
Applications of Latent Variable Models in

Modeling Influence and Decision Making

Sean M. Gerrish

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Computer Science

Advisor: David M. Blei

April 2013



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
APR 2013 2. REPORT TYPE 

3. DATES COVERED 
  00-00-2013 to 00-00-2013  

4. TITLE AND SUBTITLE 
Applications Of Latent Variable Models In Modeling Influence And
Decision Making 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Princeton University, Princeton,NJ, 08540 

8. PERFORMING ORGANIZATION
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 
Same as

Report (SAR) 

18. NUMBER
OF PAGES 

166 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



c© Copyright 2013 Sean M. Gerrish.

All Rights Reserved.



Abstract

The past twenty years have seen an avalanche of digital information which is overwhelming people

in industry, government, and academics. This avalanche is two-sided: while the past decade has

seen an onslaught of digitized records – as governments, publishers, and researchers race to make

their records digital, the electronic and software tools for computationally analyzing this data have

quickly evolved to face this challenge.

Many of these challenges evolve around recurring patterns, including the presence of text, bits of

information about pairs of items, and sequential observations. In this work we present several meth-

ods to address these challenges in data analysis which take advantage of these recurring patterns.

We begin with a method for identifying influential documents in a collection which evolves over

time. We demonstrate that by encoding our assumptions about influential documents in a statistical

model of the changes in textual themes, we are able to provide an alternative bibliometric which

provides results consistent with—yet different from—traditional metrics of influence such as citation

counts.

We then introduce a model for measuring the relationships between pairs of countries over time.

We will demonstrate that this model is able to learn meaningful relationships between countries

which is extraordinarily consistent across different human labels.

We next address limitations in existing models of legislative voting. In one extention we predict

legislators’ votes by using the text of the bills they are voting on combined with individual legislators’

past voting behavior. We then introduce a method for inferring these lawmakers’ positions on specific

issues.

A recurring theme in the methods we present is that by using a small set of statistical primitives,

we are able to apply known (or mildly adapted) methods to new problems. Several advances in the

past few decades in statistical modeling will make the development and discussion of our models

easier, as they will provide both this set of primitives (which can be interchanged easily) and the tools

for working with them. As a final contribution, we describe a new method for fitting a statistical

model with variational inference, without the time investment typically required of practitioners.
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Variable Description
Constants

C Number of nation-states
D Number of documents
K Number of topics
N Number of words (e.g., in a document)
P Dimension of a generic latent space
T Number of discrete time “epochs”
V Number of words (e.g., in the vocabulary)

Subscripts
c Country or nation-state
d Document
k Topic
t Time
u Person, e.g., a lawmaker

Random variables
ad Document d’s polarization
bd Document d’s popularity

sd or sc1,c2 The sentiment between two nations
vud Lawmaker u’s vote on item d
wd A collection of words, as in a document d
xu An ideal point for lawmaker u
xc Position for country c during interaction
x̄c Mean position for country c
X A generic hidden random variable
Y A generic observed random variable
zn K−variate topic indicator for term n

zu(zuk) Lawmaker u’s position (on issue k)
α Dirichlet parameter for LDA
β Coefficients of words in text regression

β(βt) LDA topics (at time t)
η Regression coefficient for sLDA
θd Topic mixture for document d

Variational parameters
γd Variational parameter for document mixture θd
β̃t Variational parameter for topic chain βt
φn Variational parameter for a word’s topic indicator zn
˜̀ Variational parameter for influence score I
ãd Variational parameter for polarity ad
b̃d Variational parameter for popularity bd
x̃u Variational parameter for lawmaker ideal point xu

λd, κd Variational mean of bill parameters ad, bd
τd,i Variational mean of lawmaker ideal point xu

Figure 1: The reader may find the notation in this table a helpful resource in the subsequent chapters.
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Chapter 1

Quantitative methods for social

research in the digital age

Quantitative social scientists often attempt to understand the behavior of society with numbers and

data, and digital records are one of the most useful resources available to them. The digital age has

brought to these researchers a deluge of records—particularly in the form of text. This avalanche of

data provides more information to these scientists than they have had in the history of mankind.

Researchers are now able to pore over digital copies of all legally binding opinions written by

United States Supreme Court Justices, or the text of thousands of bills voted on by members of

Congress. Even these numbers are dwarfed by the hundreds of thousands of newspaper articles and

blog posts written each day about the events happening in the world. Unfortunately, this flood of

information obscures the very insights these researchers aim to discover. Researchers trying to make

sense of these collections are subject to the high costs of time spent studying these collections in

search of the few key insights.

The goal of this thesis is to describe several new statistical models that are now available for

data practitioners and the consumers of that data1 to better understand society through collections

of text documents. I will focus on four high-level research questions that dovetail off one another to

illustrate the flexibility and interpretability of latent variable models in large-scale settings.

An implicit premise of this thesis is that patterns are ubiquitous in collections of text documents,

and that these patterns can be discovered automatically to describe decisions and behavior of actors
1By a (data) practitioner, I am referring to anyone who applies existing methods for data analysis, possibly tweaking

or combining these methods to answer specific questions (such as database engineers or lab assistants). This contrasts
with fundamental researchers, who research entirely new methods or tools for data analysis. A social scientist may
be a researcher in his or her field but a practitioner in the field of data analysis.
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in these collections. I will ground this discussion with the development of several specific statistical

models, but I will stress throughout this thesis that these methods frequently draw from a suite of

common tools which can be used again and again to construct models.

The deluge of information and some statistical tools

Observational social science data – including data about how organizations and the Government

work – has become available on a massive scale. The National Archive, which collects information

from over 500 federal agencies, has been digitizing its collection of twelve billion federal documents

(Lazer et al., 2009; National Archives Workshop, 2012; National Archives Press Release, 2012). The

problem in handling this data has moved from collecting the data to processing and understanding

it. Fortunately for scholars, these data follow recurring patterns which make statistical modeling

possible. In this thesis, I will focus on three specific patterns:

Text data. Text data is the low-hanging fruit of most social science research questions. It is

ubiquitous because it can—indeed, it must—be easily created, digitized, and stored. It serves as an

observation which we can use to better understand the story underlying decisions and politics.

Just as text data is invaluable to researchers, the rate of growth of these text collections is

staggering. A single newspaper like the New York Times publishes hundreds of thousands of articles

each decade. Of the National Archive’s collection, billions of its documents are text (National

Archives Workshop, 2012; National Archives Press Release, 2012). The rate of growth of sources

like the World Wide Web is even more tremendous. As far back as 2008, the Internet was already

growing at a rate of several billion webpages per day (Google Blog, 2008).

Time-series collections. Many datasets comprise time-series observations. Timestamps are one

of the simplest types of metadata to attach to digital collections because they are described by

a single scalar and because they are inexpensive and widely available. In spite of its simplicity,

the addition of a time variable to statistical models can provide rich insight and a useful historical

perspective into collections of documents. It is especially interesting to researchers because it is

helpful in framing questions about causation, prediction, and influence.

Relational observations. One of the simplest ways to represent more complicated phenomena

is to use the interaction between pairs of items. We will refer to such pairs (and their relationships)

as dyadic. In later chapters I will use spatial models to represent interactions between lawmakers
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and bills (i.e., how congresspersons voted on bills) and between countries (i.e., countries’ sentiment

toward one another). As we will show, the underlying representation for these cases is very similar.

The role of statistical machine learning

The deluge of information available to researchers means that if researchers want broad coverage

over the available sources, they cannot spend long looking over any single document. For example,

a graduate student studying patterns governing the relationships between pairs of countries, based

on mentions of pairs of countries in the last twenty years of the New York Times, would need to

spend every day of an entire year, twenty-four hours per day, to code the 300,200 interactions per

pair of countries (at two minutes per article). A computational treatment is therefore necessary if

researchers intend to handle large collections of data.

Statistical representations of these data will be useful because they provide an explicit way to

formalize our assumptions. We are fortunate that computers can be programmed to speak in this

language, because they are the only means by which we can achieve broad understanding of large

collections of text documents.

In this thesis, I will use probabilistic models to encode these statistical assumptions. I will

frequently use the paradigm of graphical models (Pearl, 1985) to make our assumptions more clear.

Because these statistical methods provide directed summaries, they can serve as optical lenses for

researchers to analyze entire collections of documents, which I illustrate as a cartoon in Figure 1.1.

Statistical methods enable researchers to describe arbitrarily complex transformations of data with

arbitrarily complex lenses. Because of the simplicity of each of these lenses, we will find that a wide

array of models can be created by nesting and re-using modules across different applications.

Organization

By the end of this thesis, the reader should have a better understanding of several new models that

I have designed for to social scientists. Perhaps more importantly, the reader will be prepared to

design his or her own latent-variable model for similar applications.

To this end, I will provide a lower level of detail about latent-variable models in the early chapters

of this thesis than normally expected in a doctoral thesis when it may help a reader unfamiliar with

this subject to understand the material. I also present some of the most advanced (or uninteresting)

math in the appendix to keep the discussion of applications and modeling at the forefront.

I provide preliminary material in Chapter 2, outlining the statistical “primitives” that I will use
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Figure 1.1: A cartoon illustration of the role of statistical models in large-scale data analysis. Left:
large data collections are too large to handle without special tools. Center, Right: statistical models
serve as lenses which can be nested, adjusted, and custom-designed to glean latent structure from
large or complex datasets. Our statistical assumptions define the shape and optical characteristics
of these lenses, and fortunately many of these lenses can be re-used.

as building blocks in later chapters: tools for working with text data, time-series data, and dyadic

data. This chapter also provides a high-level introduction to the algorithms we will use for Bayesian

inference.

Identifying influential documents. After introducing the foundations of this thesis, I will start

with high-level social science questions. In Chapter 3, I look at a common challenge in analyzing

text collections: that of finding the most important and influential documents in a corpus which

has grown over time. This is a challenge in understanding collections of academic articles, legal

opinions, email archives, and many other collections. This question even motivated the algorithm

behind Larry Page and Sergey Brin’s PageRank algorithm, which recursively measures the influence

of Webpages, as measured by the hyperlinks between Webpages (Garfield, 1992; Brin and Page, 1998;

Garfield, 2002). Unlike Web pages and academic articles, of course, explicit citations or hyperlinks

are unavailable, and researchers only see the most basic metadata: documents’ timestamps. To this

end, I will introduce a model for discovering the most influential documents in such a collection. I

will validate this model on a set of several datasets, including several collections of academic articles

and a set of opinions written by judges in the New York Appellate Courts system.

Inferring history from a collection of newspaper articles. In Chapter 4 I will zoom in a

bit to consider the story within a collection of documents and outline a model to better understand

the relationships between pairs of countries over time. I will fit this to a collection of New York

Times articles and demonstrate that this method discovers a more sophisticated latent story among

documents than in Chapter 3. As with the method in Chapter 3, this collection has only the text
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of these articles, which I augment with external information such as human labels of sentiment. In

this chapter I also incorporate important ideas from the field of dyadic spatial models, which can

play a role in modeling various social science phenomena.

Inferring lawmakers’ preferences. In Chapters 5 and 6 I will take an even closer look at how

documents can be used to better understand how congresspersons vote on bills. I will address two

important limitations of ideal point models (the state of the art in spatial voting models) by using the

text of bills. One of these limitations is that ideal points cannot be used to predict lawmakers’ votes

on heldout bills. In Chapter 5, I will introduce several models for predicting votes by lawmakers on

previously-unseen bills. I will demonstrate that we can predict lawmakers’ votes with high accuracy

given their prior voting record and the text of the bills on which they vote.

In Chapter 6 I will address a second shortcoming of ideal point models: the limitation of a one-

dimensional latent space. I will do this by using a topic model to identify those issues up for vote

in an item of legislation. I will demonstrate that legislators’ votes can be better modeled and better

understood by describing these lawmakers’ positions on different issues.

These models contrast with those in Chapters 3 and 4 in that I ignore documents’ timestamps.

However, I will use many of the same ideas from these earlier chapters, including mixed-membership

models of text and latent-space models, in which I assume that pairs of items interact (in this case

a lawmaker and a bill), and that text documents attached to those interactions can provide insight

into the interaction.

Additional materials. In Appendix A I discuss details of a new variational inference algorithm

which is used in Chapter 6. This Appendix can be treated as a stand-alone contribution of this

thesis, making a quantitative rather than a substantive contribution. I save this contribution for the

appendix in part to stress my fundamental belief that model development and model implementation

can be treated separately (or should be treated as separate whenever possible to enable practitioners

to do their magic), and because I believe that this thesis will appeal more broadly if it is not bogged

down with mathematical baggage. I provide additional supplementary information for the remaining

chapters in Appendix B.
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Chapter 2

Preliminary material: quantitative

methods

The work in this thesis builds upon the foundations built by decades of research in the development

of machine learning. In this chapter, we will describe enough of these foundations for the reader to

understand later chapters. Some of this work builds off of general knowledge in the machine learning

community; when the foundational work is beyond the scope of this introduction, we will provide

references to well-known resources in the community.

In this chapter, we will outline the basic methodology for probabilistic modeling in datasets.

We begin by discussing a “data analysis pipeline” so the reader will understand what is meant by

phrases like “the data”, “fit the model”, and “heldout log-likelihood”, and where it falls in the

overall research pipeline. We then provide basic definitions from the field of probabilistic modeling

and illustrate these ideas with models that will be used as building blocks in later chapters.

2.1 Standards and naming conventions

We begin by outlining naming and variable conventions in this work. Random variables and their

instantiations are given by Roman or Greek characters; the role of a variable will typically be

evident from its context. Multivariate random variables such as vectors are given by boldface, and

collections of random variables are sometimes given by uppercase Roman characters. For the reader’s

convenience, Table 1 provides many of the variables used in this work.

When we refer to a variable, we will sometimes subscript it with multiple indices. For example,
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in the next chapter, we will refer to the probability βt,k,n of word n in topic k at time t. We

sometimes refer to only a subset of these indices. In such cases, we are referring to the appropriately-

shaped variable: βt,k,n is a scalar; βt,k and βk,n are vectors; βt and βk are matrices; and β is a

three-dimensional tensor. In the interest of brevity and clarity, the shape of such variables will be

understood from context.

2.2 Latent-variable models, prediction, and exploration

2.2.1 Data analysis pipepline

We will develop the ideas outlined in the last chapter by using the “data analysis pipeline” illustrated

ins Figure 2.1.1 This pipeline, which is driven by specific questions about a set of data, serves as a

recipe for answering questions about these data. It will also help to make the contributions of this

thesis more explicit. The pipeline has the following steps (this thesis focuses on those steps which

are colored blue):

1. Questions. One of the first, most critical steps is defining the question at hand. In our case,

the questions include “Which articles in a given collection are the most influential?” and “How

will the Florida Senator vote on pending legislation?”

2. Data. At the same time we are formulating questions, we must also understand which data is

available to answer the question at hand. The questions we ask will be informed by the data

available to us, and vice-versa.

3. Modeling assumptions. Once we have established a set of questions and available data, we

define a set of assumptions that will allow us to capture statistics of interest.

This step arguably allows the practitioner (i.e., someone designing, fitting, and analyzing a

model) wide latitude in defining variables of interest. In following chapters, we will spend a lot

of time discussing modeling assumptions, and they compose one of the biggest contributions

of this work.

4. Model implementation. In this stage, the model is defined, and the practitioner must en-

code these modeling assumptions into an algorithm and run that algorithm. We will variously

refer to this stage of the process as fitting a model, performing inference, and fitting the pos-
1This pipeline is very much inspired by discussions with David Blei, and I imagine he should get credit for it.
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Figure 2.1: A data analysis pipeline. In this work, we make contributions in the areas of modeling
assumptions, model implementation, and model revision. We will focus on applications which
use text data.

terior. This step also represents a significant contribution of our work, in Chapters 3-6 and

Appendix A.

5. Model evaluation. The goals of this stage are to evaluate performance of the model and

to criticize the model. The criticism may warrant model revision, in which case the modeling

assumptions are adjusted, the model is refit, and the model is re-evaluated.

6. Conclusions. Finally, the practitioner may draw conclusions from the model. In our case,

this leads to two applications: exploration and prediction. Note that this step may better hang

off of model implementation.

As alluded to above, this work will focus on modeling assumptions and model implementation.

To encode our assumptions, we will use latent variable models.

2.2.2 Latent-variable models

To formalize what we mean by Modeling assumptions, we will assume that observed data can be

described by a probability distribution. By making this assumption, we will gain several benefits,
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which we outline at the end of this section. First, we formalize a latent variable model. A latent

variable model can be fully specified with

• A set of latent random variables X1, . . . , XMx
(X1:Mx

for shorthand);

• A set of observed random variables Y1, . . . , YMy (Y1:My for shorthand);

• A joint probability distribution p(X1:Mx
, Y1:My

).

As p is a probability distribution, it satisfies

∫
x1:Mx ,y1:My

p(X1:Mx , Y1:My )dx1:Mx , dy1:My = 1.

For p to be useful, we typically will make distributional assumptions about it. We often describe

assumptions about factorization using a directed graphical model (sometimes called a Bayesian net-

work) (Pearl, 1985).2 A graphical model is a directed, acyclic graph G = (V,E) in which vertices

V = 1, . . . ,M = Mx +My represent random variables and edges connote dependence.

We state this more precisely be defining the “parents” function πG : {1, . . . ,M} → 2{1,...,M},

which takes the random variable index m ∈ {1, . . . ,M} to its parents {i : i 6= m and (Zi, Zm) ∈ E}.

By definition of a graphical model, a probability distribution described by a graphical model G can

be factorized as

p(Z1, . . . , ZM ) =
∏

i=1,...,M

pθ(Zi|{Zj : j ∈ πG(i)}). (2.1)

Note that there is a many-to-many relationship between graphical models and probability distribu-

tions. Each graphical model may describe many different distributions, but all such distributions

must be factorizable based on this graphical model. Conversely, each probability distribution can

be described by multiple graphical models, but each distribution must factorize according to Equa-

tion 2.1 for all of its corresponding graphical models. The language of graphical models makes it

possible to succinctly describe many joint probability distributions, and it makes model implemen-

tation and inference with these models much easier to discuss formally.

Conventionally, a graphical model G is often drawn as a block-and-arrow diagram, where we

write out the graph with each random variable (vertex) drawn as a circle and each edge drawn as

an arrow. An additional convention in these diagrams is that boxes, or plates, represent replication

(with the number of replications shown in a corner of the plate). In the graphical model shown in

2Undirected graphical models are also useful. Here we focus on directed graphical models.
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Figure 2.2: Left: graphical model for a unigram language model. Documents 1, . . . , D are treated
as bags of words, or collections of words wn. Right: graphical model for Latent Dirichlet Allocation.
Circles are random variables, arrows connote dependency, and plates represent replication. The
shaded circles represent observed random variables (words in this case).

Figure 2.2 (right), for example, one corresponding factorization (remember that there are many) is

∏
K

p(βk)×
∏

d=1,...,D

p(θd|α)
∏

n=1,...,Nd

p(zn|θd)p(wn|zn, βzn), (2.2)

where we have used the further convention that observed random variables are shaded and hidden

random variables are unshaded. Later in this section we will describe this exact model in more

detail.

We will sometimes point out conditional independence between groups of random variables.

Given random variables Z1, Z2, and Z3, we say that Z1 is conditionally independent of Z2 given Z3

if p(Z1, Z2|Z3) = p(Z1|Z3)p(Z2|Z3). Conditional independence statements about distributions can

be inferred from these distributions’ factorizations (or from the graph itself) and become important

when one implements a probabilistic model or makes predictions with one. Conditional independence

will permeate much of what we discuss in this thesis.

Before proceeding further, it is worth noting the benefits in using latent-variable models. Several

of the most compelling motivations are:

1. Flexibility. These models can describe, summarize, and explain a wide variety of phenomena

in the physical and social sciences.

2. Embeddability and interpretability. Any quantifiable metric in the dataset can be encoded

as a random variable in a probabilistic model. Relationships found within datasets can be

likewise encoded explicitly.

3. Modularity. Parts of these models can be re-used across different models. This leads to efficient

transfer of resources and common paradigms.

4. Existing toolbox of statistical tools. There is a large and growing body of literature around
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how to fit these models, and there are many widely supported packages for fitting these models

Bishop (2006). Practitioners no longer need to be experts in statistics to correctly apply many

of these tools.

5. Implementation convenience. Latent-variable models provide explicit objective functions.

Once a latent-variable model is selected, implementing and fitting it may be a (mostly) solved

problem. Over the next couple of decades, increasingly sophisticated and powerful tools will

be developed to make general-purpose model-fitting much easier.

The risk with applying latent-variable models is that the credibility and careful deliberation

we often associate with statistics lends credence to the results of fitting a model. This may lead

researchers to be overconfident in the conclusions they draw from their models, particularly when

the model is incorrectly interpreted, when the data is poorly fit by the model, or when the model is

poorly defined.

2.2.3 Text as a medium for social science analysis

We first illustrate these ideas in an application of text modeling. As noted in the last chapter, text

data is as easy to work with as it is ubiquitous. Importantly, researchers and other practitioners

are becoming more proficient with tools for text analysis. Grimmer and Stewart (2012) provide an

excellent overview of methods for analyzing text for social scientists; we will summarize several such

methods here.

Text data is extremely high-dimensional. A large collection of documents represented by a

sequence wn of words is unweildly for even the most powerful computer. A number of tools have

been developed over the past several decades to simply find the gist of documents, making it possible

to describe collections succinctly and efficiently.

In this work we will use the simplifying assumption that each text document is described by a

vector wd ∈ RV of word counts. This assumption, known as the bag of words assumption, removes

most of the information in a document (here we use “information” in a very loose sense). At the

same time, this assumption still allows us to capture the “gist” of a document very well. One of the

simplest bag of words models is the unigram model. In the unigram model, every word is assumed

to come from some multinomial distribution β over the vocabulary:

p(w11, . . . , wND) = p(β)
D∏
d=1

Nd∏
n=1

p(wn,d|β),
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where D is the number of documents and Nd is the number of words in document d. We illustrate

this model graphically in Figure 2.2 (left). The bag-of-words assumption in particular is illustrated

by the model’s agnostic treatment of the order between words: these words are fully exchangeable

within each document.

Latent Dirichlet Allocation

We will capture the gist of documents using the topic model Latent Dirichlet Allocation (Blei et al.,

2003). Latent Dirichlet allocation (LDA) posits a set of K topics β1, . . . , βK to formalize what we

mean by the gist of a document. LDA describes each document d as a mixture θd of K topics, where∑K
k=1 θdk = 1 and θdk ≥ 0 for all d, k.

Formally, we can represent this using a generative process for the creation of documents. The

generative process can be interpreted as a recipe for creating the observations—documents, in our

case—in a way that fully specifies the joint probability distribution of all random variables:

1. Draw topics β1, . . . ,βK ∼ Dir(η, . . . , η).

2. For document d = 1, . . . , D:

(a) Draw topic mixture θd ∼ Dir(α, . . . , α).

(b) For term n = 1, . . . , N :

i. Draw topic indicator zn ∼ Mult(θd).

ii. Draw word wn ∼ Mult(βzn).

The parameter α > 0 above is a Dirichlet prior (it is often set by topic model researchers to 1/K).

The distribution Dir(α1, . . . , αM ) refers to the Dirichlet distribution. Its density is given by

p(x1, . . . , xM |α1, . . . , αM ) =
Γ
(∑M

i=1 αi

)
∏M
i=1 Γ(αi)

M∏
i=1

xαi−1
i . (2.3)

We illustrate the graphical model for LDA in Figure 2.2. Given the graphical model, we can imme-

diately write the joint distribution of a collection of D documents as

p(βk,θ,Z,W |α) =
∏
K

p(βk)
∏
D

p(θd)
∏
N

p(zn|θd)p(wn,d|zn,βzn), (2.4)

where W represents the collection of all random variables wn,d, and where p(βk) and p(θd) are

understood to be conditioned on η and α respectively. We treat α, η as hyperparameters and omit

them so they’re not confused with random variables.

14



Table 2.1: Example topics from Latent Dirichlet Allocation fit to sentences from the the textbook
Biology by Campbell and Reece. This is a small subset of the 1000 topics. (These topics were
provided by Ricky Wong.)

virus forest population dinosaurs
viruses diversity growth dinosaur
viral plant rate birds
host ectomycorrhizal age pterosaurs

phage fungi rates cretaceous
rna fungal population growth bird

genome treatment populations long
infection emf life flight

cell effects mortality feed

In the vast majority of cases, the practitioner observes the words of a set of documents and

seeks to learn the topics that describe these documents. Before describing how to fit such a model,

however, we point the reader to the four example topics from LDA in Table 2.1. Note that some of

these “words” are instead phrases. This can be done by creating a vocabulary of phrases instead

of words and describing documents as bags of phrases. We describe how to select phrases for a

vocabulary in Appendix B.7.5.

Inference

Of course, we only observe the words Z in a collection of documents, and we are interested in

estimating what the topics β and topic mixtures θ are. We will generally accomplish this with

posterior inference, in which we aim to estimate the posterior distribution

p(β,θ,Z|W ) =
p(W |β,θ,Z)p(β,θ,Z)

p(W )
. (2.5)

This conditional distribution is impossible to compute efficiently because of the intractable nor-

malizing constant

p(W ) =
∫
βk

p(βk)
∏
D

∫
θd

p(θd|α)
N∏
n=1

∑
K

p(zn,d = k|θd)p(wn|zn,d = k, βk)dβdθdz. (2.6)

This intractability is common during posterior inference. In Section 2.3.3 we will see details on ways

to get around this intractable integral by approximating the posterior Blei et al. (2003).
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2.2.4 Matrix factorization, latent space models, and multidimensional

scaling

Two of the most common primitives in latent-variable models are probabilistic matrix factorization

(Salakhutdinov and Mnih, 2008) and multidimensional scaling, which describe relationships between

pairs of items, or dyads. We first discuss a specific application of matrix factorization called item

response theory (IRT), which has been used for decades in political science (Clinton et al., 2004;

Martin and Quinn, 2002; Poole and Rosenthal, 1991; Enelow and Hinich, 1984; Albert, 1992).

In IRT, we have two types of objects, and we would like to make predictions about pairs of them.

Each of these objects—suppose that they are lawmakers and bills to be concrete—is represented by

real-valued random variables: lawmaker u ∈ {u = 1, . . . , U} has a latent value Xu ∈ R, and each

bill d ∈ {1, . . . , D} has two latent values Ad, Bd ∈ R. We make predictions about pairs of them by

introducing the likelihood function p(Vud = 1|Xu, Ad, Bd) = σ(xuad + bd), where σ(s) = exp(s)
1+exp(s) .

We illustrate this graphically in Figure 2.3.

In this model, bd serves as an intercept describing whether the bill is popular or unpopular,

independent of the lawmaker voting on it. ad serves as an indication of how polarizing the bill is,

and xu interacts with ad to describe the lawmaker’s position on bill d. We will look at this model

in more detail later.

More formally, we can write {V }ud as a matrix of probabilities that boolean random variables

(e.g., votes) are true, factorized as

σ̂



x1 1
...

...

xU 1


 a1 · · · aD

b1 · · · bD


 , (2.7)

where the matrix operator σ̂(·) produces a matrix in which the scalar logistic function σ(s) = exp(s)
1+exp(s)

is applied to each element of its argument.

A wide variety of researchers have used formulations like this for applications such as recommen-

dation and representing the votes of lawmakers (Wang and Blei, 2011; Salakhutdinov and Mnih,

2008; Poole and Rosenthal, 1985, 1991; Clinton et al., 2004). In later chapters, we will use it for

models of legislative voting.

Sometimes these pairs of items that interact in dyads are of the same “type”, and we wish to

model them in the same latent space. Instead of bills and lawmakers interacting, for example, we

will consider in Chapter 4 pairs of countries that interact, and we wish for these countries to be
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Figure 2.3: Probabilistic matrix factorization. We observe interactions Vud between users represented
by Xu and items represented by Ad, Bd.

represented in the same latent, interpretable space. In this case, we will still model each country

with a latent position vector xu, and we will model their interaction as above, with

p(v|xi,xj) = σ(v|xTi xj , 1),

for a suitable distribution σ. We will also frame their relationship using their Euclidean distance in

this latent space:

p(v|xi,xj) = σ(v|βwij − log(||xi − xj ||22 + 1), 1),

where wij are observed covariates about the dyad and β is hidden along with x (Hoff et al., 2002).

We will motivate these expressions and others like them when we develop a model of foreign relations

in Chapter 4.

2.2.5 Hidden Markov Models and Kalman Filters

We now turn briefly to abstractions for time-series data. One of the simplest assumptions about

a time-series collection is that we have a sequence of observations Y1, . . . , YT observed at times

t = 1, . . . , T . In a hidden Markov model (HMM). We assume that these observations can be explained

by a hidden set of states X1, . . . , XT , which are temporally linked. The model factorizes as

p(Y1, . . . , YT , X1, . . . , XT ) = p(X1)p(Y1|X1)×
∏

t=2,...,T

p(Xt|Xt−1)p(Yt|Xt) (2.8)

(see Figure 2.4 for the graphical model). Often the transition distribution p(Xt|Xt−1) is independent

of t (the chain in this case is called time-homogeneous). A wide variety of problems can be modeled

accurately with a well-selected homogeneous HMM. Importantly, inference in these models is very
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Xt-1 Xt Xt+1 Xt+2

Yt-1 Yt Yt+1 Yt+2

... ...

Figure 2.4: A hidden Markov model. Observations Y1, . . . , YT are observed at discrete times t =
1, . . . , T , and are conditionally independent given the hidden states X1, . . . , XT .

efficient because the set of conditional independencies yields a tree: inference can usually be reduced

to an application of a forward-backward algorithm, especially when the conditional distribution

of each variable given its neighbor is conjugate (even when this is not the case, methods such

as Paisley, Gerrish, and Blei (2010) provide approximate ways to perform inference on non-tree

graphical models . One of the most famous algorithms for inferring the states of a hidden Markov

model is the Kalman filter, which assumes linear (or quadratic) transitions between the states X

and Gaussian noise: p(Yt|Xt) ∝ N (Xt, σ
2) for some variance σ2.

We will use these time-series abstractions in modeling time-series collections of documents. In

these collections, the assumption of a hidden, evolving state will allow us to perform inference

efficiently while inferring a sequence of states which can be interpreted—for example, we will use

this to model themes which evolve over time in Chapter 2 and to infer countries’ positions about

foreign policy issues in Chapter 3.

We have discussed text and time-series assumptions, which are often seen together in the context

of natural language processing. We will not use time-series assumptions at the level of syntactic

language modeling. While sequential modeling is useful for many NLP tasks, we will not use them

in this work, instead deferring to the bag-of-words assumption described in Section 2.2.3.

2.3 Posterior inference and model evaluation

One of the most fundamental problems in statistical machine learning is that of estimating the values

of latent random variables X in a statistical model, given observed random variables Y (i.e., data).

In this thesis, we will frequently need to estimate the posterior distribution p(x|y) = p(x,y)
p(y) . In this

section we outline several common methods for estimating this posterior.
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2.3.1 MAP estimation

One of the simplest estimates of the value of a random variable is the maximum-a-posteriori (MAP)

estimate. The MAP estimate X̂ is defined to be the most-likely value of the random variable:

X̂ = arg max
x

p(X = x|Y ) = arg max
x

p(X = x|Y )p(Y )
p(Y )

= arg max
x

p(X = x, Y ). (2.9)

The MAP estimate can typically be found by performing gradient or coordinate ascent on p(X,Y )

with respect to X (this is because the normalizer p(Y ) is not a function of X). Because MAP

estimates can be fast to estimate, they can shorten the development loop described in Section 2.1.

