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ABSTRACT 

An ad hoc unmanned ground vehicle (UGV) network operates as an intermittently 

connected mobile delay tolerant network (DTN).  The path planning strategy in a DTN 

requires mobility estimation of the spatial positions of the nodes as a function of time.  

The purpose of this thesis is to create a foundational mobility estimation algorithm that 

can be coupled with a cooperative communication routing algorithm to provide a basis 

for real time path planning in UGV-DTNs.  In this thesis, we use a Gauss-Markov state 

space model for the node dynamics. The measurements are constant power received 

signal strength indicator (RSSI) signals transmitted from fixed position base stations.  An 

extended Kalman filter (EKF) is derived for estimating of coordinates in a two-

dimensional spatial grid environment. Simulation studies are conducted to test and 

validate the models and estimation algorithms. We simulate a single mobile node 

traveling along a trajectory that includes abrupt maneuvers.  Estimation performance is 

measured using zero mean whiteness tests on the innovations sequences, root mean 

squared error (RMSE) of the state estimates, weighted sum squared residuals (WSSRs) 

on the innovations, and the posterior Cramer-Rao lower bound (PCRLB).  Under these 

performance indices, we demonstrate that the mobility estimator performs effectively. 
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EXECUTIVE SUMMARY 

In recent years, there has been increasing interest and engineering activity from 

academia, industry and governments in the design and deployment of autonomous 

unmanned vehicles (AUVs).  AUVs that are constructed to operate underwater, in air, 

and on land vary in architecture, capability, and power. In particular, one of the areas that 

has gained attention is the deployment of unmanned ground vehicles (UGVs).  The Navy, 

Marine Corps and Army have invested monetary resources to the development of UGVs 

because of their potential to operate in a wide variety of situations [1].  

With the introduction of unmanned vehicles, the traditional concept of warfare 

has shifted to a network centric view of military systems. This involves the integration of 

communication networking, particularly wireless networking, and information sharing 

into tactical military operations.  This shift towards network centric warfare has led to the 

need for robust and reliable communications among groups of UGVs.  

A UGV network operates as an intermittently connected mobile ad hoc network, 

otherwise known as a delay tolerant network (DTN) [2].  DTNs have gained considerable 

attention from the research community as a means of addressing the path planning 

problem in partitioned networks deployed in environments where infrastructures cannot 

be installed.  Specifically, the problem of routing information between pairs of UGV 

nodes requires effective path planning protocols to be developed. In order to implement 

such protocols, it is necessary to have an understanding of the environment in which 

UGVs are deployed.   This is known as situational awareness and includes a real-time 

understanding of the terrain, activities of other UGVs in the same command, and self-

management.  A primary factor in obtaining information for situational awareness is the 

dynamic mobility of each individual UGV node.   The dynamic nature of the UGV-DTN 

requires the path planning protocol to react to the mobility of each individual UGV.  

Obtaining knowledge about the mobility of the UGVs requires estimation of the position, 

velocity and acceleration of the UGV-DTN at a given time and is an integral part of the 

path planning strategy. 
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In this regard, the overall UGV-DTN system design requires solution of the 

following two component problems: (1) Mobility Estimation: We must develop a set of 

mobility estimation algorithms that will achieve realistic estimates of the positions of the 

individual UGV nodes within the DTN, and (2) Path Planning: We must develop a path 

planning strategy using the mobility estimation results as inputs to achieve cooperation 

among individual UGV nodes for routing. 

The research contributions in the networking literature currently take one of two 

basic approaches to the problem of coupling mobility estimation with path planning 

(routing) protocols in ad hoc networks: (1) A new mobility estimation algorithm is 

proposed based upon a constrained spatial grid of cells and Markov-class models (Hidden 

Markov Models, etc.) [3], [4].  This new mobility estimation algorithm is then coupled 

with a standard routing protocol such as Ad Hoc On Demand Distance Vector (AODV) 

or Dynamic Source Routing (DSR), both of which can be found in the NS2 software 

package widely used for networking simulations [5], [6].  (2) A new routing protocol is 

proposed, and then it is coupled with standard mobility estimation models like random 

walk and random waypoint, also found in the NS2 simulation platform [7], [8]. Both [7] 

and [8] showed that these models impair the accuracy of ad hoc routing algorithms.  

