. The last section

discusses PCA results and connects these with SVM classification performance.

To get copies of any radar or anthropometric measurements used in this project,

please contact AFRL/RYMD. In accordance with IRB protocols, all data are non-

identifiable and cannot be traced back to any of our volunteers.

6.1 Measurements

The data consists of thirteen adults and six children. The children were aged

5-12 years, and adults 20-52 years, so there was an age difference of at least 8 years

between the oldest child and youngest adult. Each subject was observed by the radar

at multiple angles. For most subjects, we have 31 vectors of data, corresponding to
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Figure 18. Typical Range Profiles of Adult and Child Subjects, Unprocessed. The
subject peak can be seen at about 8 m, with the boundary reflection between the
aluminum flooring and absorbing foam at about 10.3 m. The cross-talk between the
transmitting and receiving antennas is seen at 1.3 m.

30 individual angles through a 180 degree azimuth sweep, plus the starting angle at

zero degrees. However, two of the adult subjects had missed views; and for two of the

children we needed to cut down the total number of views to five and ten, respectively,

since they were too energetic to remain a test subject for long. Altogether, we had

389 adult vectors and 139 child vectors, each with 1601 frequency points spanning

400× 106 to 800× 106 Hz.

For the goal of child/adult classification, the most useful type of imaging for our

radar data is the display of the signal amplitude in either the time or frequency

domains. Unprocessed, the frequency domain displays no obvious points of interest,

so we begin by examining the time domain. Figure 18 shows the unprocessed time

domain data in our range of interest, from 0 to 15 m, for a typical frontal view (0

degrees azimuth) for a child and adult. The peak at 8 m is the subject; the peak at 10.3

m is the boundary reflection between the aluminum flooring and the absorbing foam,

determined through experiment. The peak at about 1.3 m represents the combined

interference between the antennas and the obstructing wall. In the unprocessed data,

some overlap between the subject’s signal and other peaks, particularly at shorter
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Figure 19. Typical Range Profiles of Adult and Child Subjects, Windowed. The same
peaks are observed as in the unprocessed data, however, the target peak has been
separated more cleanly from the surrounding signal. A Hamming window was used
in the processing of all windowed data. There is no obvious feature to distinguish the
peak of a child from that of an adult.

distances, can be seen.

Typical windowed data is shown in Figure 19, for the same data as that displayed

in the previous figure. The windowing in the frequency domain has the effect of

smoothing many of the jagged peaks seen in Figure 18. Inspection reveals no obvious

differences, although the child peak appears thinner, without the shoulder character-

izing the adult peak. Averaging the child and adult data results in even broader peaks

and is not very enlightening (Figure 20). The shape, on average, of the child peak is

very similar to the adult’s, thought it does tend to be slightly lower. We see that the

evidence we seek is not in the average but perhaps we can find it in the detail. Either

further processing is required, or a simple visual inspection is insufficient to reliably

distinguish child from adult.

Figure 21 displays the effect of filtering on the windowed data, for the same adult

data seen previously. The filter provides about a 30 dB suppression of the signal

surrounding the subject peak. As indicated in Section 5.4, the peaks immediately

surrounding that of the subject are intentionally preserved. Although filtering en-
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Figure 20. Average Child, Adult Time Domain Data. When averaged, the child and
adult time domain data are shown to be very similar — the profiles lie almost on top
of each other. A simple visual inspection is not enough to distinguish the child profile
from that of the adult.

Figure 21. Typical Range Profile of Adult, Windowed and Filtered. Again, the subject,
boundary reflection, and cross-talk peaks are observed. The peaks comprising the
subject and surrounding reflections have been enhanced compared to the rest of the
signal, which has been suppressed by about 30 dB. This plot displays the same data as
that seen in Figures 18 and 19.
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Figure 22. Typical Frequency Profile of Adult and Child, Windowed and Filtered. The
processed data from the prior figures is shown. In comparison with the Mie calibrated
data in Figure 23, the well-formed resonance peaks have been suppressed by the effects
of radar propagation through the obstructing wall, although matching rounded peaks
are still observed. The overall oscillatory behavior between the two figures is preserved,
as well as the valleys at 650 and 700 MHz.

hances the view of the subject in the range domain, we will see in the next section

that it has little effect on the classification success of the Support Vector Machine.

Figure 22 shows the filtered data in the frequency domain, for the same views of the

child and adult seen so far. In comparison with unfiltered, unwindowed data (not

shown), the filtered data in the frequency domain displays much more structure, as

the contribution of the frequencies from the subjects are enhanced compared to those

from surrounding surfaces.

The final processing step is Mie calibration. From work described in Section 3.2,

we know that an ideal, free space human scattering signature will display resonances

at roughly 550 MHz. After calibration, we see this same signature in both the child

and adult data (Figure 23). Rescaling the horizontal axis and overlaying with the

frequency plots from Section 3.2 reveals that these are the same resonance peaks.

The rest of the scattering structure also matches quite well with the prior data.
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Figure 23. Typical Frequency Profile of Adult and Child, After Mie Calibration. The
Mie calibrated data from the prior figures is shown. Resonance peaks and the overall
behavior of the plot match those seen in Figures 3 and 4 of the line-of-sight scattering
of the child and adult substitutes, in the frequency range of 400-800 MHz.

Although the goal is to classify child and adult signatures with the effects of the

walls included, comparison of the Mie calibration results and the uncalibrated results

of Figure 22 (which both include windowing and filtering as part of the processing)

display the effect that the obstructing wall and multipaths have on the data. The

well-formed resonance peaks are masked by the wall, although we do see a collection

of four rounded peaks between about 520 MHz and 620 MHz which match those in

the calibrated data. The drops in amplitude of the child and adult data near 650 and

700 MHz are preserved, as well as the overall oscillatory nature and general shape

of the data. Although specific features of the frequency domain data have not yet

been extracted for the purposes of classification, the location and magnitude of the

peaks and valleys, in either the uncalibrated or calibrated data, may provide a reliable

feature set with which to classify child from adult.

To demonstrate the overall comparison between child and adult data, the average

unprocessed frequency data and the average Mie-calibrated frequency data are shown
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Figure 24. Average Frequency Profiles of Adult and Child Subjects, Unprocessed. This
data has been averaged over all azimuthal views of each child and adult subject. On
average, the child profile is higher than that of the adult, with a deeper valley at 750
MHz.

in Figures 24 and 25, respectively. Overall, the child signature remains slightly higher

than the adult signature in Figure 24. Comparing this figure with the average of the

Mie calibration, we see that, not only is the adult magnitude higher in the averaged,

calibrated data, but some of the variation between the two signatures appears to have

diminished. Additional processing in the frequency domain may reduce the variation

between the child and adult data with the loss of scattering information. Evidence of

this reduction will be seen in the next section with the performance of the Support

Vector Machine.

6.2 Subject Classification

The purpose of the Support Vector Machine is a binary classification of child/adult,

so the SVM essentially views each vector as a separate data point with 1601 features

or dimensions. We needed the SVM to view each vector as a unique adult or child,
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Figure 25. Average Frequency Profiles of Adult and Child Subjects, Mie Calibration.
This data has been averaged over all azimuthal views of each child and adult subject.
In comparison with Figure 24, the Mie-calibrated data appears to display less variation
between child and adult.

as well. Because there may be correlations between azimuthal vectors of the same

subject, the vectors of each subject were concatenated together, forming one long

vector for that subject, consisting of the scattering data at each frequency, at each

azimuthal angle. This process is illustrated in Figure 26. Additionally, because the

SVM required all data sets to be of the same length, we needed to reduce the number

of azimuthal angles presented to the SVM to those of the subject with the fewest

available angles. This subject was the child with only five angles of data: at 0, 45, 90,

135, and 180 degrees, azimuth. To keep consistent angular data across all subjects,

the concatenated data vectors were created with the five angles chosen to match, as

closely as possible, those of the child. The angles did not match exactly, because

most subjects were measured at azimuthal increments of 6 degrees, rather than 45.

However, the angles chosen were within 10 degrees of the child data. One adult sub-

ject did not have azimuthal data above 90 degrees, so this subject’s data was not

included in the final set of data presented to the SVM. The final data set consisted of
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Figure 26. SVM Data Matrix Construction. The original radar data matrix consisted of
31 vectors for each subject, spanning 0 to 180 degrees azimuth, each vector consisting of
1601 points. For the SVM to classify based on individual subjects, the vectors closest to
0, 45, 60, 135, and 180 degrees were extracted to form a single vector for each subject,
consisting of 8005 points. The final data matrix then consisted of 18 vectors, one for
each of the 12 adults and 6 children.
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12 adult vectors and 6 child vectors, one vector per subject. Each vector consisted of

five azimuthal views — 0, 45, 90, 135, and 180 degrees — for 8005 frequency points

in total.

Table 6 displays the classification accuracy results of the SVM, based on this

reduced data set. The accuracies are listed with the overall accuracy first, which is

then broken down into the individual adult and child accuracies. These accuracies

describe how well the SVM was able to classify the given child and adult data.

Table 6. SVM Results. Win = Windowing, Filt = Filtering, Mie = Mie calibration,
Iso = Isolation of a range of data points, Feat. Ext. = Extraction of certain features
from the data.

Avg. Accuracy (%)

Background
Domain Processing Overall Adult Child

Subtraction

None

Time

None 60 100 0
Window 60 100 0

Win+Filt 60 100 0
Win+Filt+Mie 70 92 38

Freq

None 100 100 100
Win 100 100 100

Win+Filt 95 100 88
Win+Filt+Mie 45 75 0

Turntable Only
Time

Win 60 100 0
Win+Filt+Iso 100 100 100

Win+Feat. Ext. 95 100 75

Freq Win 100 100 100

First, a note of caution on relying upon these SVM results. Our data set was very

small, and the test sets consisted of only three adults and two children upon which to

base the classification accuracies. Additionally, the training set of adults was larger

than that of the children, introducing bias toward adult classification. This bias likely

accounts for instances such as in the time domain data with no processing, where the

accuracies list 100% for adults, but 0% for children.

With regards to time domain classification and no background subtraction, the
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highest accuracy is obtained with Mie calibration, with no gain from either windowing

or filtering, for an accuracy of 92% (adult) and 38% (child). Accuracy of 100% is ob-

tained for both unprocessed and windowed frequency data; further processing reduces

this accuracy. When the signature of the turntable is subtracted from the time domain

data, we see no improvement in accuracy until the two feature extraction methods are

done. “Iso” refers to isolating the data points immediately surrounding the subject

peak with all other points removed. “Feat. Ext.” refers to extracting the charac-

teristic dimensions of the subject peak, such as height and width. These techniques

provide the highest accuracy seen for time domain data: 100% for peak-isolation, and

100% (adult)/75% (child) for the peak dimensions. Although this accuracy requires

additional processing and is not as high as that obtained by the unprocessed time

domain data in the case of the peak dimensions, the SVM is significantly reduced in

its complexity due to the low dimensionality — i.e., 1% of the total data set. The

SVM is also more likely to classify without memorization or overtraining. Turntable

subtraction has no effect on the frequency domain data.

In an effort to better understand the nature of the data, and to determine why

there is an apparent better separation between child and adult data in the unprocessed

frequency domain than in the time domain, we conducted an investigation using

Principal Components Analysis (PCA). This investigation allows us to examine the

performance of the SVM with a method that, because of our small data set, is more

reliable. The following section briefly describes the implementation of PCA, and

provides a visualization of the data separation and further discussion of differences

observed between the data sets.
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Figure 27. Eigenvalues of Unprocessed Frequency Data. The ordered eigenvalues of
the unprocessed frequency data covariance matrix are shown. A non-logarithmic plot
is shown on the left. It is shifted slightly from the left axis to better display the line.
The same plot is shown on the right with a logarithmic scale. The absolute value of
the eigenvalues were plotted here; negative values account for the “reversal” of the
line near 1040 on the x-axis. The eigenvalues are numbered along the x-axis from 1 to
1601. The three highest eigenvalues are on the order of 103, and were used to choose
the eigenvectors to form the reduced data sets.

6.3 Principal Components Analysis Results

Using the Principal Components Analysis (PCA) procedure described in Section

5.5, we calculated eigenvectors for the radar data. The eigenvalues are shown in

Figure 27.

Once the eigenvalues and their corresponding eigenvectors have been found, we

order the vectors in descending order according to their eigenvalues. From this or-

dered set, we can choose to ignore the vectors of lesser significance — those with

small eigenvalues. This selection process leaves us with a set of reduced dimensions.

Information is lost, but the amount we hope is minimal if the removed eigenvalues are

small. The eigenvectors kept form a m× k feature vector F , where k is the number

of eigenvectors kept [44]:

F =

{
eig1 eig2 . . . eigk

}
(97)
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The eigenvectors are the columns of the feature vector matrix. For the purposes of

displaying the data in a three-dimensional plot, we keep only the three eigenvectors

associated with the three largest eigenvalues; the dimensions of our feature vector for

the radar data is therefore 1601 × 3. These eigenvectors will form the axes of our

plot. [44]

The final step is the derivation of the new data set. This final data set is [44]

DT
F = F T ×DT

adj (98)

where T represents the matrix transpose, and Dadj is the mean adjusted data matrix,

found in Step 1. With this operation, we obtain our reduced dimensionality data set

DF in terms of the chosen eigenvectors. Limiting the eigenvectors to three allows a

visual representation expressing the three dominant data dimensions.

A visual representation has now been achieved. We can determine the effect that

the reduced dimensionality has on the original data set by the following operation

[44]:

DT
R = F ×DT

F + D̄ (99)

where DR is the recovered, reduced dimensionality data, transformed by the feature

vector, and D̄ is the matrix of the means of the original data. This expression allows

us to reverse the PCA process. This recovered data may be compared to the original

data to determine what information was eliminated by the PCA process. Ideally,

the number of eigenvectors chosen will result in minimal information loss, and the

recovered and original data will be similar in structure [44]. Our choice of three of

1601 eigenvectors is due to the need to visually represent the data, and is not meant

to be an optimal data reduction. However, comparison of the original radar data with

the recovered data shows minimal changes.
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Figure 28. PCA of Child and Adult Frequency Data. The data represented in the plot
is DF , obtained during the final step of the PCA process. Child data is shown as the red
circles, and adults as the blue triangles. Each point represents one azimuthal view of a
subject, plotted with respect to the three largest eigenvectors. The eigenvectors form
the axes of the plot: the x-axis is the largest eigenvector, y-axis the second largest, and
z-axis the third. From this view, we see that the child data forms a distinct cluster.
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Figure 29. PCA of Child and Adult Frequency Data, XY Plane. This displays the data
seen in Figure 29, but now viewing only the xy-plane, which contains the strongest
relationships between the data. The data separation is much clearer in this view;
the child data is restricted to the right of the plot (red circles), demonstrating that
a reasonable separation plane may be placed between the child and adult data (blue
triangles). From this view, we can see that the strongest pattern in the data lies
along the x-axis, as expected; this is primarily where the division between child and
adult data can be seen. Additionally, there exists at least two, possibly three distinct
groupings of adult data, also shown primarily along the x-axis.

The PCA process was conduced on the unprocessed frequency data, in order to

provide a way of visualizing the separation between the child and adult classes, and

to explore whether the Support Vector Machine was overtraining on the data. The

relationship between the data obtained during the PCA process is shown in Figure

28, specifically the data contained in DF . In Figure 28, the x, y, and z-axes are the

first, second, and third-largest eigenvectors, respectively, and each point represents

one azimuthal view of a subject, plotted with respect to the three largest eigenvectors.

This representation displays the three strongest patterns contained in the data. A

strong grouping of the child data is seen (red circles) toward the right of the plot.

92



We hypothesized that the strongest pattern in the data (the x-axis), has the most

potential to demonstrate any strong differences, such as that found by the Support

Vector Machine between the child and adult frequency data, leading to the highest

classification accuracy. Indeed, when we rotate the view to show the xy-plane (Figure

29), this is clearly seen. The separation is much more evident in this view, with a

clear boundary between the adult data on the left, and the child data on the right

demonstrating strong clustering. The y-axis also demonstrates a pattern, but to

a lesser extent, indicated by the more condensed grouping of child data in the y-

direction, compared to the adult data. Additionally, two to three distinct groupings

of adult data can be seen, suggesting that further classification between adults may

be possible. This clear separation in the data, combined with the SVM process

of averaging quarters of the data, helps to demonstrate that the SVM did resolve

structure in the data and may not have overtrained. There is, indeed, a strong

division between unprocessed child and adult frequency data.

