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Abstract

In this thesis we develop a method to discriminate between adult and child radar
signatures. In particular, we examine radar data measured from behind a wall,
which introduces radar signal attenuation and multipath effects. To investigate the
child/adult discrimination problem in a through-wall, multipath scenario, a previously
developed free-space human scattering model was expanded to incorporate multiple
paths, and the effects of transmission through, and reflections from, walls and ground.
The ground was modeled as a perfectly reflecting surface, while the walls were modeled
as homogeneous concrete slabs. Twenty-five reflection paths were identified, involving
the direct paths, as well as reflected paths between the ground and an adjacent wall.
All paths included two-way transmission through an obstructing wall.

In addition to the model expansion, radar scattering measurements were collected
from human volunteers, both child and adult, in order to investigate the classification
of child and adult through-wall radar data. To our knowledge, this thesis is the first
published work that analyzes child radar scattering data. A classification accuracy
of above 95% was reached in both the time and frequency domains, indicating that,
with minimal processing, a high degree of certainty is achievable in characterizing a

subject behind a wall, in a real-world, multipath environment.
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DISCRIMINATION BETWEEN CHILD AND ADULT FORMS
USING RADAR FREQUENCY SIGNATURE ANALYSIS

I. Introduction

Medical imaging modalities often illuminate humans with electromagnetic radia-
tion in order to infer the properties of living tissue. With its longer wavelengths, radar
may be used to infer larger features such as head size and thigh length. Additionally,
similar to how a law-enforcement professional uses radar to determine the speed of
a driver, we can use radar to detect the speed of human limbs. Anthropologists use
measurements to characterize and classify groups of humans with similar features.
Radar data may be used in conjunction with physical measurements to build an age
classification tool that may ultimately provide a method of remotely characterizing
human activity.

Unlike optical sensors, radar systems need not rely upon line-of-sight or good
weather to perform well. Radar is capable of penetrating building materials, cloth,
and foliage due to its long wavelength, and thus is ideal for the detection of objects
behind barriers and other visual obstructions. Work has been done in imaging humans
using radar both from the standpoint of a moving platform [1], and through walls at
close range, from a stationary platform [2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Through-wall
radar provides vital information about the situation inside buildings. The ability to
distinguish between types of people, such as adults and children, becomes especially
important in situations like the Sandy Hook Elementary school shooting, in which
law enforcement had no ability to determine where the children were located with

respect to the shooter. Although previous work has been done in both identifying



human activity and distinguishing male from female, no research has yet developed

models which discriminate between children and adults.

1.1 Problem

The problem tackled by this thesis is two-fold: multipath modeling and child /adult
classification. A human radar signature inside a building is complicated by clutter
due to obstructions and objects inside the building. Incorporating these varied effects
in a human radar signature model is difficult. Previous human scattering models have
included scattering due to humans in the presence of ground. The first part of this
thesis builds upon the work by Miranda, et al. [12, 13, 14, 15] to create a sphere-
cylinder representation of a human and a human radar scattering model, modified to
incorporate the multipath effects due to a corner, i.e., the ground and a wall adjacent
to the target.

The second part of the problem is the classification of the child or adult. This
project will identify features in the radar-scattering data that best distinguish a child
from an adult, and use a Support Vector Machine, a type of binary classification tool,
to classify the subjects based on these features. Finally, the results of the Support
Vector Machine will be explored using Principal Component Analysis to reveal the

relationship between child and adult classes.

1.2 Research Goals

In addition to the dual goals of developing the ground-wall human scattering model
and the classifier, experimental data will be gathered to validate the scattering model
and test the classification. The experiment setup will consist of a pair of concrete walls
arranged to form a corner. Human volunteers serve as the test subjects. Through-

the-wall radar-scattering data will be gathered from both children and adults.



1.3 Overview

The remainder of this document is organized as follows: Chapter II provides a
review of previous research regarding the radar detection of humans and human clas-
sification methods. Chapter III details background material and lays the project’s
foundation. Chapter IV launches into the theory necessary to advance the project,
while Chapter V provides the research approach and experimental procedures. Chap-
ter VI details the results and their analysis and discussion, and, finally, Chapter VII

presents the conclusions, implications of the research, and suggestions for future work.



II. Radar Detection of Humans and Human Classification

A significant effort has been made in identifying human subjects with radar data,
classifying their movements, and locating them through obstructions such as walls.
What follows in this chapter is an overview of recent research pertinent to the problem
of radar human detection, emphasizing those which provide the framework for this
thesis. Efforts in human line-of-sight radar detection are discussed first, along with
research in identifying characteristic human movements. Following this, we present a
discussion of through-the-wall radar imaging. This chapter concludes with prior work

in the classification of humans.

2.1 Line-of-Sight Human Detection via Radar

Detection of humans using radar typically employs Doppler radar. Doppler radar
takes advantage of the frequency shift of a moving target in order to isolate it from
background stationary objects, and thus suppress clutter. The Doppler signatures
of moving objects are typically divided into two categories: “simple” Doppler and
micro-Doppler. Simple Doppler refers to the overall motion of an object — its lateral
translation in space, for example. In our detection scenario, this motion would corre-
spond to a human or animal moving across a room. Micro-Doppler contributes to the
overall Doppler return signal and can be extracted from it. These micro-Doppler fea-
tures stem from the movement of individual components of the subject: the swinging
of arms and legs, for example, as well as the more subtle variations of physiologi-
cal movement — the small fluctuations of the body and skin due to breathing and
the beating of the heart. These micro-Doppler movements are small and difficult to
isolate from noise, yet the isolation has been done, and research is ongoing.

In many remote detection situations, a moving target can indicate a human pres-



ence. However, the target may be also be another moving object or animal. In order
to reliably determine the presence of a human, work has been done to analyze the
features characteristic of human motion. Mainly, these distinguishing features are
present in the micro-Doppler. Because humans move in a fundamentally different
way from other animals, their micro-Doppler signatures are unique. Indeed, as re-
searchers have been able to distinguish between different species [16, 17], we may also
be able to distinguish individual humans. We expect that each person possesses a
unique set of “micro-motions” and so has his or her own “micro-Doppler signature”,
provided the individual micro-Doppler components could be resolved sufficiently [18].

The following subsections briefly describe efforts in line-of-sight motion detection.
First, we discuss the micro-Doppler motion of parts of the body. Then, physiological
monitoring is presented separately. A more specific application of micro-Doppler
signatures, physiological monitoring is considerably more difficult, requiring a much

wider bandwidth or higher frequency than other micro-Doppler motions.

Motion Detection

In many efforts to characterize the motion of humans, the radar spectrogram
has become the preferred method (Figure 1(a)). The spectrogram, generated by the
short-time Fourier transform (STFT) on time domain radar data, displays the various
component frequencies that comprise the motion of an object, including the motion
of the torso, arms, and legs. A human radar spectrogram varies depending on how
the subject moves and the way the subject carries objects [19, 2]. Resolution of
the different frequency components of the spectrogram improves as incident radar
wavelength shortens [2].

The spectrogram has been used as a measurement tool to create a realistic walking

model of a human with reasonable accuracy [20]. The spectrogram can be further
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Figure 1. The Spectrogram and Cadence Frequency of a Walking Human. Plot (a)
displays the spectrogram of a walking human over a period of three seconds. The graph
is formed from short-time Fast Fourier Transforms of the radar data. The component
with the highest amplitude (shown in red) is associated with the torso, which has a
Doppler frequency near 100 Hz, correpsonding to a velocity of 1.4 m/s. The motion
of the arms and legs are seen in the sawtooth pattern above the torso component.
This motion produces a cadence frequency of about 2 Hz. The cadence frequencies are

shown in (b). The torso again produces the strongest intensity; its cadence frequency
is near zero due to its near-constant velocity. [Reprinted with permission from [16]].

evaluated using tools such as cadence frequency plots, which display periodic micro-
Doppler signals present in the spectrogram (see Figure 1(b)), in order to characterize
subjects using features such as speed, stride length, and body ratios to determine
actions, size, gender and species [21, 16, 22].