The MAP provides a point estimate which is often a good summary of the posterior distribution.

2.3.2 MCMC

We briefly review the key components of Markov Chain Monte Carlo (MCMC) estimation. We will

not go into detail about MCMC in this work except to build up to (and draw a contrast with)

variational methods, which are introduced in the next section. Readers unfamiliar with MCMC can

refer to a standard text such as Bishop (2006).

MCMC methods are often used to inspect a posterior distribution p(x|y). The input to an

MCMC sampler is typically an unnormalized probability density p̃(x, y) ∝ p(x|y). 3 Given p̃(x, y),

an MCMC sampler produces a collection of samples from p(x|y). These samples are often used to

summarize statistics such as marginal means and variances of p(x|y). They are unbiased and, given

enough time, will accurately represent p(x|y).

MCMC methods are used widely, but they have limitations. One of these limitations is runtime:

while one may need N iid samples from a distribution p(x|y) to estimate its mean and variance, she

typically needs many more MCMC samples to estimate these statistics. In some MCMC algorithms,

one must select a proposal distribution for sampling; a poorly-chosen proposal distribution can affect

runtime, as a Markov chain needs more samples to converge. MCMC algorithms can also suffer from

memory bottlenecks, as samples are stored and convergence is measured.

Even when memory is not a bottleneck, the practitioner is often interested in only the marginals of

the posterior (as with most mixture-of-Gaussian applications); a large number of discarded samples

indicates that there is an inefficiency in the inference pipeline.
3For numerical and algebraic convenience, p̃(x, y) is often specified by log p̃(x, y).
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2.3.3 Variational inference

Variational methods address some of the shortcomings of MCMC by providing a fast, deterministic

alternative to MCMC (Wainwright and Jordan, 2003; Jordan et al., 1999). These algorithms have

been successfully applied to many kinds of topic models, where corpus size and vocabulary dimension

are large. We review the key ideas of variational inference here for use in later chapters.

Variational methods posit a simplified4 family of probability distributions, indexed by variational

parameters ν, and select the member qν of this family that is closest in KL-divergence to the true

posterior p(x|y):

arg min
ν

KL(qν ||p) = arg min
ν

∫
x

qν(x) log
qν(x)
p(x|y)

dx. (2.10)

Finding the optimal variational distribution qν is equivalent to optimizing an “evidence lower bound”

(ELBO) (Lν) on the data likelihood

log p(y) ≥ Eq [log p(x, y)− log qν(x)] (2.11)

= Eq [log p(x, y)]−H(qν(x)) (2.12)

=: Lν , (2.13)

where H(qν(x)) is the entropy of that distribution and the slack of the bound is equal to the KL

divergence from Equation 2.10.

The family is chosen by the practitioner to make the resulting algorithm tractable and to cap-

ture the parameters of interest. A common assumption is that the posterior is fully-factorized into

simple marginal distributions; such an assumption is known as naive mean-field variational infer-

ence. Though simpler, the fitted variational distributions are found to be good proxies for the true

posterior (Jordan et al., 1999; Gerrish and Blei, 2011).

For example, a multivariate posterior p(x|Y ), x ∈ RD might be represented by the product

q(x1:D) =
∏
DN (xd|µd, σ2

d) of D Gaussian distributions, and a multinomial posterior might be

represented by a Dirichlet distribution (Bishop, 2006). In the case of Latent Dirichlet Allocation,

for example, Blei et al. (2003) assume that the indicators zn can be described by a fully-factorized

product of multinomial distributions, and they assume that the posterior distribution of topics β and

mixture proportions ν can be represented by a fully-factorized product of Dirichlet distributions.

Once a family is selected, the bound in Equation 2.13 is evaluated symbolically, as a practitioner
4Simplified compared to the true posterior.
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Figure 2.5: Illustration of variational inference. Practitioners define a variational family (shaded
yellow region) and find the member of that family qη̂(x) which is closest (by KL divergence) to the
true posterior.

fully expands Eq [log p(x, y)− log qν(x)] and (usually) its gradient using pencil, paper, and algebra.

As we will show in subsequent chapters, this bound may itself be bounded or approximated with a

Taylor approximation such as the delta method (Bickel and Doksum, 2007; Braun and McAuliffe,

2010). These simplifying assumptions – an approximate, fully factorized posterior with further sim-

plifying bounds – make it possible to express the lower bound in terms of the variational parameters

ν. The practitioner then uses these bounds and gradients in a coordinate or gradient ascent algo-

rithm. This process, and the role of variational inference in statistical machine learning will become

more clear as we develop several algorithms using these methods over the next few chapters.

We have not yet described a limitation of variational inference: with each new set of model

assumptions, variational inference requires that the variational lower bound L be algebraically eval-

uated, which is a significant time investment by a practitioner for each new model she creates. We

will also introduce an alternative method for performing variational inference in Appendix A. This

alternative method removes the onus of deriving new variational update equations, making it easy

for the practitioner to perform rapid model development on a range of models.

2.3.4 Model evaluation

After a model has been fit with an approach such as variational inference, it is important to evaluate

the model (see again the data analysis pipeline in Section 2.2.1). The goal of model evaluation is

to evaluate performance of the model and to criticize the model. The criticism may warrant model
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revision, in which case the modeling assumptions are adjusted, the model is refit, and the model is

re-evaluated.

In general, different practitioners will have different goals in modeling data, so they will have

different goals in model evaluation. However, several standard approaches exist.

Likelihood of training data

We first describe one of the simplest metrics of how well a model is fit: its ability to model training

data Yobs,1, . . . , Yobs,Nobs
. As before, one of the most frequently used metrics for this is the

training log-likelihood log p(Yobs,1, . . . , Yobs,Nobs
) of these observations. When these observations

are conditionally independent given the observed data (nearly always the case), the log-likelihood

can be written
∑Nobs
n=1 log p(Yobs,n). The downfall of this metric is of course that it does not measure

whether a model is overfit. However, it is usually the objective function used to define a stopping

criterion when an MAP or MLE estimate is fit. In addition, it can be used to measure the “flexibility”

of a model.

Likelihood of heldout observations Y1, . . . , YNheldout

A common measure of a model is its ability to represent unseen, heldout observations Yhdt,1, . . . ,

Yhdt,Nhdt
given a set of “training” observations Yh,1, . . . , Yh,Nobs

One of the most frequently used

metrics for this is the log-likelihood

log p(Yhdt,1, . . . , Yhdt,Nhdt
|Yobs,1, . . . , Yobs,Nobs

)

of these observations, where we condition on the observed data because a “fit” model effectively

captures the information in these observations. When these observations are conditionally in-

dependent given the observed data (nearly always the case), the log-likelihood can be written∑Nhdt
n=1 log p(Yhdt,n|Yobs,1, . . . , Yobs,Nobs

).

When training data is scarce, practitioners often use k-fold cross-validation. Cross-validation

requires that the training data be partitioned into K equal-size parts P1, . . . , PK , fit K times on

each of the K − 1 subsets which omit exactly one of the partitions, and evaluated on the omitted

partition. Such a model has the benefit that all of the data is used for training and evaluation.
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Relationship with external data

In this thesis we will use external data sources to validate the results of our model. External data

sources are useful because they can confirm a model’s assumptions. When a model’s inferences do

not correspond with a secondary data source, then this can also be useful, because it can be used to

inform model development or to confirm that the model can produce new, useful results.5 We will

find this, for example, when we compare influence scores learned from our model in Chapter 3 with

citation counts.

2.4 Using these tools to understand influence and decision-

making

The ideas outlined in this chapter cover only the tip of the iceberg of tools used by statistical machine

learning researchers (and this is only a subset of all machine learning researchers). However, they

will serve as important building blocks for future chapters. In the next chapter we will use some of

these ideas as we return to the original questions that motivated this thesis: how can we understand

patterns of behavior in society using text? How do documents interact with one another, and how

can we use them to tell us how people interact with the world?

We will use the tools discussed in the preceding sections to shed light on these questions, and

we will do this with exactly the data-analysis recipe that we outlined in Section 2.2.1. This recipe

involves defining a question, describing a model to answer that question using data, fitting that

model, and drawing inferences using the model.

In the next chapter we will return to a fundamental challenge in managing the huge volumes

of text now inundating researchers and companies: how to find the most important and influential

documents in a collection. As we will show in the next chapter, a latent-variable treatment of

this question will allow us to make our assumptions explicit. This in turn will in turn make the

subsequent analysis straightforward.

5This was pointed out in a helpful discussion with Matthew Salganik.
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Chapter 3

A method for discovering influence

in text documents

A fundamental problem in research and industry is that of organizing collections of documents. In

many cases this problem can be reduced to identifying those documents which have been the most

influential. This is an important and common problem in many fields, including research in academic

fields such as political science, history, and science. Influence measurements are used to assess the

quality of academic instruments, such as journals, scientists, and universities; as such, they can

play a role in decisions surrounding publishing and funding. These measurements are critical for

academic researchers: finding and reading the influential articles of a field is central to good research

practice.

Measurements of influence are also significant in industry, as regulations such as Sarbanes Oxley

require public companies to retain documents. E-discovery is another field in which identifying

influential documents is critical. A recent New York Times article cited the need for such tools in

industry:

“The economic impact will be huge,” said Tom Mitchell, chairman of the machine learn-

ing department at Carnegie Mellon University in Pittsburgh. “We’re at the beginning of a

10-year period where we’re going to transition from computers that can’t understand lan-

guage to a point where computers can understand quite a bit about language.” (Markoff,

2011).

The article continues, noting that recent solutions use either keyword-based search methods or take

advantage of metadata such as citations or links in emails, which can be helpful when available.
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Metadata can be a boon for finding the most influential documents in a collection, but often such

metadata is unavailable.

In this chapter, we will describe an approach to identifying influential articles in a collection

without the use of metadata like citations. The key assumption of our method is that an influential

article will affect how future articles are written and that this effect can be detected by examining

the way corpus statistics change over time. We will take advantage of the tools discussed in the

last chapter by using them to encode this intuition in a model to measure influence in sequential

collections of documents.

Measuring influence with citations

A traditional method of assessing an article’s influence is to count the citations to it. The impact

factor of a journal, for example, is based on aggregate citation counts (Garfield, 2002). This is

intuitive: if more people have cited an article, then more people have read it, and it is likely to have

had more impact on its field. Citation counts are used with other types of documents as well. The

Pagerank algorithm, for example, uses hyperlinks of web-pages to identify the most influential Web-

pages on the Internet, and it was essential to Google’s early success in Web search (Brin and Page,

1998). There is a large literature on these and other methods for citation analysis and bibliometrics.

See Osareh (1996) for a review.

Though citation counts can be powerful, they can be hard to use in practice. Some collections,

such as news stories, blog posts, or legal documents, contain articles that were influential on others

but lack explicit citations between them. Other collections, like OCR scans of historical scientific

literature, do contain citations, but they are difficult to read in reliable electronic form. Finally,

citation counts only capture one kind of influence. All citations from an article are counted equally

in an impact factor, when some articles of a bibliography might have influenced the authors more

than others.

Using text to measure influence

One possible solution might be to predict citation counts, by proposing features and training a

regression. Tang and Zhang (2009) and Lokker et al. (2008) have used methods like this; successful

features include the publishing journal’s impact factor, previous citations to last author, key terms,

and number of authors (Tang and Zhang, 2009; Lokker et al., 2008). Such research has had measured

success: 56% explained variance (Lokker et al., 2008), and 91.5% prediction accuracy (Ibáñez et al.,

25



2009).

However, we seek a model that is applicable to collections for which the notion of citation may

not exist. Therefore, predicting citations is an explicit non-goal. Further, work toward predicting

citations uses specialized classifiers and restrictive features for narrow application domains; Lokker

et al. (2008) even note that their results “may not be readily transferable to... basic science articles

or journals”. They further noted that earlier work in their field of predicting citations to medical

journals had only achieved 14% to 20% explained variance (Lokker et al., 2008).

In this chapter we will use a text-based approach to measure influence. We will base our as-

sumptions on a topic model which allows topics to drift over time in a corpus (Blei and Lafferty,

2006). Though our algorithm aims to capture something different from citation, we will validate the

inferred influence measurements by comparing them to citation counts.

We begin with a discussion of previous work aimed at modeling influential documents. We

then describe the Document Influence Model (DIM), our unsupervised model for determining the

influence of a document using the changes in language used by documents over time. We follow this

with experiments to compare this model with citation counts on three well-known scientific corpora

and a collection of legal opinions. We will also provide the reader with an intuition for the model

with several real-world examples. With only the language of the articles as input, our algorithm

produces a meaningful measure of each document’s influence in the corpus.

3.1 The Document Influence Model

In this section we will develop a probabilistic model that captures how past articles exhibit varying

influence on future articles. The hypothesis is that an article’s influence on the future is corroborated

by how the language of its field changes subsequent to its publication. In the model, the influence

of each article is encoded as a hidden variable; the posterior distribution of these variables (given

the text of documents) reveals the influential articles of the collection.

Past approaches

A number of algorithms link the text of documents to citation counts. This work often models the

information in citations by predicting them or modeling them with topics (Nallapati and Cohen,

2008; Chang and Blei, 2009; Dietz et al., 2007; Cohn and Hofmann, 2001) or other semantic tools

(McNee et al., 2002; Ibáñez et al., 2009). Other work in this area uses the text of documents

along with citations to summarize documents (Qazvinian and Radev, 2008) or to propose new
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(a) (b)

Figure 3.1: The Dynamic Topic Model (a) and the the Document Influence Model (b).

bibliometrics: Mann et al. (2006) use topic models and citations to map topics over time and define

several new bibliometric measurements such as topic Impact Factor, topical diffusion, and topic

longevity.

Some work in this area uses the link structure of citation networks to extract higher level struc-

ture. Borner et al. (2003), for example, have used author and citation networks to understand the

evolution of ideas in the history of science.

Dynamic Topics

Our model is based on the dynamic topic model (DTM) (Blei and Lafferty, 2006), a model of

sequential corpora that allows language statistics to drift over time. Probabilistic topic models such

as LDA (introduced in the last chapter) usually assume that the underlying distribution over words

is fixed (Blei et al., 2003; Deerwester et al., 1990; Hofmann, 1999). The DTM introduced a Markov

chain of topics (i.e., term distributions) to capture probabilities that drift over the course of the

collection. The idea is simple: topics drift in discrete steps over time. At each “epoch”, some

number of documents are generated based on topics at that epoch.

Drifting Topics. We can formalize these assumptions in a statistical model as in Blei and Lafferty

(2006). First let V be the number of terms in a vocabulary and consider the natural parameters

βt of a term distribution at time t, where the probability of a word w is given by the soft-max

transformation of the unconstrained vector,

p(w |βt) ∝ exp(βt,w). (3.1)
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The corresponding distribution over terms, i.e., the “topic,” is a point on the vocabulary simplex.

In the logistic normal Markov chain, this distribution drifts with the stationary Markov process

βt+1 |βt ∼ N (βt, σ2I), (3.2)

where σ2 is the transition variance.

Documents generated at time t. Now consider a corpus broken up into discrete epochs t ∈

{1, . . . , T}, with Dt articles at each time t. Let Wt,1:D denote the articles as vectors of word counts,

where row wt,d of Wt,1:D represents the word counts in article d.

At each epoch t, the documents of these articles are drawn independently using the topics

described by Equation 3.1. More formally, documents are generated according to the generative

process

1. For time t = 1, . . . , T :

(a) For topics k = 1, . . . ,K:

i. Draw topics βk,t |βk,t−1 ∼ N (βk,t−1, σ
2I)

(b) For document d = 1, . . . , Dt:

i. Draw topic mixture θd ∼ Dir(α, . . . , α).

ii. For position n = 1, . . . , N :

A. Draw topic indicator zn ∼ Mult(θd).

B. Draw the word for the nth term in document d according to Equation 3.1.

We illustrate the graphical model for in Figure 3.1 (a). With this model in hand and a collection

of documents, one can then estimate the positions of these topics by computing the posterior distri-

bution of the sequence of topics β1:T conditioned on the observed documents. This summarizes the

corpus as a smooth trajectory of word frequencies.

The Document Influence Model

We now turn to the original problem: certain ideas are influential in the progression of a field, and

we aim to discover what these ideas are (as doing so will allow us to find those documents that are

influential). The text of documents will provide a window into these underlying patterns.
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In our model, each article is assigned a normally distributed influence score `td for this topic,

which is a scalar value that describes the influence that the dth article at time t has on the topic.

The higher the influence, the more the words of the article affect how the topic drifts.

This is encoded in the time series model. The more influential a document is, the more its words

“nudge” the topic’s natural parameters at the next time step,

βt+1 |βt, (w, `)t,1:D ∼ N

(
βt + exp(−βt)

Dt∑
d=1

Nd∑
n=1

wt,d`t,d, σ
2I

)
, (3.3)

where the exponential exp(βt) is a vector containing the exponentiated elements of βt. The words of

an article with a high influence will have a higher expected probability in the next epoch; the words

of an article with zero influence will not affect the next epoch.

The form of Equation 3.3 is no accident. Specifically, we use this equation to enforce that the

increase in words’ probability at each time t be proportional to the number of words across the

corpus, as well as proportional to the influence `t,d of each document.

We illustrate this further by motivating the exp(β) with an appeal to the chain rule of calculus.

Writing the unit change ∆t =
∑
d wt,d`t,d for brevity, we have:

exp(βt) = exp(βt−1) + ∆t ⇐⇒ 1 = exp(βt−1 − βt) + exp(−βt)∆t

⇐⇒ 1− exp(−βt)∆t = exp(βt−1 − βt)

⇐⇒ log(1− exp(−βt)∆t) = βt−1 − βt

⇐⇒ βt = βt−1 − log(1− exp(−βt)∆t)

(3.4)

When exp(−βt)∆t is small, we have that βt ≈ βt−1 + exp(−βt)∆t.

We call this model the document influence model (DIM). Conditioned on a corpus, the posterior

distribution of the topic and influence scores gives a trajectory of term frequencies and a retrospective

estimate of the influence of each article. An article whose words can help explain the way the word

frequencies change will have a high posterior influence score. We will show in Section 3.3 that this

estimate of influence is meaningful.

Multiple topics. Corpora typically contain multiple persistent themes. Accordingly, the full

document influence model contains multiple topics, each associated with a time series of distributions.

Conditioned on the topics, articles at each time are modeled with latent Dirichlet allocation (LDA).
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Each article exhibits the topics with different random proportions θd; each word of each article is

drawn by choosing a topic assignment from those proportions zd,n, and choosing a word from the

corresponding topic (Blei et al., 2003).

Modeling multiple topics is important to the influence model because an article might have

different impact in the different fields that it discusses. For example, an article about computational

genomics may be very important to biology but less important to computer science. We want to

discern its influence on each of these topics separately.

As with the DTM, we posit K topic trajectories, and each document of each time point is modeled

with LDA. For each document, we now associate an influence score `d,k for each topic k. Each of

the K topics drifts according to an adapted version of Equation 3.2, where we restrict attention to

the influence score for that topic and to the words of each document that were assigned to it,

βk,t+1 |βk,t, (w, `, z)t,1:D ∼ N

(
βk,t + exp(−βk,t)

Dt∑
d=1

`t,d,k
∑
n

wt,d,nzt,d,n,k, σ
2I

)
. (3.5)

Here, zt,d,n,k is the indicator that the nth word in the dth document at time t is assigned to topic

k. We illustrate the graphical model for this distribution in Figure 3.1 (b).

Although we presented our model in this section with influence spanning one year, we also

adapted it to accommodate an “influence envelope”, where an article’s influence spans W years. This

provides a more realistic model of influence (Porter et al., 1988), but it complicates the inference

algorithm and may not be necessary, as we note in section 3.3.

To use this model, we analyze a corpus through posterior inference. This reveals a set of K

changing topics and influence scores for each article and each topic. The posterior provides a thematic

window into the corpus and can help identify which articles most contributed to the development of

its themes.

Work with similar goals

It is worth pointing out two pieces of recent research which have similar goals. Leskovec et al.

(2009) describe a framework for tracking the spread of memes, or ideas, in document collections,

and investigate the direction in which ideas tend to percolate. Shaparenko and Joachims (2007)

describe a measure of influence by modeling documents as unigram mixtures of earlier documents

and use a likelihood ratio test to predict citations between documents. In contrast to this work,

the DIM uses dynamic topics to explicitly model the change in topic language. Further, we do not

attempt to model links between documents, as in Shaparenko and Joachims (2007).
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3.2 Inference and parameter estimation

Our computational challenge is to compute the posterior distribution of the latent variables—the

sequences of topics and the per-document influence values—conditioned on observed documents

in the corpus. As for simpler topic models, this posterior is intractable to compute exactly. We

therefore employ variational methods—introduced in Chapter 2—to fit this posterior.

Before proceeding further, we note that this section is particularly dense, in part because varia-

tional methods require laborious algebra. We will use variational methods again in Chapter 5, but

we introduce a method in Appendix A to mitigate some of the pain of variational inference. We will

apply this in Chapter 6.

To apply variational methods, we begin by specifying a variational distribution for the DIM

posterior. First, the word assignments zn and topic proportions θd are governed by multinomial pa-

rameters φd and Dirichlet parameters γd, as in LDA (Blei et al., 2003); we refer to these distributions

as q(zn|φn) and q(θd|γd).

The variational distribution for topic trajectories {βk,1, . . . , βk,T } is described by a linear Gaus-

sian chain. It is governed by parameters {β̃k,1, . . . , β̃k,T }, which are interpreted as the “variational

observations” of the chain. These induce a sequence of means m̃t and variances Ṽt. Blei and Lafferty

(2006) call this a “variational Kalman filter.”

Finally, the variational distribution of the document influence value `d,k is a Gaussian with mean

˜̀
d,k and fixed variance σ2

` .

In full, the variational distribution is

q(β, `, z, θ|β̃, ˜̀, φ, γ) =
K∏
k=1

q(βk,1:T |β̃k,1:T )
T∏
t=1

Dt∏
d=1

q(θt,d|γt,d)q(`d|˜̀d)
Nt,d∏
n=1

q(zt,d,n|φt,d,n).

Using this variational family, our goal is to maximize the Evidence Lower Bound (ELBO) L on the

model evidence of the observed words W:

ln p(W) ≥L(β̃, φ, γ) (3.6)

=
∑
T

Eq [ln p(βt|βt−1)] +
∑
T

∑
Dt

Eq [ln p(`d)] + Eq [ln p(θd|α)] (3.7)

+
∑
T

∑
Dt

∑
Nd

Eq [ln p(zn|θd)] + Eq [ln p(wn|zn, βt)] +H(q). (3.8)

Note also that the variational parameters β̃, φ, and γ are implicit in lines 3.7 and 3.8 of the above

equation because they parameterize the variational distribution q, and the expectation is taken with
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respect to this distribution.

Optimizing the variational bound

This bound is optimized by variational EM, with an update schedule similar to that of Blei and

Lafferty (2006):

1. For Topic k = 1, . . . ,K:

(a) Update parameters β̃k.

2. For time t = 1, . . . , T :

(a) For document d1,t, . . . , dDt,t:

i. Update parameters φd, and γd

(b) Update parameters ˜̀
t (i.e., update ˜̀

d as a block for all documents at time t),

where the variational parameters are optimized sequentially in blocks. These updates are repeated

until the relative increase in the lower bound is below a threshold (which we specify in the experi-

ments section).

Influence values. In the DIM, changes in a topic’s mean parameters are governed by a normal

distribution. As a consequence of this choice, updates for the influence parameters ˜̀
t,k solve a

linear regression. In this regression, documents’ words at time t explain the expected topic drift

∆β,t,k = (βt+1,k − βt,k), where the contributions of each document’s words are given by the design

matrix X = Diag (exp(−βt,k)) (Wt,k ◦ φt,k). (Diag (x) refers to the matrix having the elements of x

on its diagonal, and ◦ refers to the element-wise product.)

The parameter updates for document influence ˜̀
t,k are defined, for each time t and each topic k,

by the variational normal equation

˜̀
t,k ←

(σ2

σ2
d

I + Eq
[
XTX

] )−1Eq
[
XT∆β,t,k

]
. (3.9)

The expectation Eq
[
XTX

]
is a matrix with dimension Dt ×Dt. Its elements are

Eq
[
XTX

]
d,d′

=
∑
n

exp(−2m̃t,k,n + 2Ṽt,k,n)(wt,d,nwt,d′,nφt,k,d,nφt,k,d′,n)

32



when d 6= d′ and

Eq
[
XTX

]
d,d

=
∑
n

exp(−2m̃t,k,n + 2Ṽt,k,n)(w2
t,d,nφt,k,d,n)

otherwise. The expectation Eq
[
XT∆β,t,k

]
is a Dt-dimensional matrix with elements

Eq
[
XT∆β,t,k

]
d

=
∑
n

wt,d,nφt,k,d,n × (m̃t+1,k,n − m̃t,k,n + Ṽt,k,n/2)× exp(−m̃t,k,n + Ṽt,k,n/2).

Topic proportions and topic assignments. Updates for the variational Dirichlet on the topic

proportions θd,k have a closed-form solution, exactly as in LDA (Blei et al., 2003); we omit details

here.

The variational parameter for each word wn’s hidden topic zn is the multinomial φn. We solve

for φn,k by the closed-form updates

log(φn,k)←Ψ(γk) + m̃t,k,n +
1
σ2
wt ˜̀dn,k exp(−m̃t,k+ Ṽt,k/2)(m̃t+1,k − m̃t,k + Ṽt,k)

− 1
σ2
wt,n

[
˜̀
dn,k exp(−2m̃t,k + 2Ṽt,k)(Wt,n,\dn ◦ φt,n,k,\dn)˜̀

t,k,\dn

]
− 1
σ2
w2
t,n exp(−2m̃t,k + 2Ṽt,k)(˜̀2

d,n,k + σ2
l ), (3.10)

where Ψ is the digamma function and \dn refers to the set of all documents except dn. Solving the

constrained optimization problem, this update is followed by normalization φw,k ← φw,kP
K φn,k

.

3.3 Empirical study

We studied the DIM with four text corpora: three collections of scientific articles and a collection of

opinions written by judges in the New York Appellate Court system. For each corpus, we estimated

and examined the posterior distributions of its articles’ influence.

In this section, we demonstrate that the estimate of an article’s influence is robustly correlated to

the number of citations it received. While the DIM model is designed for corpora without citations—

and, indeed, only the documents’ text and dates are used in fitting the model—citations remain an

established measure of influence. This study provides validation of the DIM as an exploratory tool

of influential articles.
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Data

The three scientific corpora we analyzed were the ACL Anthology, The Proceedings of the National

Academy of Science, and the journal Nature (we discuss the New York Courts in a later section).

For each corpus, we removed short documents, terms that occurred in too few documents, and terms

that occurred in too many documents (by thresholds). We also removed terms whose statistics did

not vary over the course of the collection, as such terms would not be useful for assessing change in

language (a sample of such non-varying terms from Nature is “ordinarily”, “shake”, “centimetre”,

“traffic”, and “themselves”). By applying these filters, we retained the most interesting words from

the perspective of a time-series analysis.

ACL Anthology. The Association for Computational Linguistics Anthology is a digital collec-

tion of publications about computational linguistics and natural language processing (Bird et al.,

2008). We analyzed a 50% sample from this anthology, spanning 1964 to 2002. Our sample contains

7,561 articles and 11,763 unique terms after preprocessing. For this corpus we used article citation

counts from the ACL Anthology Network (Radev et al., 2009).

PNAS. The Proceedings of the National Academy of Sciences is a leading, highly-cited, mul-

tidisciplinary scientific journal covering biological, physical, and social sciences. We sampled one

seventh of the collection, spanning 1914 (when it was founded) to 2004. Our sample contains 12,145

articles and 14,504 distinct terms after preprocessing. We found citations using Google Scholar for

78% of this collection.

Nature. The journal Nature is the world’s most highly cited interdisciplinary science jour-

nal (Thompson Reuters, 2009) with content on a range of scientific fields. We analyzed a 10%

sample from this corpus, spanning 1869 (when it was founded) to 2008. Our sample contains 34,418

articles and 6,125 distinct terms after preprocessing. We found citations using Google Scholar for

31% of these documents.

Inference for 10 topics on each corpus above took about 11 hours to converge on a desktop Intel

2.4GHz Core 2 Quad CPU. Our convergence criterion was met when the evidence lower bound

increased by no more than 0.01%. For the experiments described below, we set topics’ Markov chain

variance σ2 = 0.005 and σd = σl = 0.0001. These values were selected to make the topics change at

a reasonable, “coherent” rate.
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Figure 3.2: Spearman rank correlation between citation counts and posterior influence score, con-
trolling for date (top) and fraction of citations explained by posterior influence (bottom).

Relating posterior influence and citation

We studied the DIM with varying numbers of topics (5, 10, 15, 20, 50, 75, and 100). We measured

the relationship between the posterior influence values of each article ˜̀
d and its citation count cd.

We first aggregate the influence values across topics. Recall that each document has an influence

value ˜̀ for each topic. For the nth word of document d, we compute its expected posterior influence

score, with the expectation taken with respect to its (random) topic assignment z. Omitting time

indices, this is E[zd,n · ˜̀d]. We then sum these values over all words in the document,

f(˜̀
d) =

Nd∑
n=1

E[zd,n · ˜̀d]. (3.11)

This weights each word by the influence associated with its assigned topic. When we are done with

it, f(˜̀
d) provides a metric for influence which is topic-independent. (Using the maximum value of

influence across topics yielded similar results.)

Figure 3.2 displays the Spearman rank correlation between the aggregated posterior influence

score of Equation 3.11 and citation counts. The DIM posterior—which is estimated only from the

texts of the articles—has a positive correlation to the number of citations. All of these numbers

were found significant up to p < 10−4, using permutation tests on the influence scores.
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Correlation goes up when we model multiple topics within a corpus. Moving from 2 to 5 topics in

the ACL corpus increases correlation from 0.25 to 0.37. Nature is likewise better with more topics,

with a correlation of 0.28 at 20 topics; while PNAS performs best near 5 topics, with a correlation

of 0.20.

Figure 3.2 also shows the fraction of citations explained by DIM scores: Nature documents with

the highest 20% of posterior influence, for example, received 56% of citations. The flat regions in

ACL and PNAS are due to aggregate influence scores very close to zero.

Heuristic model. The DIM is a complicated model. To justify its complexity, we describe a simple

baseline (the heuristic) which captures our intuition with a single topic, is easy to implement, and

runs quickly. For this heuristic, we define a word’s weight at time t as:

wt := Frequency of w in [t,t+f ]

Frequency of w in [t−p,t]
,

for fixed distances f into the future and p into the past. A document’s score is the weighted average

of its words’ weights. This heuristic captures the intuition that influential documents use language

adopted by other documents.

The heuristic performed best with large values of its parameters (f = p = 200). With these

settings, it achieves a correlation of 0.20 for the ACL, 0.20 for PNAS, and 0.26 for Nature. For Nature,

the model is more correlated with citations than the heuristic for 20, 50, and 75 topics. Correlation

is matched for PNAS, the model slightly beating the heuristic at 5 topics. ACL outperforms the

heuristic for all numbers of topics.

Shuffled corpus Though we have eliminated date as a confounder by controlling for it in correla-

tions, there may be other confounders such as document length or topic distribution. We therefore

measured the DIM’s relationship to citations when dates were randomly shuffled, keeping all docu-

ments which share a date together. If non-date confounders exist, then we might see correlation in

the shuffled data, marking observed correlation as dubious.