Additional investigation into results of two other data processing techniques was

conducted to visually determine the differences in SVM accuracy, and to further

support the observation that unprocessed frequency data allows the highest SVM

performance. These two data sets were the unprocessed time domain data, which

had an SVM classification accuracy of 78%, and the isolated time domain subject

peak data, which achieved an accuracy of 94%. The results are shown in Figures 30

and 31. Comparing the two figures, we see that the time domain data shows very

little clustering in the classes, though child data appears shifted more toward the

positive x-direction than the adult data. The peak-isolated data demonstrates better

clustering, specifically in the child data. This corresponds with the SVM’s relatively

poor accuracy in time domain classification, but improved accuracy when only peak

data points are considered. Additionally, the extra groupings of adult data are lost.
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Figure 30. PCA of Child and Adult Time Domain Data, XY Plane. As seen before,
this plot displays the child (red circles) and adult (blue triangles) data in the xy-plane,
as functions of the strongest eigenvectors. Compared to the frequency domain data,
there is very little separation between the two classes. The child data does tend more
toward the positive x-direction than the adult data, indicating that some separation is
possible; however, it is clear that the time domain data possesses far less distinction
between classes than the frequency domain data.
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Figure 31. PCA of Child and Adult Peak-Isolated, Time Domain Data, XY Plane.
Again, this plot displays the child and adult data (red circles and blue triangles, re-
spectively) in the xy-plane, where the strongest patterns in the data are seen. This
isolated data, surrounding only the target peak in the time domain, does show better
separation than unprocessed time domain data, yet less separation than the frequency
domain data, verifying the SVM’s mid-range accuracy with this processing technique.
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The strongest eigenvectors in each of the PCA investigations are associated with

the covariances of the scattering data at the three frequencies nearest the high end

of our frequency range: 800 MHz, 799.75 MHz, and 799.5 MHz. We interpret this

finding in the following way: As the scattering at these three frequencies varies, the

strongest corresponding change in scattering at other frequencies (either increasing

or decreasing) is seen. This finding suggests that, at least in the megahertz range, the

higher frequencies provide more information about the differences between children

and adults. The result makes sense when one considers that higher frequencies allow

finer resolution of the target scene. Additionally, these higher frequencies contain

the shortest wavelengths — near 0.375 m. At these wavelengths, the scattering from

comparatively large objects, such as adults, tends more toward optical scattering,

whereas the scattering from a comparatively smaller object, such as a child, would

tend more toward the resonance or Rayleigh region. This could provide an additional

reason for the strongest difference between child and adult data at these frequencies.

Thus, there may be an ideal range that combines optimal through-wall frequencies

(where low frequencies are ideal) and frequencies that allow efficient discrimination

between subjects behind a wall.

In an effort to link these results to the physical dimensions of the subjects, an

investigation into possible reasons for the three adult groupings in unprocessed fre-

quency data was done. The adult data was identified with several parameters, in-

cluding gender and physical measurements, and re-plotted to determine whether the

groupings were the result of these parameters. These plots are not shown, because

it was evident that the groupings were not related to any individual gender or phys-

ical measurement. In fact, only once the ratios of the physical measurements are

considered does a potential pattern emerges.

Both the leg-length/arm-length and leg-length/head-circumference ratios provide
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Figure 32. PCA of Child and Adult Frequency Domain Data, Leg/Arm Ratio. This
plot visually demonstrates the adult groupings based on leg-length/arm-length ratio.
Group 1 (blue) is a ratio of 1.22-1.30, Group 2 (green) is > 1.44, and Group 3 (black)
is 1.30-1.44. Note that the measurement categories do not increase linearly along the
x-axis. One outlier set can be seen (black triangles in Group 1); these points come from
a single subject. Rather than being due to a real phenomenon, this discrepancy may
simply be the result of imprecise physical measurements. A slight adjustment of the
leg and arm lengths (0.75 inches or less), places this set in the blue 1.22-1.30 category.
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the data separation that corresponds best to the groupings observed in Figure 29. The

leg-length/arm-length results are shown in Figure 32, color-coded and labeled accord-

ing to the ratio value. Group 1 (blue) corresponds to a leg/arm ratio of 1.22-1.30,

Group 2 (green) to > 1.44, and Group 3 (black) to 1.30-1.44. The first observation

is that these ratios do not increase linearly with the x-axis; Groups 1 and 2 repre-

sent smaller and larger ratios, respectively, than Group 3. The second observation

is that there is one set of outliers in Group 1 (misplaced black triangles). However,

this discrepancy may be due more to imprecise physical measurements than an ac-

tual phenomenon. For instance, when the leg and arm lengths are adjusted by 0.75

inches (1.9 cm) or less, the ratio then falls appropriately into Group 1. The physical

measurements of the subjects were made through clothing, so some amount of error

exists in the measurements, and a change of 0.75 inches in either the leg or arm value

is not unreasonable.

The leg/head ratio displays a similar pattern to the leg/arm ratio, and is shown

in Figure 34. In this case, there are two outlying sets; however, this discrepancy may

also be due to error in the physical measurements.

We expected that the measurements responsible for the primary difference in adult

groupings would also be responsible for the strong difference between child and adult

data. When extending the physical measurement analysis to include the child data,

a strong separation in height, arm, and leg length was found between child and adult

data. However, this separation, as stated before, was not enough to explain the adult

groupings; therefore, one of the two ratios needed to play a role. The leg/arm length

ratio, which provided the strongest groupings with minimal measurement adjustment

for the adults, did not hold with the addition of child data (Figure 33). However, the

leg/head ratio did . There was only one child outlier, which could be “corrected” by a

small adjustment of 0.5 inches (1.2 cm) to the leg length, within possible measurement
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Figure 33. PCA of Child and Adult Frequency Domain Data, Leg/Arm Ratio. This
plot once again demonstrates the adult groupings based on leg-length/arm-length ratio,
but now the child data is included with the ratios. For the child data to hold with the
leg/arm ratio, it was expected that the child group would fall within a new ratio, or
possess primarily a single color of one of the adult groups. This does not occur; the
child group is an even mix of the blue and black groups, indicating that the leg/arm
ratio does not describe the pattern in child/adult separation.

.
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error. With outlier adjustment, the leg/head ratio then results in four distinct groups,

shown in Figure 34. From left to right, we have Group 1 with a ratio of 1.43–1.57,

Group 2: > 1.70, Group 3: 1.57–1.70, and Group 4 which contains all child data:

< 1.43. Although other physical relations may play a role, as the relationship of

the leg/head ratio with the x-axis is not linear, the apparent link between the data

groupings and the leg length, head circumference is consistent with the observations

made by Bowden [30] in Section 3.1. He derived a successful age-based classifier based

only on femur length and skull length. Our measurements are not identical, but both

experiments independently indicate that the leg and skull dimensions are the primary

parameters that may determine whether an individual is a child or adult, and perhaps

lead to further categorization of adults. Furthermore, radar classification appears to

be more sensitive to anthropometric measurement error — shifts in category were

seen with errors of about 1-4 cm, compared with 4-8 cm in [30].

Table 7. Covariances of Subject Anthropometric Measurements

Age Height
Arm Leg Shoulder Stomach Head
Leng. Leng. Circ. Circ. Circ.

Age 246.06 118.38 51.74 71.60 90.40 110.01 13.18
Height 118.38 92.05 39.40 53.28 76.71 80.66 11.55

Arm Leng. 51.74 39.40 17.62 22.63 32.87 34.87 4.95
Leg Leng. 71.60 53.28 22.63 32.52 43.51 44.25 6.58

Shoulder Circ. 90.40 76.71 32.87 43.51 73.04 72.69 10.92
Stomach Circ. 110.01 80.66 34.87 44.25 72.69 91.18 11.16

Head Circ. 13.18 11.55 4.95 6.58 10.92 11.16 1.73

One final analysis step was done, in order to link the Principal Component Anal-

ysis with what is observed in the frequency domain data, and understand more pre-

cisely how the frequency profile changes with age. In general, one expects that the

physical dimensions of a human increase with age. This expectation was confirmed

with data from a National Health Statistics Report by the Centers for Disease Con-

trol and Prevention (CDC), titled Anthropometric Reference Data for Children and
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Figure 34. PCA of Child and Adult Frequency Domain Data, Leg/Head Ratio. This
plot visually demonstrates the adult groupings based on leg-length/head-circumference
ratio. From left to right, Group 1 (blue) is a ratio of 1.43-1.57, Group 2 (green) is >
1.70, Group 3 (black) is 1.57-1.70, and the final child group, Group 4, is < 1.43. Note
that the measurement categories do not increase linearly along the x-axis. Two adult
outlier sets can be seen (black triangles in Group 1, and green triangles in Group 3).
Rather than being due to a real phenomenon, this discrepancy may simply be the
result of imprecise physical measurements. An adjustment of the leg length (2 inches
or less) and head circumference (0.75 inches or less), places these sets within the proper
categories. Likewise an adjustment of 0.5 inches to the leg length of the single child
outlier (blue circles in Group 4) corrects the ratio.

.
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Figure 35. Averaged Child and Adult Frequency Domain Data with Covariance Sign.
This plot is similar to the frequency profiles shown previously, except the intensity
values are not scaled logarithmically, in order to more easily visualize the true relation
between child and adult data. The pale red bars indicate frequency spans where the
data shows a positive covariance between age and frequency (higher adult values). All
other frequencies show a negative covariance.

Adults: United States, 2003-2006 [33]. This report contained a number of average

and percentile physical measurements for several age groups. A covariance matrix

was calculated for the average measurements, shown in Appendix C, which resulted

in a positive definite matrix — without exception, all measurements had a positive

correlation with age. This behavior was reproduced with the physical measurement

data obtained from the subjects participating in our radar experiment. The covari-

ances for the test subject measurments are shown in Table 7; note that the table is

symmetric. Finally, the covariance between the subjects’ age, physical dimensions,

and frequency was investigated.

We hypothesized that, based on the overall lower intensities of adult scattering
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in the frequency domain (refer to Figure 24), adults act as a larger dielectric object,

thus attenuating the signal more than would a child. From this, we expect that, as

the physical dimensions (or age) of a human increase, the overall frequency amplitude

will decrease. In the examination of the covariance of frequency with age, we find that

there is an 83% negative correlation, and a 15% positive correlation (the remaining

percentage is weak correlation). These values are very similar to those obtained for

covariance of frequency with height. The age-frequency correlation direction is shown

in Figure 35. This plot is similar to the frequency profiles displayed previously, but no

longer on a logarithmic scale, in order to better visualize the true difference between

child and adult frequency profiles. The pale red bars indicate frequency spans where

a positive covariance occurs between age and frequency (where the adult profile is

higher than the child profile). In some cases, due to the thickness of the lines, this is

difficult to see. Uncolored frequencies show negative covariance. Overall, we see that

the covariance values match well with the average frequency profiles, and that, in

general, the scattering intensity decreases with age as the physical dimensions of the

subjects grow. There are certain frequency spans, however, that display the opposite

behavior.

To summarize this discussion, there are features in the frequency domain that,

overall, possess more structure than those in the time domain. This structure is why

we see a clear visual separation between the child and adult data classes with the

PCA of frequency domain data, and the strongest classification accuracy from the

SVM. There is comparable structure in the reduced time domain set, consisting of

those points making up the subject peaks, but perhaps not the amount of structure

that may allow further adult classification, as indicated in Figure 32. This structure is

also most strongly associated with the highest frequencies of our chosen range, which

may serve to guide future investigation. Additionally, the structure in the frequency
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domain appears to be primarily the result of a complex dependence on the leg and

head dimensions of the subject. This dependence is not readily observed in the time

domain, but we found the frequency domain results consistent with Bowden’s findings

that the leg and head dimensions are the primary indicators of age classes. Finally,

there is a general negative dependence of scattering intensity in the frequency domain

with age, although small regions of positive correlation do exist.
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VII. Conclusions

This chapter presents the conclusions and recommendations for further work de-

rived in the course of this thesis. The first section summarizes the work and major

results, the next describes the contribution of this work, and the final section recom-

mends topics for future study.

7.1 Summary and Conclusions

The work accomplished in this thesis builds upon prior work by Miranda, and

is a part of the larger framework of the through-wall detection problem. We found,

specifically, that the identification and discrimination of children or adults behind an

obstructing wall and inside a building is possible using radar.

Obstructions such as walls introduces attenuation and multipath effects to radar

data. To investigate the child/adult discrimination problem in a through-wall, mul-

tipath scenario, the Miranda cylinder-sphere human scattering model was expanded

to incorporate multiple paths, and the effects of transmission through, and reflections

from, walls and ground. Twenty-five reflection paths were identified, involving the

direct paths, as well as reflected paths between the ground and an adjacent wall. All

paths included two-way transmission through an obstructing wall.

In addition to the model expansion, radar scattering measurements were con-

ducted on human volunteers in order to investigate the classification of child and

adult, through-wall radar data. Classification of above 95% was reached in both the

time and frequency domains, indicating that, with minimal processing, we can infer

whether the subject behind a wall, in a real-world, multipath environment, is a child

or adult. Isolation of points surrounding the subject provides what may be the best

balance between accuracy and efficient Support Vector Machine operation.

105



The strong division between child and adult classes was replicated in Principal

Component Analysis of the data, which strongly suggests that the features in fre-

quency domain data possess more structure than those in time domain data, with

regard to child and adult classification. Additionally, structure was found in the fre-

quency data that appears to have a strong dependence on leg and head dimensions,

and may be primarily responsible for the child/adult division, which independently

verifies previous work. Up to three additional adult classes were found to depend

upon these physical dimensions. Finally, the frequency domain data has a general

negative dependence with age, likely due to the higher attenuation of the radar sig-

nal by larger dielectric forms (adults), although certain frequency spans do exhibit

positive correlation.

7.2 Significance

While other work has provided four-path ground-only scattering models, this work

expands upon the concept to provide a scattering model incorporating the effects of

both the ground and an adjacent wall, for a human subject approximated as an array

of dielectric cylinders and a prolate sphere. Additionally, although through-wall radar

testing of humans has been accomplished before, to our knowledge this work is the

first to collect radar scattering data from children and present the results. Further,

there has been little work on child/adult discrimination via radar; this thesis expands

upon that subject to present characteristic through-wall scattering profiles of children

and adults, and demonstrates reliable classification via a Support Vector Machine.

Finally, a strong structure in frequency domain data was found which separates not

only children from adults, but demonstrates additional classification ability between

adults. Both the separation between children and adults, and the adult groupings,

appear to depend primarily upon leg and head dimensions, which is consistent with
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prior work and provides an avenue for additional investigation. We now believe we

can extract some measure of human physical dimensions from radar scattering data.

7.3 Future Work

Many aspects to this thesis have potential to be expanded and further investi-

gated. In the modeling area, more complete human models exist that consist of

several cylinders defining the legs and arms of the human body; a new study would

be worthwhile to combine these detailed models with the multipath scattering model

presented in this thesis in order to obtain a more accurate multipath, human scatter-

ing model. Futher, numerical simulations of the scattering model presented in this

thesis are desired, in order to validate the model with comparison to experimental

data.

Experimentally, additional through-wall human tests, on both adults and children,

are required to obtain a statistically robust set of data. The thirteen adults and six

children tested here are not representative of the variation in size and shape of the

human body, and collections from other body types may significantly differ, affecting

the classification accuracy.

Further testing should be done with an eye toward determining whether the struc-

ture seen in the Principal Component Analysis of the frequency domain data remains

consistent over a wider population, and whether the basis for this structure can be re-

fined. Another suggestion is the examination of anthropometric measurement — that

is, the sensitivity of these measurements and the accuracy needed to appropriately

classify child-adult groups within the radar data.

Additionally, a multiclass radar classifier based on age should be investigated, to

determine the range of ages that may be correctly identified. The boundary between

what defines a child and an adult, in radar data, may be narrowed from the work
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presented in this thesis, to discover the range of overlap that may exist. Further, the

performance of the SVM classifier may be explored in order to refine its accuracy

and identify the most important frequency or time domain features required in the

discrimination of child from adult, which may aid in the correlation of radar features

to physical size, body-limb size ratio, or age of the subjects. More data from a larger

pool of subjects will also help to determine whether the importance of the leg and

head dimensions proposed here continue to hold.

Perhaps the largest advancement that future work may bring is the use of Doppler

radar in child/adult identification. Many efforts in through-wall human identification

center around the micro-Doppler movements performed by a human, which distin-

guish the person from the surrounding environment, and even other moving creatures

or objects. A follow up investigation is worthwhile in determining whether these

micro-Doppler characteristics may also be used to classify child data from adult data.

Because of the differing body proportions of children, one can expect that their micro-

Doppler signatures would be unique. Additionally, micro-Doppler is a more flexible

tool, overall, for subject identification — younger subjects are less likely to remain

still, as required for the work in this thesis, and subject movement adds to a more

realistic environment. A movement component is almost always present that may be

isolated in order to aid classification.

Finally, discrimination between multiple children and adults is the ultimate goal.

The child/adult classification effort needs to be combined with the effort to distinguish

between multiple people in a through-wall setting via radar. The discrimination

between a person with and without a weapon, such as a firearm, is also an important

goal. As resonances were seen in human data, there may be resonances associated with

firearms; these resonances may be used in a through-wall problem, or at a distance,

to identify the presence of such a weapon. Our results are particularly relevant to
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many situations already encountered, such as school shootings and other incidents

where the ability to quickly identify an armed person, from a distance and behind a

wall, may save lives.
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Appendix A. The Wave Equation and Scattered Field
Representation

This appendix provides the background for the derivation of the scattered fields

in Section 4.2. It begins with the derivation of the familiar wave equation, continues

with the vector wave equation and the representation of the wave equation in spherical

coordinates, then finishes with a representation of the scattered fields presented in

[13].

1.1 The Wave Equation

In order to fully understand some of the upcoming mathematical derivations and

notation, it is necessary to take a step back and examine the wave equation and its

vector solution, particularly the solution in spherical coordinates. The derivation of

the wave equation follows Tcheslavski [46], outlined in this section. It is followed,

in the next section, by the derivation of the vector solution and expansion of the

electromagnetic fields as given in Stratton’s Electromagnetic Theory [35].

We first introduce the electromagnetic (EM) fields and their basic relations. The

electromagnetic field is commonly associated with six quantities:

E, the electric field intensity

H, the magnetic field intensity

D, the electric flux density

B, the magnetic flux density

J , the electric current density

ρv, the volume charge density.
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In free space, the relationships between the fields are

D = ε0E

B = µ0H

J = 0


in free space (100)

where ε0 is the permittivity of vacuum, and µ0 is the permeability of vacuum. These

values are constants, where the velocity of light c = 1/
√
ε0µ0. In simple matter, the

relations are similar:

D = εE

B = µH

J = σE


in simple matter (101)

where ε is the absolute permittivity of the medium, µ is the absolute permeability of

the medium, and σ is the medium’s conductivity. The absolute permittivity is related

to the vacuum permittivity through the factor εr, which is the relative permittivity:

εr = ε/ε0. Similarly, the relative permeability of the medium is given by µr = µ/µ0.