Thus, to represent the nodes in a UGV-DTN in a practical setting requires 

modeling of dynamic movement and several kinds of uncertainty.  The node dynamics 

can best be described by a set of differential equations that include stochastic process 

noise.  The node measurements can be described by algebraic equations that include 

stochastic measurement noise.  Therefore, we chose to use Gauss-Markov state space 

models which exploit differential equations for the dynamics and an algebraic 

measurement model [9], [10].  The Gauss-Markov system model forms the basis for 

model based estimators such as the Kalman Filter (KF).  Several research teams have 

used Kalman type estimators to attack the mobility estimation problem.  For example, 

Zaidi et al. [11] used a simple autoregressive (AR) model as a basis for an Extended 

Kalman Filter (EKF) in a mobility tracking scheme.  Recently, Kalman based filter 

prediction and multicriteria decision theory have been used in DTNs to choose the next 

best hop for message delivery [12], [13].  
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In this regard, the contribution of the research proposed in this thesis lies in the 

creation of algorithms for both the mobility estimation and the routing protocol that are 

new to the networking literature. This thesis focuses on the mobility estimation 

algorithm, while future work is proposed for the development of the network routing 

protocol.  The mobility estimation approach in the thesis exploits a general two-

dimensional spatial grid setting, a Gauss-Markov state space dynamic model, a first-order 

semi-Markov model for the command function, and received signal strength indicator 

(RSSI) signals for the measurements.  The use of signal processing and control 

techniques for mobility estimation in an ad hoc network is new to the networking 

literature. 

Thus, the aim of this thesis is to provide the foundational algorithm for mobility 

prediction and estimation such that it can be coupled with a cooperative communication 

routing algorithm to provide a basis for real time cooperative planning in UGV-DTNs. 

This thesis makes the following contributions: 

• Mobility estimation in ad hoc general spatial grid settings is explored.  

Existing signal models based on the ad hoc general spatial grid setting and 

estimation algorithms for both linear and nonlinear models and their 

uncertainty cases are discussed.  Gauss-Markov and semi-Markov type 

signal models along with the EKF estimation algorithm are chosen for use 

in the UGV-DTN mobility prediction and estimation algorithm. 

• The chosen mobility estimation models are presented.  The model for the 

state of the mobile node and the measurement (observation) model are 

summarized.  The Jacobian matrix required by the EKF is derived. 

• The EKF algorithm is developed.  The dynamic equations are formulated 

as an observable continuous-time Gauss-Markov system model.  The 

discrete-time nonlinear Gauss-Markov model and discrete-time EKF 

algorithm are derived for the UGV-DTN.  Performance measures for EKF 

evaluation and tuning are presented. 
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• The UGV-DTN mobility prediction and estimation algorithm is simulated 

in MATLAB.  The performance of the EKF is evaluated and discussed. 

The EKF algorithm operates recursively in time, meaning that the current state vector 

estimate is a function of only the estimate at the last time step.  The storage of additional 

past information is not required, so storage resource utilization for individual UGV nodes 

is minimized. 

In our performance evaluations, we simulate a single node traveling along a 

trajectory that includes abrupt maneuvers.  Estimation performance is assessed with zero 

mean whiteness tests on the innovation sequences, root mean squared error (RMSE) of 

the state estimates, weighted squared sum residuals (WSSRs) on the innovations, and the 

posterior Cramer-Rao lower bound (PCRLB). The algorithm is shown to implement 

efficient mobility tracking of UGV nodes in a wireless network. We demonstrate that the 

mobility estimator performs effectively and therefore can be legitimately integrated into 

new cooperative routing protocol with enhanced accuracy. 