Giirbiiz [21] cautions against applying the cadence frequency plot to estimate
subject parameters, especially with limited data of the subject or when noise and
clutter are present. The estimation works well when there is low noise and the subject
is close to the antenna, resulting in high signal-to-noise ratio. Parameter estimation
from the spectrogram is also sub-optimal for human subject reflections because the
signals have nonlinear phase. An alternative backprojection-style technique described
in [21] tends to be significantly more accurate when noise is present. Unfortunately,
the iterative technique is computationally intensive, rendering it impractical for real-

time detection. Cadence frequency plots appear to be useful for the study of human



walking motion in controlled, laboratory settings, yet, again, care must be taken when
applying the method to real-world, complex scenarios.

Despite the drawbacks in the use of cadence frequency plots, the spectrograms
themselves are rich in information that characterizes the moving subject, in terms
of the component frequencies and shape of the spectrogram. The spectrograms of
individual limbs of a walking human have been isolated [2, 23|, and those character-
izing different types of movements have been studied [7, 19, 23, 24]. This informa-
tion may be used to classify human activity [19, 24] (discussed later). Additionally,
improvements upon the basic spectrogram methods have been proposed, including
the reassigned joint time-frequency (RJTF) transform [2], and an approach using a

quadratic time-frequency S-method in conjunction with the Viterbi algorithm [18].

Physiological Monitoring

In this paper, physiological monitoring refers to the detection of the life signs of
a person — respiration and heartbeat — distinguishing this type of measurement
from the measurement of larger motion, such as translational or limb movement.
Physiological measurements can be obtained with other micro-Doppler measurements,
but they require an accurate radar system using a very wide bandwidth, or high
frequency, in order to resolve the motion of the chest and skin.

The interest in physiological monitoring lies in the possibility of detecting a per-
son’s life signs from a distance. Standoff detection can aid in locating disaster victims
trapped in rubble, who are unable to move, but can still breathe. Physiological mon-
itoring from a distance could aid the measurement of vital signs of those who cannot
have detectors placed directly on the skin, such as burn victims. It may also be
useful in law enforcement and military application in detecting people hidden behind

doors, in closets or containers, in assessing casualties from a distance when it may



be dangerous to approach, and in monitoring vital signs through chemical or bio-
logical protection suits. These military applications have seen research as early as
the mid-1980s, under the term Radar Vital Signs Monitor (RVSM), developed by the
Georgia Tech Research Institute [25]. This monitoring system could detect heartbeat
and respiration up to 100 meters from the subject; however, it suffered at high ranges
due to clutter from moving foliage. Georgia Tech developed a later version in 1996
to evaluate Olympic athlete performance. Operating at 24.1 GHz, the new version
was able to detect the pressure wave propagating across the thorax from the pump-
ing of the heart. The display of this pressure wave served as a time domain radar
cardiogram [25].

Yarovoy [26], rather than using a single high-frequency tone, employed an ultra-
wide bandwidth of 11.7 GHz in order to carry out frequency spectrum analysis to
detect human respiration. This bandwidth provided a resolution of 1.3 ¢m, and was
sufficient for showing the difference in amplitude due to inhalation and exhalation
of the lungs in the time domain. Yarovoy also noted that minor movements of a
stationary human contributed greatly to the spectral variation of the radar return;
thus, a person could be detected, not only by respiration, but also by these small
movements.

Most applications of physiological monitoring via radar involve through-the-wall
detection and implementation of ultra-wide band radar, as used by Yarovoy. Ultra-
wide band radar and efforts in physiological through-the-wall detection are discussed

in the following section.

2.2 Through-the-Wall Radar Imaging

Radar applications most relevant to this thesis are those involving through-the-

wall detection of targets. Analysis of such radar signals provides information of
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Figure 2. Frequency Tradeoff (reproduced from [2]). Both plots display the simulated
STFT spectrogram of a human walking at 1.4 m/s toward a Doppler radar. The plot on
the left shows the results for a carrier frequency of 24 GHz — the resolution is superior,
with contributions by portions of the body easily identifiable and labeled. The plot

on the right displays results for a carrier frequency of 2.4 GHz. The micro-Doppler
components are blurred and difficult to distinguish.

activities occurring out of view of observers. Radar signal attenuation though walls
increases quickly as a function of frequency, so frequencies below 5 GHz are often used
2], ideally restricting the bandwidth to the ultra-high frequency (UHF) range, about
500-1000 MHz, for best penetration. There is a trade-off, however, between Doppler
sensitivity and signal penetration: signal penetration improves with lower frequency,
but sensitivity and resolution improve at higher frequency. The difference in frequency
resolution was demonstrated by Ram [2] in the comparison of spectrogram simulations
of a walking human at carrier frequencies of 2.4 GHz and 24 GHz. As seen in Figure
2, the spectrogram of 24 GHz has better resolution of the micro-Doppler components,
but through-wall signal attenuation at this frequency is severe.

A second property of through-the-wall radar imaging is employment of an ultra-
wide band spectrum. Ultra-wide band (UWB) radar provides superior resolution
and information content not available in a single frequency. The two characteristics
of UHF and UWB are the common properties behind good through-the-wall radar
imaging systems. Noise waveforms are also used, as they have properties suitable for

accurate and inconspicuous detection of subjects. [3]



The next two sections briefly describe the merits of UWB radar and UWB noise
radar, as they apply to through-the-wall imaging, including prior efforts in through-

the-wall detection of humans using these types of systems.

Ultra-Wide Band Radar

Ultra-wide band (UWB) radar is defined as having a signal with a fractional
bandwidth greater than 20% [27]. The fractional bandwidth, Af, is defined as [27]

C2(fu—fL) fu—fL
Af= fu+fi  fo

(1)

where fg and f;, are the upper and lower boundaries of the bandwidth, respectively,
and fy is the average of the two frequencies. A wide bandwidth provides good range

resolution. For the bandwidth B = fy — f1, the range resolution AR is [28]

C
AR= — 2
R=x (2)

where ¢ is the wave propagation speed (speed of light for EM waves in vacuum).
Additionally, depending on the ratio of wavelength to object size, the wide bandwidth
may provide information from different scattering regimes. For an object of size
[ under incident radiation of wavelength A, there are three regimes of scattering:
Rayleigh (A >> [), resonance (A =~ [), and optical (A << [). Provided the bandwidth
is large enough, the scattered signal can provide information about the object in all

three regimes [28].

Noise Radar

Random noise radar, although not applied in this thesis, is mentioned here due

to its advantages in through-the-wall detection. Random noise radar employs a non-

10



periodic, incoherent waveform which provides two main advantages in radar detection.
The first is the suppression of range and Doppler ambiguity which allows unambiguous
high-resolution imaging [3, 28]. For example, for a periodic waveform with repetition
frequency f,., ambiguity in range occurs when the range R > R,., = ¢/(2f,) [28]. A
non-periodic noise waveform has f, = 0, ensuring that the range ambiguity condition
is never met. The second advantage is the inherent low probability of intercept (LPI)
and low probability of detection (LPD) afforded by noise waveforms. Periodic pulses
of energy are easily detected and recognized by adversaries who would employ coun-
termeasures to avoid detection, such as jamming and interference. Noise waveforms,
on the other hand, are extremely difficult, if not impossible, to detect and jam. Since
they are featureless, such waveforms are ideal for covert, through-the-wall sensing in
hostile environments [3].