Note that, for free space or perfect dielectrics, σ = 0, and for perfect conductors,

σ =∞. [47] A lossy dielectric material will have a nonzero conductivity [46].

Armed with the fundamental EM field relations, we are now prepared to develop

the wave equation. The following derivation of the wave equation is that given by

Tcheslavski. We consider an environment consisting of a homogeneous media that

may have possible losses (σ 6= 0). There are no free charges in the region of interest,

so sources are excluded; thus, the volume charge density is zero:

ρv = 0 (102)

Additionally, there are no external currents.
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Maxwell’s equations are

∇× E = −∂B
∂t

∇ ·B = 0

∇×H =
∂D

∂t
+ J ∇ ·D = ρv

(103)

Applying the relations in Eqs. (101) and the assumption in Eq. (102), Maxwell’s

equations for our environment become

∇× E = −µ∂H
∂t

∇ ·H = 0

∇×H = ε
∂E

∂t
+ σE ∇ · E = 0

(104)

∇ × E and ∇ × H are two first-order partial differential equations in terms of two

dependent variables. They can be combined into one second-order PDE in terms of

one variable by applying the curl to ∇× E:

∇× (∇× E) = −µ ∂
∂t

(∇×H) (105)

and substituting ∇×H:

∇× (∇× E) = −µ ∂
∂t

(ε
∂E

∂t
+ σE) = −µε∂

2E

∂t2
− µσ∂E

∂t
(106)

We then apply the vector identity

∇×∇× E = ∇(∇ · E)−∇2E (107)

which reduces to −∇2E because ∇ · E = 0, and finally obtain the wave equation

∇2E − µε∂
2E

∂t2
− µσ∂E

∂t
= 0 (108)
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The wave equation for H has the same form, and can be derived in a similar fashion,

by taking the curl of ∇×H and substituting. Thus, all the vectors that characterize

the electromagnetic field, E, B, D, and H, satisfy the same differential wave equation

with the general form:

∇2C − µε∂
2C

∂t2
− µσ∂C

∂t
= 0 (109)

The vector solution to this wave equation will be explored in the next section.

1.2 Vector Wave Equation Solution and Representation of the EM Fields

This section derives the vector solution of the wave equation, and the expansion

of the electromagnetic fields, as in Stratton’s Electromagnetic Theory . Once again,

our environment consists of a closed domain, and a homogeneous, isotropic medium.

Any sources of electromagnetic radiation are excluded. As in Section 1.1, the vectors

in the medium that characterize an existing electromagnetic field, such as E, B, D,

and H, all satisfy the same differential wave equation:

∇2C − µε∂
2C

∂t2
− µσ∂C

∂t
= 0 (110)

where C is any one of those vectors. Time variation can be separated as a harmonic

solution e−iωt, and C can be assumed to contain this factor. Then, after taking the

first and second derivatives of C = C
′
e−iωt and substituting, Eq. (110) becomes:

∇2C + (µεω2 + µσiω)C = ∇2C + k2C = 0 (111)

where k2 = µεω2 + µσiω. Vector algebra gives ∇2C = ∇(∇ · C) −∇×∇× C [35],

so substituting this identity into Eq. (111), we get:

∇(∇ · C)−∇×∇× C + k2C = 0 (112)
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which is the vector wave equation.

When C is resolved into rectangular components (x, y, z), then (111) or (112) can

be broken into three independent scalar equations, the familiar ∇2Ci + k2Ci = 0,

where i denotes any one of the three coordinates. However, we are interested in

independent vector solutions of (112).

To obtain the vector solutions, first assume Ψ is a scalar function, and a solution

to:

∇2Ψ + k2Ψ = 0 (113)

and a is any constant unit vector. Three independent vector solutions of (112) can

now be constructed:

L = ∇Ψ, M = ∇× aΨ, N =
1

k
∇×M (114)

L, M , or N can replace C in (112) to satisfy it, as long as condition (113) is met.

Additionally, because a is a constant vector of unit length,

M = ∇× aΨ = ∇Ψ× a = L× a =
1

k
∇×N (115)

and, for a consistent Ψ, L is perpendicular to M , so

L ·M = 0 (116)

Some additional properties are:

∇× L = 0, ∇ · L = ∇2Ψ = −k2Ψ (117)

∇ ·M = 0, ∇ ·N = 0 (118)
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Any single solution or characteristic function Ψn of (113) is associated with three

vector solutions, Ln, Mn, Nn, which are not colinear. Thus, any arbitrary wave

function can be represented as a linear combination of these characteristic vector

functions, with coefficients of expansion to be determined.

With the definitions of Ln, Mn, and Nn established, we can now move on to a

representation of the electric and magnetic field vectors E and H in terms of the char-

acteristic vector functions. Keeping in mind the time factor e−iωt implicitly contained

inside each vector, and assuming a homogeneous, isotropic medium of conductivity σ

and free-charge density ρ = 0, we begin with:

E =
iωµ

k2
∇×H, H =

1

iωµ
∇× E (119)

Because each is proportional to the curl of the other, M and N are appropriate to

represent the fields E and H. The vector potential A, where H = 1
µ
∇×A, can then

be represented by an expansion in the characteristic vector functions:

A =
i

ω

∑
n

(anMn + bnNn + cnLn) (120)

where an, bn, and cn are the coefficients of expansion, which depend upon the current

distribution. H can now be found by the relation between H and A:

H =
1

µ
∇× A =

−1

iωµ

∑
n

(an∇×Mn + bn∇×Nn + cn∇× Ln) (121)

Finally, from the relations between M and N in (114) and (115), and because the

curl of L is zero:

H =
−k
iωµ

∑
n

(anNn + bnMn) (122)
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From (119), a similar procedure results in the expression for E:

E = −
∑
n

(anMn + bnNn) (123)

It is these expansions (122) and (123) for H and E that will become important later

in the paper.

1.3 Wave Equation in Spherical Coordinates

Another important equation to understand is the scalar wave equation treated

in spherical coordinates, as this will be another piece used in upcoming derivations.

This section explores the derivation of the spherical wave equation, again as given in

[35].

A wave can be represented as Ψ = f(R, θ, φ)e−iωt, and, in a homogeneous, isotropic

medium, f(R, θ, φ) must satisfy

∇2f + k2f = 0 (124)

Expanding ∇2f in spherical coordinates, this equation becomes

1

R2

∂

∂R

(
R2 ∂f

∂R

)
+

1

R2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

R2 sin2 θ

∂2f

∂φ2
+ k2f = 0 (125)

Separation of variables can be applied, giving f = fr(R)fθ(θ)fφ(φ) and a set of three

equations:

R2 d2fr
dR2

+ 2R
dfr
dR

+ (k2R2 − p2)fr = 0 (126)

1

sin θ

d

dθ

(
sin θ

dfθ
dθ

)
+

(
p2 − q2

sin2 θ

)
fθ = 0 (127)

d2fφ
dφ2

+ q2fφ = 0 (128)
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where p and q are separation constants.

For a medium whose properties are independent of φ, fφ must be periodic with

period 2π, and q then equals m = 0,±1,±2, . . .. To determine p, (127) must be

re-written as the Legendre equation; the solution fθ will then be identified as the

associated Legendre polynomials. To re-write the equation, we first substitute cos θ

for η in (127). After some work, this gives

(1− η2)
d2fθ
dη2
− 2η

dfθ
dη

+

(
p2 − m2

1− η2

)
fθ = 0 (129)

where η 6= ±1,∞. If m = 0, and we choose p2 = n(n + 1) for n = 0, 1, 2, . . ., then

equation (129) becomes

(1− η2)
d2fθ
dη2
− 2η

dfθ
dη

+ n (n+ 1) fθ = 0 (130)

This is the Legendre equation for p2 = n(n+ 1). The polynomial solutions satisfying

this converge and are the Legendre polynomials Pn(η). In differentiating this equation

m times, we recover (129) as

(1− η2)
d2fθ
dη2
− 2η

dfθ
dη

+

[
n(n+ 1)− m2

1− η2

]
fθ = 0 (131)

The solutions of this equation must be finite at η = ±1 and periodic in θ; these are

now seen to be the associated Legendre polynomials:

fθ(η) = Pm
n (η) = (1− η2)

m
2

dmPn(η)

dηm
(132)

The above definition holds only if n and m are positive integers. To maintain a

positive n and m, the particular solutions of (128) are chosen to be cosmφ and sinmφ,

and m, n are restricted to 0, 1, 2, . . .. Pm
n (η) denotes an nth degree polynomial, Pn(η),
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derived m times, so it vanishes when m > n. Because of this, Pm
n (η) becomes

Pm
n (η) =

(1− η2)
m
2

2nη!

dn+m(η2 − 1)n

dηn+m
(133)

Now, the functions cosmφPm
n (cos θ) and sinmφPm

n (cos θ) (for η = cos θ) are peri-

odic on the surface of a unit sphere, with the indices m and n determining the number

of nodal lines. A linear combination of these functions forms the spherical surface

harmonics of degree n:

Yn(θ, φ) =
n∑

m=0

(anm cosmφ+ bnm sinmφ)Pm
n (cos θ) (134)

The functions fθ and fφ have now been determined. Their combined form is (134)

with (133). It now remains to specify fr. If we let fr = 1√
kR
v(R), then v(R) satisfies

R2 d2v

dR2
+R

dv

dR
+

[
k2R2 −

(
n+

1

2

)2
]
v = 0 (135)

and is a cylinder function of half order:

fr(R) =
1√
kR

Zn+ 1
2
(kR) (136)

The cylinder function of Zn+ 1
2
(kR) is chosen to be a Bessel function of the first

kind inside domains that include the origin, and a Bessel function of the third kind

wherever the field is to be represented as a traveling wave.

Bessel functions of the first kind are given by

Jn(ρ) =
∞∑
m=0

(−1)m

m!(n+m)!

(ρ
2

)n+2m

(137)

for n = 0, 1, 2, . . ., and Jn(ρ) is a single-valued function of position. Bessel functions
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of the third kind (Hankel functions) are associated with traveling waves, and are given

by

H(1)
n (ρ) = Jn(ρ) + iNn(ρ) (138)

H(2)
n (ρ) = Jn(ρ)− iNn(ρ) (139)

where

Nn(ρ) =
1

sinnπ
[Jn(ρ) cosnπ − J−n(ρ)] (140)

which is a Bessel function of the second kind, and J−n(ρ) = (−1)nJn(ρ).

Spherical Bessel functions are additionally denoted by the general representation

zn(ρ) =

√
π

2ρ
Zn+ 1

2
(ρ) (141)

where zn may be replaced by jn, nn, hn, and Zn+ 1
2

by the corresponding Jn+ 1
2
, Nn+ 1

2
,

or Hn+ 1
2
. More specifically,

jn(ρ) = 2nρn
∞∑
m=0

(−1)m(n+m)!

m!(2n+ 2m+ 1)!
ρ2m (142)

nn(ρ) = − 1

2nρn+1

∞∑
m=0

Γ(2n− 2m+ 1)!

m!Γ(n−m+ 1)!
ρ2m (143)

Finally, with the knowledge of fr, fθ, and fφ, the full representation of f(R, θ, φ)

as a sum of elementary spherical wave functions is

f(R, θ, φ) =
∞∑
n=0

zn(kR)

[
an0Pn(cos θ) +

n∑
m=1

(anm cosmφ+ bnm sinmφ)Pm
n (cos θ)

]
(144)

Case 1, f is finite at the origin, and zn is a spherical Bessel function of the first kind:

zn(kR)→ jn(kR) (145)
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Case 2, f describes a field whose surfaces of constant phase travel outward , and

involves a spherical Bessel function of the third kind:

zn(kR)→ h(1)
n (kR) = jn(kR) + inn(kR) (146)

Note that, in Yeh [13] and Stratton [35], which the work in this thesis follows, the

expression for f(R, θ, φ) is also presented as

f e
mn
o

= sin
cos(mθ)P

m
n (cos θ)zn(kR) (147)

where the notation e
o denotes the even or odd form of the function. This is the form

more useful for coding applications.

1.4 Scattered Fields: A Simple Representation

Before beginning to build the mathematical model of the scattered electromagnetic

fields from an object representing a human, it is worthwhile to first take a look at a

simple representation of the problem, followed by the derivation of the mathematical

representation of the associated scattered fields. In this section, a representation of

the problem will be developed, following the method outlined in [13].

The problem consists of an arbitrary dielectric object, with permeability µ and

permittivity ε, radiated by an electromagnetic wave. This incident wave is denoted

by E
i
, and the surrounding medium is assumed to be free space with permeability

and permittivity µ0 and ε0, respectively. This situation is depicted in Figure 36, along

with the spherical coordinate system. The goal is to determine the scattered field at

all points P on an imaginary sphere surrounding the object.

This problem can be illustrated schematically as in Figure 37. The sum of the

incident and scattered fields (denoted by the superscripts i and s, respectively) gives
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Figure 36. Initial problem representation (reproduced from [13]). A plane electro-
magnetic wave is incident upon an arbitrary dielectric object, which is homogeneous
and isotropic. The object has permeability µ and permittivity ε, while the respective
parameters in the surrounding free space are µ0 and ε0. P represents one point on a
sphere surrounding the object.

the total fields:

Etot = E
i
+ E

s
, H tot = H

i
+H

s
(148)

This is the full representation of the problem and the one that will be recovered

through the process of developing additional representations that separate the sources

of the fields (incident and scattered) and then recombine them. Ultimately, we will

find the scattered field in terms of the incident field and the object’s properties,

through the following process:

Incident fields ⇒ Internal fields ⇒ Surface currents ⇒ Scattered fields.

First, a representation of the scattered field is developed (Figure 38, left side). The

scattered field, E
s

and H
s
, can be thought of as the field produced by internal polar-

ization currents. J and M are introduced as these polarization currents, the direct

sources of the scattered field, which were induced by the incident field. Schelkunoff’s

equivalence theorem can now be applied to this representation. This theorem states
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Figure 37. The scattering problem (reproduced from [13]). The object is depicted by
the surface S with normal unit vector n̂. The total fields Etot and Htot are made up of
the incident and scattered fields. J i and M i are the sources of the incident field. The
parameters of the scattering object and the surrounding free space are µ, ε and µ0, ε0,
respectively.

that the field in a source-free region bounded by a surface S can be produced by

electric and magnetic currents on this surface. So, following this reasoning, with the

area outside S said to be bounded by S (so that there are no sources in this area),

the polarization currents are replaced by equivalent surface currents with boundary

conditions that indicate a null field is radiated inside S, and the scattered field is

radiated external to S (Figure 38, right side). The source of the scattered field is now

this set of surface currents:

Js = n̂×Hs
, M s = E

s × n̂ (149)

where Js is the electric current sheet, and M s is the magnetic current sheet; n̂ points

into the source-free region.

Next, a second set of fields is developed, with the end goal of combining the

representations with the incident field to result in zero field inside S. In order to do

this, we need a field −Ei
and −H i

produced by −J i and −M i (the negative of the
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Figure 38. Scattered Fields (reproduced from [13]). The left side depicts an initial
representation of the scattered fields E

s
and H

s
, produced by internal polarization

currents J and M , which were induced by the incident field. Schelkunoff’s equivalence
theorem is then applied, replacing the polarization currents with surface currents Js

and Ms, which then radiate the scattered field outside S, and zero field inside (right).

incident field). This is depicted in Figure 39, left side. The normal n̂2 points into the

source-free area, now inside S. Schelkunoff’s equivalence theorem is again applied,

replacing −J i and −M i by the surface currents

J i = n̂2 × (−H i
), M i = (−Ei

)× n̂ (150)

which radiate the fields −Ei
and −H i

inside S, and a null field outside.

Finally, the representations of these individual fields are combined. Superposition

of the scattered and negative fields and sources gives the situation depicted in the

left side of (Figure 40), a temporary step. This gives a set of surface currents

J+ = J i + Js = n̂× (H
i
+H

s
) = n̂×H+ (151)

M+ = M i +M s = n̂× (E
i
+ E

s
) = n̂× E+ (152)

that radiate the scattered field outside S, as well as the negative of the incident field

inside. However, a null field within S is required. If the incident sources and fields

are now added (Figure 40, right side), the null field within S is obtained, and the
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Figure 39. Negative Fields (reproduced from [13]). The negative of the incident field, J i

and M i, produces −Ei
and −Hi

(left). Notice that the normal n̂2 now points internal to
S. The equivalence theorem is again applied, replacing the sources by surface currents
J i and M i (right). These currents radiate the negative of the incident field inside S,
and zero field outside.

Figure 40. Combined Fields (reproduced from [13]). The scattered and negative fields
from the right sides of Figs. 38 and 39 are combined (left). This gives the scattered
field external to S, and the negative of incident field internal to S, as well as the sum
of the surface currents, J+ and M+. The original sources and incident field are then
added (right). Fields inside S sum to zero, resulting in a null field, and fields outside
S give Etot and Htot, the sum of the incident and scattered fields, which recovers those
in the original scattering problem.