_______________________ 
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I. INTRODUCTION AND MOTIVATION 

In recent years, there has been increasing interest and engineering activity from 

academia, industry and governments in the design and deployment of autonomous 

unmanned vehicles (AUVs).  AUVs that are constructed to operate underwater, in air, 

and on land vary in architecture, capability, and power. In particular, one of the areas that 

has gained attention is the deployment of unmanned ground vehicles (UGVs).  The Navy, 

Marine Corps and Army have invested monetary resources to the development of UGVs 

because of their potential to operate in a wide variety of situations [1].  

With the introduction of unmanned vehicles, the traditional concept of warfare 

has shifted to a network centric view of military systems. This involves the integration of 

communication networking, particularly wireless networking, and information sharing 

into tactical military operations.  This shift towards network centric warfare has led to the 

need for robust and reliable communications among groups of UGVs.  

A UGV network operates as an intermittently connected mobile ad hoc network, 

otherwise known as a delay tolerant network (DTN) [2].  DTNs have gained considerable 

attention from the research community as a means of addressing the path planning 

problem in partitioned networks deployed in environments where infrastructures cannot 

be installed.  The ability to implement effective communication protocols among UGVs 

depends very much on the strategy of understanding the environment in which they are 

deployed.  This is known as situational awareness and includes a real-time understanding 

of the terrain, activities of other UGVs in the same command, and self-management.  A 

primary factor in obtaining information for situational awareness is the dynamic mobility 

of each individual UGV.  The dynamic nature of the UGV-DTN requires path planning 

protocol react to the mobility of each individual UGV.  Obtaining knowledge about the 

mobility of the UGVs requires estimation of the position, velocity and acceleration of the 

UGV-DTN at a given time and is an integral part of the path planning strategy. 

In this regard, the overall UGV-DTN system design requires solution of the 

following two component problems: 
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• Mobility Estimation: We must develop a set of mobility estimation 
algorithms that will achieve realistic estimates of the positions of the 
individual UGV nodes within the DTN. 

• Path Planning: We must develop a path planning strategy using the 
mobility estimation results as inputs to achieve cooperation among 
individual UGV nodes for routing. 

This thesis focuses on the mobility estimation problem.  The development of the 

path planning algorithm and the integration of the two components is left for future 

research. 

A. THE UGV-DTN SYSTEM MODEL 

The network environment considered in this thesis is shown in Figure 1.  Spatially 

distributed UGV cluster islands are assumed to be connected via an unmanned aerial 

vehicle which can act as a relay node to carry information among groups of UGV cluster 

islands.  UGVs within a cluster island communicate cooperatively to forward messages 

from source to destination within one cluster island.  Geo-location using the Global 

Positioning System (GPS) is assumed to be available on an unmanned aerial vehicle 

(UAV) and on a sub-set of UGV nodes called anchor nodes, which carry GPS in addition 

to their built-in received signal strength indicator (RSSI) sensors.  As a starting point, the 

cooperative communication protocols required within one individual UGV cluster island 

must first be explored.  The proposed overall signal/data flow for a single cluster island is 

shown in Figure 2.  All UGV nodes can communicate with other nodes in their cluster 

island.  However, there is no direct communication among nodes in different clusters.  

The UAV and all of the UGV nodes contain sensors that produce measurements as 

indicated in Figure 2.  Each UGV node carries a set of sensors, as does the UAV.  For 

this study, the set of possible sensor types includes both RSSI and GPS sensors.  The 

mobile nodes and the UAV pass measurement signals/data to the routing algorithms and 

the mobility predication algorithms.  As shown in Figure 2, the purpose of the mobility 

prediction algorithms is to produce predictions of position vs. time (and sometimes 

velocity vs. time) for a particular node or nodes in the cluster island. 
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Figure 1.  A clustered UGV-DTN communicating wirelessly within each cluster and to and 

from a UAV. 

 
 

 
Figure 2.  Block diagram of the overall signal/data flow for a UGV-DTN. 
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To further breakdown the overall problem, the measurements obtained from one 

UGV node will be used to construct the measurement vector for the mobility estimation 

and routing protocol as shown in Figure 3. 