We shuffled dates in the corpora and refit the DIM. We found a maximum date-controlled

correlation of 0.018 for 29 shuffles of ACL; 0.001 for 5 shuffles of Nature; and 0.012 for 28 shuffles of

PNAS. While this shuffled experiment and controlling for date do not entirely preclude confounding,

they eliminate many potential confounders.
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A closer look

Experiments showing correlation with citations demonstrate consistency with existing bibliometrics.

However, the DIM also finds qualitatively different articles than a bibliometric based on citation

counts finds. In this section we describe several documents to give the reader an intuition behind

the kind of analysis that the DIM provides.

IBM Model 3 The second-most cited article in the ACL Anthology Network is The Mathematics

of Statistical Machine Translation: Parameter Estimation (Brown et al., 1993). It has 450 intra-ACL

citations and 2,130 total citations listed on Google Scholar. This seminal work describes parameter

estimation for five word-based statistical models of machine translation; it provided widely accepted

statistical models for word alignment and introduced the well-known “IBM models” for machine

translation. The posterior influence score for Brown et al. (1993) ranked 6 out of 7,561 articles in a

10-topic model.

This article was most influential in a topic about translation, which had a trend toward “align-

ment for machine translation.” The largest-moving words are shown in Figure 3.3 (left). Upward

trends for “alignment”, “brown”, and “equation” are evident (although it is not clear whether

“brown” refers to the author or the corpus).

The Penn Treebank The most-cited article in our subset of the ACL Anthology Network is

Building a large annotated corpus of English: the Penn Treebank (Marcus et al., 1993), with 1,622

ACL citations and 2,810 citations on Google Scholar. This article describes the large-scale part-

of-speech and syntax tagging of a 4.5-million word corpus. It falls in a topic about part-of-speech

tagging and syntax trees; “treebank” had become one of the top words in the topic by 2004.

The DIM assigned a relatively low influence score to this article, ranking it 2,569 out of 7,561

articles. While Marcus et al. (1993) introduces a powerful resource, most of the article uses con-

ventional language and ideas to detail the annotation of the Penn Treebank. As such, the paper

does not discuss paradigm-changing ideas and the model scores it low. We emphasize that this does

not undermine the tremendous influence that the Penn Treebank has had on the field of natural

language processing. The DIM is not designed to discover this kind of influence.

Success in 1972 In 1967, The College Science Improvement Program was established to assist pre-

dominantly undergraduate institutions. Two years later Nature published a short column, which has

the highest of our posterior influence in a 20-topic model, out of 34,418 Nature articles. No citation
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Figure 3.3: Most active words appearing in Brown et al. (1993) (left) which have changed the most
in a topic about translation. On right are words appearing in Toole et al. (1984) in a topic about
DNA and genetics. Terms are sorted by increase over 10 years.
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information was available about this article in Google Scholar. The column, How to be Overtaken

by Success, discusses a debate about the “Miller bill”, which considers funding for postgraduate ed-

ucation (Nature, 1969). Overtaken by Success provides few research resources to researchers, which

may explain lack of citation information. Instead, it presciently discusses a paradigm shift in a topic

about science, industry, research, and education: “The record of the hearings [on the bill] is not

merely an indication of the way the wind is blowing but an important guide to some of the strains

which are now accumulating within the system of higher education...”

In 1972, three years after this article’s publication, The NSF Authorization Act of 1973 made the

NSF explicitly responsible for science education programs at all levels (NSF Website, 2010). Where

this may have been missed by those using citation counts to study the history of science education,

the DIM has provided a metric with which to gauge interest in the article.

Genetics in Nature The sixth most influential document by the DIM in a 20-topic model of

Nature is Molecular cloning of a cDNA encoding human antihaemophilic factor, an article describing

successful cloning of a human mRNA sequence important in blood clotting (Toole et al., 1984). With

584 citations, this article is among the top 0.2% of these 34,418 documents. The most active words

appearing in this article are shown in Figure 3.3 (right). The plot shows some of the document’s

key words – “expression”, “primer”, “blot” – become prominent words in the topic.

An application to the New York Appellate Courts.

The New York Appellate Court system hears appeals cases within the state of New York. This

court “was established to articulate statewide principles of law in the context of deciding particular

lawsuits” (NY CA Website, 2012), acting as a form of “Supreme Court” for the state of New York.

Judges who hear these cases make decisions about the cases and write opinions summarizing their

reasoning for these decisions. These decisions and opinions are extremely important within the court

system because they set precedent for later decisions.

These opinions written by judges are therefore written expressly to be influential on later court

decisions, and judges’ opinions frequently make explicit citations to earlier cases. However, these

citations are limited in two respects. First, multiple opinions may exist per case, stating the majority

opinion, supporting it in part, or entirely disagreeing with it. Although judges’ citations are explicit

and well-formatted, their citations do not make this distinction machine-readable, making large-scale

analyses difficult without expensive hand-coding. Second, lawmakers may have different reasons for

citing opinions; it has been hypothesized by some political methodologists (people who use formal
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Figure 3.4: Citations explained by influence score in the New York Appellate Courts. Each point
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on the influence score, and the y-axis describes the fraction of citations for all documents which fall
below this threshold.

and quantitative methods to study political science) that researchers do not cite dissenting opinions

because dissenting opinions are considered to hold little if any legal sway; citing dissenting opinions

is therefore seen as a sign of weakness (Beim correspondence, 2011).

We analyzed this collection, splitting 9,266 appellate court cases into 10,618 distinct opinions,

written by judges representing the majority opinion, a concurrence in part (i.e., supporting the

majority decision but with a different rationale for reaching that decision), or a dissenting opinion.

Our collection contained 13,568 distinct terms after pre-processing. We also scraped citations within

this collection and found 37,348 intra-corpus citations.

Based on the analysis of the scientific corpora, we fit a 40-topic model to this collection to

discover influential documents. Consistent with the scientific corpora, we measured a Spearman

rank-correlation coefficient between posterior influence scores and the logarithm of citation counts

at ρ = 0.24. We illustrate the fraction of citations explained by documents above different influence

thresholds in Figure 3.4. Across all four corpora, the model is consistently correlated with citation

counts.

3.4 Conclusions

Traditional bibliometrics like citations are widely used for understanding collections of text docu-

ments. Much of the past work for identifying influential documents focuses on measuring or pre-

dicting citations for corpora which have citations. In this chapter we described the DIM, which is

developed for time-series corpora without bibliometrics. We have demonstrated measured consis-
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tency with citations with the model, controlling for confounders like document length. However,

the information provided by the model transcends this: the influence score has anecdotally been

demonstrated to provide qualitatively different information than citations.

Based only on the changing statistics of the language in a corpus, we computed a measure of

influence that is significantly related to observed citation counts. That said, it would be useful to

better understand how this metric is qualitatively different from citations and other bibliometrics:

expert judgment or usage information obtained from digital libraries might be some avenues. We

leave this for future work.

We considered several documents evaluated by the model: Brown et al. (1993) and Toole et al.

(1984), which both had high citations and high posterior influence; and Marcus et al. (1993), which

had high citations and low posterior influence. These results demonstrate not just that the model is

correlated with citations; it also suggests that the model provides qualitatively different information

than citations.

3.4.1 Avenues for future work

The DIM could be made more realistic and more powerful in many ways. In one variant, individual

documents might have their own “windows” of influence. Other improvements may change the way

ideas themselves are represented, e.g. as atomic units, or memes (Leskovec et al., 2009). Further

variants might differently model the flow of ideas, by modeling topics as birth and death processes,

using latent force models (Alvarez et al., 2009), or by tracking influence between documents, building

on the ideas of Shaparenko and Joachims (2007) or Dietz et al. (2007).

We also believe that it would be useful to better understand models like the DIM in the context

of traditional metrics of influence, such as academic citations, and other metrics of influence, such

as usage data. Having a better understanding of when this model and established metrics differ

will uncover where our metric may provide new information that is not yet captured by existing

statistics.

3.4.2 Next steps

The work presented in this chapter assumes that the collection of documents is described by a set

of themes, and that these themes evolve over time. It describes each document using a mixture over

themes and a vector describing its influence on each of those themes. This provides a sense of the

current of ideas coursing through a collection of documents.

41



A limitation of this approach is that it provides too broad a view of a corpus: it does not

provide explicit detail of the underlying story within a collection. This model describes a corpus as

a collection of topics, and it describes documents as mixtures of themes and influence weights, but

it does not provide any further sense of a story which changes over time.

In the next chapter we will discuss a model to explore some of these shortcomings by explicitly

modeling the “story” within a collection of text documents. This approach will use some of the same

ideas from this chapter. Again we will assume that a collection of text documents serve as a window

into the events within the collection of historical documents, and again we will encode assumptions by

explicitly modeling them with latent random variables, linked by a time-series model. However, by

modeling the interactions of entities within the collection explicitly, and applying posterior inference,

we will learn a story about them.
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Chapter 4

A time-series model of foreign

affairs: predicting sentiment

between nation-states

In this chapter we use the text of newspaper articles to infer a history of the relationships between

different nations. An assumption of our work is that the tension between two nations—or a warm

and robust relationship between them—is reflected by the language that is used to discuss them. In

developing this assumption, we discuss two models designed to infer the relationships between pairs

of nations.

Text and latent spaces

The basic unit of analysis in this chapter is paragraphs of text from newspaper articles which

discuss pairs of nations. We choose paragraphs because they are small enough to have just one or

two concrete ideas but large enough to describe interesting relationships.

We use some of the same ideas presented in the last chapter to model the text of these paragraphs,

but we use one of the primitives introduced in Chapter 2 to model relationships between pairs of

nations. This allows us to build a history of nations’ relationships over time. An advantage of a

text-based approach to history is that we can incorporate information from all articles of a given

collection with modest computational cost. This means that historians and political scientists can

then search and review thousands of historical documents at the push of a button—or identify
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forgotten and overlooked incidents in history.

The primitive from Chapter 2 that we use amounts to an assumption that each nation can be

summarized by its position in a latent space, so that the sentiment between two nations is determined

(up to stochasticity) by the relationship between their positions in this latent space. By making this

assumption, we gain two benefits: the ability to interpret these nations’ positions, since they provide

statistically meaningful summaries of these nations’ positions; and the ability to make predictions

about the relationships between nations, based on their latent positions. While the last chapter’s

Document Influence Model allowed us to discover themes which evolved over time and individual

documents’ influence on these themes, the assumptions we make in this chapter allow us to create

a more rich story about the interaction of specific textual entities—nations—over time.

Organization of this chapter

In the next two sections we develop several computational models that link the text of a news source

to the relationships between nations.

We begin with a model which infers these relationships by using two sources of labels about the

the relationship, or sentiment, between pairs of nations: expert labels and labels assigned by lay paid

“workers”. To design this model, we develop a set of spatio-temporal assumptions that allow us to

describe the sentiment between nations by inspecting their relative positions in this latent space (and,

inversely, to interpret their positions based on observed sentiment). We demonstrate that modeling

nations in this way allows us to create a history of foreign relations over time. Importantly, we

demonstrate that the sentiment inferred from two very different sources of sentiment labels leads to

strikingly similar measures of inter-state sentiment.

After developing this supervised model, we invert this question and ask: what sentiment is

implied by the text alone of news articles? To answer this question, we describe an unsupervised

model of the relationship between nations to qualitatively describe these relationships. We then

demonstrate a connection between the unsupervised relationships and the sentiment labels we had

used for the supervised model.

4.1 A supervised model of dyadic sentiment

In the last chapter we described a model for identifying influential documents. A defining feature of

that model was that it was unsupervised; only after fitting the model could we compare the inferred

influence of an article with the number of citations it had received. In this section we will take a
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more direct approach, fitting a model with labels defined to represent the information that we seek:

whether there is a positive or negative relationship between pairs of nations.

In outlining this model, we will provide more detail into the two assumptions made in this

chapter: first, that there is a relationship between text and the sentiment between pairs of nations;

and second, that we can model the sentiment between nations by representing these nations as

vectors in a latent space. After describing these assumptions we adjust the model to extend it to

the time-series domain.

4.1.1 Inferring sentiment from text

The first assumption that we make in this chapter is that the relationship between pairs of nations

can be described by (at least) a one-dimensional sentiment s ∈ R, and that when a news source

discusses these nations, the author’s choice of words wd reflects the relationship between them.

Consider, for example, the relationship between the state of Israel and Palestine in the following

passage (emphasis added by me):1

“In Government and opposition circles questions have swirled about how a Palestinian

truck laden with explosives could have sailed past Israeli soldiers stationed at Gaza

Strip checkpoints. Some news reports said the vehicle had the required Israeli permits.”

Failed Truck-Bomb Plot Chills Israel-P.L.O. Autonomy Talks (Haberman, 2005)

Israel and Palestine have a tense relationship, as suggested by the author’s choice of the words

“explosives”, “questions”, and even “required”. This relationship is negative, so let’s say that the

sentiment between them is −3. Now consider the following passage about Egypt and Jordan:

“The leaders of Egypt and Jordan too have invested their prestige in the peace plan

and would rejoice in private to see Islamic militants crushed.” Middle East Talks are

Effort to Aid Peres and Arafat (Jehl, 1996)

The relationship between Egypt and Jordan—while not fabulous—is certainly more positive, as

suggested by words such as “invested”, “peace”, and “rejoice”. Let’s say that the sentiment between

Egypt and Jordan is 0.5.

The numbers -3 and 0.5 are of course arbitrary, but they convey some sense of the relationship,

or “sentiment”, between pairs of nations. Our intuition is that the words selected by authors when

describing pairs of nations often provide a direct indication of the sentiment between these nations,
1The statehood of Palestine is disputed. We considered a collection of of states and territories.
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and that we can estimate this sentiment for a new snippet of text (up to a constant factor) with the

right model.

To do this, we will use paragraphs of text which mention a pair of nations as the basic unit

of analysis in this chapter. We will assign labels to enough of these paragraphs to fit a text-based

model, and then we will fit a sentiment model to their text. 2 Paragraphs of text (like the two above)

are small enough to contain simple ideas yet large enough to discuss complete ideas—appropriate

also for discussing the relationship between pairs of nations.

To relate an author’s text to the sentiment between nations, we use a model called text regression

(Kogan et al., 2009). In text regression, we model the sentiment sd in document d using a linear

combination of the wordcounts wd ∈ N+V (omitting the names of the nations and major cities) of

each article:

sd|wd,β ∼ N (wT
d β, σ

2
W )

β ∼ N (0, σ2
β). (4.1)

For the remainder of this section, we will assume that β is observed, so that the sd is normally

distributed with mean wT
d β. We describe how to fit β with human labels in Section 4.1.5.

A brief comment on notation. Before we describe how to fit this model, we pause to summarize

our use of notation. In this chapter, we will use notation flexibly when it is convenient. The typical

unit of discussion will be the dth document occurring at time t. The dth document discusses two

nations, c1 and c2; these define a tuple ({c1, c2}, d, t) (where the set {c1, c2} = {c2, c1}). We will

generally use d to index documents, t to index time, and c to index a nation. When document d is

given, we may refer to its time as td (which is unique) or to the two interacting nations as cd,1, cd,2

or c1, c2. Alternatively, we may refer to the documents in which a nation c appears as dc,1, . . . , dc,D.

As another example, we may describe a nation’s position x(c1,d,t) variously as xcd,1 , xd,1, or even

xc if the context is clear. Finally, the sentiment between two nations (when described by a specific

document) might be variously described as sd, sc1,c2 , sd,t, or sc1,c2,d,t.

4.1.2 Modeling interactions with a latent space

The second assumption we make in this chapter is that each nation can be described by a vector in

some p-dimensional latent space, and that the relationship between two nations is determined (up to

2We provide more detail about tagging nations in the experiments section.
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Description F(x1,x2) where ...
distance − log(||z1 − z2||22 + 1) z1 = x1,2:D, z2 = x1,2:D

inner product zT1 z2 z1 = x1, z2 = x2

intercept y1 + y2 y1 = x1,1, y2 = x2,1

intercept/inner product y1 + y2 + zT1 z2 y1 = x1,1, y2 = x2,1,
z1 = x1,2:D, z2 = x2,2:D

intercept/distance y1 + y2 − log(||z1 − z2||22 + 1) y1 = x1,1, y2 = x2,1,
z1 = x1,2:D, z2 = x2,2:D

Figure 4.1: Link functions F : Rp × Rp → R. Intercept link functions introduce per-nation inter-
cepts that indicate how prone a nation is to war; distance link functions are based on the distance
between nation’ vectors; and inner-product link functions represent sentiment as a function of na-
tions’ political “orientations”. The notation 2 : D refers to a collection of indices, so that x2:D is a
D − 1-dimensional vector.

stochasticity) by the relationship between these nations’ vectors. We formalize this assumption by

letting each nation c take a position x̄c,0 ∈ Rp. As above, the sentiment of the relationship between

these two nations c1, c2 is described by the scalar sd = sc1,c2 ∈ R (we change notation for s as

appropriate given the context). This sentiment is determined by the interaction of their positions:

xc1,d ∼ N (x̄c1,0, σ
2
D)

xc2,d ∼ N (x̄c2,0, σ
2
D)

sd := F(xc1,d,xc2,d), , (4.2)

for some suitable function F : Rp × Rp → R (see Table 4.1.2 for examples of F), and where we

interpret sd as the sentiment between c1 and c2 as reflected by article d (which appeared at time td).

We have also introduced the auxiliary random variables xc1 and xc2 , which can be interpreted as

the positions these nations take during interaction in an article. We include them for the algebraic

convenience that will become evident later.

If F is continuous and c1 and c2 are similar (as measured by the distance between x̄c1 and x̄c2),

then c1 and c2 will interact with other nations in similar ways. Further, by selecting F carefully,

we can ensure that a poor relationship (F(xc1 , xc2)� 0) between c1 and c2 corresponds to intuitive

relationships between x̄c1 and x̄c2 , such as a large distance.

A spatial model provides us with two benefits. First, it provides interpretability: we can summa-

rize nations’ relationships with other nations succinctly with their positions x̄c. Second, this allows

us to draw on existing work from multidimensional scaling, which has been used successfully in both

political science (Martin and Quinn, 2002; Jackman, 2001) and social network modeling (Hoff et al.,

2002; Chang and Blei, 2009). We will empirically validate this model later, but first we extend it to
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Figure 4.2: A time-series model of nations’ interactions. Pseudo-observations of “zero” are added for
regularization. Amazon Mechanical Turk labels are used to fit β, which is used to infer unobserved
sentiments.

the time-series domain.

4.1.3 A temporal model of interaction

Foreign relations are not static; nations’ alliances and preferences change over time with the evolution

of economies, technology, and culture. Therefore we make this a fully temporal model by allowing

each nation’s mean position (formerly x̄c) to take a position at each time t. We assume that x drifts

with the Markov transition

x̄c,t|x̄c,t−1 ∼ N (x̄c,t−1, σ
2
chain), (4.3)

as shown in Figure 4.2. At any time t, we may observe the relationship between states c1 and c2 in

an article d. As before, the distribution of the sentiment between these nations is entirely specified

by their positions at this time:

xc1,d ∼ N (x̄c1,t, σ
2
D)

xc2,d ∼ N (x̄c2,t, σ
2
D)

sd := F(xc1,d,xc2,d). (4.4)

We reconcile p(sd|w,β) (see Equation 4.1) with Equation 4.4 by recalling that β is treated as
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constant once it is initially fit. This means that the joint distribution of nations’ sentiment is

p(sd,xc1,d,xc2,d|wd,β, x̄c1,d, x̄c2,d)

∝ p(F(xc1,d,xc2,d)|wd,β)× p(xc1,d|x̄c1,t)× p(xc2,d|x̄c2,t)

= N (F(xc1,d,xc2,d)|wT
d β, σ

2
W )×N (xc1,d|x̄c1,t, σ2

D)×N (xc2,d|x̄c2,t, σ2
D). (4.5)

Regularization and zero-reversion. To complete this model, we add a standard normal prior to

the ends of the chain, so that, for all nations c, p(x̄c,0) = p(x̄c,T ) = N (0, 1). We also add an additional

regularization term which we call zero-reversion. This term manifests itself as artificial observations

of zero coming from the hidden Markov model. In the joint distribution, this is an additional

product
∏C
c=1

∏T
t=0N (0|x̄c,t, σ2

zero). Zero-reversion can be motivated anecdotally by noting that, in

the absence of news, we can assume that nations tend to have neutral interaction with other nations.

We find that for certain link functions F it improves empirical performance.

Related work

The field of sentiment analysis has received considerable attention in the last couple of decades

and is used in a variety of industry fields, ranging from automated trading strategies to restaurant

recommendation sites. Models in which individual words are assigned a weight are common; Pang

and Lee (2008) provide a review of recent developments in this field. See Taddy (2012) for a model

which uses inverse regression on word counts for results which compare favorably with alternatives.

Spatial models such as Item Response Theory (IRT) have been developed over the past century

by quantitative social scientists for analyzing behavior. While much of this work has been used

to model parliamentary voting behavior, these techniques have also been used to model nations’

positions based on their votes in the UN General Assembly. Gartzke et al., for example, use these

votes and alliance models to study the nations’ affinities (Gartzke, 1998).

These models have been developed for dyadic data more fully in network models such as the latent

space model (Hoff et al., 2002; Sarkar and Moore, 2005), in which the probability of a link between

two nodes is a function of their latent-space distance. The qualitative relationship of entities’ dyadic

relationships has been more fully developed with text by the relational topic model, which uses free

text to model the relationship between actors in an unsupervised setting (Chang and Blei, 2009).

The areas of sentiment analysis and dyadic models have been combined in recent work focused

on content recommendation and unsupervised network discovery. Recommendation systems have
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been specialized to items with text for recommending content such as Web content (Agarwal and

Chen, 2010) and academic journals (Wang and Blei, 2011); both of these applications used latent

Dirichlet allocation for modeling text. Chang and Blei (Chang and Blei, 2009; Chang et al., 2009)

have also used unsupervised topic models to discover relationships between entities.

4.1.4 Inference

We fit the MAP objective of this probabilistic model. By using a MAP estimate, we will avoid the

tedious derivations from the last chapter. Further, the MAP estimate can be interpreted as a form

of unregularized variational inference (by letting variance around the posterior estimates go to zero).

We optimize the MAP objective in this model using an expectation maximization (EM) algorithm.

An expectation maximization algorithm

The MAP solution to this problem can be approximated using an expectation maximization (EM)

algorithm because of the way we have specified p(xc,d|x̄c,td). This makes inference much simpler

and allows us to take advantage of a Kalman smoother. Instead of optimizing each variable in the

objective, we alternate between optimizing the variables xc,d,t, sd in an E step and the variable x̄c,t

in the M step.

M Step. In the M step, we seek to estimate the mean x̄c,t|x, β, s of each nation c’s position.

Because the Markov blanket of each variable x̄c,t is specified by Gaussian distributions, we have

that arg max
x̄

p(x̄|x) = E [x̄|x]. More generally, this expectation is the optimal value of x̄ given the

other variables:

arg max
x̄

p(s, x, x̄|β,w) = arg max
x̄

p(x̄, x) = arg max
x̄

p(x̄|x) = E [x̄|x] . (4.6)

We can estimate x̄|s, x,β,w = E [x̄|x] using a variant of the traditional Kalman smoother (Kalman,

1960), where we treat x as observations of the hidden state x̄. This step differs from a standard

Kalman smoother in that we have no observations on some dates and multiple observations on other

dates.

Kalman updates. As with a standard Kalman smoother, the modified Kalman smoother requires

a forward filter step and a backward filter step. The forward filter estimates the mean position given
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all previous observations:

x̄forth,c,t|x̄forth,c,t−1, {xc,d,t−1}d ←
x̄forth,c,t−1/σ

2
forth,t−1 +

∑Dc,t−1
d=1 xc,d,t−1/σ

2
obs

1/σ2
forth,t−1 + 1/σ2

obs

(4.7)

σ2
forth,t ←

1
1/σ2

forth,t−1 +Dc,t−1/σ2
obs

+ σ2
chain, (4.8)

where we have used xc,d,t to describe the position of nation c at time t for interaction d and there

are Dct documents at time t discussing nation c. We also use initial condition x̄c,0 = 0, σ2
forth,0 = 10.

The backward step estimates the chain’s mean given all current and future observations:

x̄back,c,t|x̄back,c,t+1, {xc,d,t}d ←
x̄back,c,t+1/σ

2
t+1 +

∑Dc,t
d=1 xc,d,t/σ

2
obs

1/σ2
back,t−1 + 1/σ2

obs

σ2
back,t ←

1
1/(σ2

back,t+1 + σ2
chain) +Dc,t/σ2

obs

, (4.9)

with initial conditions x̄back,c,T = 0, σ2
backward,T = 10. The smoothed means—that is, the mean of

nations’ positions at time t given observations before and after t—are

x̄c,t|xc,t = E [xc,t] |x̄forth,c,t, x̄back,c,t, σ
2
back, σ

2
forth

=
x̄forth,c,t/σ

2
forth,t + x̄back,c,t/σ

2
back,t

1/σ2
forth,t + 1/σ2

back,t

(4.10)

E-Step. In the E-step, our goal is to infer each nation’s position xcd,1 |x̄c,d,t, xcd,2 , sd,wd during

interaction d given its expected mean x̄cd,1,td and the text wd describing this interaction, and given

the other nation’s position for this interaction. Assuming that this nation is indexed by cd,1 in each

document d, we find these positions by gradient ascent on each interaction:

xcd,1,t ← arg max
x

p(x, xcd,2,t, x̄cd,1,td |wd,β)

= arg max
x

N (F(x, xcd,2,t)|wT
d β, σ

2
W )N (x|x̄cd,1,td , σ2

D), (4.11)

For convenience, we iterate between updating x{c,·} for all interactions involving nation c and up-

dating x̄c,t with the M step for all times t.

4.1.5 Empirical studies: comparisons with ground truth

We now turn to an experimental analysis of this model. Our goal in this analysis is to demonstrate

first that the model captures statistically meaningful patterns in a time-series collection of newspaper
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documents and second that it can provide a meaningful view into nations’ relationships with one

another. We first describe the two distinct label types that we used to define sentiment sd for this

model and summarize the newspaper archive to which we fit this model. We then evaluate the

model’s ability to infer the relationships between nations and compare results from models inferred

with the two different label types.

Parsing the New York Times

We fit and evaluate this model over news articles discussing 245 nations and territories from twenty

years of the New York Times (NYT). This collection spanned the years 1987 to 2007, a period which

included both the Persian Gulf and Iraq wars; the collapse of the Soviet Union; the reunification of

Germany; September 11th, 2001; and countless other world events.

Data preparation. We used articles from the Foreign, Business, Financial, and Magazine desks of

the newspaper during this period. As noted in Section 4.1.1, we split this collection into paragraphs,

which were defined by Times editors, and selected the subset of paragraphs which discuss exactly

two nations as “documents” d. This resulted in 257,472 paragraphs. We then defined a vocabulary

to be those words which satisfied three criteria:

• Appeared at least twenty times,

• Appeared in no more than 40% of documents, and

• Appeared in at least 0.1% of documents.

This resulted in a vocabulary of 5,958 words, mentioned in 40,356 paragraphs. We randomly selected

80% of these paragraphs (32,249) as training examples and used the remaining examples to evaluate

our model.

Coding sentiment

We next estimated β by fitting ridge regression (i.e., Equation 4.1 with a Gaussian prior on β)

on a subset of the training examples. We labeled training examples with information from both

inexperienced “workers” and “expert labels”, representing vastly different ends of the label spectrum

(as we will see, however, they result in strikingly similar predictions).
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Figure 4.3: A screenshot of a Mechanical Turk labeling task. Sometimes relationships may be
complicated; both raters gave this example a score of “slightly positive”.

Novice labels: Amazon Mechanical Turk ratings

Amazon Mechanical Turk (AMT) is a crowd-sourcing platform which provides a requester with

access to thousands of workers who perform simple tasks over the Internet. Although the requester

can use tests to ensure that workers are high-quality, as well as reject the work of low-quality workers,

these workers are very much non-experts.

To fit the model, we asked Amazon Mechanical Turk workers to rate the sentiment between two

nations mentioned in the text of a paragraph on the scale -5 (mortal enemies), . . ., 5 (very good

relationship). We illustrate a rating task (as seen by a Mechanical Turk worker) in Figure 4.1.5.

Raters were asked to review a random subset of 3607 paragraphs like this from the original collection.

Before fitting the model, we manually disqualified eight raters (out of 85) who performed poorly (as

measured by inconsistency with other raters).

With all rated paragraphs which were in the training set, we fit the coefficients β of the text

regression discussed in Section 3.1. This coefficient was then treated as constant in the joint model

in Figure 4.2 to allow us to infer sentiment from the words of all 32,249 training paragraphs. This

resulted in a regression weight βw for each word w, which we illustrate in Figure 4.4 (left).

Expert labels: Correlates of War

We also used a combined set of expert labels based on the Correlates of War (Sarkees and Warman,

2012) and Issue Correlates of War (Hensel, 2001).

• The Correlates of War project “seeks to facilitate the collection, dissemination, and use of

accurate and reliable quantitative data in international relations” (CoW Homepage, 2012).

The project provides labels describing the relationships between pairs of nations from 1823 to
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2003. At-war is a binary relationship (either nations are at war, or they are at peace). We

used a list of CoW inter-state wars (version 4.0) from 1823 to 2003 (Sarkees and Warman,

2012).

• The Issue Correlates of War project “is a research project that is collecting systematic data

on contentious issues in world politics” (ICoW Homepage, 2012), and they provide expert

labels on a variety of inter-state conflicts that do not require militarized conflict. However,

these issue labels do require documented evidence of contention between states; such issues

include maritime and territorial disputes (ICoW Homepage, 2012; Hensel, 2001). The Issue

Correlates of War are not part of the same project (or produced by the same researchers) as

the Correlates of War.

We used these two sets of ratings to label the collection of New York Times paragraphs by

combining them and treating two nations as having a rating of -5 if they are at war at the time an

article was written in the Correlates of War codes and -1 if there was any contentious issue between

the nations in the Issue Correlates of War. All other pairs of nations were treated as having a rating

of 0.1. These values are somewhat arbitrary (we could have chosen -6.3 for a bad relationship), but

they were selected to correspond roughly to the range of the Mechanical Turk labels. Further, they

were selected once and kept fixed—changing them during analysis could compromise the statistical

power of the results below.

As before, we fit the text regression parameters β using these labels on the training set and

evaluated nations’ ratings on the test dataset. We illustrate the coefficient β fit to CoW-labeled

paragraphs in Figure 4.4 (right).

Casual vs. expert labels

The CoW represent a data source which is modestly related to Mechanical Turk ratings. In the

NYT dataset, CoW ratings and Mechanical Turk ratings were correlated at σ = 0.196. To illustrate

the difference between these ratings, consider the following two examples:

• AMT rating= 1, CoW rating= −5:

As an indication of the dangers the damage occurred in waters where military spokes-

men said no mines had been suspected before but where a Saudi officer said today

that some 22 were later found. Iraqi mines widely deployed [sic] (Cushman, Febru-

ary 1991).
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Figure 4.4: Coefficients βw for selected words w fit on text labeled by Amazon Mechanical Turk
workers (left) and Correlates of War data (right). Coefficients fit from Mechanical Turk labels are
more clearly separated than those fit to Correlates of War labels; this is likely due to explicit positive
sentiment in that dataset. The x-axis is β, and the y-axis is used for display (it corresponds to no
variable). Size of each word is proportional to

√
frequency, and color corresponds to β.