Coupled with UWB radar, a noise radar system appears to be the ideal in ac-
curate, through-the-wall, covert imaging. Such a system provides real-time Doppler
discrimination and target tracking at low cost, with high resolution that diminishes
the effects of multipath and clutter. The following sections will detail some of the

recent efforts in through-wall human detection, to include successes with noise radar.

Human Detection

Through-the-wall detection of humans began in the 1980s to search for signs of
life of survivors trapped during natural disasters [4]. Recent efforts in the detection
and tracking of humans include through-the-wall scenarios for military and law en-
forcement applications, particularly with random noise radar, and employing micro-
Doppler extraction; one portable system with a future backpack design was even
introduced in [4]. These experiments have been divided into two categories: motion

detection and physiological monitoring.

11



Motion Detection

The motion detection problem includes the tracking of humans within a room
and identification of activities performed, a very difficult goal, particularly when
the human subject cannot be visually seen. Researchers at the University of Texas
investigated methods of gathering location information on multiple moving human
subjects, using a carrier frequency of 2.4 GHz [2]. Using Doppler discrimination, the
researchers were able to determine the azimuth direction of arrival (or bearing) of
the subjects, provided that each subject is moving at a different radial velocity with
respect to the radar. Their method was later extended to capture two-dimensional
azimuth-elevation and three-dimensional range-azimuth-elevation information. The
researchers found, however, that the probability of successful resolution of multiple
subjects drops off as the number of subjects increases [2].

Another through-wall motion tracking technique was described by Wang [5]. This
technique employs the subtraction of successive frames of cross-correlation signals
between each received and transmitted signal. In essence, it extracts the signals of
moving subjects — suppressing interference between transmit and receive antennas
and environmental clutter — and leaves only the moving subject (or multiple moving
subjects) to be displayed via a back projection algorithm. If the wall electrical pa-
rameters of dielectric constant and conductivity are unknown or incorrect, the image
of the moving subject is displaced a distance less than the system resolution, which
is usually acceptable.

Because human body motion is usually non-linear and non-stationary, Hilbert-
Huang transform (HHT) analysis proved a viable method of time-frequency analysis
and isolation of various movement profiles [6, 7]. This technique involves empirical
mode decomposition (EMD), which empirically identifies intrinsic oscillatory modes

(or intrinsic oscillatory mode functions, IMFs) that are defined by their time scales

12



of oscillation. The original signal is decomposed into these IMF's, then Hilbert trans-
form is applied to derive the instantaneous amplitude and frequency of the IMF. The
time-frequency distribution of the IMF amplitude, i.e., the Hilbert spectrum, can then
be plotted, resulting in a spectrogram similar to the STFT spectrograms presented
previously. However, the HHT spectrograms have higher time and frequency reso-
lution and are better able to display fluctuations in repetitive movements of human
subjects, such as a waving arm. The STFT spectrogram is less capable of display-
ing these minute differences. HHT analysis is thus more appropriate in detecting
variations of movement in noisy environments, such as through-the-wall scenarios.
(6]

Individual IMFs contain unique oscillatory information present in a scene, so it is
possible to isolate individual movements, or combinations of movements, by separat-
ing IMF's that contain information of a particular movement of interest. Narayanan
[7] used the energy distribution across IMFs to characterize different through-wall
movements — such as standing and breathing, shuffling while seated, moving arms
rapidly up and down, and lifting large objects — and to differentiate them from
the absence of a human. Additionally, the IMFs were used to recreate the Doppler
signatures from the movement of different sections of the arm.

A relatively recent technology called the Radar Scope, developed by DARPA, was
a hand-held device capable of detecting movements as small as breathing through
a foot of concrete and 50 feet into a room [8]. Another DARPA technology, called
VisiBuilding, is a much more advanced system. It is intended to see through multiple
walls in order to image entire floor plans, as well as occupant and object locations,
as fully-usable, model-based diagrams rather than “radar blurs” common to most

imaging techniques [9].
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Physiological Monitoring

The detection of human physiological information is a difficult problem that be-
comes worse when attempted through barriers such as walls. Physiological movements
— the rise and fall of a person’s chest as they breathe, the beating of the heart and
the small, associated fluctuations produced in the skin — are very small compared to
limb movements. Thus, limitations on the use of physiological monitoring techniques
exist. A human subject must face the radar because the Doppler shift will be indis-
tinguishable otherwise. Additionally, the subject must be near to the separating wall.
Averaging is necessary to determine the central Doppler shift which takes additional
time. A through-the-wall detection system must necessarily be low-frequency to avoid
signal attenuation, yet the bandwidth to detect the small motions of breathing (3.75
cm resolution) is 4 GHz which is outside the range of low-frequency through-the-
wall systems. To remain in the low-frequency UHF band and still detect such small
movements, a single-tone frequency is needed. [6]

Several researchers have demonstrated the detection of physiological signals in a
through-the-wall scenario. Bugaev [10] measured the pulse rate and breathing rate of
a human subject behind a wall with a 2-GHz system. Bugaev was able to show the
increase in pulse rate due to the subject holding his breath for an extended period
of time thus experiencing oxygen starvation. Additionally, Bugaev showed that the
amplitude of breathing is much greater than that of the heart rate. Movements of
the body during speech were also recorded, and the possibility of speech recognition
via radar was indicated.

One technology field tested by 2000 was the RADAR Flashlight, developed by the
Georgia Tech Research Institute as the descendant of the RVSM systems that mea-
sured Olympic athletes. The system detects both body movement and the breathing

of subjects behind walls and other barriers, and was intended primarily for law en-
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forcement applications. The detection of involuntary respiration of subjects hidden
behind doors and walls during search scenarios is critical when the subject can not be
depended upon to voluntarily move, or in hostage situations when the subject may
be prevented from moving. Early versions of this system operated at 24.1 GHz; the
more recent prototype operated at 10.525 GHz. [11]

Using the HHT processing approach described earlier, Narayanan [3] and Lai [6]
employed an UWB noise wave form concealing a single 2-GHz tone in order to measure
the expansion and contraction of the chest cavity in breathing. The IMFs correspond-
ing to the Doppler frequency associated with human breathing were isolated and were
also used to distinguish cases when no human was present.

The HHT process may lend itself well to classification of human movements and
activity, provided enough measurements are taken. This concept, and others, will be

described in the next section.

2.3 Human Classification

Human classification involves the discrimination between different types of people,
based on various parameters, such as gender, age, or even activities being performed.
Additional classification efforts involve discrimination between humans, animals, and
vehicles. Discrimination via radar is mainly intended to address the challenging
question of determining human intent, so that accurate decisions may be based on
this information. Radar discrimination itself can be a difficult problem, because
of the need for a high signal-to-noise ratio in order to resolve what may be small
differences that characterize the desired classification scheme. For example, Giirbiiz
[29] demonstrated a method of gender discrimination by extracting the thigh height
from cadence frequency plots derived from radar human spectrograms and employing

a Neyman-Pearson detector based on statistical human dimensions to classify the
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person as male or female. This technique suffers, however, from the inaccuracies
inherent in noisy spectrograms and cadence frequency plots.

Although this thesis will employ an age-based classifier to discriminate between
children and adults, movement-based classification is presented here, due to its rele-

vancy to the through-wall human detection problem.