 
 

Figure 3.  Block diagram of the overall signal/data flow for one UGV-DTN node in a 
cluster. 

B. COMMUNICATIONS PARADIGM OF THE UGV-DTN 

Reliability is an essential feature of communications in wireless networks and is 

generally coupled with design in path planning and routing.  Reliability in UGV-DTNs is 

a quality of service (QoS) issue that depends on resource availability (capacity and 

bandwidth) and the topology of the network at an instant of time [3]. 

There are many works focused on joint routing and mobility prediction in 

dynamic wireless DTNs that provide a strong foundation for research. DTNs have 

traditionally been modeled as mobile ad hoc networks that have intermittent  

connectivity [4].  In such networks, the notion of combinatorial stability is introduced as 

a way of determining loop free paths in a mobile setting.  The ability to communicate is 

proven to degrade with increasing mobility and inconsistent topology information. Given 
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a time of duration t, an ad hoc network is combinatorially stable if and only if topology 

changes occur sufficiently slowly enough to allow successful propagation of all topology  

updates [5].  The assumption is that the network remains quasi-static for a period of time 

during which route updates can occur. 

The notion of combinatorial stability facilitates research simulations and is critical 

for QoS assurance in ad hoc networks.  In generic DTNs and in this case, UGV-DTNs, it 

is not possible to assume a quasi-static nature.  UGV-DTNs are to be versatile and 

utilized in the operational environment where nothing can be guaranteed and 

communication connectivity may be denied for some time due to intentional jamming or 

simply excessive mobility.  Thus, the nature of the UGV-DTN deployment indicates that 

combinatorial stability is a stringent and sometimes impractical assumption.  QoS in 

UGV-DTNs depends on the integration of mobility and situational awareness into path 

planning algorithms to maximize the probability of connectivity between UGV pairs and 

minimize aggregate resource consumption [6], [7]. 

DTN routing protocols have been improved upon through the use of mobility 

prediction.  When prediction is used in DTN routing, the mobility model is an important 

factor.  Modeling the nodes in a UGV-DTN requires modeling dynamic movement and 

several kinds of uncertainty.  The node dynamics can best be described by a set of 

differential equations that include stochastic process noise.  The node measurements can 

be described by algebraic equations that include stochastic measurement noise.  

Therefore, we chose to use Gauss-Markov state space models which exploit differential 

equations for the dynamics and an algebraic measurement model [8], [9].  The Gauss-

Markov system model forms the basis for model based estimators such as the Kalman 

Filter (KF).  Several research teams have used Kalman type estimators to attack the 

mobility estimation problem.  For example, Zaidi et al. [10] used a simple autoregressive 

(AR) model as a basis for an Extended Kalman Filter (EKF) in a mobility tracking 

scheme.  Recently, Kalman based filter prediction and multicriteria decision theory have 

been used in DTNs to choose the next best hop for message  

delivery [11], [12]. 
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C. APPROACHES TO STOCHASTIC MOBILITY ESTIMATION 

The mobility estimation literature for two-dimensional spatial planes generally 

deals with two fundamental types of physical two-dimensional spatial settings: (1) a 

known, predefined constrained grid of spatial cells (not ad hoc) and (2) a general spatial 

grid that uses a reference frame defined by geospatial coordinates (ad hoc).  These 

coordinates can be estimated using measured signals from known base stations (BSs), the 

GPS, etc. 

1. Setting: Constrained Grid of Spatial Cells 

Perhaps the largest portion of the mobility estimation literature deals with settings 

in which the movements of mobile nodes (users) are constrained on a known, predefined 

grid of spatial cells.  Such a setting does not define an ad hoc network.  For example,  

in [13] the spatial grid is defined on the grounds of a university campus, and contains 

“landmarks” such as buildings.  Settings of this type are excellent for solving a useful 

class of real-world problems (i.e., Wireless Local Area Networks in a known constrained 

spatial area) as they are able to exploit prior knowledge very efficiently [14].  In such 

settings, the measurements arise in the form of user movement sequences that are 

collected by a centralized wireless access point controller and stored for use by the 

mobility estimation algorithms.  The signal model for such settings is commonly a form 

of Markov or Semi-Markov model [11], [14], Hidden Markov Model (HMM) or variants 

of these models.  These models are very well suited to settings that use a grid of cells.  