124



original problem representation is recovered. Outside S, the sources and fields are

identical to those in the original problem, and the scattering object has been replaced

by a set of surface currents over a surface, which radiate the scattered field outside

S, and the negative of the incident field inside.
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Appendix B. Support Vectors and Pattern Recognition

This appendix provides background information on the concept of the Support

Vector Machine, the classification tool used in this paper to distinguish child and adult

radar data. A Support Vector Machine (SVM) accepts data as an input and returns

the classification as the output, through the examination of similarities, or patterns,

in the data. Figure 41 displays the concept of a Support Vector Machine. Before

the SVM can be described in detail, it is necessary to provide a basic background on

pattern recognition and how data is represented. The following subsections describe

the representation of data and its transformation into a form that can be classified via

pattern recognition, and then relates pattern recognition to Support Vector Machines.

The following derivation and terminology is described in Scholkopf’s and Smola’s

Learning with Kernels [48].

2.1 Data Representation

We begin with a set of data that can be divided into two categories or classes - a

binary classification, which is what we are interested in. The data points are given as

the observations x1, . . . , xm, from domain χ, and the two classes are represented sim-

ply by +1 or −1, as a convenience. These designations could, for example, represent

the child and adult classes. We form an ordered pair of the data and its classification

designation by (xi, yi), where xi is a single observation from the data, and yi ∈ {±1}

is the classification output, which can take on only one of the two values. This is the

training data, whose classification is already known. [48]

We now have a new data point x that needs to be assigned to one of the two

classes. In other words, we need to predict the corresponding y ∈ {±1} such that

(x, y) is similar in some way to the training data. We need a similarity measure. [48]

The similarity measure is represented by a function k(x, x′), which returns a real
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Figure 41. SVM Concept (reproduced from [48]). Data is mapped from the input space
into a higher-dimensional feature space H by Φ. Whereas the separation between
the data may be very complicated and not obvious in the original input space, the
mapping allows the data to be more readily classified in the feature space, and a
dividing hyperplane with a maximum margin can be constructed. A kernel function
k(x, x′) allows the hyperplane to be calculated without explicitly mapping each point.

number characterizing the similarity of the observations x and x′. The function k is

symmetric for this classifier: k(x, x′) = k(x′, x), and is called a kernel . [48]

In order to better illustrate a similarity measure, we consider the dot product:

x̄ · x̄′ = 〈x̄, x̄′〉 =
N∑
i=1

xix
′
i (153)

where i denotes the ith component of vector x̄. Equation (153) is a very simple type

of similarity measure. The dot product is related to the cosine of the angle between

vectors x̄ and x̄′:

〈x̄, x̄′〉 = ‖x̄‖ ‖x̄′‖ cos θ (154)

and to the length, or norm, of the vector:

‖x̄‖ =
√
〈x̄, x̄〉 (155)

Thus, the dot product can be used as a tool to provide some sense of the similarity

between two vectors, in terms of angles and distances. [48]
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Now, the data or observations themselves may or may not already exist in dot

product space. To use the dot product as a similarity measure, we need to represent

the observations as vectors in dot product space. In other words, we need to map

the observations to this space. If the dot product space is represented as H and

our mapping function is Φ, then this mapping can be represented in mathematical

notation as [48]

Φ : χ→ H

x 7→ x̄ := Φ(x)

(156)

The first line describes the function. It says that Φ is a function that accepts variables

from the domain χ and returns values in the domain H. The second line describes

what happens to the input data x. It says that x maps to the vector x̄ through the

function Φ(x).

The dot product space H is the feature space through which the patterns or

features in the data are studied. The similarity measure of our dot product is now

k(x, x′) = 〈x̄, x̄′〉 = 〈Φ(x),Φ(x′)〉 (157)

Through this relation, we can find either a kernel k to represent a certain feature

space, or we can identify a feature space to represent a kernel [45]. Now that we can

use the dot product on the data, patterns in the data can be dealt with geometrically.

We can also choose any mapping Φ that is most suitable for a given problem. [48]

A few common kernel examples for x ∈ Rn are [45]:

• k(x, x′) = 〈x, x′〉d, as in Equation (157), corresponding to the feature vector

Φ(x) of all dth degree monomials of the components of x.

• k(x, x′) = (〈x, x′〉 + 1)d, corresponding to the feature vector Φ(x) of all dth

degree and lower monomials of the components of x.
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• k(x, x′) = e−‖x−x
′‖2/(2σ2), a Gaussian radial basis function; Φ(x) is complicated,

but not required to know.

2.2 Binary Classification Example

As a simple example pattern recognition algorithm to illustrate the concept, we

consider the problem of classifying a new data point into an existing binary classi-

fication scheme. The approach of our simple classification method is to place the

new point into the class with the mean closest to the point. The data is already

assumed to be mapped into a dot product space in three dimensions H3. The new

data point, whose classification is unknown, is represented by x̄; existing data points,

whose classifications are known, are given by x̄1, . . . , x̄m. [48]

Again, the two classes are designated by ±1. The means of the classes are

c̄+ =
1

m+

∑
{ı|yi=+1}

x̄i (158)

c̄− =
1

m−

∑
{ı|yi=−1}

x̄i (159)

where m+ and m− are the number of observations with +1 or −1 classification,

respectively, and m+,m− > 0. The new data point can be placed by considering the

geometry of the situation, illustrated in Figure 42. The vectors c̄+ and c̄− point to

the means of their respective classes. The point halfway between the means, on the

vector w̄ connecting them, is given by vector c̄. [48]

w̄ = c̄+ − c̄− (160)

c̄ = (c̄+ + c̄−)/2 (161)
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Figure 42. Simple Geometric Classification (reproduced from [48]). Data points are
divided into two classifications, represented by + and ◦, which denote the +1 and -1
classifications, respectively. Vectors c̄+ and c̄− point to their corresponding means,
w̄ = c̄+ − c̄−, c̄ points to the midpoint of w̄, and x̄ points toward the data point needing
to be classified. The angle between x̄ − c̄ and w̄ determines the classification of x̄,
calculated via the dot product. In this particular case, the angle is greater than π/2,
so the point will be classified as -1. The dotted line denotes the decision boundary; it
is a hyperplane, and orthogonal to w̄.

To determine the class of the new point x̄, we determine whether the angle formed

by x̄− c̄ and w is greater or less than π/2:

y = sgn (〈x̄− c̄, w̄〉) (162)

where

sgn (x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(163)

An angle less than π/2 will give a positive dot product, resulting in y = +1, while a

greater angle will give a negative result and y = −1. This is our classifier. We can
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expand and rewrite, incorporating (160) and (161), as

y = sgn

(〈
x̄− c̄+ + c̄−

2
, c̄+ − c̄−

〉)
= sgn (〈x̄, c̄+〉 − 〈x̄, c̄−〉+ b)

(164)

where b is the offset

b =
1

2
(‖c̄−‖2 − ‖c̄+‖2) (165)

with the length of the vectors defined in (155). If the lengths are equal, i.e. the

means have the same distance to the origin, b will be zero. Equation (164) is further

expanded by incorporating (158) and (159):

y = sgn

 1

m+

∑
{ı|yi=+1}

〈x̄, x̄i〉 −
1

m−

∑
{ı|yi=−1}

〈x̄, x̄i〉+ b

 (166)

But the dot product is the kernel k(x, xi), by Equation (157), so

y = sgn

 1

m+

∑
{ı|yi=+1}

k(x, xi)−
1

m−

∑
{ı|yi=−1}

k(x, xi) + b

 (167)

Through a similar expansion, Equation (165) becomes

b =
1

2

 1

m2
−

∑
{(i,j)|yi=yj=−1}

k(xi, xj)−
1

m2
+

∑
{(i,j)|yi=yj=+1}

k(xi, xj)

 (168)

In general, the classifier (167) takes the form of a kernel expansion on the input

domain,

y = sgn

(
m∑
i=1

αik(x, xi) + b

)
(169)

which corresponds to the hyperplane dividing the classes in the feature space. The

coefficients αi are then the dual representation of the hyperplane’s normal vector.
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This classifier is an example-based classifier because it requires classified training

data with which to test unclassified points against. Unclassified points are compared

to all training points. [48]

The pattern recognition classifier in the example above is a very simple type of

classifier. More complicated classifiers can differ in the patterns upon which the

kernels are centered, and the weights αi (1/m+ and 1/m− in the given example). In

essense, we obtain a general linear combination of training patterns. We can further

choose to remove the influence of patterns that are far from the decision boundary,

in order to simplify the computation. In this case, the hyperplane will depend on a

subset of training points that are called Support Vectors. [48]

2.3 Hyperplanes and Support Vectors

The remainder of this section will introduce the optimization problems used to

determine dividing hyperplanes for data sets with good separation between classes,

and those with poor separation. We will also expand upon the concept of Support

Vectors.

Let f(x̄) be a predicition of the true classification value y ∈ {±1}. From Equation

(164) and the definition of w̄ in Equation (160), we can restate the decision function

y as its prediction

f(x̄) = sgn (〈w̄, x̄〉+ b) (170)

We know this takes on the value ±1 or 0. A value of ±1 means that a point x̄ gets

classified and is placed on either side of the dividing hyperplane. A value of 0 means

that the point is placed on the hyperplane itself; thus, the hyperplane is designated

by all points such that

〈w̄, x̄〉+ b = 0 (171)
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where w̄ ∈ H, b ∈ R. The optimal hyperplane has the maximum margin of separation

between the training points and the hyperplane. In other words, we want to find the

minimum distance between each training point x̄i and a point on the hyperplane

(a perpendicular line in three-dimensional space), and maximize this collection of

distances. In mathematical notation, this optimal hyperplane is the solution of [48]

maximize min {‖x̄− x̄i‖ | x̄ ∈ H, 〈w̄, x̄〉+ b = 0, i = 1, . . . ,m} (172)

Finding the normal vector w̄ of the optimal hyperplane is not as simple as cal-

culating the normal vector from the class means, as given in the previous example

(Equation (160)). To find the normal that provides the largest margin for the optimal

hyperplane as specified above, it is necessary to solve [48]

minimize τ(w̄) =
1

2
‖w̄‖2 (173)

subject to yi(〈w̄, x̄i〉+ b) ≥ 1 for all i = 1, . . . ,m (174)

Equations (173) and (174) form a constrained optimization problem. This problem

is handled using Lagrange multipliers αi ≥ 0 and the Lagrangian

L(w̄, b, ᾱ) =
1

2
‖w̄‖2 −

m∑
i=1

αi(yi(〈w̄, x̄i〉+ b)− 1) (175)

where ᾱ = (α1, . . . , αm). A saddle point must be found in order to minimize the

Lagrangian with respect to w̄ and b, and maximize with respect to αi. At the saddle

point, the derivatives of L with respect to w̄ and b must vanish. ∂
∂b
L(w̄, b, ᾱ) = 0

gives
m∑
i=1

αiyi = 0 (176)
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while ∂
∂w̄
L(w̄, b, ᾱ) = 0 gives

w̄ =
m∑
i=1

αiyix̄i (177)

Equation (177) demonstrates that the normal vector has an expansion in terms of a

subset of the training points x̄i, those with non-zero αi. These points are the Support

Vectors mentioned at the end of the previous example. The Support Vectors obey

the condition

αi [yi (〈x̄i, w̄〉+ b)− 1] = 0 for all i = 1, . . . ,m (178)

where αi 6= 0. Thus, they lie on the margin defining the hyperplane, which is scaled to

have the value 1. All other training points that do not meet this condition have αi = 0

and do not appear in the expansion of the hyperplane’s normal vector, Equation (177).

The hyperplane does not depend on these points; it depends only on the points closest

to it. [48]

We can substitute Equations (176) and (177) into Equation (175) in order to arrive

at the form that is normally solved [48]:

maximize W (ᾱ) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj 〈x̄i, x̄j〉 (179)

subject to αi ≥ 0 for all i = 1, . . . ,m and
m∑
i=1

αiyi = 0 (180)

for ᾱ ∈ Rm. This is a dual optimization problem. Finally, Equation (177) can be

substituted into Equation (170) in order to obtain the decision function [48]

f(x̄) = sgn

(
m∑
i=1

αiyi 〈x̄, x̄i〉+ b

)
(181)

where b is found using condition (178). However, we wish to express the optimization

problem and the decision function in terms of the input data rather than the feature
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space vectors. To do this, we recall Equation (157) and employ the same substitu-

tion used in the simple dot product example, which is called the kernel trick . The

optimization problem and decision function become [48]

maximize W (ᾱ) =
m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyjk(xi, xj)

subject to condition (180)

(182)

f(x̄) = sgn

(
m∑
i=1

αiyik(x, xi) + b

)
(183)

Figure 43 is a visual example of a Support Vector classifier, which illustrates the

concepts described thus far. It uses the kernel: k(x, x′) = e−‖x−x
′‖2 . The center line

is the dividing hyperplane. The outer lines trace the margins, which are the distance

of the closest points to the hyperplane. The margins have the value 1, and the circled

data points that lie on the margins are the Support Vectors. [48]

Classification is simple when there is a clear separation between data. However, it

becomes more difficult, and a hyperplane may not exist, if there is a high noise level

or overlap of the two classes. In order to allow for this overlap and data that violates

condition (174), we introduce slack variables :

ξi ≥ 0 for all i = 1, . . . ,m (184)

which cause the constraint (174) to become

yi(〈w̄, x̄i〉+ b) ≥ 1− ξi for all i = 1, . . . ,m (185)

Then, a good “soft margin” classifier is found by controlling both ‖w̄‖ and the sum of

the slacks
∑

i ξi. The sum provides an upper bound on the number of training errors.
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Figure 43. SV Classifier Example (reproduced from [48]). Two classes, represented
by empty and filled circles, are classified using a radial basis function kernel k(x, x′) =

e−‖x−x
′‖2 . The center line is the decision hyperplane; the outer lines represent the

constraint (174) and have the value 1. The data points located on these outer lines are
marked by additional circles; these are the Support Vectors found by the classification
algorithm. Note that they are the data points closest to the boundary between the
classes.
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[48]

The simplest case of a soft margin classifier is the C-Support Vector, or C-SV,

classifier, which multiplies the sum of the slack variables by a constant C > 0 that

determines the trade-off between the maximum margin and minimum training error.

The hyperplane is found by solving

minimize τ(w̄, ξ̄) =
1

2
‖w̄‖2 +

C

m

m∑
i=1

ξi (186)

where w̄ ∈ Hm, and ξ ∈ Rm (compare to Equation (173)), subject to the constraints

(184) and (185). A point x̄i with ξi = 0 is then not a margin error, but a Support

Vector, because (185) will simplify to (174). The solution of Equation (186) has the

same expansion of Equation (177), and the coefficients αi are found by solving the

quadratic optimization problem of Equation (182). This time, however, αi has the

additional constraint 0 ≤ αi ≤ C
m

for all i = 1, . . . ,m. [48]

To find the threshold b, we consider Support Vectors x̄j, for which ξj = 0, and the

equality holds in Equation (185). Equation (185) becomes

yj(〈w̄, x̄j〉+ b) = 1 (187)

Note the change in index to distinguish the subscript j from the subscript i in the

expansion in the following step. We expand using Equations (177) and (157):

yj

(
m∑
i=1

αiyik(xi, xj) + b

)
= 1 (188)

and divide by yj to obtain

m∑
i=1

αiyik(xi, xj) + b = yj (189)
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keeping in mind that yi = ±1 which allows the simplification of 1/yi to yi on the

right-hand side. Finally, we solve for b

b = yj −
m∑
i=1

αiyik(xi, xj) (190)

The threshold is then obtained by averaging b over all Support Vectors xj, which all

have αj > 0, but with the additional constraint that αj < C. [48]

The constant C allows us to balance the minimum training error with the max-

imum margin [48]. A large C penalizes inaccuracies and creates a classifier that is

more accurate on the training data. A small C instead penalizes a complicated model.

This penalty is driven by the idea that simplified models are more robust compared

to complicated models, and thus preferred - simplified models may be inaccurate, but

their performance generalizes more readily to future data [45]. Choosing the best C,

however, is difficult; there is no a priori method of finding it [48].

A modification of the C-SV classifier replaces C by two new parameters ν and ρ.

In this case, the problem needing solving, which is called the ν-SV classifier, is

minimize τ(w̄, ξ̄, ρ) =
1

2
‖w̄‖2 − νρ+

1

m

m∑
i=1

ξi (191)

subject to yi(〈x̄i, w̄〉+ b) ≥ ρ− ξi (192)

and ξi ≥ 0, ρ ≥ 0. (193)

where w̄ ∈ Hm, ξ ∈ Rm, and ρ, b ∈ R. The parameter ρ, which needs to be optimized,

helps to determine the margin of separation between the two classes. For ξ = 0, the

margin is 2ρ/ ‖w̄‖. The parameter ν is an upper bound on the fraction of margin

errors - the points that are either errors or lie within the margin - and a lower bound

on the fraction of Support Vectors. Increasing ν increases the margin, but allows more

138



errors [48], so it penalizes a complicated model rather than inaccuracies. Conversely,

a small ν penalizes inaccuracies rather than complexity, and results in a classifier that

is more accurate on the training set. A benefit of using the ν-SV classifier is that

ν has the statistical interpretation that it tends toward the fraction of misclassified

points as the number of points becomes large. [45]

To derive the quadratic optimization problem for ν-SV classification, we once

again begin with the Lagrangian [48]

L(w̄, ξ̄, b, ρ, ᾱ, β̄, δ) =
1

2
‖w̄‖2 − νρ+

1

m

m∑
i=1

ξi

−
m∑
i=1

(αi(yi(〈x̄i, w̄〉+ b)− ρ+ ξi) + βiξi)− δρ
(194)

where αi, βi, δi ≥ 0. As before, the Lagrangian must be minimized with respect to

the primal variables w̄, ξ̄, b, ρ, and maximized with respect to dual variables ᾱ, β̄, δ.