This example outlines a limitation in our modeling assumptions: a single paragraph is some-

times too small a unit of discussion. Here Mechanical Turk workers likely missed the larger

context of the article about the Gulf War (including the article’s title, War in the Gulf: Sea

Mines; Allied Ships Hunt Gulf for Iraqi Mines).

• AMT rating= −5, CoW rating= 0.1:

Not since the grim old days of the cold war have relations between the United States

and Russia been quite as problematic as they are this weekend on the eve of president

Clinton’s visit for celebrations marking the 50th anniversary of the allied victory in

Europe in World War II (Apple, May 1995).

The second example represents a limitation of both data sources. The two Mechanical Turk

ratings of -5 were clearly too strong, as the nations are not at war; but AMT workers likely

based their rating in part on the reference to World War II (the instructions provided to

MTurk workers suggest that a rating of -3 or -1 would have been more appropriate). In 1995,

the United States and Russia were not at war and had no documented territorial conflicts. This

means that this sentiment was not reflected in the CoW labels, and their sentiment defaulted

to 0.1.
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Figure 4.5: The dyadic sentiment model captures text well . Each colored line represents performance
of the supervised model on a collection of heldout documents across twenty years of New York Times
articles. The black dotted line represents performance based on estimating with the empirical mean
of the dataset. An inner-product model with four dimensions (plus intercepts) performs well for
most settings. A distance model with many dimensions but no intercepts also performs well across
a range of assumptions, performing best with many dimensions.
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Quantitative results

Inference and Prediction

We next turn to an empirical validation of the model laid out so far in this chapter. After fitting β

to each set of labels on a subset of training documents, we estimated the MAP solution x̄, x, s|β,w

using the entire training set described in Section 4.1.4.

For two nations c1 and c2 mentioned together at time t, we predict their sentiment to be s̃c1,c2 =

F(x̄c1,t, x̄c2,t) and calculate the mean-squared error between that prediction and their predicted

sentiment βTwd under text regression. We made the latter choice so we could analyze the text

regression part of the model separately from the latent-space assumption (analyzing them together

would make it difficult to discern the effect of each model).

Text regression. The text-regression model for CoW labels predicted heldout labels with MSE

0.98, compared with 1.02 if we estimate using the empirical mean s̄ = −0.21 of training examples.

The text-regression model for AMT predicted heldout labels with MSE of 6.37, compared with 6.78

under the empirical mean.

While these errors are very large compared to the variance of the sentiment label, the scale of

these errors is a result of the small number of training examples, the large number of features (1998

in each case), and the sparsity of these word-features. Still, we find that the coefficients βCoW,βAMT

learned from the respective CoW and AMT labels are subjectively intuitive. We illustrate the

coefficients fit with these labels in Figure 4.4. The coefficients βCoW and βAMT are correlated at

σ = 0.18.

Static latent space. With the text model in place, we next turn to evaluating the latent-space

assumption. To do this, we hold fixed the coefficients βCoW,βAMT. This makes the mean βTwd of

sentiment sd available to the latent-space models.

We first check the assumptions described in Section 4.1.2, which model nations’ pairwise sen-

timent but do not assume that they change over time. We predict the sentiment between nations

interacting in document d to be s̄d = F(x̄c1 , x̄c2) and evaluated the latent-space assumption based

on its ability to reproduce predictions from the text-based sentiment model sd = wT
d β.

We evaluated this model for the five link functions F(xc1 ,xc2) summarized in Table 4.1.2 and

for a range of dimensions p = dim(z) = 1, . . . , 9. We report the MSE for this range of experiments

in Figure 4.1.5 and compare these models with a baseline model, which uses the empirical mean of

the ratings.
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We find that the the inner product assumption z̄Tc1 z̄c2 alone is poor because it provides no nat-

ural way to model nations which are in frequent conflict with others. When the inner product link

function and the distance link function are endowed with the intercepts yc1 , yc2 , their performance

improves substantially: they consistently represent inter-nations’ sentiment better than other mod-

els, with the intercept/inner product model consistently outperforming intercept/distance

for most values of the latent-space dimension p. Based on the intercept/inner product model,

the space of political sentiment appears to have dimension four or five. This is consistent between

both label types.

The improvement of these intercept models over their counterparts appears to be largely because

intercepts enable these models to explain how conflict-prone a nation is. At the same time, they

can use z̄ to explain how each nation interacts with others; both intercept/inner product and

intercept/distance outperform intercept for most values of p. Interestingly, the distance link

function is able to model data well as p grows large without an indication that the model overfits

(we only measured this up to 9 dimensions).

The benefit in adding a time-series assumption. We can add more flexibility to this model –

and an ability to model much more interesting behavior—by extending it to the time-series domain

as described in Section 4.1.3. Under this assumption, we allow x̄c to drift over time for each nation

c. Again we fit the model to a range of latent-space dimensions p = 1 . . . 9. We illustrate these

results in Figure 4.1.5.

The inner product model again performed poorly, often worse than the baseline model. Adding

an intercept term harms performance for the distance model. The time-series assumption overall

improved performance for correlates of war and harmed performance for Mechanical Turk labels.

We note that the time-series models performed better than the static model for the CoW labels

but not for the Mechanical Turk labels. One possible explanation is that the formal relationships

between nations – as accurately represented by expert labels – is indeed changing over time; while

the lay relationships between these nations – as determined by lay interpretations of nations’ rela-

tionships – remains more static over time.

Improvement due to zero-reversion regularization A further explanation for the decrease in

performance for the time-series models (compared to the static model) is sensitivity to parameters.

The static models have one parameter for each link function: the prior of nations’ positions σ2
c . In

the dynamic model, we must set the priors over nations’ positions σ2
c,d for each interaction, chain
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Figure 4.6: Positions of selected nations according to the static issue-adjusted model for articles
labeled with Amazon Mechanical Turk (left) and Correlates of War (right). Nations’ positions were
inferred with the intercept / distance model, with distance dimension p=2. Intercepts are illustrated
by color.

variance σ2
chain , and zero-reversion variance σ2

p. We selected chain variance σ2
chain = 0.0001 and

zero-reversion variance σ2
p = 1 and 0.01 by grid search for these models at 3 dimensions and report

results above based on the setting which worked best for each model. Setting σ2
p had a substantial

impact on model performance for the inner product models.

A closer look

What relationships between nations does this model infer? Because the relationships between nations

are treated as functions of their positions x ∈ Rp, we can interpret these nations’ positions x as

summaries of nations’ geopolitical orientations. We illustrate the positions of selected nations in

Figure 4.6.

With both CoW and AMT labels, the relationships between nations can be inferred from the

distance between their positions. In Figure 4.6, the United States stands out from a cluster of other

nations, with Iraq, Iran, and Afghanistan—nations with which the U.S. has been at odds in the past

twenty years—furthest away.

Correlates of War and Mechanical Turk labels provide different patterns of inter-nation sentiment.

Nations’ positions under CoW tend to be very clustered, with a few outliers, while their positions

under AMT labels are more uniformly distributed. However, the two datasets provide extraordinarily

consistent measures of nations’ relationships.

To measure the consistency of these two models, we measured the Spearman rank correlation
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coefficient

Correlation
c1,c2∈C,c1 6=c2

(dAMT(c1, c2), dCoW(c1, c2))

between all pairs of nations c1, c2 in the set C of nations. The two-dimensional intercept/distance

models have a Spearman rank correlation coefficient of σ = 0.900. Of course, these
(|C|

2

)
distances

are far from independent, and a single outlier in each model could skew the correlation. To mitigate

any such effect, we also measured the average correlation coefficient

1
|C|

∑
c1∈C

Correlation
c2∈C,c2 6=c1

(dAMT(ci, c2), dCoW(ci, c2)),

which was even higher, at σ = 0.901. Recall that this is higher than the correlation coefficient

between the original labels (σ = 0.196) – an effect possible because these models remove noise.

Under the second metric of correlation, most per-nation correlations were very high: over 90% of

nations had correlation coefficient higher than 0.86. One of the most-differently-represented nations

in this collection under the two different label types was Iran, which accounted for 7% of documents;

the per-Iran correlation coefficient Cor
c∈C,c6=Iran

(dAMT(Iran, c), dCoW(Iran, c) was 0.65 (higher only than

Eritrea, which was 0.62 but accounted for 0.2% of documents).

Mutual sentiment with the United States and differences between CoW and AMT

model fits. We illustrate mutual sentiment with the United States for a selection of these nations

over time in Figure 4.1.5. To estimate the sentiment in these plots, we fit the intercept/distance

model with dim(z) = 2. We summarize major events for two of these nations below.

• Ukraine was emancipated in 1991 with the dissolution of the Soviet Union. The U.S. has given

Ukraine over $4.1 billion in aid, targeted to “promote political, security, and economic reform

and to address urgent social and humanitarian needs” (State Department, 2012b). In return,

Ukraine has been an active member of the UN and has assisted the NATO allies with defense

aid in Kosovo (1999), Afghanistan (2011), Iraq, the Middle East, and Africa. Ukraine adopted

its first post-Soviet constitution June 28, 1996, the same year taking part in the Olympics

for the first time as an independent nation (the Olympics were hosted in the U.S. that year).

At the same time, Ukraine has been taking active steps in eliminating the nuclear weapons

program it inherited, permanently closing the last operating reactor at the Chernobyl site in

2000 (State Department, 2012b).
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Ukraine’s sentiment with Iraq, as inferred from the AMT model, was at its lowest in January

1993, January 1998, and again in April 2006. Its CoW sentiment with Iraq was at its lowest

in May 2006, April 2003, and February 1991 (technically before its independence, during the

Persian Gulf War). Its relationship with the U.S. was much stronger than with Iraq, peaking

in 1996 (AMT) and June 2002 (CoW), when it supported the U.S. invasion of Iraq.

• Iran has had a poor relationship with the United States since the U.S. Embassy seizure in

1981. Between 1987 and 1988, U.S. and Iranian forces clashed in the Persian Gulf. (CIA Fact-

book, 2012). Transfers of power have since then increased political tension, with the election

of a reformist president in 1997 and a reformist legislature in 2000, followed by conserva-

tive re-elections starting in 2003 and continuing through 2004. Hardliner President Mahmud

Ahmadinejad was inaugurated in August 2005 and re-elected in 2009 (CIA Factbook, 2012).

Ahmadinejad’s rule has been met with increasing pressure from the United Nations. The

Council has made successive resolutions imposing sanctions on Iran in 2006, 2007, 2008, and

2010 (State Department, 2012a).

The Mechanical Turk sentiment between Iran and the U.S. has clearly dropped in the lead-up

to Ahmadinejad’s election (see again Figure 4.1.5), but this contrasts with the Correlates of

War sentiment, which was lowest in 1988, when AMT sentiment was not as low.

Both of these low periods with Iran are clearly periods of bad relationships between these nations,

but why did one model pick up sentiment in one case and not the other? This could be explained

in part because the tension picked up by the CoW labels was unilateral, while the tension picked

up in the later period did not fall under the dictum of CoW labels: the U.S. and Iran were neither

at war nor having a territorial dispute. Instead, the U.S., as a member of the U.N., has supported

Iran sanctions.

4.2 A comparison with unsupervised relationship mining

The preceding approach has limitations, of course. First, sentiment labels measure only one kind

of interaction: whether nations are at war or peace. In reality, relationships between nations may

be characterized in many ways, some of which are independent of the [war, peace] dimension. For

example, the relationship between nations may be characterized by trade in goods, or by the exchange

of culture and ideas. Another limitation to a supervised sentiment model is that labels of the

sentiment between nations may be unavailable or limited, or (as we saw before), the labels may be
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Figure 4.7: Selected nations’ relationships with the United States over time. Each line in the
plot above represents a specific nation’s relationship with the United states inferred with the in-
tercept/distance link function, with a two-dimensional distance space, using CoW labels (top) and
AMT labels (bottom). Sentiment between all nations and either Iran or Pakistan was least consistent
between CoW and AMT. Ukraine was the most consistently represented with these labels.

noisy.

In this section we will briefly compare the results of the previous model with the results of

an unsupervised model. Because the unsupervised model is preliminary, we leave details of it in

Appendix B.4. The unsupervised sentiment model uses the same latent-space assumption that we

introduced in Sections 4.1.2 and 4.1.3. The curious reader can refer to the appendix for a fuller

description of these assumptions.

Topics

A key assumption behind the unsupervised sentiment model is that each document can be described

by a mixture of four topics. Two of these topics correspond to the two nations discussed in the

paragraph (there are C of these topics, one for each nation). A third topic is a “background” topic,

and the fourth topic is one of two sentiment topics. This sentiment topic is linked to a distance-based

latent-space model exactly as in the last section, but with a binary sentiment indicator instead of a

real-valued sentiment.

By fitting the unsupervised model, we learn which words are most-likely in each of these topics.

With these assumptions, we inferred a set of topics using the same NYT corpus for the supervised

sentiment model. Table 4.8 lists the most-likely words from a sample of topics fit to these twenty
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years of articles.

State-specific topics βC,·. The state-specific topics describe words used when one of these nations

is mentioned in text. Many of these topics are intuitive: “oil” shows up in the Iran topic, and “drug”

is the top word in the Mexico topic. As these nations are mentioned in a major U.S. news source,

the topics are sometimes biased toward ideas specific to the U.S. relationship with these nations (for

example, “border” and “traffickers” in the Mexico topic). The U.S. topic contains phrases specific

to policy and leadership.

While these topics are intuitive, they serve little role in analyzing this collection. From a modeling

perspective, they serve as a “sponge” to explain away words commonly used to describe a nation,

especially when those words might otherwise be interpreted to refer to a specific relationship.

An economics/military dichotomy. The sentiment topic, on the other hand, appears to demon-

strate that one of the most prominent directions of variance in the text of paragraphs corresponds

to the sentiment that we have been measuring.

Again using the convention that κd = 1 indicates negative sentiment between nations, the

negative-sentiment topic βS,1 matches our intuition: it contains words typically associated with

conflict: military, officials, soldiers, killed, troops, and police are among the top words. On the

other hand, the words most likely in the supplementary topic βS,0 are associated more with eco-

nomics: million, percent, people, billion, oil, and officials.

Are these words the same words that tend to be associated with expert labels of sentiment? To

quantify this, we used coefficients from the text regression fit to Mechanical Turk ratings in the

last section. Among the top 12 words in this topic (shown in Table 4.8), we estimated the average

coefficient learned in the supervised sentiment model. The average coefficient for these terms was

-0.225, which is less than the mean 0.007 of the entire vocabulary (p < 0.02 by a 2-sample t-test).

The mean of the per-word sentiment β for this collection of words was at the 20th percentile of

words in the vocabulary.

This contrasts with the top words in either the complementary topic βS,0 or the background

topic βB . The top words in these topics had respective mean sentiments β of −0.11,−0.08. Neither

of these was statistically noteworthy (p = 0.15, 0.16).
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Figure 4.8: Per-nation topics (βC,·), a background topics (βB,0), and the two interaction topics
(βS,0, βS,1).
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4.3 Conclusions

In this chapter we took a closer look at the story within a collection of documents. To do this, we

reviewed a model for representing the relationship between countries, and we saw that this model

provides an empirically meaningful benefit over simpler baselines. We also demonstrated that the

predicted sentiment between pairs of countries with two entirely different sets of labels was strikingly

similar. We finally demonstrated that an unsupervised model can produce a sentiment dimension

aligned with our conception of inter-nation sentiment.

The set of assumptions we used in this chapter provide a broad view of global politics. Unfor-

tunately it provides no sense for the internal factors motivating the positions countries take within

the latent space. In the following chapter we will zoom in to take a closer look at how politicians

within a country—the United States in particular—make decisions. To do this, we will use the text

of the bills on which they are voting to better understand the positions they take. By using the text

of bills, we will also overcome some limitations of a traditional model of how lawmakers vote.

We will continue to see two of the primitives discussed in this chapter. The traditional model of

how lawmakers vote is in fact very much like the latent-space model we described in this chapter,

and lawmakers’ positions within this latent space are widely disseminated statistics. Second, we will

continue to see that tools for text analysis – both mixed-membership models and text regression –

can provide meaningful extensions of this model.
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Chapter 5

Predicting Legislative Votes with

Text Models

In the United States, as in many Western democracies, laws are made by committees of lawmakers.

A defining characteristic of these committees is that each member casts a vote indicating whether

she supports or rejects the proposed legislation. Legislative behavior centers around these votes, and

it is a common goal of quantitative political science to characterize patterns of lawmakers’ behavior

with these votes. Voting behavior exhibits enough of a regularity that simple statistical models

easily capture the broad political structure of legislative bodies.

One of these models is the ideal point model, a mainstay in quantitative political science for

analyzing votes (Clinton et al., 2004). It posits a latent “political space” along the real line and

assumes each lawmaker has a position in that space; bills take a position in a related latent space

(look ahead to Figure 5.2 for an intuition of these positions). A lawmaker’s probability of voting Yea

on pending legislation is then characterized by her position on this real line and parameters specific

to that legislation.

Just as we saw with the last chapter’s spatial models, ideal point models can be used to interpret

lawmakers’ positions on the political spectrum and to represent votes meaningfully.1 However, ideal

point models have certain limitations. One important limitation of these models is that they are not

predictive models: while they can be used to model the bills that have been voted on, they cannot

be used to predict lawmakers’ votes on new bills. (A second limitation of these models is that

lawmakers do not fit neatly into the assumptions made by such models. We address this limitation
1The interpretation of a lawmaker’s latent position and a bill’s position in the same space are slightly more nuanced

than the last chapter. We clarify this relationship in the next section.
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in the next chapter.) In this chapter we will extend the ideal point model so that we can make

predictions about how lawmakers will vote on bills before these bills have seen a single vote. We

will do this by using the text of bills to make this prediction.

Using text to predict future votes

These limitations dovetail with increasing access to both public records and tools for algorithmic

text analysis. In the past decade, the text of congressional bills and other government records has

become readily available to the broad public and research scientists. Websites like the Library of

Congress’s thomas.loc.gov release this information to the public, and sites like www.govtrack.us

collect this information, synthesize it, and make it available for researchers and the public to better

understand both the content and behavior around legislative decision-making (Govtrack website,

2010).

Just as text has become more available in this field in digitized formats, tools for text analysis

have matured. Tools which were once available only to computational linguistics are becoming more

familiar to political methodologists (Zimmer and Stewart, 2012). Topic models have evolved from

vector-space models such as latent semantic analysis (Deerwester et al., 1990) into probabilistic

topic models (Hofmann, 1999; Blei et al., 2003), which can be used as modules in more sophisticated

statistical models.

In the next two chapters, we will take advantage of this broader availability of digitized text

collections and tools for text analysis to address the above shortcomings of ideal point models. We

begin this chapter by reviewing ideal point models (Poole and Rosenthal, 1985, 1991; Jackman, 2001;

Martin and Quinn, 2002; Clinton et al., 2004). After describing ideal point models, we will describe

how to combine ideal point models with the models of text used in Chapters 3 and 4, including topic

models (Blei et al., 2003) and text regression (Kogan et al., 2009), to enable us to predict votes

on previously-unseen bills. Through this chapter and the next, the abstraction enabled by latent

variable models will enable us to address these shortcomings of ideal point models with intuitive

solutions.

5.1 The ideal point model

U.S. lawmakers’ votes are captured during roll call votes, public records of lawmakers’ votes on

pending legislation. We can represent these votes as a matrix, with lawmakers in the rows and

proposed legislation in the columns. We illustrate a sample of roll call votes for the United States
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Senate in Figure 5.1.

Ideal points

Roll-call votes like this are often modeled with ideal point models. Ideal point models are based

on item response theory, a statistical theory that models how members of a population judge a

set of items. Loosely, an ideal point model assumes that each lawmaker u is described by a latent

position xu ∈ R summarizing her political preferences. A lawmaker’s (stochastic) voting behavior

is characterized by the relationship between her position in this space and the bill’s position (Poole

and Rosenthal, 1985, 1991; Jackman, 2001; Martin and Quinn, 2002; Clinton et al., 2004).

In fact, we can motivate ideal points with explicit behavioral assumptions. Following the treat-

ment in Clinton et al. (2004), we assume that a proposed item of legislation d would, if passed, move

the current state of the world from the status quo ζd ∈ Rp to a new location ψd ∈ Rp. Lawmaker u

observes the utility of each of these positions based on her ideal point xu ∈ Rp with noisy quadratic

loss ||ζd − xu||2 + ε1 and ||ψd − xu||2 + ε2, where ε1, ε2 follow an extreme value distribution. She

will cast a vote toward whichever outcome maximizes her utility. These positions therefore represent

each lawmaker’s ideal “state of the world” (where passage of a bill moves this state of the world).

For this reason, lawmakers’ positions xu are often called their ideal points.

Reparameterizing, we can write the probability p(vud|Xu, ζd,ψd) of an affirmative vote with the

probit or logistic function (Clinton et al., 2004). Setting bd = 2(ζd −ψd) and ad = (ψTd ψd − ζTd ζd),

we have

p(vud = Yea|ad, bd,xu) = σ(xTuad + bd), (5.1)

Example roll call votes
Lawmaker Item of legislation

Bill S. 3930 H.R. 5631 H.R. 6061 H.R. 5682 S. 3711

Mitch McConnell (R) Yea Yea Yea Yea Yea

Olympia Snowe (R) Yea Yea Yea Nay

John McCain (R) Yea Yea Yea Yea Yea

Patrick Leahy (D) Nay Yea Nay Nay Nay

Paul Sarbanes (D) Nay Yea Nay Yea Nay

Debbie Stabenow (D) Yea Yea Yea Yea Yea

Figure 5.1: A sample roll-call matrix illustrating lawmakers’ votes on items of legislation. These
votes are from the Senate in the 109th Congress (2005-2006). The party of each Senator – (D)emocrat
or (R)epublican – is provided in parentheses. The matrix of roll calls is sometimes incomplete (see
Snowe’s vote on S. 3930, for example).
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Figure 5.2: Example one-dimensional ideal points from the 111th House of Representatives. Ideal
points represent lawmakers’ voting preferences. Democrats are blue and Republicans are red.

where σ(s) is the logistic function exp(s)
1+exp(s) . 2 Legislation d can therefore be fully characterized by

specifying its polarity ad and its popularity bd. 3 When the popularity of a bill bd is high, nearly

everyone votes “Yea” on bill d; when the popularity is low, nearly everyone votes “Nay”. When the

popularity is near zero, the probability that a lawmaker votes “Yea” depends on how her ideal point

xu interacts with bill polarity ad. We will make the common assumption that the latent variables

ad, bd, and xu have standard normal priors (Clinton et al., 2004).

Given a matrix of votes, we use posterior inference to estimate the ideal point of each lawmaker,

which reveal their intuitive political preferences. Figure 5.2 illustrates that ideal points fit to the U.S.

House of Representatives from 2009-2010 clearly separate lawmakers by their political party. In U.S.

politics, these inferred positions correspond to the commonly-known political spectrum: right-wing

lawmakers are at one extreme, and left-wing lawmakers are at the other.

5.2 A model for predicting votes with the text of new bills

In this section, we extend ideal point models to use the text of bills to estimate a bill’s polarity and

popularity. This gives a new way of exploring and analyzing the government record and, further,

gives a useful predictor of government. While traditional methods can only fill in missing votes, we

develop tools that can predict how lawmakers will vote on a new bill. We will study the predictive

accuracy of votes on new bills, where we use a spatial voting model as a “cold” prediction mechanism.

We will describe several models that connect the voting patterns of lawmakers to the original text

of bills. One of these models embeds the statistical assumptions of supervised topic modeling (Blei

and McAuliffe, 2008) into the ideal point model, where the locations of the bills are predicted from

the latent topics in their texts. This model—the ideal point topic model—can predict complete votes

on pending bills and provides a new way of exploring how legislative language is correlated with

political support. The other models predict inferred ideal points using different forms of regression

on phrase counts.
2The probability σ is sometimes taken to be probit; this amounts to ε1, ε2 taking on the Normal distribution.
3Popularity is also called difficulty, and polarity is called discrimination, in the context of educational testing

applications of this model (Clinton et al., 2004). We move away from these terms in favor of more appropriate terms
for this application.
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In the following sections, we review the details of ideal point estimation and develop several

models for predicting votes from legislative text. We derive an approximate posterior inference

algorithm for ideal point models based on variational methods and analyze six Congresses (12 years)

of legislative data from the United States Congress. Given a legislative history, these models can

accurately predict votes on future legislation. One of these models, the ideal point topic model, can

help summarize and visualize the political landscape of a government body based both on the voting

patterns of its members and the language of its issues.

We now develop models relating the text of a bill to the variables ad and bd. Associating text

to bill variables has a predictive advantage because new bills can be situated in the space of ideal

points. It also has an interpretive advantage because language becomes associated with political

sentiment.

Modeling ideal points with text regression. We developed two predictive ideal-point models

which use text regression (Kogan et al., 2009). For these, we first fit an ideal-point model to a training

set of bills and all lawmakers using the variational algorithm described in Section 5.1. We then fit

Lasso regression4 (LARS)5 and Ridge regression (L2) to these bills’ parameters ad, bd using a vector

of their n-gram6 counts wd as covariates.

Modeling ideal points with supervised topics. The text regression models link individual

words or phrases to bill sentiment. In this section, we connect textual themes with bill sentiment.
4Implemented in the “penalized” package for R
5implemented with the “lars” package for R
6See Section 5.3 for details.
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We refer to this model as an ideal point topic model (IPTM).

To model themes, we use the assumptions of supervised Latent Dirichlet Allocation (sLDA) (Blei

and McAuliffe, 2008). As in Latent Dirichlet Allocation (Blei et al., 2003), each bill is represented

as a mixture of latent topics θd, where each of K topics βk is a multinomial probability distribution

over terms. For the nth term of bill d, we draw topic zdn from Mult(θd), and then draw word wdn

from the topic βzn .

Like sLDA, the ideal point topic model further assumes each bill d is attached to a response

variable. In this case, the response variable is the 2-component vector of bill variables (ad, bd). The

distribution of the response is a linear model whose covariates are the empirical distribution of the

topics zd for the bill,

ad ∼ N (η>a z̄d, σ
2
d)

bd ∼ N (η>b z̄d, σ
2
d),

where z̄d = (1/N)
∑
n zdn. This setting is more complex than the original sLDA model: the response

variables are hidden—they are not observed directly, but are used downstream in the voting model.

Finally, we add a Gaussian prior to η. The full model is represented as a graphical model in

Figure 6.2.

The only observed variables in the model are the bill texts and votes. Our goal in fitting this

model is to uncover the posterior

p(ad, bd, xu,η, β, z, θ|W ,V ), (5.2)

which can then be used in exploratory or predictive tasks. Conditioned on these variables, our anal-

ysis proceeds with the posterior distribution of the ideal points, polarities and popularities, topics,

and coefficients. Computing the posterior exactly is intractable, so we use variational inference to

approximate it. We describe this in further detail in Section 6.2.

This posterior allows us to explore the connection between language and political tone. For

example, the coefficients η are a direct connection between bills’ topics and the political tone of

these bills. Examples of this are provided in Section 5.3. The topics β, learned from both text and

votes, provide a lexical window into legislative issues. The parameters η, β together also allow us to

predict votes using the text of new bills; Section 6.2 provides detail about this.
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Multimodal solutions and identification

Note that a fit of the ideal point model has multiple modes. In one mode, Democrats tend to have

positive ideal points, while Republicans are negative; in another, Republicans are positive, while

Democrats are negative. To keep fits of the different models identifiable, several researchers have

applied nonzero priors over specific lawmakers to encourage the model to prefer one of these modes

(Jackman, 2001; Clinton et al., 2004; Martin and Quinn, 2002).

In the study in Section 5.3, we anchor four lawmakers with strong priors (σd = 10−3) at ideal

points ±4. We select two congresspersons from each chamber and two from each party: Kennedy

(S-Dem) and Waxman (H-Dem) are centered at +4 and Enzi (S-Rep) and Donald Young (H-Rep)

are centered at -4.7 We selected these Senators for consistency with previous work such as Clinton

et al. (2004). We selected the Representatives because they have held long offices in the House.

Without these sharp priors, the model still discovers ideal points which cleanly separate political

parties but may converge on “opposite” modes in different fits. With the priors, we obtain consistent

ideal points at the expense of predictive performance.

Related work

Ideal point models, a form of spatial voting model, have roots as far back as the 1920s (Enelow

and Hinich, 1984). They are fit by both frequentist (Poole and Rosenthal, 1985; Heckman and

Snyder, 1996) and Bayesian methods (Jackman, 2001; Martin and Quinn, 2002; Clinton et al.,

2004), have been embedded in a time series (Martin and Quinn, 2002; Wang et al., 2010), and have

been developed for higher dimensional political spaces (Jackman, 2001; Heckman and Snyder, 1996).

Topic models have been applied to Senate speeches, such as to discern “the substantive structure

of the rhetorical [legislative] agenda” (Quinn et al., 2006). They have also been used with legislative

speeches to gauge lawmakers’ sentiment toward legislation using roll-calls (Thomas et al., 2006).

Modeling sentiment in text is more generally discussed in the field of sentiment analysis; see Pang

and Lee (2008) for a review.

The ideal point topic model relates closely to user-recommendation models based on matrix

factorization (Salakhutdinov and Mnih, 2008). Matrix factorization methods for recommendation

are akin to large-scale spatial behavior models (though usually with no “popularity” term, which

acts as an intercept). Many of these matrix factorization models for user recommendation do not

provide a method of predicting one user’s item preference without other users’ preferences on the
7This value was selected to be large yet not completely out of the ordinary.
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same item.

Two works stand out as closely related to this work. One of these is fLDA, which models binary

or continuous ratings with user affinity to topics (Agarwal and Chen, 2010). Another is Wang et al.

(2010), who describe a similar application by combining topic models and matrix completion. Their

work also draws on ideal point models, models transitions over time, and is designed to learn the

dimensionality of the latent factors. Under the generative assumptions of their model, bills and

matrix cells (e.g., votes) are conditioned on a shared mixture; in our model, votes are conditioned

on words’ topics.

Posterior estimation for the ideal point topic model

Computing the posterior in Equation 5.2 is intractable. Posterior inference for traditional Bayesian

ideal point models is traditionally implemented with MCMC methods such as Gibbs sampling (John-

son and Albert, 1999; Jackman, 2001; Martin and Quinn, 2002; Clinton et al., 2004). However, in

the ideal point topic model, fast Gibbs samplers are unavailable because the conditionals needed

are not analytically computable; an MCMC strategy would require a more complicated sampling

scheme. We therefore use an alternative algorithm—which can be applied to both the standard ideal

point model and the ideal point topic model—which uses variational methods (Jordan et al., 1999).

Recall from Chapters 2 and 3 that variational inference requires specification of a variational

distribution which will serve as a proxy for the true posterior distribution. Word assignments zdn

and topic proportions are governed by multinomial parameters φd and Dirichlet parameters γd, as in

LDA (Blei et al., 2003). The variational distribution for lawmakers’ ideal points xu; bills’ parameters

ad, bd; and coefficients η are Gaussian with respective means τu, ãd, b̃, η̂ and variances σ2
τ , σ2

ã, σ2
b̃
,

and σ2
η. The variational distribution is

q(τ,στ , ã, σã, φ, θ) =
∏
u

q(xu|τu, σ2
τ )
∏
D

q(ad, bd|ãd, σ2
ã)
∏
D

q(θd|γd)
∏
Nd

p(zn|φn)q(η|η̂, ση̂). (5.3)

Inference proceeds by minimizing the KL between the variational posterior (Equation 5.3) and

the true posterior (Equation 5.2), which is equivalent to maximizing a lower bound on the marginal

probability of the observations. Coordinate ascent only works for some of the random variables, but

we must use gradient ascent on ad, bd, and xu. We give further details of the variational inference

algorithm in Appendix B.5.