Movement-Based Classification

Otero [16] developed a binary classification system, extracting features from the
cadence frequency plot of human spectrograms, in order to discriminate between
situations when a walking human was present, and when no one was present. The
correct classification rate was 88%, with no false alarms seen. Due to the significant
spectrogram differences between a human’s two-legged gait and an animal’s four-
legged gait, Otero was able to discriminate humans from animals. Such a multi-class
classifier, which can determine both the presence of a human, and distinguish human
signatures from those of animals, may be very useful in applications of security and
perimeter protection.

In addition to species differences, human radar spectrograms display noticeable
differences due to changes in movement and walking pattern of the subject. Ram
2], using the RJTF transform, demonstrated such differences in a human carrying
a variety of objects: a corner reflector, metal box, and metal pole. Contributions
from the reflector and pole are seen in the spectrogram, as well as an altered walking
pattern due to the person carrying the box in both hands.

Kim [19] studied the spectrograms of seven human activities — running, walk-
ing, walking with a stick, crawling, boxing in place and while moving forward, and
sitting — in order to build a classifier to distinguish among them. A 2.4-GHz, line-

of-sight radar system was used, and six features extracted from the spectrogram of

16



each movement to be processed with the classifier. Although the classifier could pro-
cess the entire spectrogram itself, such a method results in high-dimensional data, a
complex internal structure of the classifier, and a long training process. Paring the
data down to a subset of correctly chosen features, however, significantly reduces the
data dimensions while still maintaining the important characteristics of the spectro-
gram. Each of the chosen features, such as torso Doppler frequency, total bandwidth,
and Doppler offset, was identified with a specific characteristic of the motion of the
human. A Support Vector Machine (SVM), a type of binary classifier to be described
in greater detail in Chapter IV, was used together with a decision tree to classify
the spectrograms. Further analysis found that only four of the features were nec-
essary for classification accuracy above 90%. Researchers also tested a sequence of
activities with classification errors arising in the transition between activities, as ex-
pected. Through-wall measurements were briefly investigated with the finding that
the signal-to-noise ratio suffered and that micro-Doppler movements were much more
difficult to identify, particularly as the human subject moved further away from the
radar. Kim indicates, however, that improved hardware may result in significant
signal improvements.

A second effort using SVM classification was carried out by Fairchild [24], this
time using HHT analysis and the EMD algorithm to extract features from human
micro-Doppler signals for classification. Fairchild used a 750-MHz radar system, with
human subjects placed behind a wall. The SVM was paired with a one-against-all
method in order to handle multi-class classification. Six classes were identified: noise
or no subject, breathing or holding breath, swinging arms, picking up an object,
standing from a crouch, and miscellaneous movements. It was shown that the energy
distribution over the signal’s IMF components was unique to specific movements, and

an average classification accuracy of 83% was obtained.
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The work detailed above demonstrates successes in classification of human pres-
ence and activity. This thesis will add another component to the radar classification
problem: child-adult discrimination, which will provide further information about

potential situations within a building.
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ITI. Previous Work

This chapter describes the research that provides the project’s foundation. An
effort in age-based classification based on anthropometric measurements is briefly
discussed, followed by precursor work to this thesis. The development of the Miranda
human cylinder-sphere model is described, as adapted to this project. The Miranda
human scattering model will be explained in Chapter V after supporting background

is presented.

3.1 Age-Based Classification

Although efforts at discriminating adults from children via radar analysis are rela-
tively recent, there has been work to accomplish age-based discrimination using other
methods. This section describes efforts by Bowden [30] to develop a classification
model based on anthropometric measurements.

There is a difficulty in obtaining data on children. In research ethics law, children
are a protected population, so there is limited existing research data available, and
new data is difficult to obtain. Bowden found only one public domain database of
child anthropometric data, a 1977 study called “Anthropometry of Infants, Children,
and Youths to Age 18 for Product Safety Design”, provided by the National Institute
of Standards and Technology. [30]

The classification scheme in [30] targeted three groups: subjects under 96 months
of age, those between 96 and 144 months, and those over 144 months. A variety of
anthropometric measurements were used to develop a multiple linear regression equa-
tion to determine group recognition rates. The equation coefficients were determined
via sigma-plot software, and custom Labview software determined the rates.

The regression was originally carried out with all seventeen anthropometric mea-
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surements available. From these seventeen, two were identified as providing the bulk
of the accuracy in the multiple linear regression, with little gained by the addition of
the other variables. These two measurements were femur length and skull length. In
the dataset consisting of both the 1977 data and supplemental data from subjects 18
to 79 years of age, the accuracy of the regression in the two-variable case was about
91%. A similar experiment was done involving only two groups, divided at age 144
months. The two-variable regression accuracy for the two groups was about 96%.
The multiple linear regression model developed to achieve this two-group accuracy
was [30]

Age Group = 0.391 + 0.00400F7, — 0.00459H, (3)

where Fp, is the femur length (buttock to knee length as given in the report), and
Hp is the length of the head. An investigation into noise added to the measurements
indicated that accuracy does not begin to fall significantly until 4-8 cm of measure-
ment error is reached, indicating that classification based on reasonably accurate

measurement data can be fairly robust.

3.2 Small Human Discrimination

In [1, 12], Miranda developed an analytical radar scattering model of a human and
conducted a series of radar scattering measurements to verify the model. The model
consisted of an arrangement of spheres and cylinders representing a simplified human
form. This section details the results of Miranda’s 2012 experiments and describes
her human cylinder-sphere model and electromagnetic scattering model.

The experiments involved the radar measurements of two objects, dielectrically
similar to humans, referred to as “Green Man” (162 c¢m tall) and “Timmy” (84 cm)
in the plots. Both human surrogates were filled with a compound that simulates a

combination of muscle and fat in order to mimic the dielectric properties of humans.
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Figure 3. Radar Scattering from an Adult (“Green Man”) Substitute (reproduced from
[31]). Scattering amplitude in the range domain is displayed on the left; frequency
domain on the right. The wide peak in the center of the range domain indicates the
adult substitute — it is a much broader peak than that of the child substitute (Figure
4). The resonance region of the human substitute, 500-750 MHz, is displayed in the
plot on the right.

These objects were measured with a radar system operating at a frequency range of
250 MHz to 3 GHz. Measurements were taken at two elevation angles and multiple
azimuth angles. Characteristic measurement results are shown in Figures 3 and 4
[31]. The first figure displays the measurements for the adult “Green Man” in the
range and frequency domains, while the second displays the same domains for the
child “Timmy.”

In comparing the sets of plots for the adult and child substitutes, note that, in the
range domain, the radar return for the adult substitute is broader, and the noise floor
tends to be higher. The child substitute, on the other hand, has a much narrower
return, and the shape is less distinguishable. In the frequency domain, a resonance is
seen for both objects at about 500-750 MHz. This resonance region is worth noting,
because this thesis is concerned with radar frequencies of that range.

To further characterize radar scattering from adults and children, both human sur-

rogate models were digitally scanned to obtain their geometries in order to perform
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Figure 4. Radar Scattering from a Child (“Timmy”) Substitute (reproduced from [31]).
Scattering amplitude in the range domain is displayed on the left; frequency domain
on the right. The narrow peak in the center of the range domain indicates the child
substitute. The resonance region of the substitute, 500-750 MHz, is displayed in the
plot on the right.

numerical backscattering radar cross-section (RCS) simulations. The simulations were
carried out by Monopole Research located in California. These simulations demon-
strated elevation, azimuth, polarization, and frequency dependence of the RCS for
both the adult and child substitutes. Although elevation and radar polarization are
not tested in this thesis, the results are applicable to the overall problem of child-
adult discrimination. An example [32] of angular dependence of the RCS for vertical
polarization, displayed as cross-section domes, is shown in Figure 5. Only the results
for 0.5, 1.5, and 3.0 GHz are displayed.