The partial derivatives with respect to the four primal variables are each calculated

and set equal to zero, which results in the four conditions [48]

w̄ =
m∑
i=1

αiyix̄i (195)

αi + βi =
1

m
(196)

m∑
i=1

αiyi = 0 (197)

m∑
i=1

αi − δ = ν (198)

In order to arrive at the quadratic optimization problem, we substitute Equa-

tions (195) and (196) into the Lagrangian (194), and apply the kernel-dot product

substitution (157). The optimization problem becomes
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maximize W (ᾱ) = −1

2

m∑
i,j=1

αiαjyiyjk(xi, xj) (199)

subject to 0 ≤ αi ≤
1

m
, (200)

m∑
i=1

αiyi = 0, (201)

m∑
i=1

αi ≥ ν (202)

with the decision function, as in Equation (183), taking the form

f(x̄) = sgn

(
m∑
i=1

αiyik(x, xi) + b

)
(203)

Note that
∑m

i=1 αi no longer appears in Equation (199). The threshold b is found by

b = − 1

2s

∑
x∈S+

⋃
S−

m∑
j=1

αjyjk(x, xj) (204)

where s > 0 is the size of two sets S+, where y = +1, and S−, where y = −1, which

contain Support Vectors xi with 0 < αi < 1. The margin parameter ρ does not need

to be found to calculate the decision function. [48]

It is the ν-SV classifier which will be used to distinguish radar signals of children

from those of adults. The classification program using this type of classifier was

developed by Erdmann [45]. The program uses an interior-point primal-dual trust-

region algorithm [49, 50, 51], with the method from [51] for controlling the weighting

between primal and dual optimality conditions.
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Appendix C. Covariances of CDC Anthropometric Data

This appendix displays the covariance matrices for the average anthropometric

measurements given in the National Health Statistics Report by the Centers for

Disease Control and Prevention (CDC), titled Anthropometric Reference Data for

Children and Adults: United States, 2003-2006 [33].

Table 8. Covariances of CDC Anthropometric Measurements, Ages 2-80

Age Height
Waist Mid-Arm Upper-Arm
Circ. Circ. Leng.

Age 455.03 304.64 294.57 85.89 84.15
Height 304.64 679.49 408.33 146.79 167.30

Waist Circ. 294.57 408.33 294.85 99.41 104.03
Mid-Arm Circ. 85.89 146.79 99.41 35.11 36.85

Upper-Arm Leng. 84.15 167.30 104.03 36.85 41.49

Table 8 lists the covariances for the given physical measurements of subjects in

the age range 2-80. The data for height, waist circumference, mid-arm circumference,

and upper-arm length was given for children of each age from 2-19, but was given

only for each decade for adults from age 20-80. However, for the measurements of

calf circumference, upper-leg length, and mid-thigh circumference, the data was given

for children of each age from 8-19, rather than 2-19. The covariances for these latter

anthropometric dimensions are calculated and displayed separately, in Table 9.

Table 9. Covariances of CDC Anthropometric Measurements, Ages 8-80

Age
Calf Upper-Leg Mid-Thigh
Circ. Leng. Circ.

Age 477.46 35.79 8.27 33.16
Calf Circ. 35.79 12.32 10.17 16.82

Upper-Leg Leng. 8.27 10.17 12.00 14.44
Mid-Thigh Circ. 33.16 16.82 14.44 23.94
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Appendix D. MatLab Code

The following documentation provides the MatLab code used to process the radar

data for this thesis. Note that code not produced by this author (such as the Sup-

port Vector Machine code [45]) is not provided; it may be obtained from appropriate

sources. The provided code also assumes radar data is input in the correct format

(obtained by an Agilent 8714ES RF Network Analyzer). The code is provided pri-

marily as reference for the operations used. Manipulation of input data or adjustment

of the code may be needed in order to employ the code in other applications.

The code provided is as follows: a function to process Agilent 8714ES RF Network

Analyzer data files, code used to apply various processing methods to the radar data,

code to isolate data vectors for SVM analysis, and PCA code.

1 % Function to read VNA data files

2 % Stephanie Keith

3 % AFIT Masters Student

4 % 9/19/12

5

6 function [ RealData, ImagData, Freq, fileNum, baddata loc ] = ...

7 AgilentOldVNARead

8 %AgilentOldVNARead reads .s1p files (openable with Wordpad or ...

Notepad)

9 %produced by the Agilent 8714ES RF Network Analyzer ...

300kHz−3000MHz (VNA),

10 %assuming a specific file naming convention

11 % The file naming convention must match: 'TRACE##.s1p', give or

12 % take the presence of the numbers '#'. Generally, there will ...

be no more

13 % than 30 traces per subject due to the space limitation of the ...

VNA's
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14 % internal hard drive and the time it takes to run the subjects.

15 % This program works with no change, if placed in the same ...

directory as

16 % the files it reads.

17 % INPUTS − none

18 % OUTPUTS

19 % RealData − real data from the VNA files. Data from a ...

single file is

20 % oriented vertically down a column. Multiple files are ...

stored across

21 % the columns; each column is data from a new file.

22 % ImagData − imaginary data from the VNA files. Data from a ...

single

23 % file is

24 % oriented vertically down a column. Multiple files are ...

stored across

25 % the columns; each column is data from a new file.

26 % Freq − frequency data from the VNA files. Data from a ...

single file

27 % is

28 % oriented vertically down a column. Multiple files are ...

stored across

29 % the columns; each column is data from a new file.

30 % fileNum − the numbers identifying the file names. ...

Provides an easy

31 % reference of the original file name. NaN indicates no ...

number was

32 % present in that location of the original file name.

33 % baddata loc − gives the column number of bad data, ...

designated by

34 % −9999999. This is also the row number in fileNum, ...

indicating the
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35 % file with bad data.

36

37 % The columns of RealData, ImagData, Freq correspond to ...

each other,

38 % and to the rows of fileNum. For X files with Y rows of data,

39 % RealData, ImagData, Freq will all be (Y,X); fileNum will ...

be (X,1)

40

41 % Find the "name" of all the files we want to load

42

43 files = dir('*.s1p'); % returns names of all *.s1p files ...

within the

44 % directory in a vector

45 % We want files of the form:

46 % TRACE##.s1p

47 % where the numbers indicate the trace number.

48

49 count = 1;

50 for i=1:numel(files) % loops from 1 to number of elements in ...

files

51

52 numberStr = ...

regexp(files(i).name,'TRACE(\d*\d*).S1P','tokens');

53 % NOTE: NAME IS CASE SENSITIVE.

54

55 if isempty(numberStr) 6=1 % if numberStr is NOT empty

56 % (i.e. we found a file with a matching name)

57

58 % This block isolates and saves the identifying ...

numbers in

59 % the file names.

60 numberStr = numberStr{1}; % draw out the values from the
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61 % single cell they are stored in

62 fileNum(count,:) = str2double(numberStr); % convert these

63 % values to numbers

64

65 count = count+1; % increment count

66

67 end

68

69 end

70

71 fileNum = sort(fileNum);

72 % Files were not read in in ascending order by number

73 % (which indicates angle). This command sorts the

74 % fileNum vector key in ascending order in order for the ...

following

75 % operations to proceed logically through the angular sweep ...

around the

76 % subject.

77

78 % Load data

79

80 count = 1;

81 baddata loc = −1; %initialize location of bad data. −1 means no

82 % bad data.

83 for i=1:length(fileNum)

84

85 fileName = ['TRACE' int2str(fileNum(i,1)) '.S1P'];

86

87 % Read data using textscan command

88 fileID = fopen(fileName); %assigns number to file location

89

90 % Test to make sure we have valid data:
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91 data = textscan(fileID, '%[! HP8714ES: E.06.02]'); % ...

reads what

92 % SHOULD be first line of proper file

93 frewind(fileID); % restarts the reading of the file from the

94 % beginning, otherwise it will pick up where it left off

95

96 if strcmp(data{1,1}{1,1}, '! HP8714ES: E.06.02 ') == 1

97 % compares the two strings; matching strings in ...

strcmp return 1

98

99 data = textscan(fileID, '%f %f %f',...

100 'HeaderLines',3,'CollectOutput',1);

101 fclose(fileID); %closes file

102

103 allVNA = data{1}; %All VNA data

104

105 RealData(:,i) = allVNA(:,2); % real part of the ...

returned signal

106 ImagData(:,i) = allVNA(:,3); % imaginary part of the

107 % returned signal

108 Freq(:,i) = allVNA(:,1); % frequency (MHz)

109

110 else

111

112 % File cannot be read, input bad data marker

113 RealData(:,i) = −9999999;

114 ImagData(:,i) = −9999999;

115 Freq(:,i) = −9999999;

116

117 baddata loc(count) = i;

118 % record location of bad data; refer to location in ...

fileNum
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119 % to see the file name indices

120 count = count+1;

121

122 end

123

124 end

125

126 end

1 % Data Processing Code

2 % Stephanie Keith

3 % AFIT Masters Student

4 % 2 Mar 2013

5

6 clear all; close all

7

8 %% Read Background − need only run once if Background.mat not exist

9

10 % Read Background (consisting of turntable behind walls)

11 fileName = 'turntable only.S1P';

12 fileID = fopen(fileName); %assigns number to file location

13 data = textscan(fileID, '%f %f %f',...

14 'HeaderLines',3,'CollectOutput',1);

15 fclose(fileID); %closes file

16

17 allVNA = data{1}; %All VNA data

18

19 BackReal = allVNA(:,2); % real part of the returned signal

20 BackImag = allVNA(:,3); % imaginary part of the returned signal

21

147



22 Back = BackReal + BackImag*1i;

23

24 save Background Back

25

26 clear all;

27

28 %% Read Turntable − need only run once if Turntable.mat not exist

29

30 % Read Turntable and Back (consisting of turntable behind walls,

31 % and background with nothing but reflecting floor)

32 fileName = 'Turntable only&cloth.S1P';

33 fileID = fopen(fileName); %assigns number to file location

34 data = textscan(fileID, '%f %f %f',...

35 'HeaderLines',3,'CollectOutput',1);

36 fclose(fileID); %closes file

37

38 allVNA = data{1}; %All VNA data

39

40 TurnReal = allVNA(:,2); % real part of the returned signal

41 TurnImag = allVNA(:,3); % imaginary part of the returned signal

42

43 Turn = TurnReal + TurnImag*1i;

44

45 fileName = 'Back−nothing.S1P';

46 fileID = fopen(fileName); %assigns number to file location

47 data = textscan(fileID, '%f %f %f',...

48 'HeaderLines',3,'CollectOutput',1);

49 fclose(fileID); %closes file

50

51 allVNA = data{1}; %All VNA data

52

53 PureBackReal = allVNA(:,2); % real part of the returned signal
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54 PureBackImag = allVNA(:,3); % imaginary part of the returned signal

55

56 PureBack = PureBackReal + PureBackImag*1i;

57

58 TurnOnly = Turn − PureBack;

59

60 save Turntable TurnOnly

61

62 clear all;

63

64 %% Read Sphere for Calibration − need only run once if Sphere.mat ...

not exist

65

66 % Stand on turntable − turntable = stand only (w back)

67 % Sphere on stand − stand = Sphere only (with turntable)

68

69 % Read Stand on turntable

70 fileName = 'stand on turntable.S1P';

71 fileID = fopen(fileName); %assigns number to file location

72 data = textscan(fileID, '%f %f %f',...

73 'HeaderLines',3,'CollectOutput',1);

74 fclose(fileID); %closes file

75

76 allVNA = data{1}; %All VNA data

77

78 StandonTurnReal = allVNA(:,2); % real part of the returned signal

79 StandonTurnImag = allVNA(:,3); % imaginary part of the returned ...

signal

80

81 StandonTurn = StandonTurnReal + StandonTurnImag*1i;

82

83 load Turntable
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84 load Background

85

86 % Determine signature of isolated stand with back

87 Stand = StandonTurn − TurnOnly;

88

89 % Determine signature of isolated stand, no back

90 StandOnly = StandonTurn − TurnOnly − Back;

91

92 % Read Ball on stand on turntable

93 fileName = 'Ball on stand on turntable.S1P';

94 fileID = fopen(fileName); %assigns number to file location

95 data = textscan(fileID, '%f %f %f',...

96 'HeaderLines',3,'CollectOutput',1);

97 fclose(fileID); %closes file

98

99 allVNA = data{1}; %All VNA data

100

101 BallonStandReal = allVNA(:,2); % real part of the returned signal

102 BallonStandImag = allVNA(:,3); % imaginary part of the returned ...

signal

103

104 BallonStand = BallonStandReal + BallonStandImag*1i;

105

106 % Determine Ball w effects of turn, but no stand or back

107 Ball w Turn = BallonStand − Stand;

108

109 % Determind Ball w/o stand, turntable, or background (pureball)

110 BallOnly = BallonStand − StandonTurn;

111

112 % Determine ball with only background, no turntable, not stand

113 Ball w Back = BallonStand − TurnOnly − StandOnly;

114
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115 save Sphere Ball w Turn BallOnly Ball w Back

116

117 clear all;

118

119 %% Load Data

120

121 load Adult

122 load Child

123 load Background

124 load Turntable

125 load Sphere

126

127 %% Apply Background Subtraction − optional

128

129 for i = 1:size(AdultData,2)

130 AdultData(:,i) = AdultData(:,i) − Back;

131 end

132

133 for i = 1:size(ChildData,2)

134 ChildData(:,i) = ChildData(:,i) − Back;

135 end

136

137 %% Apply Turntable Only Subtraction − optional

138 % do not run if Background Subtraction already applied

139

140 for i = 1:size(AdultData,2)

141 AdultData(:,i) = AdultData(:,i) − TurnOnly;

142 end

143

144 for i = 1:size(ChildData,2)

145 ChildData(:,i) = ChildData(:,i) − TurnOnly;

146 end
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147

148 %% Define constants

149

150 % Define speed of light (m/s)

151 c = 299792458;

152

153 K = 1601; % The number of frequency bins per pulse

154 Np = 1; % The number of pulses

155 Nfft = 1601; % Size of the FFT to form the range profile

156

157 minF = 400e6; % lowest frequency of pulse

158 maxF = 800e6; % highest frequency of pulse

159 ∆F = (maxF − minF)/K; % frequency step from sample to sample

160 dr = c/(2*∆F*K); % range resolution

161

162 % Determine the maximum scene size of the image (m)

163 maxWr = c/(2*∆F); % maximum range

164

165 % Display maximum scene size and resolution (range

166 fprintf('Maximum Scene Size: %.2f m range \n',maxWr);

167 fprintf('Resolution: %.2f m range \n',dr);

168

169 % Calculate the range to every bin in the range profile (m)

170 r vec = linspace(−Nfft/2,Nfft/2−1,Nfft)*maxWr/Nfft;

171

172 %% IFFT, No Window

173

174 % IFFT

175 for i=1:size(AdultData,2) % for each data set from each file ...

(across cols)

176 if AdultData(1,i) == −9999999 %indicates column of bad data

177 IFFT Adult(:,i) = −9999999;
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178 else

179 IFFT Adult(:,i) = fftshift(ifft(AdultData(:,i),Nfft));

180 end

181 end

182

183 for i=1:size(ChildData,2) % for each data set from each file ...

(across cols)

184 if ChildData(1,i) == −9999999 %indicates column of bad data

185 IFFT Child(:,i) = −9999999;

186 else

187 IFFT Child(:,i) = fftshift(ifft(ChildData(:,i),Nfft));

188 end

189 end

190

191 %Isolate peak data

192 Iso IFFT Adult = IFFT Adult(816:832,:);

193 Iso IFFT Child = IFFT Child(816:832,:);

194 IsoVec = r vec(816:832);

195

196 for i = 1:size(IFFT Adult,2)

197 Iso Freq Adult(:,i) = fft(fftshift(Iso IFFT Adult(:,i)));

198 end

199

200 for i = 1:size(IFFT Child,2)

201 Iso Freq Child(:,i) = fft(fftshift(Iso IFFT Child(:,i)));

202 end

203

204 % save Freq AdultData ChildData

205 % save Time IFFT Adult IFFT Child

206

207 %% IFFT, Window

208
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209 % Hamming window

210 hamm = hamming(1601);

211

212 Window Adult = zeros(size(AdultData,1),size(AdultData,2));

213 for i = 1:size(AdultData,2)

214 Window Adult(:,i) = hamm.*AdultData(:,i);

215 end

216

217 IFFT Adult Win = zeros(size(AdultData,1),size(AdultData,2));

218 for i=1:size(AdultData,2) % for each data set from each file ...

(across cols)

219 if AdultData(1,i) == −9999999 %indicates column of bad data

220 IFFT Adult Win(:,i) = −9999999;

221 else

222 IFFT Adult Win(:,i) = fftshift(ifft(Window Adult(:,i),Nfft));

223 end

224 end

225

226 Window Child = zeros(size(ChildData,1),size(ChildData,2));

227 for i = 1:size(ChildData,2)

228 Window Child(:,i) = hamm.*ChildData(:,i);

229 end

230

231 IFFT Child Win = zeros(size(ChildData,1),size(ChildData,2));

232 for i=1:size(ChildData,2) % for each data set from each file ...