Prediction After they are fit to lawmakers’ votes and bill text, the variational parameters τ ,
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η̂, and β can be used to estimate the vote of each lawmaker on a new bill d using its text. To

predict whether lawmaker u votes yea on d, the per-word parameters φn of d are estimated using

the topics β. Once φ has been estimated, the probability of a yea vote is given by p(vud = yea) =

σ(τu(φ̄dη̂b) + φ̄dη̂a) 8, where φ̄d is 1
Nd

∑
Nd
φn. In practice, we fit η̂ with no regularization after the

model has converged. This gives slightly better results which are more robust to parameter selection.

5.3 An empirical analysis

Analyzing the U.S. House and Senate

We studied the performance of these models on 12 years of data from the United States House of

Representatives and Senate. We first demonstrate how the ideal point topic model can be used to

explore legislative data; then we evaluate the models’ generalization performance in predicting votes

from bill texts.

We collected roll-call votes for Congressional sessions 106 through 111 (January 1997 to January

2011). We used votes about bills and resolutions, and only votes regarding the legislation as a whole

(as opposed to, e.g., amendments of the legislation). We downloaded the data from www.govtrack.

us, an independent Website which provides comprehensive legislative information to the public. Our

collection contains 4,447 bills, 1,269 unique lawmakers, and 1,837,033 yea or Nay roll-call votes.

To select the vocabulary, we lemmatized (i.e., normalized the forms of) words in the bills with

Treetagger (Schmid, 1994). Then we retained a vocabulary of statistically significant n-grams (1 ≤

n ≤ 5) using likelihood ratios. These n-grams were treated as terms.9 We removed n-grams occurring

in fewer than 0.2% of all bills and more than 15% of bills. We also removed an n-gram if it accounted

for more than 0.2% of all tokens or fewer than than 0.001% of all tokens. After this process, our

vocabulary contained 4,743 unique n-grams.

We used the anchor lawmakers described in Section 5.1. We ran variational inference until the

change in increase in the objective function was less than 0.01%.

Exploring topics and bills

In this section, we examine a fit of the ideal point topic model for all the bills and votes of a session.

This demonstrates the model’s use as an exploratory tool of political data. For this analysis, we used
8The estimate Eq [σ(xu(z̄dηb) + z̄dηa)] can be more theoretically justified, but results from the two estimates are

(in practice) identical.
9When one n-gram subsumes another, we chose to observe the longer of the two
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Figure 5.4: Vote log likelihood on heldout votes. Models are shown by color for different regular-
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with less variance across its regularization parameter.
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dispersion σd = σu = 1.0 and 64 topics. We focus on the 111th session (January 2009 to January

2011).

Exploring topics with η̂. As noted in Section 5.1, the coefficients η̂ relate each topic’s weight

in a bill with the bill’s popularity and polarity parameters. Figure 5.5 shows some example topics

and their corresponding coefficients η̂. Below we describe some of these topics in more detail and

connect them to the data.

One popular topic in the 111th Congress focused on national recognition: people, month, recog-

nize, history, week, woman. In contrast, the least-supported topic was more procedural, frequently

appearing in bills under consideration or with many amendments (clause, motion, chair, print, offer,

read). In this case, such legislation is sometimes summarily rejected before further consideration;

the language of amendments is a signal that legislation is contentious.

While these topics often explained overwhelming support or rejection of legislation, much legis-

lation was considerably more partisan.

Health Care. One contentious topic was about qualification for public health care: care,

subparagraph, applicable, coverage, hospital, eligible. This topic was among the most-Democratic

10% of topics, in large part because it helped to explain the Patient Protection and Affordable Care

Act, i.e. the “Health Care Bill” of 2009. Although this 906-page bill was barely passed: of the

311 Democrats voting on it, 276 voted in favor; of the 217 Republicans voting on it, none voted in

favor. The model was moderately accurate on this bill: it correctly predicted 93.8% of votes. The

two other topics highly expressed in this bill were about different aspects of public health, including
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one about government health options (medicare and social security) and one about health insurance

coverage; both were slightly Democratic.

NASA Authorization. Another contentious topic was about spaceflight: space, flood, NASA,

administrator, research, transportation. This topic was expressed in one of the most-poorly predicted

bills of the 111th Congress. This bill, the NASA Authorization Act of 2010, was a “compromise

between the Obama administration, which wants... a commercial space industry in which private

companies would transport astronauts, and House lawmakers, who wanted... one government-owned

rocket” (Herszenhorn, 2010). In the house vote (a Senate record was not kept), of 249 Democrats

voting on the bill, 185 voted in favor; of the 173 Republicans, 119 voted in favor. Because this bill

had mixed but nonpartisan support, the model could not represent it well, with only 72% of votes

correctly predicted.

Checking the ideal points

We can also use the in-sample fit to assess the quality of the ideal points of the lawmakers. In

classical ideal point modeling, this is done via in-sample accuracy: How well does the model explain

the observed votes?

The average per-lawmaker accuracy in the in-sample fit was 96% (only 10% of lawmakers had

accuracy lower than 90%). As expected, accuracy increases with more votes (ρ = 0.51). Among

lawmakers with over 100 votes, only two stand out. Donald Young (713 votes; accuracy 0.83) had

a pre-defined ideal point (see Section 5.1). Ron Paul, a Republican in the 111th Congress, was also

poorly predicted (761 votes; accuracy 0.84). Paul is known for his Libertarian beliefs, even having

run for President for the Libertarian party in 1988.

The poor prediction of Paul points to a limitation of the 1-dimensional ideal-point model, which

can only capture the two main parties, instead of a limitation of the supervised prediction: fitting

votes to the classical ideal point model (ignoring bill text), Paul’s in-sample accuracy was consistently

poor across sessions. We will address this limitation in the next chapter by incorporating a bill’s

issues in the prediction task.

Predicting votes from text

Prediction on heldout bills. We measured predictive accuracy and log likelihood for these models

under a variety of regularization settings (LARS is parameterized by 0 < f ≤ 1, L2 is parameterized

by regression coefficient Λ ≥ 0, and IPTM is parameterized by topics K).
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We also devised two baselines for comparison with the three models described so far. The first

of these provides a lower bound: assume all votes are yea. Because the majority (85%) of votes in

our corpus were yea votes, this presents a more reasonable overall baseline than random guessing

(at 50%). We call this model the yea model. The second baseline fit a logistic regression trained for

members of each party (with a separate one for mixed or independent lawmakers), with terms as

covariates. This baseline (implemented with the R glm library) used too much memory to use more

than 800 terms and therefore led to results worse than the yea baseline. We believe that a better

baseline could be used.

For each 2-year period (called a Congress), the bills were partitioned into 6 folds. For each model,

we iteratively (1) remove a fold, (2) fit the model to the remaining folds (by Congress), and (3) form

predictions on the bills in the removed fold. Across folds, we thus obtain a complete data set of

held-out votes.

Across all sessions, the yea baseline predicts votes correctly 85% of the time. The ideal point

topic model is better, correctly predicting 89% of votes with 64 topics (this means that 62,000 more

votes are correctly predicted). Overall performance for L2 was best for Λ = 1000 (90%), and LARS

was best at f = 0.01 (82%). While the ideal point topic model had lower accuracy than L2, its

log-likelihood was nearly the same. These results are summarized in Figure 5.3, and further details

are in Appendix B.6.

Sequential prediction. Our final study examined the performance of these models on predict-

ing future votes from past votes. To do this, we fit a 64-topic IPTM and L2 predictive models on the

first 3, 6, 9, . . . , 21 months of a Congress.10 We then tested these each of these fits on the following

three months of unseen votes. The ideal-point topic model correctly predicted 87.0% of votes, and

L2 correctly predicted 88.1% of votes; their log-likelihood was identical.

With these models, one could predict 31,000 to 55,000 votes above the baseline, based only on

the text of the bills. The simpler of the two models, L2, performs better at prediction.

5.4 Conclusions and limitations of these models

We have developed several models associating the text of legislation to lawmakers’ voting patterns.

These models provide a way of exploring large collections of legislative data and predicting the votes

of new bills. The text-regression models and the ideal point topic model have incorporated bill texts

into the simplest kind of ideal point model of roll call data.
10A bug prevented LARS from completing in most runs of this setting
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Though we were motivated by (and focused on) political science data, we note that these models

are among several (e.g., Agarwal and Chen (2010)) that can be applied in a variety of collaborative

filtering settings. They provide a way to model a collection of users and their decisions about

collections of textual items.

One of the central advantages of latent-variable models is their modularity. Because we have

modeled the text of legislation as a vector of topics (or a vector of word counts), it is straightforward

to incorporate other elements of the legislative process, such as speech transcripts (Quinn et al.,

2006; Thomas et al., 2006) or bill sponsor, into this model’s supervision. This could improve both

the predictive power and exploratory capabilities of the ideal point topic model. The modularity of

latent-variable models allows us to swap in modeling assumptions for each of these types of data.

However, even optimal features for prediction would be limited by the power of the downstream

model for lawmakers’ votes on bills. Here we have studied multiple topics with a one-dimensional

political space. As noted in Section 5.3, this is a predictive bottleneck. (The “true” number of

dimensions is debatable—Heckman and Snyder (1996) argued that there are at least 6 statistically

significant dimensions in roll-call data, while Jackman (2001) barely found more than one.) One

solution is to increase the dimension of the lawmaker and bill variables or use a mixture model as in

Wang et al. (2010), which can increase the strength of the model at the expense of interpretability.

An alternative solution is to model individual lawmakers’ affinities to issues, using ideas explored

by Agarwal and Chen (2010) and Wang and Blei (2011) for matching users with text content. We

will use these ideas in the following chapter, where we explicitly model lawmakers’ positions on a

variety of issues. This will allow us to represent lawmakers’ votes better than an ideal point model

while providing an interpretable window into individual lawmakers’ voting behavior.
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Chapter 6

Lawmakers’ issue preferences in

the U.S. Congress

In the last chapter we introduced several models for predicting lawmakers’ votes on previously-unseen

bills. One limitation of these models—and one-dimensional ideal point models in general—is that

they were designed around a restrictive latent space: lawmakers are described by a single number,

and the predictive performance of these models is bottlenecked by lawmakers for whom a single

number is not sufficient.

Indeed, there are some votes that the traditional ideal point given in Equation 5.1 fails to capture.

For example, Ronald Paul, Republican representative from Texas, and Dennis Kucinich, Democratic

representative from Ohio, are poorly modeled by ideal points because they diverge from the left-right

spectrum on issues like foreign policy. Because some lawmakers deviate from their party on certain

substantive issues, their positions on these issues are not captured by ideal point models.

In this chapter we will develop the issue-adjusted ideal point model, a latent variable model of

roll-call data that accounts for the contents of the bills that lawmakers are voting on. The idea is

that each lawmaker has both a general position and a sparse set of position adjustments, one for

each issue. The votes on a bill depend on a lawmaker’s position, adjusted for the bill’s content. The

text of the bill encodes the issues it discusses. Our model can be used as an exploratory tool for

identifying exceptional voting patterns of individual lawmakers, and it provides a richer description

of lawmakers’ voting behavior than the models traditionally used in political science.

In the following sections, we develop our model and describe an approximate posterior inference

algorithm based on variational methods. We will again analyze six Congresses (12 years) of legislative
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Figure 6.1: In a traditional ideal point model, lawmakers’ ideal points are static (top line of each
figure). In the issue-adjusted ideal point model, lawmakers’ ideal points change when they vote on
certain issues, such as Taxation (top) and Health (bottom).

data from the United States Congress. We finally show that our model gives a better fit to legislative

data and provides an interesting exploratory tool for analyzing legislative behavior.

An additional contribution of this chapter is that we will also motivate an alternative algorithm

for variational inference (which we fully describe in Appendix A) that will allow practitioners to

iterate more quickly with their modeling assumptions.

6.1 A model of exceptional voting patterns

A one-dimensional ideal point model fit to the House of Representatives from 2009-2010 correctly

models 98% of all lawmakers’ votes on training data. But it only captures 83.3% of Baron Hill’s

(D-IN) votes and 80.0% of Ronald Paul’s (R-TX) votes. Why is this?

The ideal point model assumes that lawmakers are ordered. Each bill d, described by polarization

ad and popularity bd, splits them at a cut point − bd
ad

. Lawmakers to one side of the cut point are

more likely to support the bill, and lawmakers to the other side are likely to reject it. For lawmakers

like Paul and Hill, this assumption is too strong because their voting behavior does not fit neatly

into a single ordering. Their location among the other lawmakers changes with different bills.

These lawmakers do not change their positions randomly. They vote consistently within indi-

vidual areas of policy, such as financial regulation and education. Paul consistently votes against

United States involvement in foreign military engagements, a position that contrasts with other Re-

publicans. Democratic representatives from New York are more likely to hold conservative positions
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on financial services regulation, even though they vote Democratically on social issues.

We refer to voting behavior like this as issue voting. An issue is any federal policy area, such

as “financial regulation,” “foreign policy,” “civil liberties,” or “education,” on which lawmakers

are expected to take positions. Lawmakers’ positions on these issues will often diverge from their

traditional left/right stances. The model we develop in this chapter captures this intuition, which

we illustrated in Figure 6.1. Charles Djou is more similar to Republicans on Taxation (right) and

more similar to Democrats on Health (left), while Ronald Paul is more Republican-leaning on Health

and less extreme on Taxation.

6.1.1 Issue-adjusted ideal points

Suppose that there are K issues in the political landscape. We will use the words wd of each bill d to

code it with a mixture θd of issues, where each element θdk corresponds to an issue; the components

of θd are positive and sum to one. (These vectors will come from a topic model, which we describe

below.) In our proposed model, each lawmaker is also associated with a K-vector zu ∈ RK , which

describes how her ideal point changes for bills about each issue.

We use these variables in a model based on the traditional ideal point model of Equation 5.1.

As above, xu is the ideal point for lawmaker u and ad, bd are the polarity and popularity of bill d.

In our model, votes are modeled with a logistic regression

p(vud|ad, bd, zu, xu,wd) = σ
(
(z>u Eq [θd|wd] + xu)ad + bd

)
, (6.1)
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where we use an estimate Eq [θd|wd] of the bill’s issue vector from its words wd as described below.

We put standard normal priors on the ideal points, polarity, and difficulty variables. We use

Laplace priors for zu: p(zuk |λ1) ∝ exp (−λ1||zuk||1). This enforces a sparse penalty with MAP in-

ference and a “nearly-sparse” penalty with Bayesian inference. See Figure 6.2 (left) for the graphical

model.

To better understand this model, assume that bill d is only about Finance. This means that θd

has a one in the Finance dimension and zero everywhere else. With a classic ideal point model, a

lawmaker u’s ideal point, xu, gives his position on each issue, including Finance. With the issue-

adjusted ideal point model, his effective ideal point for Finance, xu + zu,Finance, gives his position

on Finance. The adjustment zu,Finance affects how lawmaker u feels about Finance alone. When

zu,k = 0 for all u, k, this model becomes the classic ideal point model.

This model lets us inspect lawmakers’ overall voting patterns by issue. Given a collection of votes

and a coding of bills to issues, posterior estimates of the ideal points and per-issue adjustments give

us a window into voting behavior that is not available to classic ideal point models.

6.1.2 Using Labeled LDA to associate bills with issues.

Equation 6.1 adjusts a lawmaker’s ideal point by using the conditional expectation of a bill’s thematic

labels θd given its words wd. We estimate this vector using labeled latent Dirichlet allocation

(LDA) (Ramage et al., 2009).

Labeled LDA is a topic model, a bag-of-words model that assumes a set of themes for the

collection of bills and that each bill exhibits a mixture of those themes. The themes, called topics,

are distributions over a fixed vocabulary. In unsupervised LDA (Blei et al., 2003) they are learned

from the data. In labeled LDA, they are defined by using an existing tagging scheme. Each tag is

associated with a topic; its distribution is found by taking the empirical distribution of words for

documents assigned to that tag.1 This gives interpretable names (the tags) to the topics.

We used tags provided by the Congressional Research Service (Congressional Research Service,

2011), which provides subject codes for all bills passing through Congress. These subject codes

describe the bills using phrases which correspond to traditional issues, such as Civil rights and

National security. Each bill may cover multiple issues, so multiple codes may apply to each bill.

(Many bills have more than twenty labels.) We used the 74 most-frequent issue labels. Table 6.2

(right) illustrates the top words from several of these labeled topics.2 We fit the issue vectors

1Ramage et al. (2009) explore more sophisticated approaches, but we found this simplified version to work well.
2After defining topics, we performed two iterations of unsupervised LDA with variational inference to smooth the
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E [θd|wd] as a preprocessing step. In the issue-adjusted ideal point model (Equation 6.1), E [θd] was

treated as observed when estimating the posterior distribution p(xu, ad, bd, zd|E [θd|wd] , vud). We

summarize all 74 issue labels in Appendix B.7.4

Related Work

Item response theory has been used for decades in political science (Clinton et al., 2004; Martin

and Quinn, 2002; Poole and Rosenthal, 1985); see Enelow and Hinich for a historical perspective

(Enelow and Hinich, 1984) and Albert for Bayesian treatments of the model (Albert, 1992). Some

political scientists have used higher-dimensional ideal points, where each lawmaker is attached to a

vector of ideal points xu ∈ RK and each bill polarization ad takes the same dimension K (Heckman

and Snyder, 1996). The probability of a lawmaker voting “Yea” is σ(xTuad + bd). The principle

component of ideal points explains most of the variance and explains party affiliation. However,

other dimensions are not attached to issues, and interpreting beyond the principal component is

painstaking (Jackman, 2001).

Note that our goal in this chapter is fundamentally different than it was in the last chapter. The

last chapter describes how to predict votes on bills which had not yet received any votes. Those

models fit ad and bd using supervised topics, but the underlying voting model is one-dimensional:

it cannot model individual votes better than a one-dimensional ideal point model. Along the same

lines, Wang et al. created a Bayesian nonparametric model of votes and text over time (Wang et al.,

2010). Predicting votes on new bills is a non-goal in this chapter, in contrast to these related works

(which do not model individuals’ affinity toward issues).

The issue-adjusted model is conceptually more similar to recent models for content recommen-

dation. Specifically, Wang and Blei (2011) describe a method to recommend academic articles to

individuals, and Agarwal and Chen (2010) propose fLDA to match users to Web content (Agarwal

and Chen, 2010). Agarwal et al. learn a separate user-item offset yud and a user-topic affinity which

interacts with Eq [θd|wd]. Wang and Blei (2011) fit a linear regression, again learning a user-topic

affinity. Our model differs in its introduction of the polarity ad: lawmakers take a position zuk on

issue k which only creates an affinity toward k if the bill leans the correct way. Finally, we have an

explicit goal of interpretability.

word counts.
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6.2 Inference for the adjusted ideal point model

With a way to map bills to issues, we turn to fitting lawmakers’ issue adjustments zu. We estimate

issue adjustments zu by using the observed votes v and bills’ issues θd with the posterior distribution

p(x, z, a, b|v,θ).

Bayesian ideal point models are usually fit with Gibbs sampling (Johnson and Albert, 1999;

Jackman, 2001; Martin and Quinn, 2002; Clinton et al., 2004). However, fast Gibbs samplers are

unavailable for our model because the conditionals needed are not analytically computable. We

therefore estimated the posterior with variational Bayes.

Recall that in variational Bayes, we posit a family of distributions {qη} over the latent variables

that is likely to contain a distribution similar to the true posterior (Jordan et al., 1999) and select η

to minimize the KL divergence between the variational and true posteriors. In the ideal point topic

model, we let {qη} be the family of fully factorized distributions

q(x, z, a, b|η) =
∏
U

N (xu|x̃u, σ2
xu)N (zu|z̃u, λzu)

∏
D

N (ad|ãd, σ2
ad

)N (bd|b̃d, σ2
bd

), (6.2)

where above we parameterize our variational posterior with η = {(x̃u, σx), (z̃u, σzu), (ã, σa), (b̃, σb)}.

Above we assumed full factorization to make inference tractable. Though simpler than the true

posterior, fitted variational distributions can be excellent proxies for it. The similarity between ideal

points fit with variational inference and MCMC has been demonstrated in particular (Gerrish and

Blei, 2011).

As seen in Chapters 2, 3 and 5, variational inference usually proceeds by optimizing Lη =

Eqη [log p(x, z, a, b, v,θ)]−Eqη [log qη(x, z, a, b)], with gradient or coordinate ascent. Optimizing this

bound is challenging when the expectation is not analytical, which makes computing the exact

gradient ∇ηLη more difficult. In this chapter we will take a different approach, by optimizing

this bound with stochastic gradient ascent (Robbins and Monro, 1951; Bottou and Cun, 2004),

approximating the gradient with samples from qη:

∇ηLη ≈
1
M

∑
ym∼qη

∂qη
∂η

(log p(ym, v,θ)− log qη(ym)), (6.3)

where ym = (xm, zm, am, bm) is a sample from qη. The algorithm proceeds by following this stochas-

tic gradient with decreasing step size; we provide much more complete details of this algorithm, along

with an empirical analysis of it, in Appendix A.
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6.3 Understanding twelve years of U.S. congressional votes

In this section we will summarize the data on which we fit the issue-adjusted ideal point model and

the methods we used to fit the model. In the subsequent sections we will fit models to this data to

evaluate these models’ performance on votes from this period and provide a qualitative look at U.S.

lawmakers’ issue preferences. We begin this section with a closer look at votes in the U.S. Congress

from 1999-2010.

The United States Congress from 1999-2010

We studied U.S. Senate and House of Representative roll-call votes from 1999 to 2010. This period

spanned Congresses 106 to 111, the majority of which Republican President George W. Bush held

office. Bush’s inauguration and the attacks of September 11th, 2001 marked the first quarter of

this period, followed by the wars in Iraq and Afghanistan. Democrats gained a significant share of

seats from 2007 to 2010, taking the majority from Republicans in both the House and the Senate.

Democratic President Barack Obama was inaugurated in January 2009.

Not all votes in the U.S. Congress are recorded during roll-calls. Some bills are simply passed

when no lawmaker objects to an anonymous vote and a voice vote is unambiguous. We ignored

votes on such bills. Bills with roll-call votes, which are explicitly recorded, are more interesting,

because some lawmaker wanted an explicit record of votes on the bill. Such records are useful for

demonstrating lawmakers’ (and lawmakers’ opponents’) positions on issues. Roll calls serve as an

incontrovertible record for any lawmaker who wants such a record.

We downloaded both roll-call tables and bills from www.govtrack.us, a nonpartisan website

which provides records of U.S. Congressional voting (Govtrack website, 2010). Not all bills were

available in text form, but we had over one hundred for each Congress. Votes on bills without text

were discarded. We provide a summary of statistics for our datasets in these Congresses in Table 6.3.

We fit both models to two-year periods in the House and (separately) to two-year periods in the

Senate. Some bills received votes in both the House and Senate; in those cases, the issue-adjusted

model’s treatment of the bill in the House was completely independent of its treatment by the model

in the Senate.

Vocabulary

To fit the labeled topic model to each bill, we represented each bill as a vector of phrase counts (the

vocabulary). This “bag of phrases” is similar to the “bag of words” assumption commonly used in
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Figure 6.3: Roll-call data sets used in the experiments. These counts include votes in both the
House and Senate. The number of lawmakers within each House and Senate varies by congress
because there was some turnover within each Congress. In addition, some lawmakers never voted
on legislation in our experiments (recall, we used legislation for which both text was available and
for which the roll-call was recorded).

Statistics for the U.S. Senate

Congress Years Lawmakers Bills Votes

106 1999-2000 81 101 7,612
107 2001-2002 78 76 5,547
108 2003-2004 101 83 7,830
109 2005-2006 102 74 7,071
110 2007-2008 103 97 9,019
111 2009-2010 110 62 5,936

Statistics for the U.S. House of Representatives

Congress Years Lawmakers Bills Votes

106 1999-2000 437 345 142,623
107 2001-2002 61 360 18,449
108 2003-2004 440 490 200,154
109 2005-2006 441 458 187,067
110 2007-2008 449 705 287,645
111 2009-2010 446 810 330,956

natural language processing. This vocabulary omitted content-free phrases such as “and”, “when”,

and “the” (known as stop words) and awkward, non-informative phrases such as “and the”. The

full vocabulary consisted of 5,000 n-grams. We provide further details of vocabulary selection in

Appendix B.7.5. We used these words to algorithmically define topics and assign issue weights to

bills as described in Section 6.1.2.

Identification

We discussed in Section 5.2 the ways in which the ideal point model is under-specified. The issue-

adjusted ideal point model has similar identification nuances. We address this by flipping ideal

points (and bill polarities) if necessary to make Republicans positive and Democrats negative. As

with the ideal point model, this does not affect model performance.

Traditional ideal points vs. issue-adjusted ideal points

The issue-adjusted ideal point model in Equation 6.1 is a generalization of the classic ideal point

model (they are the same when zuk = 0 for all u, k). The goal of this section is to empirically justify

this increased complexity with a comparison of issue-adjusted ideal points and traditional ideal

points. We first give a qualitative discussion of these differences and follow this with quantitative

validation of the issue-adjusted model.
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Examples: adjusting for issues

We give a side-by-side comparison of traditional ideal points xu and issue-adjusted ideal points

(xu + zTu θ) for the ten most-improved bills of Congress 111 (2009-2010) in Table 6.4. For each bill,

the top row shows the ideal points of lawmakers who voted “Yea” on the bill and the bottom row

shows lawmakers who voted “Nay”. The top and bottom rows are a partition of votes rather than

separate treatments of the same votes. On these bills, “Yea” and “Nay” votes fall to the correct

sides of the split more often when lawmakers’ issue-adjusted ideal points are used instead of their

traditional ideal points.

A comparison of issue-adjusted ideal points xu and traditional ideal points

The traditional ideal point model (Equation 5.1) uses one parameter per lawmaker—xu—to explain

all of her voting behavior. In contrast, the issue-adjusted model (Equation 6.1) uses xu along with

seventy-four other parameters—one per issue—to describe each lawmaker. How does xu under these

two models differ? We fit ideal points to the 111th House (2009 to 2010) and issue-adjusted ideal

points x̃u to the same period (λ = 1) and compare these ideal points in Figure 6.5

In this figure we use an alternative to a scatterplot called a parallel plot. In a parallel plot (which

we will use several more times in this chapter), we plot the two variables we wish to compare along

parallel axes and draw line segments connecting two points when they represent the same variable

under different treatments. In Figure 6.5, the top axis axis represents a lawmaker’s ideal point xu

under traditional IRT, and the bottom “treatment” axis represents his ideal point xu under the

issue-adjusted model. Here and later we will use the convention that the bottom row represents a

special treatment. When it is helpful, we use darker line segments for those items which change the

most under treatment.3

In the parallel plot in Figure 6.5, the traditional ideal point model’s x̃u and the issue-adjusted

model’s un-adjusted ideal points x̃u are similar – their correlation coefficient is 0.998. The most

noteworthy change is that lawmakers appear more partisan under the traditional ideal point model

— enough that Democrats are completely separated from Republicans — while issue-adjusted ideal

points provide a softer split. This is not surprising, because the issue-adjusted model is able to

use lawmakers’ adjustments zu to more than make up for this difference. For the same reason,

issue-adjusted ideal points are slightly less extreme than classic ideal points.
3Specifically, we fit a linear model to predict the bottom row from the top row and color line segments with opacity

proportional to the squared residual of this pair. We specified opacity in ggplot for R with the alpha parameter.
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Figure 6.4: Issue-adjusted ideal points can explain votes better than standard ideal points. The
x-axis of each small plot shows ideal point or issue-adjusted ideal point for a lawmaker. Each bill’s
indifference point − bd

ad
is shown as a vertical line. Positive votes (orange) and negative votes (purple)

are better-divided by issue-adjusted ideal points.
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Figure 6.5: Classic issue-adjusted ideal points xu (bottom row) separate lawmakers by party better
than un-adjusted ideal points xu from the issue-adjusted model (top row). Republicans are colored
red, and Democrats are blue. These ideal points were estimated in the 111th House of Represen-
tatives. The line connecting ideal points from each model has opacity proportional to the squared
residuals in a linear model fit to predict issue-adjusted ideal points from ideal points.
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Evaluation of the predictive distribution

The issue-adjusted model contains the ideal point model as the special case zuk = 0,∀u, k. Does this

greater expressivity—74 extra random variables per lawmaker—model meaningful patterns? We

answer this question by comparing the issue-adjusted ideal point model with two alternatives:

1. A variational ideal point model (Equation 5.1), which treats lawmakers with the single variate

xu.

2. A permutation test. The goal of this test is to attribute any improvement over traditional

ideal points to the issues assigned to bills. In this test, we randomly permute topic vectors’

document labels: (θ1, . . . ,θD) 7→ (θπi(1) . . .θπi(D)), for five random permutations π1, . . . , π5.

This permutation test removes information contained in the matching from bills and topic

mixtures. At the same time, the empirical distribution over topic mixtures θdk stays the same,

and each bill is still matched to a topic mixture with
∑
k θdk = 1. This is important because

it any improvement we see over traditional ideal points is due to the bills’ topics, not due to

spurious factors (such as the change in dimension).

Sensitivity to λ. The main parameter in the issue-adjusted model is the regularization λ, which

is shared for all issue adjustments. We report the effect of different λ by fitting the issue-adjusted

model to the 109th Congress (1999-2000) of the House and Senate for a range λ = 0.0001, . . . , 1000

of regularizations. We performed 6-fold cross-validation, holding out one sixth of votes in each

fold, and calculated average log-likelihood
∑
vud∈Vheldout

log p(vud|x̃u, z̃u, ãd, b̃d) for votes Vheldout in

the heldout set. Following the algorithm described in Section 6.2, we began with M = 21 samples

to estimate the approximate gradient (Equation 6.3) and scaled it by 1.2 each time the ELBO L

dropped below a threshold, until it was 500. We also fixed variance σ2
x, σ

2
z , σ

2
a, σ

2
b = exp(−5). We

summarize these results in Table 6.6.

The variational implementation generalized well for the entire range, representing votes best in

the range 1 ≤ λ ≤ 10. Log-likelihood dropped modestly for λ < 1. In the worst case, log-likelihood

was -0.159 in the House (this corresponds with 96% heldout accuracy) and -0.242 in the Senate (93%

heldout accuracy).

Performance across all sessions. We fit the issue-adjusted model to both the House and Senate

for Congresses 106 to 110 (1999-2010) with λ = 1. For comparison we also fit an ideal point model

to each of these congresses and fit an issue-adjusted model to each congress with topics’ document
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Figure 6.6: Average log-likelihood of heldout votes by regularization λ. Log-likelihood was averaged
across folds using six-fold cross validation for Congress 109 (2005-2006). The variational distribution
represented votes with higher heldout log-likelihood than traditional ideal points for 1 ≤ λ ≤ 10.
In a model fit with permuted issue labels (Perm. Issue), heldout likelihood of votes was worse than
traditional ideal points for all regularizations λ.