To interpret these plots, the images can be viewed as if the object of interest is ob-
served from above, with a dome placed over the object. The relative value of the RCS
is then projected on this dome. Azimuth angles are plotted counterclockwise around
the dome, while elevation angles are plotted from the perimeter, at 5.5°, toward the
center, ending at 45.5° elevation. From these plots, note that the RCS of both objects
increases with frequency. More interesting, however, is how the RCS of the adult and

child substitutes differ. In general, the child substitute has a RCS approximately 5
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Figure 5. Radar Cross Section Domes of Adult and Child Human Substitutes (re-
produced from [32]). Adult RCS ”partial domes” for selected radar frequencies are
displayed on the left (a); child RCS domes are displayed on the right (b). VV polar-
ization is used. Azimuth angles are plotted counterclockwise from 0° to 360°, while
elevation angles increase from the perimeter to the center of each dome, over a range
of 5.5° to 45.5°. The colorbar scale displays RCS magnitude in dB. The RCS of both
objects increase with frequency, though the adult substitute’s RCS is much higher,
with the difference between the child and adult RCS greater at lower frequencies. The
adult substitute’s RCS also has a greater oscillatory structure across the angular range
than does the child substitute.
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dB lower than the adult substitute at high frequencies, with the difference increasing
toward low frequencies. The difference is more visible in comparing the upper and
lower plots of Figure 6. Additionally, there are fewer oscillations of the RCS across
the angular range for the child substitute than the adult substitute (best seen in Fig-
ure 5 at 1.5 GHz), and the adult substitute RCS appears to display more structure
with regard to frequency than the child substitute (Figure 6). Note, that in Figure 5,
the location of the maximum cross-sections, near azimuth 20° for the adult substitute
and azimuth 185° for the child substitute, are not due to a fundamental difference
in the objects themselves. They are due to the inconsistent rotation of the scanned
computer models of the objects: the adult substitute was rotated counterclockwise
about 20° and tilted slightly backward, while the child substitute was rotated coun-
terclockwise about 5° and tilted slightly forward [32]. Given the slight tilt and the
highest RCS on the perimeter near 5.5° elevation, it is seen that the highest scattering
from a human substitute occurs when the full silhouette of the object of interest is
presented to the radar.

The results of this project indicate a stronger frequency dependence in the RCS
for the child substitute than the adult substitute (Figure 6) and stronger VV than HH
scattering at low frequencies. Discrimination between the two objects of interest may
thus be best accomplished by considering the difference in magnitude and frequency
dependence of the RCS, or in the difference, particularly at low frequencies, in the
horizontal and vertical polarization RCS. [32]

These results can be explained by noting that the heights of the objects (162 cm
for the adult “Green Man” and 84 c¢m for the child “Timmy” ), in the measured wave-
length range of 10-100 cm, fall within the transition region between low-frequency
Rayleigh scattering and high-frequency geometrical scattering regions. At low fre-

quencies, the Rayleigh-scattering RCS integrated over the angles behaves as ~ f4,
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Figure 6. Frequency Dependence of the RCS of Adult (“Greenman”) and Child
(“Timmy”) Human Substitutes (reproduced from [32]). Frequency is plotted along
the horizontal azis; RCS (¢) on the vertical. The plot displays RCS averaged over a
small angular range near the maximum values of the RCS (as an illustration, consider
the lowest pair of plots in Figure 5, near azimuth 20° for (a) and azimuth 185° for (b),
where the maximum values lie). The lines show results for different polarizations — v
indicating vertical, and h indicating horizontal. The cross-polarization RCS are much
smaller, and are of less interest. The adult substitute’s RCS shows more structure than
that of the child, which is due to the angular distiribution of the RCS changing with
frequency, as in Figure 5 [32].
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leading to a large frequency dependence, particularly for the child substitute, which
is affected more by Rayleigh scattering at low frequencies than is the adult substitute.
Within this transition regime, the RCS is approximately proportional to the volume
of the object of interest at low frequencies, but proportional to the object’s surface
area at high frequencies. The transition between Rayleigh and geometrical scatter-
ing will take place at a wavelength proportional to the object’s size. Additionally, at
low frequencies and wavelengths near the object’s size, a vertically-oriented elongated
volume appears as an electric dipole, producing a larger radar return and a higher
RCS for vertical polarization than for horizontal. These observations are consistent

with the results of the project. [32]

3.3 Miranda Human Model

The Miranda human cylinder-sphere model is based on the work of Sarabandi
[14]. The model (Figure 7) consists of a prolate sphere and a pair of cylinders. At the
range of wavelengths this thesis is concerned with (0.375-0.75 m), the wavelengths
can penetrate deeper into the body than just the skin; this model is thus concerned
with the scattering from bone rather than skin, and the resonances that originate in
the ribcage area at these frequencies [1]. The prolate sphere represents the skull of a
human while the horizontal, middle cylinder represents the ribcage, with the outward
curve of the cylinder mirroring the outward curve of the human ribcage, seen from the
side, and the ends of the cylinder extending to include the upper arms on either side
of the ribcage. The horizontal cylinder does not include the abdomen or shoulders,
since the bone structures of these areas do not fit the design of the model. The
vertical cylinder represents the thighs/femurs of a human with legs placed together,
excluding the hips and knee caps.

For our discussion, let the first cylinder be the middle, horizontal volume desig-
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Figure 7. Miranda Human Model. In the Miranda Cylinder-Sphere Human Model,
a prolate spheroid represents the skull of a human, a horizontal cylinder represents
the ribcage area, and a vertical cylinder represents the thighs of a human with legs
together. The major and minor radii of the spheroid are r,; and rs;, respectively. The
radius and length of the horizontal cylinder are r.; and L., and those of the vertical
cylinder are r.» and L.;. The perpendicular distance from the horizontal axis of cylinder
1 to the center of the spheroid is p;; the perpendicular distance from the same axis
to the center of cylinder 2 is p;. The parameters rs, 7,1 (head size) and p;1, p2 (body
length) effectively determine the sizes of the cylinders. The model is also wavelength-
dependent. The diagram here depicts an acceptable scale model for a wavelength of
A =0.5625 m and an average human height of H = 1.7526 m (5 ft, 9 in).
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nated by radius r.; and length L.;. Let the second cylinder be the lower, vertical
volume designated by radius r. and length L.,. The prolate sphere is the topmost
volume designated by minor radius r,; and major radius rg. These dimensions are
illustrated in Figure 7.

Now, an approximate analytical electromagnetic scattering solution from a cylinder-
sphere pair (or a cylinder and a second arbitrary scatterer, such as a second cylinder)

exists, if the following dimensional conditions are obeyed [14]:

S 2r2 L? > 2r2 (@)
P\ X =P7

where p is the perpendicular distance from the axis of the first cylinder to the center
of the adjacent object (either the sphere or second cylinder, in this case), L. is the
length of the first cylinder, r. is the radius of the first cylinder, and r, is the radius of
the sphere or characteristic dimension of the second object. The equation on the left
places the first cylinder in the far-field region of the adjacent object. The equation on
the right places the adjacent object in the near-field of the first cylinder with respect
to the cylinder’s length, and in the far-field with respect to the cylinder’s radius.