The performance indices for such settings commonly consist of probabilities and indices 

such as likelihood of next cell transition, likelihood of a user being in a particular state 

after N transitions, probability density function of future contact times and expected 

spatial-temporal traffic load at each location in a network’s coverage area.  The 

estimation algorithms used are derived specifically for the Markov signal models, (i.e., 

the Viterbi algorithm and the Baum-Welch algorithms for HMMs) [13], [14], [15].  

2. Setting: General Spatial Grid 

The ad hoc General Spatial Grid Setting is generally most appropriate for mobile 

ad hoc networks based on a DTN architecture, particularly in military applications.  In 
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operational settings, it is not likely that one can easily define a constrained grid of spatial 

cells on which to operate.  One must operate wherever one is deployed.  The 

measurements in this setting usually involve RSSI signals from known base  

stations [8], [13], [15].  The signal model is usually some form of Gauss-Markov (state 

space differential equations and measurement equations).  These can include AR moving 

average (ARMA) models and their many variants [12], [16], [17].  These models are 

sometimes augmented with a semi-Markov model to represent uncertain accelerations,  

etc. [19], [20].  Models of this type efficiently accommodate a wide variety of 

measurement types, including RSSI, time-of-arrival, angle-of-arrival, and/or GPS 

measurements.  The key requirement is that the model must be observable in the 

estimation and control theory sense [19], [20].  This means the available information 

must be sufficient to allow the estimation of the system states. The performance indices 

generally include mean squared error (MSE), the Cramer-Rao lower bound (CRLB), and 

the posterior CRLB (PCLRB) [12], [16], [20].  The estimation algorithms usually consist 

of a Kalman Filter (KF), EKF, Unscented KF or particle filter (PF), also called a 

sequential Monte Carlo (SMC) filter, depending on whether or not the system model is 

linear or nonlinear and the uncertainties (noise processes) are Gaussian or Non-Gaussian.  

In general, the KF is appropriate for the linear, Gaussian case.  The EKF and the 

Unscented KF can sometimes be used in the nonlinear, Gaussian case, and the PF is used 

in the nonlinear, non-Gaussian case, when other algorithms do not perform sufficiently 

well [12], [21].  One variation is the Rao-Blackwellized particle filter (RBPF), which 

uses the KF for the linear part of the processing and the PF for the nonlinear  

part [14], [21].  Some published algorithms assume that the model parameters are known 

a priori [14].  This requires good first principles modeling and/or system 

identification/calibration step prior to using the algorithm.  At least one research team has 

proposed an algorithm that jointly estimates the model parameters and the systems states 

simultaneously [8].  This can have performance advantages if the model is simple enough 

to allow on-line parameter estimation.  
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D. MOTIVATION AND CONTRIBUTIONS OF THE THESIS 

The contributions in the networking literature discussed in Sections IB and IC 

currently take one of two basic approaches to the problem of coupling mobility 

estimation with routing protocols in ad hoc networks: (1) A new mobility estimation 

algorithm is proposed based upon a constrained spatial grid of cells and Markov-class 

models (Hidden Markov Models, etc.) [22], [23].  This new mobility estimation 

algorithm is then coupled with a standard routing protocol such as Ad Hoc On Demand 

Distance Vector (AODV) or Dynamic Source Routing (DSR), both of which can be 

found in the NS2 software package widely used for networking simulations [24] ,[25].  

(2) A new routing protocol is proposed, and then it is coupled with standard mobility 

estimation models like random walk and random waypoint, also found in the NS2 

simulation platform [26], [27]. Both [26] and [27] showed that these models impair the 

accuracy of ad hoc routing algorithms. 