Model Senate
λ 1e-4 1e-3 1e-2 1e-1 1 10 100 1000

Ideal -0.188 -0.189 -0.189 -0.189 -0.189 -0.190 -0.189 -0.189
Issue (LDA) -0.191 -0.191 -0.188 -0.186 -0.188 -0.189 -0.189 0.198
Perm. Issue -0.242 -0.245 -0.231 -0.221 -0.204 -0.208 -0.208 -0.208

Model House
λ 1e-4 1e-3 1e-2 1e-1 1 10 100 1000

Ideal -0.119 -0.119 -0.119 -0.119 -0.120 -0.119 -0.119 -0.119
Issue (LDA) -0.159 -0.159 -0.158 -0.139 -0.118 -0.119 -0.119 0.119
Perm. Issue -0.191 -0.192 -0.189 -0.161 -0.122 -0.120 -0.120 -0.120

Figure 6.7: Average log-likelihood of heldout votes across all sessions for the House and Senate.
Log-likelihood was averaged across folds using six-fold cross validation for Congresses 106 to 111
(1999-2010) with regularization λ = 1. The variational distribution had higher heldout log-likelihood
for all congresses in both chambers than the the ideal point model and the issue-adjusted distribution
fit from permuted data.

Model Senate
Congress 106 107 108 109 110 111

Ideal -0.209 -0.209 -0.182 -0.189 -0.206 -0.182
Issue (LDA) -0.208 -0.209 -0.181 -0.188 -0.205 -0.180
Issue (label) -0.208 -0.209 -0.182 -0.189 -0.206 -0.181
Perm. Issue -0.210 -0.210 -0.183 -0.203 -0.211 -0.186

House
Ideal -0.168 -0.154 -0.096 -0.120 -0.090 -0.077

Issue (LDA) -0.167 -0.151 -0.095 -0.118 -0.089 -0.076
Issue (label) -0.167 -0.151 -0.094 -0.117 -0.088 -0.075
Perm. Issue -0.167 -0.155 -0.096 -0.122 -0.090 -0.077
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labels permuted (θπ(1), . . . ,θπ(1)). We summarize these results in Table 6.7. In all chambers in both

Congresses, the issue-adjusted model represents heldout votes with higher log-likelihood than an

ideal point model. Further, every permutation represented votes with lower log-likelihood than the

issue-adjusted model. In most cases they were also lower than an ideal point model.

Human labels vs. inferred text-based labels. The issue-adjusted model assumes a fixed issue

vector θd for each bill. We described a method in Section 6.1.2 for inferring this issue vector based

on the text of bills using labeled LDA; this method uses the original Congressional Research Service

(CRS) labels. What happens if we skip this preprocessing step and just use the original CRS labels?

We checked this by converting the original CRS issue labels into a K-vector of issues. For each

document d having issue labels J ⊂ K, each issue θdk was assigned a weight of 1/|J | if k ∈ J and

zero if k 6∈ J . We fit an issue-adjusted model using these with CRS labels and performed six-fold

cross validation as described above and illustrate predictive performance in Table 6.7 in the “Issue

(label)” row.

Across Congresses, the predictive benefit in using text-based issue vectors over labels provided

by the CRS is negligible. However, we see at least two benefits in using text-based labels. First,

they provide a defensible way to distribute weight to each issue: an issue should receive less than

1/|J | weight if it is mentioned only in passing in a bill. Second, this method allows us to fit issue

vectors to the 107 bills which were missing CRS labels.

Changes in bills’ parameters. Bills’ polarity ad and popularity bd are similar under both the

traditional ideal point model and the issue-adjusted model. We illustrate bills’ parameters in these

two models in Figure 6.8 and note two exceptions. First, procedural bills stand out from other

bills in becoming more popular overall. In Figure 6.8, procedural bills have been separated from

traditional ideal points. We attribute the difference in procedural bills’ parameters to procedural

cartel theory, which we describe further in Section 6.3.1. Second, the remaining bills have become

less popular but more polarized under the issue-adjusted model. This is because the model depends

more on lawmakers’ positions to explain votes, because it has many more dimensions with which it

can describe each lawmaker.

Sparsity of z̃uk. The variational estimates z̃uk of issue adjustments were not sparse, although a

high mass of these issue adjustments was concentrated around zero: twenty-nine percent of issue

adjustments were within [−0.01, 0.01], and eighty-seven percent of issue adjustments were within
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Figure 6.8: Procedural bills are more popular under the issue-adjusted voting model. Top: popularity
bd of procedural bills under the issue-adjusted voting model is greater than with traditional ideal
points. Bottom: consistent with Cox and Poole (2002) and procedural cartel theory, the polarity
of procedural bills is generally more extreme than that of non-procedural bills. However, issue
adjustments lead to increased polarity (i.e., certainty) among non-procedural votes as well. The
procedural issues include Congressional reporting requirements, Government operations and politics,
House of Representatives, House rules and procedure, Legislative rules and procedure, and Congress.

[−0.1, 0.1]. We illustrate the distribution of lawmakers’ offsets for selected issues in Figure 6.10 and

describe them further in Section 6.3.1.

6.3.1 Issues and Lawmakers

We illustrate Representatives’ issue adjustments for the issues Finance and the procedural issue

Congressional sessions in Figure 6.11 for the 111th House. These adjustments illustrate the way

in which the issue-adjusted voting model allows us to better understand how lawmakers feel about

specific issues, but they do not tell us which issues were well-fit by the model, or whether these

issue adjustments were systemic (i.e., predictable using lawmakers’ ideal points) or even statistically

significant.

The goal of this section is to address these concerns by providing a qualitative look at lawmakers’

issue preferences such as those in Figure 6.11. We begin by identifying those issues which were

best- and worst-represented by the issue-adjusted model. We then look at when lawmakers’ issue

adjustments can be explained by party affiliation and discuss how to control for these systemic

biases to identify lawmakers who transcend party lines. We finally describe a theory explaining why

certain lawmakers have such different preferences on procedural issues like Congressional sessions

than substantive issues like as Finance.

Issues improved by issue adjustment

Those issues which tended to move lawmakers the most (by standard deviation of ẑk) also tended to

give issue-adjusted ideal points an edge over traditional ideal points. We measure the performance
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Figure 6.9: Log-likelihood increases when using adjusted ideal points most for procedural and strate-
gic votes and less for issues frequently discussed during elections. Impk is shown on the x-axis, while
issues are spread on the y-axis for display. The size of each issue k is proportional to the logarithm
of the weighted sum

∑
vud
θdk of votes about the issue.

improvement for any issue by first taking the issue-adjusted log likelihood of each vote

Jud = 1{vud=yea}p− log(1 + exp(p)), (6.4)

where 1... is an indicator function and p = (xu + zTu θd)ad + bd is the log-odds of a vote under the

issue adjusted voting model. We also measure the corresponding log-likelihood Iud under the ideal

point model, using p = xuad + bd with an ideal point model. The improvement of issue k is then

the sum of the improvement in log-likelihood, weighted by issue k:

Impk =

∑
vud
θdvk(Jud − Iud)∑
vud
θdvk

. (6.5)

A high value of Impk indicates that issue k is associated with an increase in log-likelihood, while a

low value is associated with a decrease in log-likelihood.

We illustrate Impk for a selection of issues in Figure 6.9. All issues increased log-likelihood;

those associated with the greatest increase tended to be related to procedural votes. For example,

Women, Religion, and Military personnel issues are nearly unaffected by lawmakers’ offsets. These

improvements Impk were correlated with the standard deviation of residual offsets ẑk (σcor = 0.68),

but not with coefficients βk (σcor = 0.05), indicating that issue offsets, and not ideal points, explain

most of the improvement.
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Issues associated with worse predictions. We also note several poorly-fit issues. We evaluated

issues by taking the number of incorrectly-fit votes under the issue-adjusted model minus the number

of incorrectly-fit votes under a traditional ideal point model. We call this the number of “new mis-

predicted votes” for each issue. Those issues which had the most “new mis-predicted votes” also

had the most “new correctly-predicted votes”, which is largely because votes on these issues are

simply hard to predict. For example, Athletics was one of the issues which saw the most most

newly-mispredicted votes. Postal Facilities and Military Personnel were other examples.

Bills which expressed many issues were also less-well fit. The bill which decreased the most

by log-likelihood of its votes from the ideal point model in the 111th House was the Consolidated

Land, Energy, and Aquatic Resources Act of 2010 (H.R. 3534). This bill had substantial weight

in five issues, with most in Public lands and natural resources, Energy, and Land transfers, but its

placement in many issues appears to have harmed its performance. This effect was common, and

it suggests that methods which represent bills with fewer issues (such as unsupervised topics) may

perform better, at the expense of interpretability.

Understanding lawmakers’ voting amidst party bias

Many lawmakers’ issue adjustments can be explained by party affiliation (hence, their ideal point).

We illustrate the distribution across lawmakers of z̃uk for selected issues k in Figure 6.10. This figure

shows this distribution for the four issues with the greatest variance in z̃uk across lawmakers and the

four issues with the least variance across lawmakers. Note the systematic bias in Democrats’ and

Republicans’ issue preferences: they become more partisan on certain issues, particularly procedural

ones.

Controlling for ideal points. A typical Republican tends to have a Republican offset on taxation,

but this surprises nobody. Instead, we are more interested in understanding when this Republican

lawmaker deviates from behavior suggested by her ideal point. We can shed light on this systemic

issue bias by explicitly controlling for it. To do this, we fit a regression for each issue k to explain

away the effect of a lawmaker’s ideal point xu on her offset zuk:

zk = βkX + ε,

where βk ∈ R. Instead of evaluating a lawmaker’s observed offsets, we use her residual ẑuk =

zuk−βkxu, which we call the corrected issue adjustment. By doing this, we can evaluate lawmakers
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Figure 6.10: Histogram of issue adjustments for selected issues. Democrats are in the left column,
and Republicans are in the right column. Both Democrats and Republicans tend to have small issue
adjustments for traditional issues. Their issue adjustments differ substantially for procedural issues.
A more-dispersed distribution of issue adjustments does not mean that these lawmakers tend to feel
differently from one another about these issues. Instead, it means that lawmakers deviate from their
ideal points more.
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Figure 6.11: Ideal points xu and issue-adjusted ideal points xu + zuk from the 111th House for the
substantive issue Finance and the procedural issue Congressional Sessions. Democrats are blue and
Republicans are red. Votes about Finance and Congressional Sessions were better fit using issue-
adjusted ideal points. For procedural votes such as Congressional sessions, lawmakers become more
polarized by political party, behavior predicted by procedural cartel theory (Cox and McCubbins,
1993).

in the context of other lawmakers who share the same ideal points: a positive offset ẑuk for a

Democrat means she tends to vote more liberally about issue k than others with the same ideal

point (most of whom are Democrats).4

Most issues had only a moderate relationship to ideal points. House rules and procedure was

the most-correlated with ideal points, moving the adjusted ideal point βk = 0.26 right for every

unit increase in ideal point. Public land and natural resources and Taxation followed at a distance,

moving an ideal point 0.04 and 0.025 respectively with each unit increase in ideal point. Health, on

the other hand, moved lawmakers βk = 0.04 left for every unit increase in ideal point. The issues

Women, Religion, and Military personnel were nearly unaffected by lawmakers’ offsets.

Finding exceptional issue-adjustments. We next use these corrected issue adjustments to

identify lawmakers’ exceptional issue preferences. To identify adjustments which are significant, we

turn again to the same nonparametric check described in the last section: permute issue vectors’

document labels, i.e. (θ1, . . . ,θD) 7→ (θπi(1) . . .θπi(D)), and refit lawmakers’ adjustments using both

the original issue vectors and permuted issue vectors, for permutations π1, . . . , π20. By mixing up

the matching between issue vectors and bills, this serves to separate issue adjustments that might

arise accidentally from noise in the data from issue adjustments that arise from the observed data.
4We also fit a model with this regression explicitly encoded. That model performed slightly worse in experiments

on heldout data.
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Figure 6.12: Significant issue adjustments for exceptional senators in Congress 111. Each illustrated
issue is significant to p < 0.05 by a permutation test.

We then compare a corrected issue adjustment ẑuk’s absolute value with corrected issue adjustments

estimated with permuted issue vectors θπi(d)k.

This provides a nonparametric method for finding issue adjustments which are more extreme

than expected by chance: an extreme issue adjustment has a greater absolute value than all of its

permuted counterparts. We use these to discuss several unique lawmakers.

Extreme lawmakers. Using corrected issue adjustments, we identified several of the most-unique

lawmakers. We focused this analysis on votes from 2009-2010, the most recent full session of

Congress, using λ = 1. We fit the variational model to all votes in the House and computed

lawmakers’ corrected issue adjustments ẑuk, which are conditioned on their ideal points as described

in Section 6.3.1. Figure 6.12 illustrates those issue preferences for two lawmakers from this Congress

which significant under 20 permutation replications (p < 0.05).

• Ron Paul. We return to Ron Paul, one of the most unique House Republicans, and a lawmaker

who first motivated this analysis. Paul’s offsets were very extreme; he tended to vote more

conservatively than expected on health, human rights and international affairs. He voted more

liberally on social issues such as racial and ethnic relations, and broke with behavior expected

under a procedural cartel (congressional sessions). The issue-adjusted training accuracy of

Paul’s votes increased from 83.8% to 87.9% with issue offsets, placing him among the two
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most-improved lawmakers with this model.

The issue-adjusted improvement ImpK (Equation 6.5) when restricted to Paul’s votes indicate

significant improvement in international affairs and East Asia (he tends votes against U.S.

involvement in foreign countries); congressional sessions; human rights; and special months

(he tends to vote against recognition of months as special holidays).

• Donald Young. One of the most exceptional lawmakers in the 111th House was Donald

Young, Alaska Republican. Young stood out most in a topic used frequently in House bills

about naming local landmarks. In many cases, Young voted against the majority of his party

(and the House in general) on a series of largely symbolic bills and resolutions. For example, in

the commemorative events and holidays topic, Young voted (with only two other Republicans

and against the majority of the House) not to commend “the members of the Agri-business

Development Teams of the National Guard and the National Guard Bureau for their efforts...

to modernize agriculture practices and increase food production in war-torn countries.”

Young’s divergent symbolic voting was also evident in a series of votes against naming various

landmarks—such as post offices—in a topic about such symbolic votes. Yet Donald Young’s

ideal point is -0.35, which is not particularly distinctive (see Figure 5.2): using the ideal point

alone, we would not recognize his unique voting behavior.

Procedural Cartels

Above we briefly noted that Democrats and Republicans become more partisan on procedural issues.

Lawmakers’ more partisan voting on procedural issues can be explained by theories about partisan

strategy in the House. In this section we summarize a theory underlying this behavior and note

several ways in which it is supported by issue adjustments.

The sharp contrast in voting patterns between procedural votes and substantive votes has been

noted and studied over the past century (Jr., 1965; Cox and McCubbins, 1993; Cox and Poole,

2002). Cox and McCubbins (1993) provide a summary of this behavior: “parties in the House

– especially the majority party – are a species of ’legislative cartel’ [ which usurp the power ] to

make rules governing the structure and process of legislation.” A defining assumption made by Cox

and McCubbins (2005) is that the majority party delegates an agenda-setting monopoly to senior

partners in the party, who set the procedural agenda in the House. As a result, the cartel ensures that

senior members hold agenda-setting seats (such as committee chairs) while rank-and-file members

of the party support agenda-setting decisions.
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This procedural cartel theory has withstood tests in which metrics of polarity were found to be

greater on procedural votes than substantive votes (Cox and McCubbins, 1993; Cox and Poole, 2002;

Cox and McCubbins, 2005). We note that issue adjustments support this theory in several ways.

First, lawmakers’ systematic bias for procedural issues was illustrated and discussed in Section 6.3.1

(see Figure 6.10): Democrats systematically lean left on procedural issues, while Republicans sys-

tematically lean right. Importantly, this discrepancy is more pronounced among procedural issues

than substantive ones. Second, lawmakers’ positions on procedural issues are more partisan than

expected under the underlying un-adjusted ideal points (see Section 6.3.1 and Figure 6.11). Finally,

more extreme polarity and improved prediction on procedural votes (see Section 6.3 and Figure 6.8)

indicate that that issue adjustments for procedural votes are associated with more extreme party

affiliation – also observed by Cox and Poole (2002).

Conclusions

In the last two chapters we took a closer look at the decision-making process in the U.S. by addressing

two important shortcomings of ideal point models: their inability to predict votes on previously-

unseen bills and their inability to represent lawmakers with nontrivial voting behavior. In this

chapter we addressed the latter limitation by developing and studying the issue-adjusted ideal point

model, a model designed to tease apart lawmakers’ preferences from their general political positions.

This is a model of roll-call data that captures how lawmakers vary, issue by issue, and it gives a

new way to explore legislative data. On a large data set of legislative history, we demonstrated

that it is able to represent votes better than a classic ideal point model and illustrated its use as an

exploratory tool.

This work could be extended in several ways. One of the most natural ways is to incorporate

lawmakers’ stated positions on issues – which may differ from how they actually vote on these issues;

in preliminary analyses, we have found little correlation to external sources. We might also study

lawmakers’ activities outside of voting to understand their issue positions. For example, lawmakers’

fund-raising by industry area might (or might not) be useful in predicting their positions on different

issues. Additional work includes modeling how lawmakers’ positions on issues change over time, by

incorporating time-series assumptions as in Martin and Quinn (2002).

The ideal point model introduced in the last chapter represents one of the simplest models of

dyadic data. By framing it as a latent variable model as in Clinton et al. (2004), we were able

to use it as a modular piece of larger latent-variable models. By combining it with other modules
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for analyzing text data, including Latent Dirichlet Allocation and text regression, we were able to

address two important shortcomings of ideal points. As in chapters 3 and 4, this allowed us to

explicitly state nontrivial assumptions in interesting ways.
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Chapter 7

Conclusions

In the past five chapters we introduced several models to address important problems in social

science research. We accomplished this by framing our assumptions as latent variable models, using

data sources to estimate the values of the latent random variables, and empirically validating these

models. Throughout, we repeatedly made use of a small set of statistical primitives.

We introduced the reader to these primitives in Chapter 2. Having been developed over the past

century, these ideas were sufficient to provide the majority of the scaffolding for our assumptions.

The most important of these assumptions were models for text analysis, including topic models and

text regression, which have seen huge advances in the past two decades. We also used hidden Markov

models for time-series applications and latent spatial assumptions to model interaction between pairs

of items.

In Chapter 3 we explored the problem of finding influential documents in text corpora which

have evolved over time. This problem affects a wide range of fields, with concrete motivations in

both academia and industry. We introduced a model which uses the change in language to find

documents which use language that becomes more popular over time in a field. We then fit this

model to four corpora: three scientific journals and a corpus of legal opinions. We consistently found

a correlation between our measure of influence and unseen citation counts for these corpora, and we

explored several anecdotal examples within these collections.

We then used some of the same time-series assumptions to build a recent history of the sentiment

between nations in Chapter 4. To do this, we encoded assumptions about how nations interact into

a dyadic model of the sentiment between two nations. We defined the sentiment between nations

using hand-labeled codes from both experts and novices. Upon fitting this model, we discovered
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that the sentiment between nations predicted by this model was extraordinarily correlated between

a model fit with expert labels and a model fit with novice labels.

In Chapters 5 and 6, we used primitives from text analysis to improve the ideal point model,

a well-known dyadic model of legislative voting. Using models of text, we first constructed models

to enable us to predict lawmakers’ votes on unseen documents. We demonstrated that such models

allow us to accurately predict lawmakers’ votes on unseen bills.

We then made ideal point models more interpretable by extending it to incorporate lawmakers’

positions on different issues. We then used supervised topic models to assign interpretable labels to

bills and fit lawmakers’ positions. We demonstrated that, in doing this, we were able to improve

the ideal point model’s representation of heldout votes while providing an interpretable description

of each lawmaker.

7.1 Latent variable models for understanding the social sci-

ences

The core tools we used to build the models in these chapters were outlined in the introductory

materials chapter. By framing our questions as latent-variable models, we were able to use a hand-

ful of “statistical primitives” to encode our assumptions, make predictions, and interpret hidden

random variables. These primitives were tools for text data, including bag-of-words models like

latent Dirichlet allocation (Blei and Lafferty, 2006) and text regression (Kogan et al., 2009). The

time-series primitive we used was that of a hidden Markov model. Finally, we modeled interactions

between pairs of items – whether they were a pair of warring nations or lawmakers and bills – using

simple distributions over pairs of variables with well-defined distributions.

Our ability to use these primitives has been made possible by several recent advances in the past

few decades. These include the wider availability of documents in digital form – including the text

of millions of academic articles on sites like JSTOR (www.jstor.org), millions of newspaper articles

like the New York Times, and billions of government records such as those on independent sites like

Govtrack (www.govtrack.us) and government sites like the National Archives (www.archives.gov).

Just as these corpora have become more widely available, the tools for gleaning information

from them have continued to improve. These include first Judea Pearl’s abstraction of graphical

models, which now allow us to piece together latent variable models as easily as children build cars

from LegosTM(Pearl, 1985). Since graphical models have become mainstream, old primitives such
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as HMMs have been ported to this paradigm, while new primitives such as LDA and text regression

have been developed within this paradigm.

At the same time, the statistical tools for fitting these models has continued to improve, as tools

such as variational inference improve model runtime and tools like stochastic variational optimization

(which I introduce in Appendix A) decrease model development time. Finally, Moore’s law now

enables us to fit these models on larger and larger collections of data, as the speed and memory of

researchers’ workstations allows us to process millions of observations per minute.

7.2 Future work

The conclusion section of each chapter in this thesis describes future research directions for the work

in that chapter. In this section I outline high-level work I see ahead for this research community

around the themes discussed in this thesis.

The explosion of text data and tools for working with text suggest that fundamental research will

continue around model-building, primitive development, and posterior inference. As this happens,

analysis and model-building will become easier for the casual “practitioner”. As we researchers

better understand how to abstract away details about inference without compromising the quality

of posterior estimation and without compromising data integrity, it will become our responsibility

to develop tools for data practitioners.

The primitives I have recapitulated throughout this thesis are only a handful of the primitives

available to practitioners. I have focused on these primitives because they are simple enough to

recur frequently while still retaining enough power to provide meaningful utility to practitioners.

There exist a variety of other primitives for researchers working with text, including alternative

models of documents and alternative models for time-series analysis. While books such as Bishop

(2006) describe many of these abstractions from a machine learning perspective, I expect many of

these abstractions to receive explicit attention in future resources for practitioners in fields outside

of machine learning.
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Appendix A

Optimizing the variational bound

stochastically

Estimating an arbitrary probability distribution p(x) is a fundamental problem in statistical model-

ing. This problem arises in posterior inference, for example, where we seek to estimate a conditional

p(x|y) of latent variables x given observations y. There are two main classes of solutions—Markov

chain Monte Carlo (MCMC) (Bishop, 2006) and variational methods (Jordan et al., 1999). In

MCMC, we define a Markov chain whose stationary distribution is the target distribution. We run

the chain to try to collect independent samples from the stationary distribution, and then use them

to form an approximation. In variational inference, we posit a parameterized family of distributions

qθ(x) and find the member of that family that is “closest” to the true posterior. This turns the

problem of inference into one of optimization.

Deriving and implementing a variational inference algorithm can be painstaking, as evidenced

in the tedious update equations in Appendix B. It involves defining the variational family, forming

an objective function, taking derivatives with respect to the variational parameters, and running

an optimization algorithm. In this appendix, we present an alternative algorithm for variational

inference. Our algorithm circumvents many of the challenges to using variational inference by

optimizing the variational objective function stochastically.

To do this, we form the derivative of the variational objective as an expectation with respect

to the variational distribution. We then sample from that distribution to obtain realizations of

a stochastic gradient. Our algorithm is a “black box” algorithm in that it only requires that we

evaluate the joint likelihood p(x, y) of the hidden and observed variables (up to a constant factor), the
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variational likelihood q(x) (up to a constant factor), and the derivative of log q(x). (Note that this

derivative can be reused across variational inference problems.) Unlike other automated approaches

to variational inference (Winn and Bishop, 2001), we have no other restrictions on the model or

variational family, e.g., that the hidden variables come in conjugate pairs or that the variational

distributions are in the exponential family.

There have been several recent algorithms that are similar in spirit to ours. Both Carbonetto

et al. (2009) and Graves (2011) perform variational inference by taking samples from the variational

posterior to estimate a gradient. Carbonetto et al. assume that the variational distribution comes

from the exponential family (Carbonetto et al., 2009). Graves (2011) approximates the first-order

gradient for fitting a neural network.

Our work significantly expands on this research. We make weaker assumptions than Carbonetto

et al. (2009) on the forms of p and qθ(x). Our posterior p(x|y) and q(x) must be well-behaved—the

KL-divergence between p(x|y) and q(x) must exist, log qθ(x) must be differentiable almost every-

where, and qθ must have finite variance—but is otherwise unrestricted. Our method can be used

for a wider variety of statistical models, with benefits over both MCMC and traditional variational

inference.

A.1 Stochastic optimization of the variational objective

We begin this section by reviewing variational inference for approximating posterior distributions.

We then derive our algorithm for optimizing the variational objective with stochastic optimization.

We discuss an illustrative example and describe several extensions to the algorithm.

A.1.1 Variational inference

Variational methods are a fast, deterministic alternative to MCMC for approximate inference (Wain-

wright and Jordan, 2003; Jordan et al., 1999). Variational methods posit a parameterized family of

distributions qθ(x) and try to find the member (i.e., the setting of variational parameters θ) that is

closest in KL-divergence to the posterior p(x|y),

arg min
θ

KL(qθ||p) = arg min
θ

∫
qθ(x) log

qθ(x)
p(x|y)

dx. (A.1)

We select the family to make this optimization problem tractable. A commonly chosen family is

the mean-field family, where the variational distribution is fully factorized. For example, if x is a
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collection of real-values that are dependent in p(x|y) then the mean-field distribution might be a

product
∏
K N (µk, σ2

k) of independent Gaussian distributions.

Optimizing Equation A.1 is equivalent to optimizing the “evidence lower bound” (ELBO) Lθ

Bishop (2006):

log p(y) ≥ Eq [log p(x, y)− log qθ(x)] =: Lθ, (A.2)

where the slack of the bound is equal to the KL divergence from Equation A.1. Typical vari-

ational inference algorithms optimize this bound by coordinate ascent. This requires evaluating

Eq [log p(x, y)− log qθ(x)] and its gradient with respect to θ. If the variational distribution is not

conjugate to the joint distribution p(x, y), the expectation Eq [log p(x, y)] will not be analytically

tractable. We may then need to perform further bounds or approximations (Jaakkola and Jordan,

2000; Jordan et al., 1999; Bickel and Doksum, 2007; Braun and McAuliffe, 2010).

This procedure makes variational methods challenging for two reasons. First, they require a steep

learning curve and careful attention to detail to derive the coordinate updates. Second, this process

must be repeated each time the model p(x, y) changes form. Deriving the variational algorithm

becomes a bottleneck when we seek rapid model development.

A.1.2 An algorithm for stochastic optimization of the variational objec-

tive

We now describe an alternative method for optimizing the ELBO L. We form a noisy estimate of

the gradient using Monte-Carlo integration (Graves, 2011; Wei and Tanner, 1990; Carbonetto et al.,

2009), and follow it with stochastic optimization (Robbins and Monro, 1951). This avoids difficult

derivations; we need only evaluate log p(x, y), qθ(x), and ∇ log qθ(x).

We now show that the gradient of Equation A.2 can be written as an expectation. We first

exchange integration and differentiation1, and apply the chain the rule,

∇Lθ = ∇
[∫

qθ(x)(log p(x, y)− log qθ(x))dx
]

(A.3)

=
∫
∇
[
qθ(x)(log p(x, y)− log qθ(x))

]
dx

=
∫
∇qθ(x)(log p(x, y)− log qθ(x)− 1)dx.

1This assumes the support of qθ is not a function of θ, and that log qθ(x) and ∇ log qθ(x) are continuous with
respect to θ.
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We can write this as an expectation by using the identity qθ(x)∇ log qθ(x) = ∇qθ(x),

∇Lθ = Eq [∇ log qθ(x) (log p(x, y)− log qθ(x)− 1)] (A.4)

Now we use Monte Carlo integration to form an unbiased estimate of the gradient at θ = θ0. We

obtain M samples from the variational distribution qθ0(x), {x1, . . . , xM} and approximate,

∇Lθ ≈
1
M

M∑
m=1

∇ log qθ(xm)
∣∣∣
θ0

(log p(xm, y)− log qθ0(xm)− C). (A.5)

Note we replaced the one in Equation A.4 with a constant C. This follows because Eq [∇ log qθ(x)] =

0. For now we will assume C equals zero, but see Section A.1.2 for how to improve performance by

adjusting this constant.

Related estimates of similar gradients have been studied in recent work (Carbonetto et al., 2009;

Graves, 2011) and in the context of expectation maximization (Wei and Tanner, 1990).

The quality of this estimate depends on the sample size M . A small number of samples leads to

a fast but crude approximation, while a large number of samples will be slower but more accurate.

We will explain in Section A.1.2 how to decrease the variance of this approximation by using batches

of carefully selected, non-iid samples and provide an experiment to explore the effect of sample size.

With regard to the model, the gradient estimate in Equation A.5 only requires we can evaluate

the joint distribution. This means that variational inference can take the form of a “black box”: we

do not need to compute expectations of p(x, y) or gradients of Lθ with respect to qθ or θ. The other

requirements—that we can sample from the variational distribution qθ(x) and evaluate its log and

gradient of its log—are usually easy. (And, if not, they can be worked out once and then placed

in reference for use in many variational algorithms.) We give concrete examples of the gradient of

the log for several types of distributions in Section A.1.2, Section A.2.4 and in the supplementary

materials.

Stochastic optimization. We can now embed this approximation in a stochastic optimization

algorithm. In this algorithm, we proceed with a sequence of estimates qθ0 , qθ1 , . . . of the variational

distribution. On the nth iteration, we use Monte-Carlo samples from the previous distribution qθn−1

to stochastically estimate the gradient to find the next distribution:

θn ←θn−1 +
η

nk
∇̃θLθ

∣∣∣
θn−1

, (A.6)
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Figure A.1: A non-conjugate posterior density (dashed) and a Gaussian variational approximation
(solid).

where η > 0 is a learning rate parameter and k ∈ (0.5, 1.0] (Carbonetto et al., 2009). Importantly,

the expectation of the stochastic gradient, ED
[
∂f(xn,θ)

∂θ

]
, is the gradient of the objective (up to a

constant factor). We call this method first-order Stochastic Variational Optimization (SVO) and

summarize it in Algorithm 1.

Convergence. We apply these updates until a predefined convergence criterion is met (we give

details in the next section). In most stochastic optimization settings, the sampling distribution

D is stationary, and many theoretical results demonstrate when and how stochastic optimization

converges to an optimum of the objective with this assumption (Bottou and Cun, 2004; Robbins

and Monro, 1951). We violate this assumption because the distribution qθ changes in each iteration.

Still, we find that this method reliably converges in practice.

Example: Gaussian variational marginal

In the next section we will describe ways to improve this gradient ascent algorithm (Equation A.6),

but first we illustrate this method by estimating an “unknown” posterior with a Gaussian variational

posterior.

We let p(x, y) be the joint likelihood. In this example, p(x, y) is a synthetic distribution: a

unimodal mixture of two Gaussians, N (x|5.1, 12) (with component weight 0.5) and N (x|5, 3) (with

component weight 1). We illustrate this distribution in Figure A.1. We will make only the joint

likelihood log p(x, y) of this posterior available to SVO (note that y is a dummy variable in this

example).