In the case of the Miranda human model, we obtain two sets of equations from

(4). The first set applies to the horizontal cylinder and the prolate sphere:

2r2 2r2
p1 > =t p1 > =2
, (5)
Lcl

2r3
2>t

where r4; and r4 are the minor and major radii of the prolate sphere, respectively; L.
and r.; are the length and radius of the horizontal cylinder; and p; is the perpendicular
distance from the axis of the horizontal cylinder to the center of the prolate sphere.

Similarly, the second set of equations, which applies to the horizontal and vertical
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cylinders is

2r2, 212,

P2 > PR P2 > 2 (6)
L2 2r2
>\1 Z p2 > Tl

where r» and L., are the radius and length of the vertical cylinder, and p, is the
perpendicular distance from the axis of the horizontal cylinder to the center of the
vertical cylinder. Both sets of equations, (5) and (6), must be satisfied.

This model is not only wavelength-dependent but also dependent on the size of
the human one chooses to model, as all dimensions must be representative of the
dimensions of a realistic human. To determine proper dimensions, the dimensions of
the head, r5; and rg, serve as the best anchor points, as the size of an adult human
head is relatively constant. Note that p; and p, will always be equal to some constant

length dependent on the size of the human model:
p1+pe=C (7)

With these restrictions in place, we can determine maximum and minimum sizes for
the radii and lengths of the cylinders and further narrow down the dimensions with
respect to what is appropriate for a human of the size we have chosen to model. For
a range of wavelengths, \,.;, t0 A\pnas, an appropriate p; and py chosen based on the
constant C', and r,, 45 known, the maximum r.; becomes the lesser of

Amin * P1 Amin * P2

Tel,maz = T or Telmar = T (8)

the minimum L.; becomes the greater of

Lcl,min - )\mam * P01 or Lcl,min = Amaw * P2 (9)
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and the maximum r., and L.y are

>\min * 02 )\mm * P2
c2,maxr — R Lc max — I — 10
reo, 5 2, 5 (10)

Limitations of the Model

In practice, the limiting dimension is L., and, to a lesser extent, L.. Realistically,
p1 will be less than ps, but a longer py will drive up the length of cylinder 1 until the
model breaks and becomes unrepresentative of a human. A longer wavelength will
also increase the length of cylinder 1. Thus, a balance must be struck between py,
p2 and A\pa. When p; and py are limited by the dimensions of the human body, an
upper limit is placed on wavelength \,,q..

The model created for this thesis is based on the dimensions of an average human,
1.7526 m (5 ft, 9 in) tall. The distance between the center of the head and the
midpoint on the thigh, C', was estimated to be 0.98 m. Taking into account the
wavelength, subject height, and dimension C, and targeting p; to locate the center of
the horizonal cylinder roughly in the center of the ribcage, we arrived at the following

model dimensions:

Table 1. Miranda Human Model Chosen Values

A =0.5625 m
H=1.7526 m (5 ft, 9 in), C = 0.98 m
Value
Parameter (m) (in)
Ts1 0.0762 3
Teo 0.1143 4.5
1 0.4 15.75
P2 0.578 22.76
Tel 0.1143 4.5
L 0.5702 22.45
7w 0.1345 5.3
L. 0.4022 15.83
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Table 1 and the guidelines for arriving at these values represent our contributions
to the Miranda human cylinder-sphere model. In investigating the magnitudes of the
parameters for various wavelengths, we found that the upper limit on the wavelength
for a realistic 5-ft, 9-in human was roughly the midpoint of our range, A = 0.5625 m.
This wavelength puts the minimum L. at 0.57 m, and the maximum L., at 0.40 m.
The minimum L., is just within a realistic limit, if our subject is holding the arms
slightly apart from the sides of the body, as if working on some task. Conversely, the
lower limit on the wavelength for a human of the same size is about 0.32 m. Although
this lower limit sets the minimum L., at a more comfortable length, the maximum
L is now at 0.304 m (roughly 1 ft), which is at the lower boundary of what might
be seen as a realistic thigh length, according to U.S. anthropometric data [33]. Other
populations may have alternate boundaries.

Thus, for an average human height, the Miranda cylinder-sphere human model
is limited to a wavelength range of about 0.32-0.56 m, which corresponds to the
resonance region of the human body, as seen in Section 3.2.

This chapter has discussed prior work in determining the dependence of a human
age-based classifier upon two primary anthropometric dimensions: femur length and
head length (Equation (3)). We have also described precursor work of radar-based,
child-adult discrimination, as well as the development of the Miranda human cylinder-
sphere model. The Miranda human model is based on Equation (4). Our contribution
to the Miranda human model is the adaption of the model to an average adult male of
1.7526 m (5 ft, 9 in), and the identification of appropriate representative dimensions

of the three volumes that comprise the model.
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IV. Theory

This chapter presents the theoretical background for the concepts addressed in this
paper. The first section describes the radar range equation as a brief introduction
to radar concepts, followed by the derivation of the scattered field from a dielectric
object which provides the basis for the Miranda scattering model and our multipath
expansion. Further background material, the fundamental development of the scat-
tered field representation, beginning with the wave equation, and the Support Vector

Machine as our classification method are developed in Appendices A and B.

4.1 Radar Range Equation

The radar equation is a fundamental model used in the design of radar systems.
It relates the main components of the radar — the transmitter, receiver, and antenna
— to the object of interest and surrounding environment, in order to determine
the maximum range of the radar system. The radar equation not only calculates
maximum range, but also various parameters affecting system performance. Using
this equation, a radar system designer balances the performance of the radar with
the design constraints imposed by the system, with the goal of optimizing the system
within given parameters. [34]

For background we shall present the derivation of the radar equation as seen in
Skolnik’s Introduction to Radar Systems [34]. To develop the radar equation, we
first consider the simplest case of the isotropic antenna which radiates uniformly in
all directions. The power transmitted by the antenna is F;, and the radial distance
from source to observer is R. The power density at some distance R is then the

total radiated power divided by the surface area of a sphere with radius equal to that
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distance:
b
(I)iso = FRQ (11)
A directive antenna, however, does not radiate in all directions equally but rather

concentrates the radiated power P, in one direction. The equation for an isotropic

antenna is then modified by the antenna gain:

maximum power density radiated by a directive antenna

Gt:

power density radiated by a lossless isotropic antenna with the same power input
(12)
Antenna gain is a measure of the increased power density radiated in one direction
as compared to that from an isotropic antenna. We now have the equation for a
directive antenna:
hG,

P = - 1
trans 47TR2 ( 3)

Now, place an object in the field of the antenna. Only a portion of the energy
radiated by the antenna will be intercepted by the object of interest. Since the
intercepted energy will then be reradiated in many directions, only a portion of the
intercepted energy will return to the receiver. The radar cross section (RCS) of the
object is dependent upon the incident power density and determines the power density
returned to the receiver. The RCS corresponds to the effective area that intercepts
the radiated power and scatters it isotropically. Given an RCS o, the reflected power

1s:
P.G,
47 R? “

Pref = Pirans0 = (14)

The power scattered by the object is again reduced by the surface area of a sphere to

determine the power density at the receiver distance:

P/)ﬂef . PthO'
4R (47)2R*

Dy = (15)
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Finally, the receiving antenna will only capture a portion of the scattered energy

incident upon it. The received signal power P, is:

. Pth o

Pr = (I)recAe — T _poA_po‘ilte
47 R? 47 R?