(across cols)

233 if ChildData(1,i) == −9999999 %indicates column of bad data

234 IFFT Child Win(:,i) = −9999999;

235 else

236 IFFT Child Win(:,i) = fftshift(ifft(Window Child(:,i),Nfft));

237 end

238 end
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239

240 for i = 1:size(AdultData,2)

241 Freq Adult Win(:,i) = fft(fftshift(IFFT Adult Win(:,i)));

242 end

243

244 for i = 1:size(ChildData,2)

245 Freq Child Win(:,i) = fft(fftshift(IFFT Child Win(:,i)));

246 end

247

248 % Isolate peak data

249 Iso IFFT Child Win = IFFT Child Win(816:832,:);

250 Iso IFFT Adult Win = IFFT Adult Win(816:832,:);

251

252 for i = 1:size(AdultData,2)

253 Iso Freq Adult Win(:,i) = fft(fftshift(Iso IFFT Adult Win(:,i)));

254 end

255

256 for i = 1:size(ChildData,2)

257 Iso Freq Child Win(:,i) = fft(fftshift(Iso IFFT Child Win(:,i)));

258 end

259

260 % save Freq Win Freq Adult Win Freq Child Win

261 % save Time Win IFFT Adult Win IFFT Child Win

262

263 %% Apply filtering to windowed data, full data used

264 close all;

265

266 %Calculate range bin size

267 N=1601;%Number of frequencies, potentially chopped.

268

269 %Calculate filter parameters

270 fo=1601;
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271

272 rvec new = r vec + abs(r vec(1));

273 extent = rvec new(N);

274

275 F = [0 5.5+ abs(r vec(1)) 6.5+ abs(r vec(1)) 9.5+ abs(r vec(1))...

276 10.5+ abs(r vec(1)) extent]/extent; A = [0 0 1 1 0 0];

277 b = firpm(fo,F,A);

278 filt=b(:);

279 save filter filt

280 [h,w] = freqz(b,1,N);

281

282 figure;

283 plot(F,A,w/pi,abs(h))

284 legend('Ideal','firpm Design')

285

286 % Apply filter to Data

287 filtAdult = IFFT Adult Win;

288 for i = 1:size(AdultData,2)

289 filtAdult(:,i) = h.*filtAdult(:,i);

290 end

291

292 filtChild = IFFT Child Win;

293 for i = 1:size(ChildData,2)

294 filtChild(:,i) = h.*filtChild(:,i);

295 end

296

297 for i = 1:size(AdultData,2)

298 Freq filtAdult(:,i) = fft(fftshift(filtAdult(:,i)));

299 end

300

301 for i = 1:size(ChildData,2)

302 Freq filtChild(:,i) = fft(fftshift(filtChild(:,i)));
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303 end

304

305 % Isolate peak data

306 Iso filtChild = filtChild(816:832,:);

307 Iso filtAdult = filtAdult(816:832,:);

308

309 for i = 1:size(AdultData,2)

310 Iso Freq filtAdult(:,i) = fft(fftshift(Iso filtAdult(:,i)));

311 end

312

313 for i = 1:size(ChildData,2)

314 Iso Freq filtChild(:,i) = fft(fftshift(Iso filtChild(:,i)));

315 end

316

317 % save Freq Win Filt Freq filtAdult Freq filtChild

318 % save Time Win Filt filtAdult filtChild

319

320 %% Compare Pure Mie with Measured Mie

321

322 close all;

323

324 numfreqs=1601;%number of frequencies entered in the vna

325 msm=zeros(numfreqs,3);%mie scattering matrix

326 freq=400e6:400e6/1600:800e6;

327

328 msm(:,1)=freq';

329 i=1;

330 for f=400e6:400e6/1600:800e6

331 [msm(i,2) msm(i,3)]=miePEC(.25,f,0,0,20); % miePEC is Mie ...

scattering

332 % code found in the online MatLab database, Author: Walton ...

C. Gibson,
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333 % Tripoint Industries, Inc.

334 i=i+1;

335 end

336

337 figure;

338 plot(msm(:,1),20*log10(abs(msm(:,2))));

339

340 % Filter Measured Sphere

341 % IFFT

342 IFFT Ball = fftshift(ifft(BallOnly,Nfft));

343

344 filtBall = h.*IFFT Ball;

345

346 %% Apply Mie Calibration − Ball w Background only (no stand, ...

turntable)

347

348 % close all;

349

350 IFFT Ball = fftshift(ifft(Ball w Back,Nfft));

351

352 filtBall = h.*IFFT Ball;

353

354 % Operate in log, so we can add/subtract

355 MeasSphere = 20*log10(abs(fft(fftshift(filtBall))));

356 PerfectSphere = 20*log10(abs(msm(:,2)));

357

358 for i = 1:size(AdultData,2)

359 MeasAdult(:,i) = 20*log10(abs(fft(fftshift(filtAdult(:,i)))));

360 end

361

362 for i = 1:size(ChildData,2)

363 MeasChild(:,i) = 20*log10(abs(fft(fftshift(filtChild(:,i)))));
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364 end

365

366 Cal factor = MeasSphere − PerfectSphere;

367

368 PerfectAdult = zeros(size(AdultData,1),size(AdultData,2));

369 for i = 1:size(AdultData,2)

370 PerfectAdult(:,i) = MeasAdult(:,i)− Cal factor;

371 end

372

373 PerfectChild = zeros(size(ChildData,1),size(ChildData,2));

374 for i = 1:size(ChildData,2)

375 PerfectChild(:,i) = MeasChild(:,i)− Cal factor;

376 end

377

378 PerfectChild Time = zeros(size(ChildData,1),size(ChildData,2));

379 for i = 1:size(ChildData,2)

380 PerfectChild Time(:,i) = ...

381 20*log10(abs(fftshift(ifft(PerfectChild(:,i),Nfft))));

382 end

383

384 PerfectAdult Time = zeros(size(AdultData,1),size(AdultData,2));

385 for i = 1:size(AdultData,2)

386 PerfectAdult Time(:,i) = ...

387 20*log10(abs(fftshift(ifft(PerfectAdult(:,i),Nfft))));

388 end

389

390 % save Freq Win Filt Mie PerfectAdult PerfectChild

391 % save Time Win Filt Mie PerfectAdult Time PerfectChild Time

392

393 %% Reduced Vectors Based on Time Domain Features, Turntable Sub, ...

Windowing

394

159



395 IFFT Adult Win = 20.*log10(abs(IFFT Adult Win));

396 IFFT Child Win = 20.*log10(abs(IFFT Child Win));

397

398 % Locate Relevant Peaks − always located in same position in data

399 TargPeakA = IFFT Adult Win(823,:);

400 TargPeakC = IFFT Child Win(823,:);

401 LeftPeakA = IFFT Adult Win(818,:);

402 LeftPeakC = IFFT Child Win(818,:);

403 RightPeakA = IFFT Adult Win(829,:);

404 RightPeakC = IFFT Child Win(829,:);

405

406 % Find Valley Depth between Targ and Left Peak

407 for i=1:size(AdultData,2)

408 [LeftMinA(i), LeftMinLocA(i)] = min(IFFT Adult Win(818:823,i));

409 [RightMinA(i), RightMinLocA(i)] = min(IFFT Adult Win(823:829,i));

410 end

411 LeftMinVecLocA = 817+LeftMinLocA;

412 RightMinVecLocA = 822+RightMinLocA;

413

414 LeftMinLocA = r vec(LeftMinVecLocA);

415 RightMinLocA = r vec(RightMinVecLocA);

416

417 for i=1:size(ChildData,2)

418 [LeftMinC(i), LeftMinLocC(i)] = min(IFFT Child Win(818:823,i));

419 [RightMinC(i), RightMinLocC(i)] = min(IFFT Child Win(823:829,i));

420 end

421

422 LeftMinVecLocC = 817+LeftMinLocC;

423 RightMinVecLocC = 822+RightMinLocC;

424

425 LeftMinLocC = r vec(LeftMinVecLocC);

426 RightMinLocC = r vec(RightMinVecLocC);
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427

428 LeftValleyDepthA = TargPeakA − LeftMinA;

429 RightValleyDepthA = TargPeakA − RightMinA;

430

431 LeftValleyDepthC = TargPeakC − LeftMinC;

432 RightValleyDepthC = TargPeakC − RightMinC;

433

434 % Find Width of Target Peak

435 for j=1:size(AdultData,2)

436

437 if LeftValleyDepthA(j) > RightValleyDepthA(j)

438

439 start = LeftMinVecLocA(j);

440 i = start +1;

441 while IFFT Adult Win(start,j)<IFFT Adult Win(i,j)

442 i = i+1;

443 end

444

445 startend = i;

446

447 PeakWidthA(j) = r vec(i)−r vec(start);

448

449 elseif LeftValleyDepthA(j) < RightValleyDepthA(j)

450

451 start = RightMinVecLocA(j);

452 i = start −1;

453 while IFFT Adult Win(start,j)<IFFT Adult Win(i,j)

454 i = i−1;

455 end

456

457 startend = i;

458 PeakWidthA(j) = r vec(start)−r vec(i);
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459

460 end

461

462 end

463

464 for j=1:size(ChildData,2)

465

466 if LeftValleyDepthC(j) > RightValleyDepthC(j)

467

468 start = LeftMinVecLocC(j);

469 i = start +1;

470 while IFFT Child Win(start,j)<IFFT Child Win(i,j)

471 i = i+1;

472 end

473

474 startend = i;

475

476 PeakWidthC(j) = r vec(i)−r vec(start);

477

478 elseif LeftValleyDepthC(j) < RightValleyDepthC(j)

479

480 start = RightMinVecLocC(j);

481 i = start −1;

482 while IFFT Child Win(start,j)<IFFT Child Win(i,j)

483 i = i−1;

484 end

485

486 startend = i;

487 PeakWidthC(j) = r vec(start)−r vec(i);

488

489 end

490
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491 end

492

493 ReducedAdult = [TargPeakA; LeftPeakA; RightPeakA; ...

LeftValleyDepthA; ...

494 RightValleyDepthA; PeakWidthA];

495

496 ReducedChild = [TargPeakC; LeftPeakC; RightPeakC; ...

LeftValleyDepthC; ...

497 RightValleyDepthC; PeakWidthC];

498

499 % save Reduced ReducedAdult ReducedChild

1 % Support Vector Machine Analysis of Child/Adult Radar Data

2 % Stephanie Keith

3 % AFIT Masters Student

4 % 2 Mar 2013

5

6 % This code merely isolates the data vectors for SVM analysis. ...

The actual

7 % SVM code is indicated by the function svmblkbx, and was written ...

by Dr.

8 % Grant Erdmann. Erdmann's code is not provided here.

9

10 clear all; close all; clc;

11

12 %% Load & Process Data for SVM

13

14 load Angles % azimuthal angles for child, adult radar data

15

16 load RadarData % child, adult radar data
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17

18 % CertainAngles is a function to pull out only the angles of the ...

adult,

19 % child data we want to process with the SVM. In this case, the ...

angles are

20 % those closest to 0, 45, 90, 135, 180.

21 [ Adult Single, Child Single ] = CertainAngles( AdultData, ...

AdultAngle,...

22 ChildData, ChildAngle );

23

24 % SVM Function requires magnitude of data (does not perform on ...

imaginary

25 % numbers)

26 Adult = 20*log10(abs(Adult Single));

27 Child = 20*log10(abs(Child Single));

28

29 % Total number of adult, child vectors

30 TotNumAdult = size(Adult,2);

31 TotNumChild = size(Child,2);

32

33 TrainNumAdult = ceil(0.75*TotNumAdult); % number of training vectors

34 ValNumAdult = TotNumAdult − TrainNumAdult; % number of testing ...

vectors

35

36 TrainNumChild = floor(0.75*TotNumChild); % number of training vectors

37 ValNumChild = TotNumChild − TrainNumChild; % number of testing ...

vectors

38

39 %% SVM Set 1 − Take Test data from end of data vectors

40

41 clc;

42
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43 % Build training data vector and associated identification vector ...

(+/− 1)

44 TrainVec1 = [Adult(:,1:TrainNumAdult) Child(:,1:TrainNumChild)];

45 Class train1 = [−ones(1,TrainNumAdult) ones(1,TrainNumChild)];

46

47 % Build testing data vector and associated identification vector ...

(+/− 1)

48 TestVec1 = [Adult(:,TrainNumAdult+1:TrainNumAdult+ValNumAdult)...

49 Child(:,TrainNumChild+1:TrainNumChild+ValNumChild)];

50 Class test1 = [−ones(1,ValNumAdult) ones(1,ValNumChild)];

51

52 % Call SVM function (Erdmann's code)

53 [guess all,trainguess all,params all] = ...

svmblkbx(TrainVec1,Class train1,...

54 TestVec1,Class test1,0.05);

55

56 %% SVM Set 2 − Take test data from start of data vectors

57

58 clc;

59

60 TrainVec2 = [Adult(:,ValNumAdult+1:ValNumAdult+TrainNumAdult)...

61 Child(:,ValNumChild+1:ValNumChild+TrainNumChild)];

62 Class train2 = [−ones(1,TrainNumAdult) ones(1,TrainNumChild)];

63

64 TestVec2 = [Adult(:,1:ValNumAdult) Child(:,1:ValNumChild)];

65 Class test2 = [−ones(1,ValNumAdult) ones(1,ValNumChild)];

66

67 [guess all,trainguess all,params all] = ...

svmblkbx(TrainVec2,Class train2,...

68 TestVec2,Class test2,0.05);

69

70 %% SVM Set 3 − Take data from 2nd quarter of vectors
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71

72 clc;

73

74 TrainVec3 = [Adult(:,1:ValNumAdult) ...

Adult(:,2*ValNumAdult+1:TotNumAdult)...

75 Child(:,1:ValNumChild) Child(:,2*ValNumChild+1:TotNumChild)];

76 Class train3 = [−ones(1,TrainNumAdult) ones(1,TrainNumChild)];

77

78 TestVec3 = [Adult(:,ValNumAdult+1:2*ValNumAdult)...

79 Child(:,ValNumChild+1:2*ValNumChild)];

80 Class test3 = [−ones(1,ValNumAdult) ones(1,ValNumChild)];

81

82 [guess all,trainguess all,params all] = ...

svmblkbx(TrainVec3,Class train3,...

83 TestVec3,Class test3,0.05);

84

85 %% SVM Set 4 − Take data from 3rd quarter of vectors

86

87 clc;

88

89 TrainVec4 = [Adult(:,1:2*ValNumAdult)...

90 Adult(:,3*ValNumAdult+1:TotNumAdult) Child(:,1:2*ValNumChild)...

91 Child(:,3*ValNumChild+1:TotNumChild)];

92 Class train4 = [−ones(1,TrainNumAdult) ones(1,TrainNumChild)];

93

94 TestVec4 = [Adult(:,2*ValNumAdult+1:3*ValNumAdult)...

95 Child(:,2*ValNumChild+1:3*ValNumChild)];

96 Class test4 = [−ones(1,ValNumAdult) ones(1,ValNumChild)];

97

98 [guess all,trainguess all,params all] = ...

svmblkbx(TrainVec4,Class train4,...

99 TestVec4,Class test4,0.05);
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1 % Principal Component Analysis of Child/Adult Radar Data

2 % Stephanie Keith

3 % AFIT Masters Student

4 % 9 Feb 2013

5

6 close all; clear all; clc;

7

8 %% 1. Load radar data

9

10 % Load radar data consisting of adult and child data, and the vectors

11 % denoting the azimuthal location where each child or adult radar ...

vector

12 % was taken

13

14 load Adult

15 load Child

16 load Freq

17

18 % Transform to magnitude of radar data (PCA process does not ...

perform well

19 % with imaginary numbers)

20 Adult = 20*log10(abs(AdultData));

21 Child = 20*log10(abs(ChildData));

22

23 % Create full data matrix

24 Data = [Adult Child];

25 Data = Data';

26

27 %% 2. Subtract mean
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28

29 Mean = mean(Data,1);

30

31 Data Adjust = zeros(size(Data,1),size(Data,2));

32 for i = 1:size(Data,2);

33 Data Adjust(:,i) = Data(:,i) − Mean(i);

34 end

35

36 %% 3. Calculate covariance matrix

37

38 Cov Data = cov(Data);

39

40 %% 4. Calculate eigenvectors, eigenvalues of covariance matrix

41

42 % Note: eig returns the eigenvalues along the diagonal of a matrix;

43 % eigenvectors are returned in corresponding columns of a matrix.

44

45 [ EVecs EVals ] = eig(Cov Data);

46

47 %% 5. Choose components, form feature vector

48

49 % Order components by eigenvalue, high to low.

50 % Isolate eigenvalues to form 1 vector rather than matrix

51

52 EVals row = find(EVals 6= 0); % Finds eigenvalues in matrix

53 EVals row = EVals(EVals row)'; % Isolates them to create one vector

54 EV = [EVals row; EVecs]; % Concatenate to eigenvectors for sorting

55 EV sort = sortrows(EV', −1); % sort along the first row, largest ...

vals first

56 EV sort = EV sort';

57

58 % Isolate feature vector, remove EVals from feature vector
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59 FeatureVec Full = EV sort;

60 FeatureVec Full(1,:) = []; % remove EVals

61 FeatureVec Isol = FeatureVec Full(:,1:3); % isolate features; use ...

3 for max

62

63 %% 6. Derive new data set

64

65 FinalData Full = FeatureVec Full'*Data Adjust';

66 FinalData Isol = FeatureVec Isol'*Data Adjust';

67

68 % Transpose back into table format

69 FinalData Full = FinalData Full';

70 FinalData Isol = FinalData Isol';

71

72

73 %% 7. Get data back

74

75 Data Recover Full = FeatureVec Full*FinalData Full';

76 for i = 1:size(Data,2);

77 Data Recover Full2(:,i) = Data Recover Full(i,:)+Mean(i);

78 end

79

80 Data Recover Isol = FeatureVec Isol*FinalData Isol';

81 for i = 1:size(Data,2);

82 Data Recover Isol2(:,i) = Data Recover Isol(i,:)+Mean(i);

83 end

84

85 %% 8. Plot data (2−D or 3−D plot of 2 or 3 highest eigenvalues)

86 % Child (red circles)/Adult (blue triangles)

87

88 close all;

89
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90 f = figure;

91 for i=1:size(Adult,2) % Plot adult data

92 scatter3(FinalData Isol(i,1),FinalData Isol(i,2),...