We initialize the Gaussian variational posterior to the distribution qµ1,σ2
1
(x) = N (x|µ1, σ

2
1), with

µ1 = 0 and σ2
1 = 4. We proceed by drawing samples x1, . . . , x15 ∼ N(x|µ1, σ

2
1) and calculating, for

each sample, the gradients

∂ log qµ,σ2
1
(xm)

∂µ

∣∣∣
µn1

=
∂

∂µ

−(xm − µ)2

2σ2
1

∣∣∣
µ1

=
xm − µ1

σ2
1

, (A.7)
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Figure A.2: A comparison of our algorithm using first-order vs. second-order updates (top vs.
bottom); and estimating gradients using iid samples from q vs. quasi-Monte Carlo samples from q
(left vs. right).

using the Gaussian density qµ1,σ2
1
. We estimate a gradient of the objective by combining these

samples (Equation A.5)

∇̃µLµ,σ2
1

∣∣∣
µ1

=
1
M

∑
M

xm− µ1

σ2
1

(
log p(xm, y)− log qµ1,σ2

2
(xm)

)

and finally update the mean µ (Equation A.6):

µ2 ← µ1 +
ηµ
1k
∇̃µLµ,σ2

1

∣∣∣
µ1

. (A.8)

The update for variance is similar, but we optimize ν = log σ2 instead of σ2:2

∇̃νLµ1,ν

∣∣∣
ν1
≈ 1
M

M∑
m=1

[(
(xm − µ1)2

exp(ν1)
− 1
)

(A.9)

× (log p(xm, y)− log qµ1,ν1(xm))
]
.

The variance is then updated with Equation A.6: ν2 ← ν1 + ην
1k
∇̃νLµ1,ν

∣∣
ν1

.

Testing convergence. We repeated this process for iterations n = 1, 2, . . . until convergence. The

variational estimate of the mean by the total number of samples is shown in Figure A.2 (top-left

corner). To test convergence, we estimated the evidence lower bound at each iteration,

Ln =
1
M

∑
M

(log p(xnm, y)− log qθn(xnm)) .

2σ2 must be strictly positive, so ν is a more natural choice for stochastic updates).
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We performed these updates until the exponential moving average ∆est,n ← 0.8∆est,n−1 +0.2(Ln−

Ln−1) of the ELBO dropped below one. Any time this happened, we scaled the number M of

samples by a factor of 1.2. When the moving average dropped below one and M > 500, we stopped

the algorithm.

Note that the functional form of p(x, y) was never used in these updates: only the form of q(x)

was used. A variety of other variational posteriors are used in practice. We provide these gradients

for Dirichlet and multinomial posteriors, which are conjugate to multinomial and indicator random

variables respectively, in the supplementary materials. To fit these variational distributions, we need

to compute ∂ log qθ
∂θ as in Equations A.7 and A.9; the other steps are mechanical.

Improving performance

The algorithm described above lays the foundation for our approach. We now make several adjust-

ments to complete the algorithm. These adjustments revolve around (1) improving samples used

to estimate the gradient, which we can do because we have intimate knowledge of qθn , and (2)

improving step sizes with second-order updates.

Minibatch sampling

The stochastic gradients in Equation A.5 were estimated with “minibatches” of M iid samples

from q. As Figure A.2 (top left) shows, the first-order estimate may need many samples to reach

satisfactory convergence, a common observation in stochastic optimization.

One key insight for our algorithm is that we have more control over samples because we have

perfect knowledge of qθ. This contrasts with many stochastic optimization methods, in which samples

may be drawn iid from an unknown distribution D. By carefully selecting minibatches with non-

iid samples, we can decrease the variance of our estimate of the ELBO ∂Lθ
∂θ . Quasi-Monte Carlo

methods such as the Latin hypercube design have been developed for exactly this purpose (Tang,

1993; Owen, 1998; Niederreiter, 1992).

To sample values from a univariate variational distribution q, we select M equidistant points

from the uniform distribution and pass these points through the inverse CDF of q.3 To sample from

multivariate distributions ΠDqd, we select M samples from each of the D distributions, randomly

permute samples from each distribution, and group them into M D-variate samples. We increase

the number of samples as the algorithm converges as described in the experiments section (Wei

3For a truly unbiased minibatch sample from q, these points could be jittered with uniform noise within each
interval.
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n← 1

while not converged do

Draw samples xn1, . . . , xnM ∼ qθn−1 using
quasi-Monte Carlo sampling.

Compute
∂ log qθn (xnm)

∂θ

˛̨
θn−1

.

Estimate ∂Lθ
∂θ

˛̨
θn−1

using Equation A.5.

Update θ, using Equation A.6:

θn ← θn−1 −
η

nk
∂Lθ
∂θ

end while

n← 1

while not converged do
Draw samples xn1, . . . , xnM ∼ qθn−1 using
quasi-Monte Carlo sampling.

Compute
∂ log qθn (xnm)

∂θ

˛̨
θn−1

.

Compute
∂2 log qθn (xnm)

∂θ2

˛̨
θn−1

.

Estimate ∂Lθ
∂θ

˛̨
θn−1

using Equation A.5.

Estimate ∂2Lθ
∂θ2

˛̨
θn−1

using Equation A.10.

Update θ, using Equation A.11:

θn ← θn−1 −
„
∂2Lθ
∂θ2

«−1
∂Lθ
∂θ

.

n← n+ 1

end while

Figure A.3: First-order SVO (left) and second-order SVO (right). In each, we begin with a variational
distribution qθ0(x) and joint likelihood p(x, y).

and Tanner, 1990). Figure A.2 (top right) illustrates the effect of quasi-Monte Carlo sampling on

convergence of SVO.

Numerical estimates with these samples can be vectorized, which can speed up computation sig-

nificantly.4 This use of samples contrasts with standard MCMC methods, which require sequential,

dependent samples from a given random variable. When MCMC does not require sequential samples

(e.g., updates to variables which are conditionally independent), SVO does not require sequential

samples.

Second-order updates

We also note that the step size parameters η and k have a large impact on convergence to an

optimal solution: they must be carefully tuned in both stochastic optimization and our algorithm.

We circumvent the challenge of selecting step size with second-order updates, which are sometimes

used in stochastic optimization (Robbins and Monro, 1951; Bottou and Cun, 2004) and were used by

Carbonetto et al. (2009) and Wei and Tanner (1990). To derive the second-order updates, we make

a Taylor approximation of the variational objective Lθ (Equation A.2) around the current estimate

θ0:

Lθ ≈Lθ0 + (
∂Lθ
∂θ

∣∣∣
θ0

)T∆θ + ∆T
θ (

δ2Lθ
δθδθT

∣∣∣
θ0

)∆θ,

where ∆θ = θ − θ0. This approximation becomes exact as θ0 approaches the optimal solution.
4Vectorization uses software libraries such as BLAS and hardware such as GPUs to use samples more efficiently.
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In addition to estimating the gradient ∂Lθ
∂θ

∣∣∣
θ0

, we also estimate the curvature ∂2Lθ
∂θ2

∣∣∣
θ0

empirically

with samples:

∂2Lθ
∂θ2

≈ 1
M

∑
M

((
∂ log qθ(xnm)

∂θ

∣∣∣
θ0

)2

(A.10)

× (log p(xnm, y)− log qθ0(xnm)− 1)

+
(
∂2 log qθ(xnm)

∂θ2

∣∣∣
θ0

)
(log p(xnm, y)− log qθ0(xnm))

)
.

The estimate of the optimum is then

θ ← θ0 −
(
∂2Lθ
∂θ2

∣∣∣
θ0

)−1
∂Lθ
∂θ

∣∣∣
θ0
. (A.11)

This algorithm is summarized in Figure A.3 (right), and it can be used instead of the first-order

algorithm (Figure A.3 (left)), just as in stochastic optimization (Bottou and Cun, 2004). The

results of applying this algorithm to the synthetic dataset described in the last section is shown in

Figure A.2 (bottom two panels). Second order methods can help to avoid both high variance in a

posterior estimate and poor learning rates.

We can approximate both the gradient and curvature arbitrarily well by increasing the number

of samples M , provided that q and p are well-behaved. This turns the problem into approximate

Newton-Raphson optimization, which means that this approach can converge more reliably than

stochastic optimization by using more (and better) samples during the final updates. It also means

that a tunable learning rate is no longer necessary.

Decreasing variance of the gradient

In Section A.1.2, we noted that C can be set arbitrarily without changing Eq[∇̃Lθ]. However,

changing C does affect the variance of ∇̃Lθ, and we can set it to minimize this variance. Specifically,

we set

C =
∑
M (∂ log q(xm)

∂ )2(log p(xm, y)− log q(xm))∑
M (∂ log q(xm)

∂ )2
. (A.12)

This minimizes the variance of the estimate of the gradient; we find that it works well in practice.

If the gradient of log p(x, y) is available to the user, he may also use this to improve the estimated

gradient, as described in §A.2.
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A.1.3 Multivariate distributions

Most interesting latent-variable models are multivariate, so we now describe our algorithm in the

multivariate setting. With traditional variational inference, we update the posterior estimate qθ of

each hidden random variable xi successively, given the current estimate of the remaining variables’

distributions. This update is typically accomplished by gradient or coordinate ascent. In these cases,

the distributions of hidden random variables are usually represented by their expectation under the

variational distribution.

SVO optimizes the objective similarly: the distribution of each hidden random variable xi is

updated by holding the distributions of the remaining hidden variables fixed. To represent the

distributions of variables in xi’s Markov blanket, SVO uses samples from their variational posteriors.

Related work

Stochastic optimization. SVO differs from traditional stochastic optimization in several impor-

tant ways. We draw a contrast from methods which optimize a variational lower bound with iid

training examples (Hoffman et al., 2010) from an unknown distribution; we optimize the probability

distribution with respect to which we are taking an expectation. Further, the samples we use to

optimize this bound are drawn from this distribution. This is not the case for stochastic optimiza-

tion in general. We address a specific problem using ideas from stochastic optimization, making

improvements for the specific problem at hand. Many of these improvements do not apply in the

general stochastic optimization setting.

Stochastic sampling with variational inference. Carbonetto et al. (2009) used stochastic

optimization in an approach conceptually very similar to ours. They sample from the variational

posterior and use importance sampling along with second-order updates to estimate a similar gradi-

ent. They further assume that the family of variational distributions includes an unbiased estimate

of the true posterior, and that both the variational posterior and true posterior come from the same

exponential family.

We make weaker assumptions on the forms of p and qθ(x). Our posterior p(x|y) and q(x) must be

well-behaved: the KL-divergence between p(x|y) and q(x) must exist, and it must be approximable

with Monte-Carlo methods. We further require that (1) log qθ(x) be differentiable almost everywhere

and (2) qθ have finite variance.

Carbonetto et al. (2009) used importance sampling to approximate a gradient and require learn-
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ing rates to be carefully set. We address both of these by using the sampling methods discussed in

Section A.1.2.

Wei and Tanner (1990) use Monte-Carlo sampling to perform the E-step of EM using a finite-

sum approximation of an integral. While they explicitly outline the gradient and Hessian of the

expectation, they never use these values.

A.2 Empirical study

In this section we studied SVO in the synthetic toy example of Section A.1.2, Bayesian logistic

regression, probit ideal point models, and the switching Kalman filter. We compared SVO to MCMC,

classical variational inference, and an “oracle” sampler (when one was available).

A.2.1 Univariate examples

We return to the toy example presented in Section A.1.2 and compare our estimates of the posterior

mean for second-order SVO with two sampling methods. As before, we assume that the synthetic

dataset has a posterior distribution that is a logistic distribution with mean ν = 5 and scale γ = 2,

illustrated in Figure A.1. We make only log p(x, y) available to SVO.

Second-order SVO. We used second-order SVO (Figure A.3) with quasi-Monte Carlo samples.

We assessed convergence using the method described in Section A.1.2, tracking an exponential

moving average of the ELBO L and doubling sample size each time the moving average was low.

We illustrate SVO’s estimate of the mean as a function of the number of samples (and evaluations

of the joint) in Figure A.5.

MCMC estimate. We compare this estimate with a Metropolis Hastings (MH) sampler, a

“typical” sampler for such a problem. This sampler used a standard normal proposal distribution.

We assumed a burn-in period of 100 samples. For n ≥ 101, we plot the mean of samples 101, . . . , n

in Figure A.5. SVO approaches the posterior mean much more quickly than the MH estimate.

Oracle sample The above comparison with a specific MCMC sampling method depends on

our choice of MCMC algorithm and parameters such as the proposal distribution. Therefore we

also compare with an oracle sampler, which provides error bounds on the best possible iid sampling

algorithm (most standard MCMC algorithms produce samples which, when thinned, are treated as

iid). An oracle sampler is able to draw iid samples from p(x, y) to estimate the mean. For each

sample size M , we explicitly calculate the 95% standard error confidence intervals of an estimated

mean from M samples. We plot these error bars around the true mean in Figure A.5. Even with a
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Probit Item Response Theory
Metric SVO Variational Gibbs

Heldout LL -0.181 -0.214 -0.214
Time 27 sec. 5 sec. 122 sec.

“True” MSE 0.048 0.031 0.001
Switching Kalman filter (well log data)

Metric SVO Gibbs
Heldout MSE 3.6e6 3.5e6

Time 92 sec. 104 sec.
“True” MSE 2.2e6 2.4e6

Figure A.4: Experimental results comparing SVO and MCMC estimates. We show lawmaker pos-
teriors in the probit IRT model (left) and observation means from a change point model (right). In
each table we illustrate runtime, log-likelihood (LL) or mean-squared error (MSE) on heldout ob-
servations. We also estimate MSE against the “True” posterior means, estimated using long Gibbs
runs (500K and 50K samples for left and right respectively).

perfect sampler, an estimate of the mean takes much longer to converge than univariate SVO.

A.2.2 Probit regression and ideal points

We next studied SVO for approximating a complex posterior in a large high-dimensional model.

We fit a matrix of U.S. lawmakers’ votes using Item Response Theory (IRT), a class of models

frequently used in political science (Poole and Rosenthal, 1991; Martin and Quinn, 2002; Albert,

1992). IRT is used to position each lawmaker l in a latent space with positions xl ∈ R; these

positions are often studied by political scientists to understand the lawmakers’ political preferences.

Lawmakers’ positions interact with latent bill variables ad, bd ∈ R; all latent variables take a standard

normal prior. The probability of lawmaker l voting “Yes” on bill d is then given by p(vld = Yes) =

probit(xlad + bd) (Clinton et al., 2004).

Experiments. Political methodologists usually implement these models with MCMC methods

(Albert, 1992) (a variational implementation was introduced by Gerrish and Blei (2011), although

that used the logistic response). We fit these models with MCMC, traditional variational Bayes,

and SVO. We chose fully-factorized Gaussian posterior distributions.

We can use an auxiliary random variable to yield a fast Gibbs sampler and a variational algorithm

(Armagan and Zaretzki, 2011) (this is not possible with a logistic response). We fit the posterior

with these algorithms as well as with second-order SVO.

Results. We estimated the means of these random variables for 68 Senate bills, 95 senators,

and 5,145 votes during the years 2009-2010 (this was 219 dimensions). We fit these models and

compared the estimated means x̄, ā, b̄ of ideal points and bill variables; we summarize the results

in Figure A.4. MCMC was the slowest, while traditional variational inference was the fastest. The
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Figure A.5: figure
SVO can converge quickly to a univariate non-conjugate posterior p(x|y). Solid blue: the estimated
mean of a variational posterior against the number of samples (and evaluations of the joint) us-
ing second-order SVO. Dashed red: estimated mean of the posterior using a Metropolis-Hastings
sampler. Shaded: 95% confidence intervals of the mean estimate from an oracle sampler.
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Figure A.6: Well-log data (grey) fit with a variational switching Kalman filter. The inferred means
µ̄t of the filter are shown in black. Each timestamp also has an associated variational change point
c̄t which indicates the probability that the filter is making a large transition. Transitions at change
points with mean c̄t >

1
2 are marked in red.
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latter is not surprising because variational Bayes uses coordinate ascent, while SVO uses slower

Newton-Raphson updates on coordinates. (Further, the variational algorithm takes advantage of

the derivatives of the ELBO, which we do not need to derive for SVO.)

We estimated the “true” posterior mean using 500,000 MCMC samples and found that the means

estimated with both variational Bayes and MCMC samplers were closer to the “true” mean than

means estimated with SVO. However, we also assessed the posteriors by their predictive distribution,

using six-fold cross validation to measure log-likelihood on held-out votes. SVO formed much better

predictions than the other two algorithms. (The difference between SVO and the variational Bayes

estimates is explained by the auxiliary variable.)

A.2.3 Switching Kalman filter

We next illustrate this method in the task of identifying change points—positions of large changes—

in a time-series dataset. To this end, we assume a series of real-valued observations y1:T arising

from underlying means µ1:T . These means transition with low variance but occasionally make a

large transition. These changes are characterized by random switch variates, ct ∈ {0, 1}, which may

indicate a large transition (ct = 1) with low probability. This distribution—a switching Kalman

filter (Murphy, 1998)—has the density

p(c1:T , µ1:T , y1:T ) = p(µ1)p(µT )
∏T
t=2 p(ct)p(yt|µt)p(µt|µt−1), (A.13)

with Gaussian observation density p(yt|µt−1) and Gaussian transition probabilities (with variance

depending on ct). p(ci) is the probability of a change point, with p(ci) = 0.001. While the con-

ditional distributions are conjugate (enabling fast Gibbs samplers), there is no analytical solution

to describe the posterior distribution, so variational approximations are sometimes used (Ghahra-

mani and Hinton, 1996; Murphy, 1998). (The derivation of the variational inference algorithm in

Ghahramani and Hinton (1996) was 2.5 pages.)

Experiments. We implemented this model using both a Gibbs sampler and SVO. We used the

fully-factorized posterior
∏
T q(ct|c̄t)q(µt|µ̄t) of Bernoulli and Gaussian variational distributions. We

fit this model to a set of 809 measurements taken during the drilling of a well using nuclear magnetic

resonance (NMR). The well log data were “used to interpret the geophysical structure of the rock

surrounding the well” (Adams and MacKay, 2007) and have been studied previously using change

point models (Ruanaidh and Fitzgerald, 1996; Adams and MacKay, 2007). We illustrate these data

(along with SVO posterior means) in Figure A.6. We fixed the variances and π by a-priori estimation
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for the well data before fitting any models.

Results. We summarize these results in Figure A.4 and in Figure A.6. We first observe that

SVO takes nearly as long to converge as a 1500-sample (after 500 burn-in) Gibbs run. Why is this?

In this specific case, the Gibbs sampler is very high-quality, drawing “oracle” examples with high

probability once it has burned in. SVO’s time performance suffers because it wastes effort updating

variables that are highly dependent.

We compared these posterior estimates with posterior means from a 49,500-sample Gibbs run,

which we treat as ground truth. In contrast to the IRT experiment, the SVO fit estimated better

posterior means than the 1500-sample Gibbs estimate, and SVO estimated a predictive distribution

which is no better than the Gibbs estimate. This is surprising but may be because the Gibbs

sampler had not converged. Although the estimated means µt of these distributions were similar,

the variational distribution discovered nearly three times as many active change points (i.e., c̄t > 0.5)

as either Gibbs posteriors, illustrating the inherent bias in variational methods.

A.2.4 Alternative variational distributions: Laplace variational posterior

We have discussed variational Gaussian and multinomial posteriors, which are both commonly used

in variational inference. But SVO opens the door to many kinds of variational distributions, as

all we require is to sample from them and compute the gradient of their logs. In §A.4, we re-

port a study fitting L1-regularized logistic regression with a multivariate Laplace variational pos-

terior on two standard datasets. This factorized Laplace posterior had the density qµ,κ(β) =∝

exp(− exp(κ)
∑
I |βi − µi|), with free variational parameters µ1, . . . , µd and κ. This leads to a “fat-

tailed” posterior which estimates posterior means which are closer to the prior mean. Importantly,

these posterior distributions yielded higher held-out log-likelihood performance This and similar

alternative posteriors are interesting avenues for future work.

A.3 Discussion

We described stochastic variational optimization, a generic method for variational inference that does

not require taking gradients of the evidence lower bound. SVO uses stochastic optimization, taking

advantage of second-order updates and quasi-Monte Carlo sampling to improve this optimization.

The main benefit of SVO is that it is independent of the functional form of p(x, y). With a cache of

sampling methods and gradients of variational distributions, we can us SVO to rapidly build and fit

many kinds of models. We demonstrated that SVO provides a good fit to the variational objective,
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often forming superior predictive distributions to competing algorithms.
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Appendix B

Supplementary materials

B.1 Derivation of update equations for the Document Influ-

ence Model

In this section, we describe the evidence lower bound and expand its terms to derive the variational

updates for Chapter 3. The evidence is given by the following formula:

L(q) = log p(d1:T ) (B.1)

≥
∫
q(β, l, θ, z|β̃, l̃, γ, φ) log

(
p(β, l, θ, z)p(d|β, l, θ, z)
q(β, l, θ, z|β̃, l̃, γ, φ)

)
dβ1:T (B.2)

= Eq

[
log
∏
T

∏
K

p(lT,k)

]
(B.3)

+ Eq

log
∏
T

∏
Dt

∏
Ndt

p(zn|θdt)

 (B.4)

+ Eq

[
log

T∏
t=1

∏
K

p(βt,k|βt−f,k)

]
(B.5)

+ Eq

log
∏
T

∏
Dt

∏
Ndt

p(wn|zn)

 (B.6)

+H(q) (B.7)

+ . . . , (B.8)

where we have left out some terms (B.8) which are not relevant to this model’s derivation. To max-

imize this lower bound, we find locally optimal values for the parameters φ, β̃, l̃, and γ numerically
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through the variational updates described below.

To derive these updates, we expand each term symbolically and find the gradient of the evidence

lower bound with respect to each parameter. We then solve for the optimal value of the parameter

if possible or perform gradient ascent on the parameter of interest.

We can expand B.3 as:

Eq

[
log
∏
T

∏
K

p(lT,k)

]
=
∑
T

∑
Dt

∑
K

Eq

[
−
l2d,k

2σ2
d

− 1
2

(log 2π + log σ2
d)

]
(B.9)

=
∑
T

∑
Dt

∑
K

− 1
2σ2

d

(l̃2dt,k + σ2
` )− 1

2
(log 2π + log σ2

d)

Equation B.4 can be expanded as demonstrated in the original LDA algorithm (Blei et al., 2003):

Eq

log
∏
T

∏
Dt

∏
Ndt

p(zn|θdt)

 =
∑
T

∑
Dt

∑
Ndt

Eq [log p(zdt |θdt)] (B.10)

=
∑
N

∑
K

φn,k

Ψ(γi)−Ψ(
K∑
j=1

γj)
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Finally, we expand B.5, first defining convenience functions gw and h:

gw(s) :=(Ws,k ◦ φs,k)w l̃s,k (B.11)

h(s, q) := ((Ws,k ◦ φs,k)ls,k)T Λexp(−2m̃q,k+2Ṽq,k) ((Ws,k ◦ φs,k)ls,k)T

+ exp(−2m̃q,k + 2Ṽq,k)T (Ws,k ◦Ws,k ◦ (φs,k − φs,k ◦ φs,k))(l̃s,k ◦ l̃s,k + ~σ2
` Ds

)

+ exp(−2m̃q,k + 2Ṽq,k)T (Ws,k ◦Ws,k ◦ φs,k ◦ φs,k) ~σ2
` Ds

.

Eq

[
log

T∏
t=1

∏
K

p(βt,k|βt−1,k)

]

=
T∑
t=1

∑
K

∑
W

− 1
2σ2

Eq
[
β2
t,k,w + β2

t−1,k,w

]
+

1
σ2

Eq [βt,k,wβt−1,k,w]

− 1
σ2

Eq [(βt−1,k,w − βt,k,w) ◦ exp(−βt−1,k,w)(Wt−1,w ◦ [zw]k)lt−1,k]

+
1
σ2

Eq
[
exp(−2βt−1,k,w) ((Wt−1,k,w ◦ [zw]k)lt−2,k)2

]
− V T

2
(log σ2 + log 2π)

=− V T

2
(log σ2 + log 2π)

− 1
σ2

T∑
t=1

Tr(Ṽt) +
1

2σ2

(
Tr(Ṽ0)− Tr(ṼT )

)
− 1

2σ2
(m̃t − m̃t−1)2

− 1
2σ2

(m̃t,k + Ṽt−1,k − m̃t−1,k)w exp(−m̃t−1,k + Ṽt−1,k/2)w
t∑
i=0

r(i)gw(t− i) (B.12)

− 1
2σ2

t∑
i=0

r(i)h(t− i, t− 1)

Above, ◦ refers to the Hadamard element-wise product and Λ~x refers to a diagonal matrix having

the elements of ~x on its diagonal. At the line indicated by Equation B.12, we have also used the

fact that Eq [βt exp(−βt)] = (m̃− Ṽ ) exp(−m̃+ Ṽ /2). Finally, we use the notation r(s) to represent

the envelope of influence over time. r(s) satisfies r(s) > 0 for s = 1, . . . , T and
∑T
s=1 r(s) = 1.

B.1.1 Update equations

We update θ as in the DTM. The updates for β̃ and φ are different in the Document Influence Model,

and the document weights l̃ must also be updated. As shown in Equation 3.9, the document weights

are updated with a regression. We determine this regression by collecting terms with l̃, taking the
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derivative, and setting equal to zero.

To find the updates for φ, we gather all terms from the evidence lower bound containing φ and

form the Lagrangian to enforce the constraint
∑K
j=1 φn,j = 1:

gw,k(s) := (Ws,k ◦ φs,k)l̃s,k

L[φ] =
∑
N

∑
K

(
φn,k

− log φn,k + (Ψ(γk)−Ψ(
K∑
j=1

γj)) + m̃n,k)


+ λn(

K∑
j=1

φn,j − 1)

+
1
σ2

T−1∑
i=t

r(i− t) exp(−m̃i + Ṽi/2)(m̃i+1 − m̃i + Ṽi)φnd,kwi,nld,k

− 1
σ2

T−1∑
i=t

r(i− t) exp(−2m̃i + 2Ṽi)φn,kwi,nld,n
∑

j=0...t,j 6=i

(
(Wj ◦ φj,k)l̃j,k,dnr(i− j)

)

− 1
σ2

T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)φn,kwi,n(φ\dn,k ◦W
2
\dn)(l̃2\dn)

− 1
σ2

T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)φn,kw2
i,n(l̃2dn + σ2

l )

− 1
σ2

T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)φn,kw2
i,n(σ2

` \dn)

− 1
σ2

T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)(1− φn,k)w2
i,n(l̃2dn + σ2

` dn
)
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Next, take the derivative with respect to φn,i:

∂L

∂φn,k
=
∑
N

∑
K

(
− log φn,k + Ψ(γk)−Ψ(

K∑
j=1

γj) + m̃n,k + λn (B.13)

+
1
σ2
wnldn

T−1∑
i=t

r(i− t) exp(−m̃i + Ṽi/2)(m̃i+1 − m̃i + Ṽi)

− 1
σ2
wnldn

T−1∑
i=t

r(i− t) exp(−2m̃i + 2Ṽi)
∑
j=0...i

(
(Wj ◦ φj,k)\Dn l̃j,k\Dnr(i− j)

)

− 1
σ2
wn

T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)(φDn,\w,k ◦WDn,\w)(l̃2Dn)

− 1
σ2

T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)w2
n(l̃2dn + σ2

l )

=
∑
N

∑
K

(
− log φn,k + Ψ(γk)−Ψ(

K∑
j=1

γj) + m̃n,k + λn

+
1
σ2

T−1∑
i=t

r(i− t) exp(−m̃i + Ṽi/2)(m̃i+1 − m̃i + Ṽi)wi,kld,n

− 1
σ2
wt,nld,n

T−1∑
i=t

r(i− t) exp(−2m̃i + 2Ṽi)
∑

j=0...i,j 6=t

(
(Wj ◦ φj,k)l̃j,k,dnr(i− j)

)

− 1
σ2

(φlast
Dn,k ◦WDn)(l̃2Dn)

T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)

− 1
σ2
w2
n(l̃2dn + σ2

l )
T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)

+
1
σ2
φlast
n,k w

2
n(l̃2dn)

T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi)
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=
∑
N

∑
K

(
− log φn,k + Ψ(γk)−Ψ(

K∑
j=1

γj) + m̃n,k + λn (B.14)

+
1
σ2
wnlDn

T−1∑
i=t

r(i− t) exp(−m̃i + Ṽi/2)(m̃i+1 − m̃i + Ṽi)

− 1
σ2

T−1∑
i=t

r(i− t) exp(−2m̃i + 2Ṽi)wnld,n
∑
j=0...i

(
(Wj ◦ φlast

j,k )l̃j,k,dnr(i− t)
)

+
1
σ2

(w2
n(l̃2Dnφ

last
n,k − (l̃2Dn + σ2

` Dn
))
T−1∑
i=t

r(i− t) exp(−2m̃i + 2Ṽi),

.

=
∑
N

∑
K

(
− log φn,k + Ψ(γk)−Ψ(

K∑
j=1

γj) + m̃n,k + λn (B.15)

+
1
σ2

wnlDn

T−1∑
i=t

r(i− t) exp(−m̃i + Ṽi/2)(m̃i+1 − m̃i + Ṽi)

− 1
σ2
wnlDn

T−1∑
i=t

r(i− t) exp(−2m̃i + 2Ṽi)
∑
j=0...i

(
(Wj ◦ φlast

j,k )l̃j,k,dnr(i− j)
)

+
1
σ2
w2
t,n(φlast

n,k l̃
2
dn − l̃

2
dn − σ

2
l )
T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi),

where we have introduced φlast, which is the last known value of φ. Therefore the update equation

can be found by solving for φ:

log(φ)←Ψ(γk)−Ψ(
K∑
j=1

γj) + m̃n,k + λn (B.16)

+
1
σ2

wt,kldn

T−1∑
i=t

r(i− t) exp(−m̃i + Ṽi/2)(m̃i+1 − m̃i + Ṽi)

− 1
σ2
wt,nldn

T−1∑
i=t

r(i− t) exp(−2m̃i + 2Ṽi)
∑
j=0...i

(
(Wj ◦ φlast

j,k )l̃j,k,dnr(i− j)
)

+
1
σ2
w2
t,n(φlast

n,k l̃
2
dn − l̃

2
dn − σ

2
l )
T−1∑
i=t

r(i− t)2 exp(−2m̃i + 2Ṽi),

The update for β̃ can be found by collecting terms containing β̃ from Equation B.1. We then
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maximize with respect to β̃, again using two new helper functions g and h:

g(s) :=Eq [exp(−βs,k,w)(Ws,k,w ◦ zs,k,w)`s,k]

= exp(−m̃s,k,w + Ṽs,k,w/2)(Ws,k,w ◦ φs,k,w)l̃s,k

h(s) :=
(

exp(−2m̃s,k + 2Ṽs,k) + exp(−2m̃s,k + Ṽs,k)
)

×
(

((Ws,k,w ◦ φs,k,w)ls,k)2

+ (Ws,k,w ◦Ws,k,w ◦ (φs,k,w − φs,k,w ◦ φs,k,w))(l̃s,k ◦ l̃s,k + ~σ2
` Ds

)

+ (Ws,k,w ◦Ws,k,w ◦ φs,k,w ◦ φs,k,w) ~σ2
`

)
∂L
∂β̃sw

=− 1
σ2

T∑
t=1

(
m̃tw − m̃t−1,w −

t−1∑
i=0

r(i)g(t− i− 1)

)

×

(
∂m̃tw

∂β̃sw
− ∂m̃t−1,w

∂β̃sw
+

t−1∑
i=0

r(i)g(t− i− 1)
∂m̃t−i−1,w

∂β̃sw

)

+
∑
T

(
ntw − ntζ−1 exp(m̂βtw +

Ṽtw
2

)

)
∂m̃t

∂β̃sw

+
1
σ2

T∑
t=1

t−1∑
i=0

∂m̃t−i−1

∂β̃sw
r(i)2

(
h(t− i− 1)− g(t− i− 1)2

)
+

1
σ2

T−1∑
t=0

∂m̃t

∂β̃sw
r(0)g(t)Ṽt,k.