(16)

where A, is the effective area of the receiving antenna, given by A. = p,A; A is the
physical area of the antenna and p, is the aperture efficiency. If this equation is solved
for R, the maximum range R,,.. is given when P, equals the minimum detectable

signal P, ,;,. Then we obtain the radar range equation:

1
f)thO-Ae 1
Rmax B E— 17
|:(47T)2P7‘,min ( )
Antenna gain is related to the effective area of the antenna by:
4T A,
G=—3 (18)

where \ is the wavelength. With this expression in mind, the radar equation can
be rewritten to incorporate the gain of the receiving antenna in place of its effective
area:

2,117
PthG',‘)\ O':| (19)

Rowe = (et

where G; and G, are the transmitting and receiving gains, respectively.
Equations (17) and (19) are two different versions of the simple, or fundamental,

form of the radar range equation. They do not completely describe the performance

of real radar systems, where other phenomena come into play, such as propagation

factors, atmospheric attenuation, receiver noise, and various losses and efficiencies.

The radar equation can also be modified to suit other radars, like continuous wave

and pulse Doppler radar, as well as specific radar applications, such as surveillance,
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tracking, synthetic aperture, and HF over-the-horizon radars. In general, the simple
form of the radar equation predicts an upper value of range up to a factor of two
or more greater than the true value. However, it remains useful in determining how
different parameters will affect the maximum range of the radar, particularly when

additional terms are considered. [34]

4.2 Scattered Fields: Derivation

This section builds a representation of the scattered field from a dielectric object,
following the method in Yeh [13]. Additional material that provides a necessary
background to this section may be found in Appendix A.

First, the scattered fields due to the sources J (electric surface current) and M ,

(magnetic surface current) are represented in terms of the vector potentials A and F,

as in [13]:
—s — 1 —
E'=-VxF—-—(VxVxA) (20)
1Weg
H =-VxA—-—(VxVxF) (21)
it
where /
gt / T ‘dS (22)
- 477' S ‘F — F,
. 1 M zk‘r—r )
F = e (23)

J, and M, are given by (151) and (152), 7 is the position vector from the origin
(internal to S) to a field point, 7 is the vector from the origin to the source, and
wavenumber k = 27/A. In the following derivation drawn from [13], the time variation

e~ is assumed for simplicity, as is assumed for the derivation in Appendix A, Section
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1.2. Substituting (22) and (23) into (20) gives [13]

B — R ik‘F—F/‘ . == ik’F—F/‘
ES(F):—VXL/(E+XH)€ 5 VXVXL/(nXH+)€ ds
S S

AT }? — T’{ 1WeEQ 47 |F — F"
(24)
Applying A x B = —B x A, and substituting R = !7‘“ —7 ‘, followed by the free space

Green’s function g(kR) = e™*? /(47 R), results in [13]

B (7) = V x / (i x Ey) g(kR)AS — V x V x —— /S (2 x H,)g(kR)dS  (25)

S 1WEQ

The expression for the total electric field is then

- ., E,(F)  for 7 outside S
E(F)+ E(F) = (26)
0 for 7 inside S

Equation (26) demonstrates the Equivalence Principal. We see that, inside S, the

scattered field must cancel the incident field, and [13]

—i S = 1 —
EF -FF) =V x / (i x B) g(kR)dS — V x V x K/(ﬁ « T, )g(kR)dS
s € Js
(27)
Now we can make use of the results from Appendix A, Sections 1.2 and 1.3. As

in 1.2, the incident electric field can be represented by

A =71 1

E(r) = Z Do (@nm My, (KT) + by Ny, (KT)) (28)
where D,,, is a normalization constant, and a,m,, bym are expansion coefficients. M,
and N,,, are given by

Mo (KF) = V X Ty, (29)
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N (kT) = %v X My (KT) (30)

with

Vo = f(?“, 07 ¢)e—iwt (31)

f(r,0,¢) = i Zn(kr) | ano Py (cos0) + i(anm coS M + by Sin M) P (cos )

n=0 m=1 (52)
as in (144). The transform P!"(cos ) is the associated Legendre function, and z, (kr)
is a spherical Bessel function. Inside S, where solutions must be finite at 7 = 0, we use
Bessel functions of the first kind: z,(kr) = j,(kR) and where j,(kr) is given by (142).
These solutions of the first kind are denoted by the superscript 1 in (28). Outside S,
where solutions must describe outgoing waves, the solutions involve spherical Bessel
functions of the third kind: z,(kr) = hg)(k;r) = jn(kr) +in,(kr) (given by (142) and
(143)). Solutions of this type will be denoted by the superscript 3. The normalization

constant is [13]

(2n+1)(n —m)! 1 ifm=0

Em , €m = (33)
4 1 !
n(n+1)(n+m) 5 im0

Dnm =

and, since we assume the incident field is a plane wave, we can use the expansion
coefficients for a plane wave as given by Stratton [35] (note that these coefficients are

not presented in [13]):

2n+1
h= T n 34
¢ n(n + 1)Z (34)
2 1
b, = _in+1L (35)
n(n+1)

However, these coefficients are those appropriate for the expression for the field in
Equation (123). Because Equation (28) contains the constant D,,,, we must find

the new representation of the expansion coefficients, and do so simply by dividing
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Stratton’s equations by D,,,:

an, i" 4(n +m)!

“ Dy €m (n—m)! (36)
by, —i"" 4(n + m)!
bm = = 37
D, €m (n—m)! (37)
The right side of Equation (27) can be expanded in the following terms [13]:
(i x BL)g(kR) = (1 x F4) -G (33)
(i x . )g(kR) = (2 x ) - G (39)
where E(kR) is the free space Green’s dyadic [13]

= Zk .

GUkB) = 3 Do Mo (k7)o (k7.) + N k7 N (7)) (40)

where 7~ is the greater of 7 and 7, and 7. is the lesser. As mentioned before, the
superscript 3 indicates the presence of spherical Bessel functions of the third kind.

Now, the expansions (28), (38), and (39) can be substituted back into Equation
(27). As stated in [13], these equations converge for all 7 inside S, so this expansion
of (27) is valid inside S. Applying this substitution, and carrying out the repeated
curl operations V. x M = kN and V x N = kM, we get

— ZDnm o M (kr) + bnmN (kT)]

= # g [ % By) 3 D[Ny (k) M (k) + Mo, (k7 )N, (7)) dS

€0

1/2
_ (@> iox HL) - ZDnm D (kr )M (7)) + N (mgﬁ%(/@)]]ds

(41)
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where the substitution k = w,/pp€g in the third line has been made for simplification.
We can find additional expressions for the coefficients a,,, and b,,, by matching

corresponding MS% and Nsn)l terms. Through matching, we find that [13]

7.2 r - , 1/2 o /

= T < B T ) 44 (“—) (hx ) T ) | ds (42)
s S €0
i (. = —e, o (. = @]

_bnm = (n X E+) : Mnm(kr ) +o| — (n X H+) ' Nnm<k7a ) ds (43)
m S €0

with 7» = 7 because 7 > 7 inside S.

As stated in [13], the solutions of (42) and (43) guarantee that the total field is
zero within S, which is required, due to the Equivalence Principal. These equations
can also provide a solution for the surface currents 7 x E, and 7 x H,, which can
then be substituted into (25) in order to obtain the scattered field. However, this
substitution assumes scattering from a perfect conductor, while the scattering from
a dielectric object is needed. The second part of the problem, dielectric scattering,
will now be explored.