93 FinalData Isol(i,3),...

94 'MarkerEdgeColor',[0 0 1],...

95 'Marker','v')

96 hold on;

97 end

98 for i=(size(Adult,2)+1):size(Data,1) % Plot child data

99 scatter3(FinalData Isol(i,1),FinalData Isol(i,2),...

100 FinalData Isol(i,3),...

101 'MarkerEdgeColor',[1 0 0])

102 end

103

104 xlabel('x')

105 ylabel('y')

106 zlabel('z')

107 title('Reduced Frequency Data, PCA Analysis')
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Appendix E. IRB Documentation (Child)

The following pages include IRB documentation for the child volunteer study.

The documents are: the signed approval letter, IRB protocol, and Informed Consent

Document.
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3D Modeling and Identification of Pediatric Shape and Motion 

F-WR-2012-0233-H 

 

1. Principal Investigator 

a. Dustin Bruening, DR-II, Research Physiologist, 711 HPW/RHXBA, 937-255-5272, 

dustin.bruening@wpafb.af.mil 

 

2. Associate Investigators 

a. David Bowden, DR-I, Electrical Engineer, 711 HPW/RHXBA, 937-255-8518, 

david.bowden@wpafb.af.mil 

b. Analee Miranda, DR-II, Research Mathematician, AFRL/RYMD, 937-528-8118, 

analee.miranda@wpafb.af.mil 

c. Lamar Westbrook, DR-I, Electronics Engineer, AFRL/RYMD, 937-528-8114, 

lamar.westbrook@wpafb.af.mil  

d. Stephanie Keith, Captain, AFIT/ENP, 937-785-3636, skeith@afit.edu 

e. Evelyn Boettcher, Researcher, Infoscitex Corp., 937-255-8810, 

evelyn.boettcher.ctr@wpafb.af.mil 

f. Christopher Hess, Research Technician, Infoscitex Corp., 937-255-5390, 

christopher.hess2@wpafb.af.mil 

g. Derek Benson, Research Technician, Infoscitex Corp., 937-255-2058, 

derek.benson@wpafb.af.mil 

h. Casserly Whitehead, Researcher, Infoscitex Corp, 937-255-1902, 

casserly.whitehead.ctr@wpafb.af.mil 

i. Kristin Spencer, 2
nd

 Lt, Human Factors Engineer, USAF, 711 HPW/RHXBA, 937-255-

7119, kristin.spencer@wpafb.af.mil 

j. Max Grattan, Research Technician, Infoscitex Corp, max.grattan.ctr@wpafb.af.mil 

 

3. Medical Consultant or Research Monitor 

Not applicable 

 

4. Facility/Contractor 

This research effort will be conducted by personnel from the Human Signatures Branch, 

Human Centered ISR Division, Human Effectiveness Directorate, Air Force Research 

Laboratory (711 HPW/RHXBA), as well as by RHXBA’s in-house contractor, Infoscitex, 

under the Federal-wide Assurance Number 00008359 with the Department of Defense 

Addendum number F50339.  In-house government personnel from the Multispectral 

Sensing & Detection Division, Sensors Directorate, Air Force Research Laboratory 

(AFRL/RYM) and a student from the Air Force Institute of Technology will also conduct 

this research. 

 

5. Objective 

To characterize children’s size, shape, and movement patterns for the purposes of: 1) 

discriminating between children and adults using stand-off sensors, and 2) developing 

realistic animations of children for training scenarios.  
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6. Background 

Modern defense applications have become increasingly human-centric.  Humans are more 

diverse and adaptive than conventional targets such as tanks and aircraft, and can be 

difficult to evaluate without a comprehensive understanding of relevant human 

characteristics that can be integrated into adaptive algorithms for stand-off detection.  Our 

current research applications include: 1) identification of, or discrimination among, 

individuals or groups of individuals from a distance; and 2) simulating realistic human 

size, shape, and motion for bio-fidelic computer animations and training scenarios. (See 

also IRB protocol FWR20100055H).  While our past focus has previously been on adult 

movement, there is a need to also incorporate child data into these efforts.  This will 

broaden the variability in our human characterization databases and allow us to explore 

stand-off discrimination between adults and children. 

 

7. Impact 

By establishing a high-fidelity dataset of 3D human size, shape and motion signatures, we 

can develop automated techniques for stand-off signature recognition as well as enhance 

bio-fidelic human models for simulation and training applications.  Ultimately, this work 

may lead to an increase in the safety and success of military operations. 

  

8. Experimental Plan 

a. Equipment: 

 

3-D size and shape information will be collected using a 3DMD (Atlanta, Ga.) white-light 

whole body scanner. The scanner consists of 9 camera mounts, each comprising two black 

and white cameras, two color cameras, and one projection camera.  The cameras operate 

similar to standard digital cameras, emitting a brief white light flash to illuminate the 

subject.  The various camera images and views are then combined to create a high 

resolution 3D point cloud or mesh.  The whole-body scanner does not see through 

clothing, but rather returns what amounts to a 3D surface camera image.  Accordingly, the 

scanner is no more intrusive than a standard digital camera. Subject privacy will be 

protected as described in section 8f. 

 

3-D movement will be collected using one or a combination of two systems: 

1. An 18 camera, passive-optical motion capture system (Motion Analysis Corp, Santa 

Rosa, CA).  These cameras use a near infrared light to track the three-dimensional 

positions of small (6 - 20 mm diameter) retro-reflective markers placed on each 

subject's body. 

2.  An 18 sensor inertial system (e.g. APDM Opal, Portland OR).  The wireless inertial 

sensors measure orientation using a combination of accelerometers, gyroscopes, and 

magnetometers.  Neither the optical nor inertial motion capture systems collect 

identifying information nor are harmful to subjects. 
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Traditional high speed video cameras (Basler Corp, Exton PA) will also be used to record 

the movements. These will be synchronized with the motion capture system(s). Subject 

privacy will be protected as described in section 8f. 

 

Low-power indoor radar will be used to record the phase-doppler signatures of the test 

movements. Two different radar systems will be used at alternate times (not together): 

 

1) A linear frequency modulated homodyne (LFMH) radar with separate transmission and 

receiving antenna units. The system is capable of supporting frequency chirp rates of up to 

10 KHz while maintaining 512 frequency steps/chirp, with 10-20 cm resolution cells. 

 

2) A bistatic, low power (less than 1 Watt) Doppler-range radar operating from 250 MHz 

up to 3 GHz using a pulsed Chirp waveform. An Agilent PNA-L Series Network 

Analyzers may be used for reference purposes. The power output of the PNA is less than 

the power output of the radar. 

 

The 88
th

 Medical Group Bio-Environmental Safety Group has evaluated both radar 

systems at the described parameters and concluded that they pose no significant health 

hazard.  Copies of the test certificates are included in the appendix.  Operation 

specifications are also available upon request. 

 

One or both of two models of polarization cameras will be used to provide 2-D shape 

information during the movement tasks.  In indoor settings, these cameras act as simple 

infrared cameras, collecting black and white images (facial features will not be 

recognizable). The cameras will be placed at an approximate distance of 100 feet from the 

capture area. The models are the PIRATE, which operates in a wavelength range of 7.8-9.8 

microns, and the SPITFIRE, a four band camera that operates at 3.2-3.7, 3.7-4.2, 3.2-4.2, 

and 4.5-5.0 micron wavelengths. The polarization imaging is completely passive (much 

like the standard video cameras) and poses no risk to human subjects or persons operating 

the equipment. The shape output does not contain detailed facial features, so that subject 

identity will not be recognizable. 

 

An ASC Flash Ladar Video Camera (FLVC) will be used to provide 3D shape information 

during the movement tasks.  This camera can measure the range of all objects in its field of 

view with a single laser pulse.  Light from the laser illuminates the scene in front of the 

camera lens, which focuses the image on to the 3D sensor focal plane array, and the range 

to the object viewed by each pixel can then be computed.  Nominal Ocular Hazard 

Distance (HOHD), and Skin Hazard Distance (NSHD) were both calculated for this sensor 

(included in Appendix E). The sensor will be mounted at least 10 feet away from subjects, 

far beyond the calculated Hazard Distance, and will contain a safety guard to prevent 

accidental operator entrance into the hazard zone.  This sensor poses no risk to human 

subjects or persons operating the equipment outside of the hazard zone.    

 

b. Subjects: 
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We anticipate requiring approximately 50 healthy pediatric subjects, ages 4-17.  The 

subject sample size was chosen to provide variability in size, shape, and movement 

patterns while still being practically attainable in terms of recruitment, cost, and time.  We 

foresee achieving sufficient variability by targeting recruitment to attain approximately 10 

subjects in each of 5 age categories: 4-6, 7-9, 10-11, 12-14, 15-17 yrs.  Subjects will be 

recruited from base personnel using an advertisement flyer (see attached flyer), posted in 

buildings near the collection site.  All recruitment and scheduling will be handled by 

Casserly Whitehead, CTR.  Note that no one in an investigators chain of command will be 

recruited by that investigator. As recruitment progresses, specific age screening may be 

needed to achieve variability goals.  Size and shape variability may be monitored as 

collection progresses, and a few additional subjects may be collected beyond the 

anticipated 50 if needed.  No more than 75 subjects will be recruited.  Parents will be 

required to transport, accompany, and remain with their children throughout the data 

collection. 

 

c. Duration: 

 

The time commitment for each subject will be a single session lasting approximately one 

to one and a half hours.  Sessions will be available during the late afternoon/early evening 

and over some holidays to accommodate parent and student schedules.  Duration for the 

entire study is estimated to be one year comprising data collection and analysis, although 

additional data analysis of the de-identified data may continue thereafter (see analysis 

section 8d).  In the event that a subject does not complete the entire protocol due to fatigue 

or other factors, the subject will be given the option of a follow up visit to complete it. 

 

A small subject subset (up to 10 subjects) will also include an additional test session with 

an alternate radar configuration.  The duration of this session will be approximately ½ 

hour.  

 

d. Description of experiment, data collection, and analysis: 

 

All testing (except for the alternate radar subtest) will take place in the 3D Biosignatures 

laboratory in Area B, Bldg 824.  The radar subtest will take place in the indoor range in 

Area B, Bldg 620. At the beginning of the test session, each parent will be provided an 

informed consent document for his/her review and signature, with the opportunity for 

questions and clarifications. An ombudsman with no conflicts of interest will be present 

during the consent process to act in the best interest of the child, ensuring that the child 

understands the protocol and is participating voluntarily. The ombudsman will intervene at 

any sign that the child is hesitant to participate or that the information is not conveyed 

appropriately to the child.  Four ombudsman have been selected, all of whom have 

experience with human subjects, are outside the Human Signatures branch, and are 

conveniently located within Bldg. 824 (see attached CVs, Appendix F): 

 
a. John Buhrman, DR-III, Senior Biomedical Engineer, 711 HPW/RHCP, 937-255-3121, 

John.Buhrman@wpafb.af.mil 
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b. Suzanne Smith, DR-III, Senior Biomedical Engineer, 711 HPW/RHCP, 937-255-9331, 

Suzanne.Smith@wpafb.af.mil 

c. Chris Perry, DR-III , Lead Biomedical Engineer, 711 HPW/RHCP, 937-254-5411, 

Chris.Perry@wpafb.af.mil 

d. Nathan Wright, DR-II ,Biomedical Engineer, 711 HPW, RHCP, 937-255-2554, 

Nathan.wright@wpafb.af.mil 

Each child will be asked to provide assent either verbally (ages 7 and under), by signing 

the assent form (age 8-14), or by co-signing the consent form (ages 15-17).  In each case, 

the parent will sign the consent form.  Verbal assent will be documented by the parent 

signing the assent form on behalf of the child, with the ombudsman signing as a witness. 

Each child will also be given the opportunity for questions and clarifications, and each 

child and parent will be shown the representative picture of a de-identified image (see 

below) with the ombudsman present.  Parents and children will also receive a short safety 

briefing explaining what to do in the event of an emergency (shelter and building exit 

locations, etc.). 

 

Each subject's gender, height and weight will first be recorded.  A few additional limb 

length measurements may also be performed using a standard flexible tape measure. 

Subjects will be asked to provide their ethnicity and whether they are healthy, able to 

perform the required movements, and whether they have any implanted medical devices, 

prosthesis, or musculoskeletal injuries that would interfere with normal movement.  

Next, the retro-reflective markers (and orientation sensors if available) will be attached to 

the subject's skin with a skin-friendly adhesive (e.g. 3M 1522 toupee tape or similar).  For 

accurate marker placement, the subject will wear form fitting shorts and tops that will be 

provided for them.  An example is shown in Figure 1 below.  A private changing area will 

be available.  An experimenter of the same gender will place all markers on the subject.  

Parents will be present during the entire test (at no time will any investigator be alone with 

the subject). 
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The subject will then be scanned in a comfortable static pose. The scanner requires that the 

subject hold still for only a few seconds. 

 

Each subject will then perform several different movements in the motion capture area.  

These will consist of movements or activities that are performed on a regular basis, 

including walking or jogging the length of the capture area (approximately 50 feet), 

standing still in various poses, and/or picking up a small object and throwing it toward a 

target.  No more than about five repetitions of each activity will be performed.  These 

activities are designed to replicate typical activities that a child might engage in during 

various in-field surveillance scenarios.  Motion capture, 2-D video, polarization camera 

images, ladar images, and radar will be collected during each movement (only one radar 

unit will be used at a time). 

 

For the radar subtest, a few subjects will undergo radar testing (only) in bldg. 620. For this 

subtest, subjects will go through the consent/assent process exactly as described above.  

Subjects will not be required to change clothing.  Testing will consist of simply standing 

still on a custom turntable, in a comfortable pose, for a few seconds at a time, 

approximately 30 times.  The turntable platform is about 6 inches off the ground and will 

rotate the child a few degrees in between scans (the rotation of the turntable is extremely 

slow and has been safety approved). 

 

As the data will be used by various collaborators in several different analyses, data will be 

immediately de-identified (2-D video and 3-D scans) and raw, identifiable images will be 

permanently deleted.  De-identification of data will be done as described in section 8f 

below. 

 
FIGURE 1: This catalog example shows the typical form fitting clothing to be 

worn. Not that in order to place markers on the top of the pelvis, a few inches at the 

bottom of the shirt may be trimmed or rolled, or small cutouts may be made to 

expose the reflective markers.  Reflective markers are placed over the medial and 

lateral peaks of the iliac crests as well as on the anterior and posterior superior iliac 

spines (ASIS and PSIS). 



 

3D Modeling and Identification of Pediatric Shape and Motion 

FWR20120233H, Version 1.01 

AFRL IRB Approval Valid from 21 December 2012 to 04 December 2013 

180 

 

Two different groups (RHXBA and RYM) will perform separate analysis on the collected 

data, and copies of de-identified data will be housed internally in both building 824 and 

630.  Access to data will be controlled by the investigators listed on the protocol (see also 

section 8f).  

 

Dr. Bruening and colleagues in RHXBA will investigate differences in size, shape, and 

movement between children and adults.  Anthropometric measurements will be taken from 

the 3-D scans and compared to previously collected adult scan databases using ANOVA or 

regression techniques.  Movement differences will also be investigated using the motion 

capture data, with similar statistical treatment, including ANOVA on discrete variables, or 

more complicated time series analysis for continuous variables. 2-D video will 

subsequently be used to determine whether the discovered differences from the previous 

analyses are detectable from planar images.  Finally, 3-D avatars (animation models) will 

be created, incorporating realistic movement from the motion capture, for use in training 

scenarios. 

  

Dr. Miranda and colleagues will investigate child/adult discrimination from radar data and 

2-D video.  Collected variables will be compared to similar measures in other active 

statistical data sets (CDC, AFRL, etc.) For radar data, a mathematical spline method will 

be carried out in order to extend the pre-existing anthropometric results in order to increase 

the robustness of the statistical analysis. Basic linear regression models will be used to 

form an initial first order Bayes-based classifier. A new classifier based on support 

machine methods will be developed and compared to the Bayes-based classifier for 

consistency of statistical results.  2-D video may also be analyzed in a similar fashion. 

 

Future research on the de-identified data set will be confined to the DoD and DoD 

contractors for the purposes of threat detection and discrimination and other exploitation 

methods in support of military research, development, or operations (see confidentiality 

protection section 8f. below).  

 

e. Safety monitoring: 

 

Subject safety throughout the data collection will be monitored by the investigators listed 

above.  Dr. Bruening, who has experience in similar pediatric data collections through 

previous experience working at a children’s hospital, will attend and oversee each data 

collection.  Parents will be required to stay with their children throughout the collection, 

and will also be supervising.  Risks should not be greater than for typical daily activities. 

  

f. Confidentiality protection: 

 

Subjects will be listed by name on a contact roster and assigned a study number.  That 

number will be assigned to the test data.  No other personal identifying information will be 

assigned to the data sets, and the roster and test data will be kept separate.  The contact 

roster will be stored on a locked computer and locked cabinet in Bldg. 824, and accessed 
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only by investigators listed on this study.  The de-identified data sets will then be made 

available to selected researchers in Bldgs 824 and 630.  Data transfer will be controlled by 

investigators in RHXBA.  A DVD (or similar media) will be used to transfer de-identified 

data, and all data will be marked with the following data use restrictions: 

 
For Official Use Only (FOUO), DISTRIBUTION STATEMENT D. Distribution authorized to the 
Department of Defense and U.S. DoD contractors only (Administrative and Operational Use) (date 
of determination). Redistribution of this material and other requests shall be referred to (711HPW 
RHXBA, 2800 Q St, Bldg. 824, WPAFB OH 45433). 
 