B.1.2 Topic trajectories.

The variational update for β̃ is similar to that in Blei and Lafferty (2006). For each topic, we update

the variational Kalman “observations” by applying gradient ascent:

∂L
∂β̃sw

=− 1
σ2

T∑
t=1

(m̃tw − m̃t−1,w −Gt−1,w)
(
∂m̃tw

∂β̃sw
− ∂m̃t−1,w

∂β̃sw
+Gt−1,w

∂m̃t−1,w

∂β̃sw

)

+
∑
T

(
Nw,t −Ntζ−1

t exp(m̂βtw +
Ṽtw
2

)

)
∂m̃tw

∂β̃sw

+
1
σ2

T∑
t=1

∂m̃t−1,w

∂β̃sw

(
Ht−1,w −G2

t−1,w

)
+

1
σ2

T−1∑
t=0

∂m̃tw

∂β̃sw
GtwṼtw,

where

Gsn = Eq [exp(−βs,k,n)(Ws,k,n ◦ zs,k,n)`s,k]

Hsn = Eq
[

exp(−2βs,k,n) ((Ws,k,n ◦ zs,k,n)`s,k)2 ]
.
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Note also that we have added the additional variational parameter ζt and the term ∂m̃tn
∂β̃sn

, which

are both described in Blei and Lafferty (2006). The former can be updated once per iteration with

ζt ←
∑
w exp(m̃t,n + Ṽt,n/2). The latter can be derived from the variational Kalman filter updates

(see Appendix B.1 and Blei and Lafferty (2006)).

B.2 A parallel implementation of the model

The algorithm described in Section 6.2 takes approximately 11 hours on a modern desktop com-

puter1, for about 30,000 documents. For a larger dataset—such as all scientific articles in Nature,

Science, and PNAS combined—this näıve implementation takes considerably longer to complete,

and it requires too much memory to fit on a traditional desktop computer.2

In this section, we describe a parallel implementation for this model. As with the standard

algorithm, the parallel algorithm optimizes the evidence lower bound by local coordinate ascent.

Here, however, many of these steps are made in parallel. While most of this algorithm involves

simply scheduling these updates across many computers, we also describe below how to handle an

update that cannot be distributed without modification.

In this section, we will refer to a single computer as a processor. We will differentiate between

the roles a processor may take by referring to a “master”, which coordinates the entire algorithm,

and the “workers”, which perform lower-level computing. The master launches workers, checks when

they are complete, and monitors model convergence. Each worker performs updates for a partition

of the entire collection of random variables.

Algorithm overview

With both the parallel implementation and the standard implementation, we initialize the model

with LDA topics. We therefore first fit LDA in parallel. The parallel implementation of LDA

distributes the work of the E step among the many workers during each iteration. The LDA M step

for each iteration—which simply aggregates sufficient statistics—is then run on the master.

Following this initialization with LDA topics, the DIM model is fit. This is driven by a single

master program which alternates between two steps: a topic M-step and a document E-step.
1This was a 2.2GHz, 1MB cache, Dual core AMD Opteron 275 processor
2Circa 2009.
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The parallel topics M-step

In the topic step of the original algorithm, our goal is to re-fit topics β̃k|φk, ˜̀
k,w by adjusting their

variational observations. Topic chains β̃k are conditionally independent given the documents’ varia-

tional parameters, so the parallel algorithm performs the same operations as the original algorithm,

but in parallel. We simply split the work among W distinct workers.

The parallel documents E-step

In the documents E-step of the algorithm, our goal is to re-fit each document’s parameters γ, φ|˜̀, β̃,w

and ˜̀|φ, β̃,w using the topics estimated in the M -step. In this step the master partitions the entire

collection of documents into time-contiguous chunks and assigns each chunk to a worker. The

algorithm can update γ and φ using the same operations as the original algorithm because the

Markov blanket of γ contains variables from a single timestamp and because each φ is conditionally

independent given the remaining variational parameters. Therefore we fit these using alternating

updates of φd and γd as in LDA.

Parallel update dampening

The update for ˜̀|φ, β̃,w is a bit trickier because the influence of documents at time t is not condi-

tionally independent of the influence of documents at a different time s 6= t. This means that we

cannot simply estimate the optimal influence of documents independently in W different workers

because it is not guaranteed to improve the variational objective. In a worst-case scenario, updating

˜̀
t in parallel for all times t = 1, . . . , T might result in over-estimating ˜̀

t, over-explaining influence.

We address this with parallel update dampening. In parallel update dampening, we use the

fact that documents have been partitioned into W sets, and workers ω = 1, . . . ,W each manage one

of those sets. In parallel update dampening:

1. Each worker calculates the optimal variational influence ˜̀
k,ω for its managed documents, given

all other (unmanaged) documents. Each worker then has a list of all influence scores, this list

comprising its unmanaged documents’ scores (which take the old values) and its managed

documents’ scores (which are assigned new values).

2. After each worker has run and saved its scores, a master then calculates the average of scores

in these lists.
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Importantly, this process maintains the requirement that the variational lower bound never decrease.

In the first step, each of the “local” estimates has not decreased the variational bound. The varia-

tional lower bound is concave in ˜̀
k, so the average of these estimates does not decrease the variational

bound. Therefore, both the first and second steps guarantee that the variational objective never

decrease.

Instead of taking the global average in a second stage, this can be implemented in each worker

by taking the estimate of the optimal solution ˜̀worker
d,k , and dampening it with the current estimate,

˜̀old
d,k:

˜̀new
d,k ←

W − 1
W

˜̀old
d,k +

1
W

˜̀worker
d,k ,

or, equivalently,

˜̀new
d,k ← ˜̀old

d,k +
1
W

(˜̀worker
d,k − ˜̀old

d,k).

We stress again that we can only guarantee that parallel update dampening increases the varia-

tional objective because the objective is concave in the parameter ˜̀.

B.3 Notes on the unsupervised sentiment model

B.4 Additional notes on unsupervised sentiment analysis

In this section we describe a model for inferring relationships between countries in an unsupervised

fashion. This model is based on the model in the last section, but it requires no explicit labels of the

relationship between pairs of countries. Instead it infers a qualitative relationship between countries

– a relationship which we can attempt to interpret post-hoc. The significance of this approach is

that it infers a relationship between countries based more on the discussion of these countries than

explicit labels. Particularly, if there is a relationship which has been overlooked by historians, then

we might be able to learn it.

In the remainder of this section we will outline a probabilistic model for inferring sentiment

between pairs of countries. We will outline the key assumptions of this model – first, a language

model inspired by the Networks Uncovered by Bayesian Inference model (Chang et al., 2009); and

second, a spatial model of dyadic relationships. We will then describe inference for this model, and

finally provide an empirical analysis of this model.

This section necessarily represents a very cursory look at unsupervised sentiment analysis. Be-

cause there are many parts to the model, we focus on the intercept/distance link function defined
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in Table 4.1.2. As our goal is to qualitatively observe the inferred sentiment topic, we will focus on

that and skip a rigorous analysis of this model’s performance.

B.4.1 A model of unsupervised foreign relations

A key variable in this model is that each document has a sentiment parameter κd. This become

important when we link this sentiment model to text. Intuitively, if two countries are far apart in

the latent space at time t, we expect that κ is more likely to be 1 when they interact. Otherwise, κ

is more likely to be 0. As we develop the language model, we will use this random variable to decide

which topic is used to describe the pair of countries.

Binary Relational language model

We incorporate text using a mixed-membership language model similar to LDA. Recall that in

LDA, each word comes from a specific topic. In our model, which we dub the binary relational

language model, we assume that the words describing a pair of countries come from topics about

those countries.

A mixture of four topics. To be concrete, consider a document discussing Iran and the United

States. We assume that each word in this document will serve one of four roles:

1. It discusses the U.S. only,

2. It discusses Iran only,

3. It discusses the relationship between the U.S. and Iran.

4. It is a “filler” word, providing little contribution to the discussion.

The first two roles for a word are self-explanatory. The relationship in (3) above could be any type

of relationship – the goal of this section is of course to discover the relationships in a collection

of documents about these countries. The “filler” words in (4) above are those words found in any

document – stopwords, for example – that are unrelated to either country or the relationship between

them.

We therefore keep (Nc+2+1) topics—topics βC,1, . . . , βC,Nc for each of the Nc countries, exactly

two sentiment topics βS,0, βS,1, and a single, global background topic βB0 (Chemudugunta et al.,

2006). We assume, as in LDA, that a document about the United States and Iran is a mixture

of topics; in contrast to LDA, however, we constrain this document’s topics to be exactly the four
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topics enumerated above: βC,Iran, βC,United States, βB,0, and either βS,0 or βS,1 (we describe below how

to make the choice between βS,0 and βS,1). A document about Hungary and Germany, in contrast,

would be a mixture of the topics βC,Germany, βC,Hungary, βB,0, and either βS,0 or βS,1.

Once these topics are fixed for a document, the language model proceeds as with LDA for

each word: each word in the document comes from one of four topics, with probability for topic k

proportional to the topic mixture E [θ]k. We illustrate this model graphically in Figure B.1. Note

that we keep the topic mixture θ global instead of local to each document because the topics are

already very constrained.

Determining the sentiment topic: connecting dyadic sentiment and text

Up to now the dyadic sentiment model and the language model have been developed independently.

We connect the two models by using the binary sentiment parameter κd to index the sentiment

topic for a document: document d takes topic βS,κd for its sentiment topic.3 In other words, if two

countries are far apart in the latent space, then when they interact in document d, this interaction

is likely to be negative (i.e., κd = 1, and the language used to describe their relationship will come

from topic βS,1. If they were instead close together in this latent space, the language used to describe

their relationship would come from topic βS,0.

We can now specify the generative model of a document language, given the sentiment κd for

each interaction between countries. We begin by specifying the global topics.

1. First, draw topics:

(a) For nation c = 1, . . . , C:

• Draw topic βC,c ∼ Dir(1, . . . , 1).

(b) Draw background topic βB,0 ∼ Dir(1, . . . , 1).

(c) Draw positive-interaction topic βS,0 ∼ Dir(1, . . . , 1)

(d) Draw negative-interaction topic βS,1 ∼ Dir(1, . . . , 1)

2. Next, draw the global topic mixture θ ∼ Dir(1, 1, 1, 1).

3. Finally, draw documents.

For document d = 1, . . . , D, each representing interactions between pairs of countries cd,1, cd,2:

3We also make a small adjustment to ensure that the model converges to a reasonable mode. There are two main
components of this model: a language model and a sentiment model. We introduce a parameter ν ∼ N(0,100) and
per-document parameters νd ∼ R(ν, 0.001) and define the binary sentiment κd ∼ σ(sdνd).
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(a) Draw sentiment index κd ∼ σ(sd)

(b) For word n = 1, . . . , Nd:

• Draw zn ∼ Mult(θd).

• Switch(zn):

– If zn = (1, 0, 0, 0), draw wn ∼ βC,cd,1 .

– If zn = (0, 1, 0, 0), draw wn ∼ βC,cd,2 .

– If zn = (0, 0, 1, 0), draw wn ∼ βB,0.

– If zn = (0, 0, 0, 1), draw wn ∼ βS,κd .

We illustrate the combined model in Figure B.1.

Related work

The binary relational language model is founded on ideas discussed by several recent models. Chang

et al. (2009) developed a model to describe the relationships between “entities” (e.g., countries)

with a similar assumption of entity-specific and relationship-specific topics. In Chang et al. (2009)’s

Networks Uncovered by Bayesian Inference (Nubbi) model, each entity had its own entity-specific

topic, which was active when that country is discussed. An additional mixture of topics was then

used to describe the relationship between countries. Nubbi was then be used to infer relationships

between countries that have been tagged in a collection of text documents.

Nubbi inferred relationships between countries by finding similar topic weights between docu-

ments. In contrast, we use sentiment to select between topics, with an “upstream” model in which

actors are embedded in a latent space. This idea of merging topics at different levels of a hierarchy

has also been explored by Chemudugunta et al. (2006). Neither of these approaches included a

switch variable for selecting between topics.

As noted in the last section, the idea of associating language with sentiment has been explored

in considerable detail lately. Some of the most successful supervised approaches handle this with

regression methods such as text regression (Kogan et al., 2009). Supervised topic models (Blei and

McAuliffe, 2008) offer a fully probabilistic generative model of documents which have an attached

label. A key assumption behind supervised topics is that the model can learn topics that capture the

underlying sentiment. Supervised topic models do this by assuming that the distribution of docu-

ments’ sentiment parameters sd are fully specified given their words’ topic indices zd and regression

coefficients p(sd|zd,η). This requires that p(sd|wd,η,β) they are fully specified given the text of
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Figure B.1: The dynamic sentiment model (A), a binary mask mixed-membership language model
(B), and the full unsupervised foreign relations model (C) (which is a combination of (A) and
(C). In (B) and (C), we assign each country its own topic βC,·. Interactions between countries are
characterized by sentiment sd, which is reflected in the sentiment topic βS,κd . The background topic
βB is provided to “soak up” background noise.

documents and η. This means that the topics learned by a standard LDA algorithm will differ from

those learned by a supervised LDA algorithm, because they adjust to explain documents’ sentiment.

The unsupervised sentiment model is similar to supervised LDA in that the topics adjust as

the underlying sentiment parameter sd differs. In contrast to supervised topics, we assume an

inverted conditional independence: words of two documents are conditionally independent given the

document’s and other model parameters: p(wd|sd, β), while supervised LDA assumes that sentiment

is conditionally independent given words and regression coefficients η.

B.4.2 Inference

As before, we only observe a collection {(wd, cd,1, cd,2)}d∈D of interactions between countries. Each

of these interactions takes the form of a vector of wordcounts wd and a pair of countries interacting.

To perform an empirical analysis with this model, we must estimate the latent positions of countries
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and the latent topics associated with documents. These are described by the hidden random variables

x̄c, θ, and β. We accomplish this with posterior inference, which will provide us with an estimate of

the distribution p(x̄c, θ, β|{(wd, cd,1, cd,2)}d∈D).

We fit this model with maximum a posteriori (MAP) inference, which has the benefit of a simpler

derivation than variational inference. As the reader may recall, the MAP estimate is

x̂c, θ̂, β̂ = arg max
x̄c,θ,β

p(x̄c, θ, β|{(wd, cd,1, cd,2)}d∈D)

= arg max
x̄c,θ,β

p(x̄c, θ, β, {(wd, cd,1, cd,2)}d∈D). (B.17)

Deriving the algorithm for MAP estimation requires expanding the full likelihood objective,

lower-bounding this objective, and maximixing the lower bound with respect to the parameters. We

have designed the model in such a way that updates can be performed by a combination of exact

coordinate ascent on each parameter (or its expectation), with the exception of countries’ mean

position x̂cd,1,cd,2 during interactions.

The lower bound on the likelihood uses the expectations E [κd] and E [zn]. This means that each

interaction is manifested as a mixture E [κd] of sentiment, and the observed words are treated as

mixtures E [zd] of topics. We estimate countries’ mean positions¯̂x using a Kalman filter (Kalman,

1960) as in the last section. This inference step is exactly as in the last section.

Countries’ per-interaction positions xcd,1,cd,2 . As in the last section, we infer countries’ po-

sitions during an interaction by gradient ascent on the objective with respect to their positions

xcd,1,cd,2 .

Estimating topics βC,·, βS,·, and βB. The update for topics is similar to that in LDA. In both

cases, we aggregate the sufficient statistics and normalize during an M-step. We also use Laplace

smoothing by adding pseudo counts of 0.1 to these statistics.

Estimating E [κ] and E [zn]. During inference, we compute the expectations E [κd] and E [zn], to

perform EM. The goal of performing EM is to optimize the bound

log p(wd|β, sd) ≥ log Eq
[
q(κd, zd)
q(κd, zd)

p(wd|κd, zd,β, sd)
]

(B.18)

≥ Eq
[
q(κd, zd) log

p(wd|κd, zd,β, sd)
q(κd, zd)

]
(B.19)

= Eq [p(wd|κd, zd,β, sd)]−H(q(κd, zd)) (B.20)
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on the likelihood of documents, where we specify q(κd, zd) to be the factorized distribution q(κd)q(zd)

and write the expectations q(κd = 1) = Eq [κd], q(zdn = 1) = Eq [(zd,n)].

As an aside, note the similarity between Equation B.20 and the variational objective (Equa-

tion 2.13). MAP inference using EM can be interpreted as variational inference, in which we use

point estimates for many of the random variables and distributions to represent the remaining vari-

ables.

Letting S0 and S1 index the sentiment word-topic distributions, and letting S index the sentiment

topic in the topic indicators z, and recalling that the indicator zn describes word wn, this update is:

κd,0 ∝
Nd∑
n=1

βS0,wnE [zn,S ]

κd,1 ∝ exp(sd)
Nd∑
n=1

βS1,wnE [zn,S ]

E [κd,i] =
κd,m∑
k κd,m

(B.21)

The update for E [zn] is similar. Again letting S(S0, S1) refer to the sentiment topic indices, and

describing the remaining indices with C1, C2, B, we have:

zn,S ∝ E [θS ] (βS0,wnE [κdz,0] + βS1,wnE [κdz,1])

zn,kc1 ∝ E [θC1 ]βC1,wn

zn,kc2 ∝ E [θC2 ]βC2,wn

zn,kb ∝ E [θB ]βB,wn

E [zn,i] =
zn,i∑
k zn,k

(B.22)

The update for E [θk] is similar to κdk, but we use sufficient statistics from all documents:

θk ∝
D∑
d=1

Nd∑
n=1

E [zn,k]

E [θk] =
θk∑
m θm

(B.23)
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B.4.3 Empirical analysis

In this section we perform a very cursory empirical discussion of this model. For this analysis, we

used the same New York Times (NYT) articles described in the last section. The dimension of the

latent space was p = 2.

B.5 Derivation of update equations for the Ideal Point Topic

Model

Variational inference for the ideal point topic model

Inference for the ideal point topic model requires variational updates (see Jordan et al. (1999) for

more details about variational inference). Minimizing the KL between the variational distribution

and the true posterior is equivalent to maximizing the following lower bound on the model evidence

(called the “evidence lower bound”, or ELBO):

log p(W ,V ) =
∫
p(W ,V |β,η, I,X, z, θ)p(β,η, I,X, z, θ)

≥Eq

[∑
D

∑
N

log p(wn|zn, β) + log p(zn|θd)

]

+ Eq

[∑
D

log p(Ad, Bd|zd,1:n,η) + log p(η)

]

+ Eq

[∑
U

log p(xu) +
∑
D

log p(vud|xu, Ad, Bd)

]

+ Eq

[∑
D

log p(θd|α)

]
+H(q)

=: L(η̂, ã, τ, φ, γ), (B.24)

where the expectations are taken with respect to the variational distribution q. This bound is

optimized by block coordinate ascent. We repeatedly optimize each variational parameter until the

relative increase in the lower bound is below a specified threshold.

One important detail in this equation is that Eq [log p(vud|xu, Ad, Bd)] is not available in closed

form under the variational distribution. We approximate the expectation in Equation B.24 by

applying the second-order multivariate Delta method Bickel and Doksum (2007), also applied to the

logit distribution in Chang and Blei (2009); Braun and McAuliffe (2010). This Taylor approximation

no longer guarantees that our objective is a lower bound; however, Braun and McAuliffe (2010) have
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found it to work better than a first-order approximation (which does maintain the lower bound).

We now turn to the coordinate updates.

Updates for η The variational update for η̂ can be found by collecting terms in the evidence

lower bound, taking the derivative with respect to η̂, setting this to zero, and solving for η̂. Letting

κdisc be a bill’s discrimination parameters, we have the the exact update for the vector η̂disc:

η̂disc ←
(

Eq
[
Z̄T Z̄

]
+
σ2
d

σ2
η

)−1

Eq
[
Z̄
]T
κdisc.

The update for η̂diff, controlling a bill’s difficulty parameter κdiff, is analogous.

Updates for β, φ, and γ The updates for β and γ are exactly as in LDA Blei et al. (2003), and

the update for φ is exactly as in sLDA Blei and McAuliffe (2008); we omit details here.

Updates for κd and τu We cannot solve for κ and τ exactly, so they must be optimized via

gradient ascent. For bill d, the gradient with respect to κ is

∇κd,iL(κd,i) =
∑
D

−κd,i − ηiφ
σ2
d

+
∑

v∈V (u)

1vx̃uv,i − x̃uv,iρud

−
∑

v∈V (d)

1
2

( (
σ2
κ(x̃Tuv x̃uv ) + σ2

x̃(κTd κd)
)

× x̃uv,i
(
ρud − 2ρ2

ud + 2ρ3
ud

) )
−

∑
v∈V (d)

1
2
σ2
x̃

(
κd,i ◦

(
ρud − ρ2

ud

) )
,

where ρud = exp(τTu κd−ad)
exp(τTu κd−ad)+1

and 1v is an indicator describing whether vote v was a yea-vote.

To optimize this, we apply second-order gradient ascent to the sum
∑
d
∂L
∂κd

, repeating the updates

κnd = κn−1
d − 1000

1000 + n0.6
H−1 (∇κdL(κd))

until convergence. In implementation, we constructed the Hessian H numerically by evaluating the

above gradient with coordinates perturbed by 10−5. For the data we used, this was sufficiently fast;

if a bill has enough votes, an alternative implementation might use more frequent updates and fewer

iterations through the votes.
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The gradient for the user-ideal parameter τu is nearly identical to that for κ:

∇τu,iL(τu,i) =
∑
U

−τu,i
σ2
u

+
∑

v∈V (u)

1vκdv,i − κdv,iρud

−
∑

v∈V (u)

1
2

( (
σ2
τ (κTdvκdv ) + σ2

κ(τTu τu)
)

× κdv,i
(
ρud − 2ρ2

ud + 2ρ3
ud

) )
−

∑
v∈V (u)

1
2
σ2
κ

(
τu,i ◦

(
ρud − ρ2

ud

) )
.

Again, we update this via second-order gradient ascent.

Updates for σκ and σx̃. Once per iteration, we update the the variances σκ and σx̃. As with η̂,

these updates are exact:

σ2
κ ←

ND∑
D,v∈V (d) τ

T
u τu(ρuvd − ρ2

uvd
)n +ND/σ2

d

σ2
τ ←

NU∑
U,v∈V (u) κ

T
d κd(ρudv − ρ2

udv
)n +NU/σ2

u

,

where above we have U users, D bills, and an N -dimensional ideal-point model.

B Implementation details

We provided details of a variational implementation of the ideal point topic model. Here we describe

several modifications to improve this algorithm.

Second order updates. Note that the second-order updates for κ and τ may violate the convexity

assumption. To mitigate this, and to prevent the parameters from diverging for large σd or σu, we

add a constant to each element of the diagonal Levenberg (1944). We add a sufficiently large constant

to guarantee that all 1 × 1 and 2 × 2 principal minors have positive determinant (this is necessary

but not sufficient to guarantee that H is positive definite). We have observed that H only requires

this adjustment for early model iterations.

Identifiability. In the modeling section, we discussed using nonzero priors for certain legislators

to make the posterior identifiable. These priors may not be sufficient to guarantee that the model
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Model Regularization Accuracy Log Expected
Likelihood Correct

Probability
lars 0.001 0.819 -0.855 0.792
lars 0.01 0.822 -0.984 0.793
lars 0.03125 0.817 -1.091 0.792
lars 0.0625 0.807 -1.214 0.787
lars 0.125 0.799 -1.337 0.781
lars 0.25 0.786 -1.479 0.770
lars 0.5 0.770 -1.640 0.755
lars 1 0.735 -1.903 0.723
l2 0.01 0.815 -0.914 0.793
l2 0.1 0.832 -0.794 0.811
l2 1 0.850 -0.636 0.829
l2 10 0.876 -0.498 0.853
l2 100 0.891 -0.371 0.866
l2 1000 0.897 -0.302 0.868
l2 10000 0.873 -0.324 0.841
iptm 4 0.871 -0.370 0.849
iptm 8 0.869 -0.348 0.845
iptm 16 0.883 -0.321 0.858
iptm 32 0.883 -0.314 0.856
iptm 64 0.887 -0.306 0.858
iptm 128 0.873 -0.456 0.845
yea 0.853 -0.417 0.749

Figure B.2: Prediction metrics for heldout prediction experiments.

Model Accuracy Log Expected
Likelihood Correct

Probability
l2 0.881 -0.346 0.852
iptm 0.870 -0.346 0.824
yea 0.851 -0.422 0.746

Figure B.3: Prediction metrics for time-series prediction experiments.

finds specific modes. To encourage the model to converge to the desired optimum, we allow the first

two iterations of this model one extra dimension for the ideal point. We believe this ”blessing of

dimensionality” allows the model to rotate ideal points toward the desired mode.

Annealing. We set the model parameters y for σ2
d to 1.0 before the first iteration and update it

with y ← y0.9(σ2
d)0.1 in a form of “variational annealing”. We apply the same annealing to σu.

B.6 Experimental Results

The experimental results for cross-fold validation are presented in Figure B.3. Top performers by

various metrics are highlighted in bold.
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We also display ideal points for all Senators (Figure B.5) and all legislators (Senators and House

representatives) (Figure B.4) in the fit of the 111th Congress.

B.7 Additional notes for the Issue-Adjusted Ideal Point Model

B.7.1 Sparsity

Issue adjustments zu ranged widely, moving some lawmakers significantly. The variational estimates

were not sparse, although a high mass was concentrated around 0. Twenty-nine percent of issue

adjustments were within [−0.01, 0.01], and eighty-seven percent of issue adjustments were within

[−0.1, 0.1].

B.7.2 Hyperparameter settings

The most obvious parameter in the issue voting model is the regularization term λ. The Bayesian

treatment described in the Inference section of How they Vote demonstrated considerable robustness

to overfitting at the expense of precision. With λ = 0.001, for example, issue adjustments zuk

remained on the order of single digits, while the MAP estimate yielded adjustment estimates over

100.

We recommend a modest value of 1 < θ < 10. At this value, the model outperforms ideal points

in validation experiments on both the House and Senate while maintaining stability in the two-stage

model.

B.7.3 Implementation

When performing the second-order updates described in the Inference section, we skipped variable

updates when the estimated Hessian was not positive definite (this disappeared when sample sizes

grew large enough). We also limited step sizes to 0.1 (another possible reason for smaller coefficients).

B.7.4 Issue labels

In the empirical analysis, we used issue labels obtained from the Congressional Research Service.

There were 5, 861 labels, ranging from World Wide Web to Age. We only used issue labels which

were applied to at least twenty five bills in the 12 years under consideration. This filter resulted in

seventy-four labels which correspond fairly well to political issues. These issues, and the number of

documents each label was applied to, is given in Table B.1.
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Table B.1: Issue labels and the number of documents with each label (as assigned by the Congres-
sional Research Service) for Congresses 106 to 111 (1999 to 2010).

Issue label Bills

Women 25
Military history 25
Civil rights 25
Government buildings; facilities; and

property
26

Terrorism 26
Energy 26
Crime and law enforcement 27
Congressional sessions 27
East Asia 28
Appropriations 28
Business 29
Congressional reporting requirements 30
Congressional oversight 30
Special weeks 31
Social services 31
Health 33
Special days 33
California 33
Social work; volunteer service; charitable
organizations

33

State and local government 34
Civil liberties 35
Government information and archives 35
Presidents 35
Government employees 35
Executive departments 35
Racial and ethnic relations 36
Sports and recreation 36
Labor 36
Special months 39
Children 40
Veterans 40
Human rights 41
Finance 41
Religion 42
Politics and government 43
Minorities 44
Public lands and natural resources 44

Issue label
Bills

Europe 44
Military personnel and dependents 44
Taxation 47
Government operations and politics 47
Postal facilities 47
Medicine 48
Transportation 48
Emergency management 48
Sports 52
Families 53
Medical care 54
Athletes 56
Land transfers 56
Armed forces and national security 56
Natural resources 58
Law 60
History 61
Names 62
Criminal justice 62
Communications 65
Public lands 68
Legislative rules and procedure 69
Elementary and secondary education 74
Anniversaries 82
Armed forces 83
Defense policy 92
Higher education 103
Foreign policy 104
International affairs 105
Budgets 112
Education 122
House of Representatives 142
Commemorative events and holidays 195
House rules and procedure 329
Commemorations 400
Congressional tributes 541
Congress 693

142



B.7.5 Corpus preparation

In this section we provide further details of vocabulary selection. We began by considering all phrases

with one to five words. From these, we immediately ignored phrases which occurred in more than

10% of bills and fewer than 4 bills, or which occurred as fewer than 0.001% of all phrases. This

resulted in a list of 40603 phrases.

We then used a set of features characterizing each word to classify whether it was good or bad to

use in the vocabulary. Some of these features were based on corpus statistics, such as the number of

bills in which a word appeared. Other features used external data sources, including whether, and

how frequently, a word appeared as link text in a Wikipedia article. For training data, we used a

manually curated list of 458 “bad” phrases which were semantically awkward or meaningles (such as

the follow bill, and sec ammend, to a study, and pr) as negative examples in a L2-penalized logistic

regression to select a list of 5,000 “good” words.
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Table B.2: Features and coefficients used for predicting “good” phrases. Below, test is a test
statistic which measures deviation from a model assuming that words appear independently;
large values indicate that they occur more often than expected by chance. We define it as
test = Observed count−Expected count√

Expected count under a language model assuming independence
.

Coefficient Summary
Weight

log(count + 1) Frequency of phrase in corpus -0.018
log(number.docs + 1) Number of bills containing phrase 0.793
anchortext.presentTRUE Occurs as anchortext in Wikipedia 1.730
anchortext Frequency of appearing as anchortext in

Wikipedia
1.752

frequency.sum.div.number.docs Frequency divided by number of bills -0.007
doc.sq Number of bills containing phrase, squared -0.294
has.secTRUE Contains the phrase sec -0.469
has.parTRUE Contains the phrase paragra -0.375
has.strikTRUE Contains the phrase strik -0.937
has.amendTRUE Contains the phrase amend -0.484
has.insTRUE Contains the phrase insert -0.727
has.clauseTRUE Contains the phrase clause -0.268
has.provisionTRUE Contains the phrase provision -0.432
has.titleTRUE Contains the phrase title -0.841
test.pos ln(max(−test, 0) + 1) 0.091
test.zeroTRUE 1 if test = 0 -1.623
test.neg ln(max(test, 0) + 1) 0.060
number.terms1 Number of terms in phrase is 1 -1.623
number.terms2 Number of terms in phrase is 2 2.241
number.terms3 Number of terms in phrase is 3 0.315
number.terms4 Number of terms in phrase is 4 -0.478
number.terms5 Number of terms in phrase is 5 -0.454
log(number.docs + 1) * anchortext ln(Number of bills containing phrase)

×1{Appears in Wikipedia anchortext}

-0.118

log(count + 1) * log(number.docs + 1) ln(Number of bills containing phrase + 1)
× ln(Frequency of phrase in corpus + 1)

0.246
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Figure B.4: All legislator ideal points in the 111th Congress. Using votes, ideal points can sep-
arate the U.S. political parties Democrats (blue) and Republicans (red). The Y axis contains no
information; it is used to stack names for display purposes.
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Figure B.5: All Senator ideal points in the 111th Congress. Using votes, ideal points can separate
the U.S. political parties Democrats (blue) and Republicans (red).
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