Once again expanding the electric field in terms of characteristic vector functions,

the internal field of the dielectric is written [13]

Eit(K7) = Y (Com Mo (KT) + dyu Non (K'F)) (44)

nm

. . . . /
where ¢, and d,,, are again unknown coefficients. The dielectric wavenumber k& =

172 where ;1 and € are the absolute permeability and permittivity, respectively,

w(pe)
of the medium. They are related to the relative and vacuum values by u, = u/uo
and €, = €/eg, where the subscript r denotes the relative values. Substituting for the

absolute values, the dielectric wavenumber can be obtained in terms of the relative

values and the vacuum wavenumber: k' = (u,.€,)"/?k. Now that the electric field is
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specified, we can obtain the magnetic field [13]:

Fz’nt(k/?> = mv X Emt kT T) = m Z nmN(l T) + dan " (k 7))

(45)

1/2
— (;;" ) > Com Non (KT) + dy Mo (7))
r 0

nm

In order to determine the coefficients ¢, and d,,,, the boundary conditions at the
surface must be examined. But, first, a combined index o is introduced, which will
now incorporate n and m for more condensed notation. ¢i will denote the combined
indices for the field internal to the surface (as in (44) and (45)), and oe will denote
the indices for the external field, as in prior equations.

The boundary conditions require the tangential components of the fields to be

continuous at the surface of the dielectric [13]:

/ﬁ/ X Hext - /ﬁ/ X Hint /ﬁ/ X Eext - ’fl X Eint (46)
where the subscript ext denotes the external fields, and int the internal fields. The

curl operation is applied to (44) and (45) to determine the tangential component of

the internal fields at the surface, applying the change in subscript notation [13]:

N
7% Bat(KT) = 3 (ot x Mo (KT) + dystt x Noy (KT

ot

1_1

) (47)

1/2 N
ﬁxﬁmxk’f’):—i(ereo) > (ot x N (KT) + doiit x Mo (KT)) (48)

ot

Equations (47) and (48) are now substituted into Equations (42) and (43) because of
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the equality in (46). For the first 2N terms of —a,,, = —as., we obtain

-kQ — ’ —— 1 — 1
—a,, = [NS;)(W) (eoitt x MY KT + dpie x N (KF))
™ Js
€ 1/2 —(3 —(1 —(1
. (_) MO EF) - (coitt x NO(KT) + dpit ¥ Mf,}(k/f’))] s
[hr

(49)
In order to simplify this expression, the ¢,; and d,; terms can be grouped. Considering

only the ¢,; term, we have

9 1/2
L / [W@(w’) ox MOKT) + (;—> M (k7 - i x Nf,?(k'?')}ds (50)
m S r

Applying A- (BxC)=B-(Cx A)=—-B-(A x (), and separating terms, we get
'kQ — ’ — r_t 'kQ r 1/2 — ’ — r_t
B / [ﬁ-Nj;)(kr )< O (K7 )} ds—"c,; (i> / [ﬁ-Mf,?(kr« )X N (k7 )} ds
s T S

™ Moy
(51)

which can then be condensed to

[—iK — <;—) v J] Coi (52)

k:2 —_ ! Rl ! !
K= —/ [ﬁ~N(3)(kF) x Mﬁ,ﬁ’(w)]ds
S

T ge

where [13]

k2 —(3 ’ —(1 1 (53)
J=" {n M) x N (7 )} ds
T Js

Similarly, the remaining c,; and d,; terms for both a,. and b,. can be condensed, so

we obtain [13]

_iaae = Coi +

c 1/2
K+ (—) J
L

L+ (i) v 1] Ay (54)

fhr
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—ibye =

Coi +

¢ 1/2
I+ (—) L
L

for ce = 1,2,..., N, with (53) and [13]

e\ 172
J+(M—T) K] Ay (55)

2
L= {n N4 ) x N (K7 )} ds
T Js
2 (56)
k .~ =—(3),, (1) ,, /s
I=— n-M,, (kr)x M, (k7)|dS
T Js

Thus, a set of compact expressions for a,. and b,. has been obtained, in terms of
I,J, K, L. These equations can then be solved for the expansion coefficients of the
internal field, c,; and d,;, which can then be used in (47) and (48) to find 7 x Ejp
and A X Hj,;, which, in turn, are finally substituted into (25) to obtain the scattered
field [13]:

E' () = Y [ Mo (KF) + dre Now (k)] (57)

ge=1

where [13]

N (T e\ 12
pge:—mgez{ we ()"

o1

N r ¢ 1/2
Goe = —iDge » { I'+ (u—) r

Coi
and [13]
,
L P v ST ]dS
T Js L
LISt
7= ey « MO ]dS
™ Js L
oM. <o 7k (60)
K’:—/ i NY &) = 310 ]dS
T Js
LS
= e 00 « N7 )}
T Js L

Note that the difference between the primed I, J, K, L and the unprimed is the pres-
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ence of solutions of the first kind versus the third.

The expression for the scattered field contains solutions of the third kind (Mf’e)
and Wffge)), which contain spherical Hankel functions. These Hankel functions can
be represented in terms of the exponential e, allowing us to pull the term out
and express the scattered field in terms of the vector far-field amplitude times the
exponential [13]:

(k) = F6.0./006) . kr = o0 (61)

where F (0, ¢s/0;, ¢;) is the vector far-field amplitude dependent on the directions of
the incident (6;, ¢;) and scattered (6, ¢5) fields.

The differential scattering cross section is [13]

op = lim {Mﬁ%} (62)

where the scattered power density, Ss(0s, ¢5) is [13]

Fesy s ‘9717 % 2
Ss(0s, ¢s) = A 2¢ZO/7‘2 il ; Zo =/ o/ €o (63)

and the incident power density, S;(6;, ¢;) is [13]

—i

EP
27,

57;(9@'7 <Z5z'> = (64)

Finally, combining these two expressions in (62), with E having unit amplitude, the

differential cross section becomes [13]

op = An|F (05, s/0:, ¢:)|? (65)
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The derivation of this scattering representation for a dielectric object, particularly
within the resonance regions, provides the basis and understanding for Dr. Miranda’s
scattering model and its through-wall, multipath adaption, presented in the next
chapter. Of particular importance is Equation (57) and its associated coefficients.
This equation becomes the foundation of our expansion into the multipath represen-

tation, discussed in the following chapter, Section 5.1.
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V. Research Approach

This chapter describes the approach to the research, as well as considerations
leading to certain design decisions. The first section develops the scattering model,
the second provides the experimental setup, methods, and procedures, and, finally,
the third section presents data processing methods.

The purpose of this project is the development of a child-adult discrimination
method via through-the-wall radar. To accomplish this purpose, two main objectives
are explored. The first is the development of a through-wall radar scattering model
appropriate to a corner space — that is, the ground and an adjacent wall — using
the Miranda sphere-cylinder human representation.

The second objective is the investigation of feature sets for child-adult, through-
wall classification. In this investigation, radar data of both children and adults will
be obtained in through-the-wall experiments. Features will be extracted from the
experimentally-obtained radar data and fed into a Support Vector Machine in order
to classify the radar data as that of a child or adult. The performance of the SVM

on different processed data will be examined.

5.1 Scattering Model

The scattering model builds directly upon the work presented in Barber and Yeh
[13] as described in Chapter IV, Section 4.2, as well as Miranda’s modification of the
work. The Miranda model will be presented first, which models the direct path only.

The adaptation to the through-wall, multipath scenario will be presented next.
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Miranda Direct-Path Scattering Model

The direct-path scattering model combines the scattering of multiple objects,
whose size parameters must obey the cylinder-sphere model described in Chapter
III, Section 3.3. For this human model, we have three dielectric objects: the prolate
sphere and the two cylinders. Drawing from Equation (57), the scattering for these

three obje<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>