3-D Scanner images will be de-identified by blurring the facial pixels and colors, as shown 

in Figure 2.  Similarly, 2-D video data will be de-identified by applying a blur or pixilation 

to each video frame as shown in Figure 2. 

 

  
 

9. Risk Analysis 

 

This study includes only tasks that are performed on a regular basis and is thought to be of 

minimal risk to subjects.  Subjects will be informed that if they feel tired they may stop the 

test at any time.  Slight discomfort is possible when removing the skin mounted sensors, as 

the adhesive may pull on arm or leg hairs or mildly irritate sensitive skin (similar to a 

bandage removal).  The reflective motion capture markers need to be placed on landmarks 

 
FIGURE 2: 3-D scans (left) and 2-D video (right) images will be de-identified by 

blurring or pixelating the face as shown above. Note that the clothing worn will be 

similar to that shown above, but the t-shirt and white elastic wraps will be replaced 

by a snug sleeveless triathlon or running top as mentioned previously 
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on the pelvis (ASIS and PSIS).  Markers placement will be performed by an experimenter 

of the same gender as the child.  Subjects will also be informed that if they are 

uncomfortable with the placement they may stop the study at any time.  Parents will 

oversee all aspects of the data collection.  Radiation exposure from the radar was tested as 

mentioned above and deemed insignificant. The ladar camera was also tested and is 

considered safe for all subjects. 

 

10. References 

1. NA 

 

11. Attachments 
A. Informed Consent Form 

B. Child Assent Form  

C. Curriculums Vitae of Investigators 

D. CITI Training for New investigators 

E. Equipment Safety Documentation (Radar and Ladar) 

F. Ombudsman CVs 

G. Recruitment Flyer 

H. De-identified image for consent 



Appendix F. IRB Documentation (Adult)

The following pages include IRB documentation for the adult volunteer study.

The documents are: the signed approval letter and IRB protocol.
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Human Classification Using Radar 

F-WR-2013-0052-H 

 

1. Principal Investigator 

a. Miranda, Analee, DR-II, Research Mathematician, AFRL/RYMD, 937-528-8118, 

analee.miranda@wpafb.af.mil 

 

2. Associate Investigators 

a. Dustin Bruening, DR-II, 711 HPW/RHXBA, 937-255-5272, dustin.bruening 

@wpafb.af.mil 

b. David Bowden, DR-I, Electrical Engineer, 711 HPW/RHXBA, 937-255-8518, 

david.bowden@wpafb.af.mil 

c. Christopher Hess, Research Technician, Infoscitex Corp., 937-255-5390, 

christopher.hess2@wpafb.af.mil 

d. Derek Benson, Research Technician, Infoscitex Corp., 937-255-2058, 

derek.benson@wpafb.af.mil 

e. Westbrook, Lamar, DR-I, Electronics Engineer, AFRL/RYMD, 937-528-8114, 

lamar.westbrook@wpafb.af.mil  

f. Keith, Stephanie, Captain, AFIT/ENP, 937-785-3636, Stephanie.Keith@afit.edu 

 

3. Medical Consultant or Research Monitor 

Not applicable 

 

4. Facility/Contractor 

This research effort will be conducted by government personnel from the Multispectral 

Sensing & Detection Division, Sensors Directorate, Air Force Research Laboratory 

(AFRL/RYM.) This research effort will also be conducted by personnel from the Human 

Signatures Branch, Forecasting Division, Human Effectiveness Directorate, Air Force 

Research Laboratory (711 HPW/RHXBA), under work unit 71840226 as well as by 

RHXBA’s in-house contractor, Infoscitex, under the Federal-wide Assurance Number 

00008359 with the Department of Defense Addendum number F50339.  

 

5. Objective 

To characterize adult’s size, shape, and High Range Resolution (HRR) radar scattering at 

a variety of frequencies for the purpose of discriminating between differing 

demographics using stand-off sensors.  

 

6. Background 

Modern defense applications have become increasingly human-centric.  Humans are 

more diverse and adaptive than conventional targets such as tanks and aircrafts, and can 

be difficult to evaluate without a comprehensive understanding of human characteristics 

as measured at standoff. While past focus has been on the problem of discriminating 

between human motions, we will collect data from a variety of sensors to derive a 

functional relationship between human HRR profiles at a variety of frequencies and 
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anthropometric data sets. In order to develop statistically robust mapping algorithms 

between the anthropometric data and HRR profiles a broad band of frequencies will be 

required. This new data will allow exploration of stand-off discrimination between 

human demographic groups. 

 

7. Impact 

By creating an algorithmic mapping to distinguish between human demographic groups 

at standoff we will improve the situational awareness of the warfighter. This work thus 

serves the purpose of increasing awareness while simultaneously reducing risk.  In 

addition, the capability for an all-weather/season solution is of utmost important. 

Discrimination of human subjects wearing layers of clothing or shielded from cloud 

cover or canopy is now possible with certain sensors and via state-of-the-art image 

and signals processing. It is the goal of this study to verify that these sensors and 

algorithms indeed achieve a low-false-alarm classification and discrimination of 

features such gender, size, height, and age.  

 

8. Experimental Plan 

a. Equipment: 

 

3-D size and shape information will be collected using a 3DMD (Atlanta, Ga.) white-

light whole body scanner. The scanner consists of 9 camera mounts, each comprising two 

black and white cameras, two color cameras, and one projection camera.  The cameras 

operate similar to standard digital cameras, emitting a brief white light flash to illuminate 

the subject.  The various camera images and views are then combined to create a high 

resolution 3D point cloud or mesh.  The whole-body scanner does not see through 

clothing, but rather returns what amounts to a 3D surface camera image.  Accordingly, 

the scanner is no more intrusive than a standard digital camera.  

 

Low-power indoor radar will be used to record the phase-Doppler signatures of the test 

movements.  

 

1) A linear frequency modulated homodyne (LFMH) radar with separate transmission 

and receiving antenna units. The system is capable of supporting frequency chirp rates of 

up to 10 KHz while maintaining 512 frequency steps/chirp, with 10-20 cm resolution 

cells. The system is operational between 2-18 GHz, however, in this test, we will only be 

using X and Ku band.  

 

2) A bistatic, low power (less than 1 Watt) Doppler-range radar operating from 250 MHz 

up to 3 GHz using a pulsed Chirp waveform.  

 

3) NEW ADDITTION: An Agilent PNA-L Series Network Analyzer (static 

measurements) will be used in conjunction with the antennas used in sensor 2. The 

power output of the PNA-L is significantly less than the power output of the radar 

(~ 0.003 Watts.) This new sensor will be used in two ways: 
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a) 3D Biosignatures laboratory, Building 824, Area B; in conjunction with the 

other sensors previously approved.  

b) Indoor Range, Building 620, Area B, Indoor Range behind a wall (which 

decreases the radiation output.) and using a turntable.  

 

The reason for this change is to increase the situational awareness to the warfighter in 

situations when the human subjects are located inside a building or man-made structure. This 

new location is required due to the extremely LOW power nature of the system. The system is 

extremely low power (SIGNIFICANTLY safer to the human subjects) and requires a quiet area 

in order to receive the scattering measurements. The measurements in this alternate location 

will only be performed on a small subset (less than 10 subjects) of the group. This test will be 

performed over a short period of time (less than one month) and will conclude when the data 

acquired from the 10 subjects is collected. Appropriate safety inspections and protocols have 

been completed. The relevant safety documentation is included as an attachment. 

3) An Xbox 360 Kinect sensor. This sensor is equipped with multiple passive detectors 

and emits no radiation.   

 

4) 2D video may also be taken with a standard video camera. 

 

5) Participants will also be asked to carry a pedometer attached to the waist or a phone 

with a pedometer application in their pockets. Neither of these will emit radiation above 

that of a standard cellular phone. 

 

6) Polarization Cameras:  The two polarization cameras to be used in this study are the 

PIRATE camera which operates at 7.8-9.8 microns and the SPITFIRE, a four band 

camera that operates at 3.2-3.7, 3.7-4.2, 3.2-4.2, and 4.5-5.0 microns. The benefit of 

polarization sensing is that it provides 3D shape information of the objects in view from a 

passive sensor.  So, where you could get true 3D shape information of a vehicle or a face 

from a laser radar system, polarization gives you this information passively, with one 

image.  For this study, the polarization data will be used to evaluate the changes in the 3D 

signatures of human subjects performing the operationally relevant activities described 

below.  Because the polarization imaging technique is completely passive (much like a 

standard video camera), this type of sensor poses no risk to human subjects or persons 

operating the equipment. 

 

7) Hyper-spectral Imagers:  The Four Hyper-spectral imagers to be used in this study are 

the ASD FieldSpec 3 which operates in the range of 350-2500nm, the HyperSpectTIR 

HST which operates in the range of 450-2450nm, the PHIRST light II SCC BAE which 

operates in the range of 400-720nm, and the SOC700 which operates in the range of 430-

900 nm.  The collection of hyper-spectral data takes advantage of hundreds of spectral 

channels producing extremely high resolution that provide characteristics of materials 
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previously missed with multi-spectral imagers.  For this study, hyper-spectral imagers 

will be used to determine the slightest change from 350nm - 2500nm wavelengths (1nm - 

10nm resolution), of dismounts performing operationally relevant activities.  Hyper-

spectral imaging is completely passive (just like a standard video camera), so these 

sensors will pose no risk to human subjects or persons operating the equipment. 

 

8) Ladar Video Camera:  The ladar video camera to be used in this study is the ASC 

Flash Ladar Video Camera (FLVC).  This camera can measure the range of all objects in 

its field of view with a single laser pulse.  Light from the laser illuminates the scene in 

front of the camera lens, which focuses the image on to the 3D sensor focal plane array.  

The range to the object viewed by each pixel can then be computed.  The benefit of a 

Ladar Video Camera is that it can provide 3D shape information in real time, and that is a 

sensor that could be used in the field, not just a laboratory.  Nominal Ocular Hazard 

Distance (HOHD), and Skin Hazard Distance (NSHD) were both calculated for this 

sensor.  These values were calculated for unaided viewing (Bare eye, no focusing optics), 

and aided viewing (Focusing optics).  The greatest distance for any of these calculations 

is 200cm.  The sensor will be mounted approximately 100 feet away from subjects and 

equipment operators, which is far beyond the calculated Hazard Distances.  This sensor 

poses no risk to human subjects or persons operating the equipment.    

 

 

The 88
th

 Medical Group Bio-Environmental Safety Group has evaluated all radar systems 

at the described parameters and concluded that they pose no significant health hazard.  

Copies of the test certificates are included in the appendix.  Operation specifications are 

also available upon request. 

 

 

b. Subjects: 

 

We anticipate requiring approximately 100 healthy adult subjects over the age of 18.  The 

subject sample size was chosen to provide variability in size and shape while still being 

practically attainable in terms of recruitment, cost, and time.  The first wave of testing 

will be accomplished by targeting recruitment to attain subjects in each of 3 age 

categories: 18-29, 30-50, and 50+ yrs.  Subjects will be recruited from all WPAFB 

personnel using an e-mail announcement and flyer, see attachments 1 and 2. We will then 

analyze the subjects’ height, BMI, and other anthropometric measurements to determine 

the statistical robustness of the sample group. Based on this analysis, further advertising 

may be done in order to achieve an approximation of the anthropometric measurements 

of the broader population.  

 

NOTE: If necessary we will recruit subjects of a specific set of measurements (height, 

weight, etc.) from a local talent agency in order to round out our data set to achieve the 

necessary statistical robustness. For instance the PC Goenner Talent Agency located at 

123 Webster St. Dayton OH 45402 has a wide variety of persons available for hire at 
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hourly rates for modeling. This option will only be used if the volunteer sample set lacks 

sufficient statistical robustness. An amendment to the protocol will be submitted to the 

IRB should this option occur. No varying recruitment methods will be used until IRB 

approval of said changes. 

 

c. Duration: 

 

The time commitment for most subjects will be a single session lasting approximately 

one hour to one and a half hours.  The time commitment for a small subset of no more 

than 10 participants will be asked to perform a second session in the Indoor Range, Area 

B, Bldg 620. This additional second session will last approximately 30-45 minutes. 

Duration for the entire study is estimated to be one year comprising data collection and 

analysis, although additional data analysis may continue thereafter. 

 

d. Description of experiment, data collection, and analysis: 

 

Most testing will take place in the 3D Biosignatures laboratory in Area B, Bldg 824.  A 

small subset of 10 participants will be asked to perform a second session in the Indoor 

Range, Area B, Bldg 620. At the beginning of the test session, each subject will be 

provided an informed consent document for his/her review and signature, with the 

opportunity for questions and clarifications.  

 

Each subject's gender, height, and weight will be recorded. Subjects will also be asked to 

provide their ethnicity and whether they are healthy, able to perform the required 

movements, and whether they have any implanted medical devices, prosthesis, or other 

medical conditions that could exclude them from participation.  A few additional limb 

length measurements may also be performed using a standard flexible tape measure.  

 

The subject will then be scanned in a comfortable static pose. The scanner requires that 

the subject hold still for only a few seconds. 

 

Each subject will then perform several different movements in the motion capture area 

where the radars are situated.  These will consist of movements or activities that are 

performed on a regular basis, including walking the length of the capture area 

(approximately 50 feet), standing still in various poses, picking up a small object (ie, a 

pen or a tennis ball), and pantomiming a throwing motion.  No more than about five 

repetitions of each activity will be performed.  These activities are designed to replicate 

typical activities that an adult might engage in during various in-field surveillance 

scenarios and to achieve necessary radar cross sections. 2-D video and radar will be 

collected during each movement (only one radar unit will be used at a time). 

 

For a small subset of the participating group, an appointment will be scheduled to 

perform a data collection in the indoor range. Each subject's gender, height, arm 

length, leg length, and head size will be recorded after the signed consent form is 
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collected. The subject will then enter the indoor range and stand in a turntable that 

will rotate every twenty seconds for at most thirty times. The radar will be turned 

on and off during that period. A rest period may be requested if the subject is tired 

or requires rest. The total time the subject will need to stand in the turntable is 

approximately 15 – 45 minutes (rest periods are included in this estimate.) The 

experiment will stop should a participant find standing for a prolonged period of 

time difficult.  

 

As the data will be used by various collaborators in several different analyses, data will 

be immediately de-identified (2-D video and 3-D scans) and raw, identifiable images will 

be permanently deleted.  De-identification of data will be done as described in section 8f 

below. 

 

Two different groups (RHXBA and RYM) will perform separate analysis on the collected 

data, and copies of de-identified data will be housed internally in both building 824 and 

620.  Access to data will be controlled by the investigators listed on the protocol (see also 

section 8f). 

 

Dr. Bruening and colleagues in RHXBA will investigate differences in size, shape, and 

movement between differing demographic groups.  Anthropometric measurements will 

be taken from the 3-D scans and compared to previously collected adult scan databases 

using regression techniques.  2-D video will subsequently be used to determine whether 

the discovered differences from the previous analyses are detectable from planar images.   

 

Dr. Miranda and colleagues will investigate human target discrimination from radar data 

and 2-D video.  Collected variables will be compared to similar measures in other active 

statistical data sets (CDC, AFRL, etc.) For radar data, a mathematical spline method will 

be carried out in order to extend the pre-existing anthropometric results to increase the 

robustness of the statistical analysis. Basic linear regression models will be used to form 

an initial first order Bayes-based classifier. A new classifier based on support machine 

methods will be developed and compared to the Bayes-based classifier for consistency of 

statistical results.  2-D video may also be analyzed in a similar fashion. 

 

e. Safety monitoring: 

 

The investigators listed above will monitor subject safety throughout the data collection. 

Risks should not be greater than for typical daily activities. 

  

f. Confidentiality protection: 

 

Subjects will be listed by name on a contact roster and assigned a study number.  That 

number will be assigned to the test data.  No other personal identifying information will 

be assigned to the data sets, and the roster and test data will be kept separate.  The contact 

roster will be stored on a locked computer and locked cabinet in Bldg. 824, and accessed 
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only by investigators listed on this study.  The de-identified data sets will then be made 

available to selected researchers in Bldgs 824 and 620.  Access will be controlled as 

mentioned above. 

 

3-D Scanner images will be de-identified by blurring the facial pixels and colors, as 

shown in Figure 2.  Similarly, 2-D video data will be de-identified by applying a blur or 

pixilation to each video frame as shown in Figure 2. 

 

 

 

9. Risk Analysis 

 

This study includes only tasks that are performed on a daily basis and is thought to be of 

minimal risk to subjects.  Subjects will be informed that if they feel tired they may stop 

the test at any time. Radiation exposure from the radar is well below the exposure limit of 

2      for 6 minutes/action level of 1     . The results from the Electromagnetic 

Frequency Radiation Surveys conducted 8-14 Aug 2012 AND 18 Dec 2012 demonstrates 

the measurements, calculations, and delineates the exposure limits as required by law. 

 

 

10. References 

1. NA 

11. Attachments 
A. E-Mail Announcement 

B. Flyer 

C. Informed Consent Form 

D. Resumes of investigators 

E. Electromagnetic Frequency Radiation Surveys (2) 

F. Safety Inspection Letter 
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