The contribution of the research proposed in this thesis lies in the creation of 

algorithms for both the mobility estimation and the routing protocol that are new to the 

networking literature. This thesis focuses on the mobility estimation algorithm, while 

future work is proposed for the development of the network routing protocol.  The 

mobility estimation approach in the thesis exploits a general two-dimensional spatial grid 

setting, a Gauss-Markov state space dynamic model, and a first-order semi-Markov 

model for the command function.  The use of signal processing and control techniques 

for mobility estimation in an ad hoc network is new to the networking literature. 

Thus, the aim of this thesis is to provide the foundational algorithm for mobility 

prediction and estimation such that it can be coupled with a cooperative communication 

routing algorithm to provide a basis for real time cooperative planning in UGV-DTNs. 

This thesis makes the following contributions: 

• Stochastic mobility prediction in ad hoc general spatial grid settings is 
explored.  Existing signal models based on the ad hoc general spatial grid 
setting and estimation algorithms for both linear and nonlinear models and 
their uncertainty cases are discussed.  Gauss-Markov and semi-Markov 
type signal models along with the EKF estimation algorithm are chosen 
for use in the UGV-DTN mobility prediction and estimation algorithm. 
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• The chosen mobility estimation models are presented.  The model for the 
state of the mobile node and the measurement (observation) model are 
summarized.  The Jacobian matrix required by the EKF is derived. 

• The EKF algorithm is developed.  The dynamic equations are formulated 
as an observable continuous-time Gauss-Markov system model.  The 
discrete-time nonlinear Gauss-Markov model and discrete-time EKF 
algorithm are derived for the UGV-DTN.  Performance measures for EKF 
evaluation and tuning are presented. 

• The UGV-DTN mobility prediction and estimation algorithm is simulated 
in MATLAB.  The performance of the EKF is evaluated and discussed. 

E. ORGANIZATION OF THE THESIS 

The remainder of the thesis is organized as follows.  Stochastic mobility 

estimation in the ad hoc general spatial grid setting is discussed in Chapter II.  The signal 

mobility estimation models used to derive the Jacobian for use in the EKF is discussed in 

Chapter III.  The EKF algorithm and performance measures are developed in Chapter IV.  

The performance evaluation and results of the EKF simulation experiment, as well as the 

process of EKF tuning, are presented in Chapter V.  The conclusions and a discussion of 

directions for future work are provided in Chapter VI.  The Appendix contains the 

MATLAB m-files and functions used in this research. 
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II. STOCHASTIC MOBILITY PREDICTION IN THE GENERAL 
SPATIAL GRID SETTING 

In this chapter we focus on a subset of literature that is most appropriate for our 

problem.  While Chapter I provided a general literature review of the research area, the 

following sections provide a review of [13], [15], and [18] studied for adaptation in the 

UGV-DTN estimation scenario.  The military operational setting for mobile ad hoc 

networks based on a DTN architecture makes use of the ad hoc general spatial grid 

setting.  This setting is most appropriate for mobile ad hoc networks based on a DTN 

architecture.  The purpose of the mobility algorithm in the UGV-DTN is to produce 

estimates of position over time, and sometimes velocity and acceleration over time, 

within the general spatial grid setting.  The algorithm design requires several key problem 

specifications, or attributes.  The key attributes are as follows: (1) the operational mission 

setting and physical constraints, (2) the set of available sensor measurements or 

observations, (3) an appropriate physics model, (4) an appropriate performance index or 

set of performance indices, and (5) an appropriate estimation/tracking algorithm or set of 

algorithms.  We describe and compose algorithms in terms of the five key attributes. 

A. MOBILITY TRACKING IN WIRELESS AD HOC NETWORKS 

Zaidi et al. [15] studies ad hoc networks with intermittent connectivity.  User 

mobility makes the topology of an ad hoc network dynamic over time complicating the 

routing and flow of information.  The algorithm for mobility tracking developed in [15] 

uses RSSI measurements from neighboring nodes modeled as a linear system driven by a 

discrete semi-Markov process in combination with an efficient averaging filter and an 

EKF. A scheme for a local coordinate system for ad hoc networks using relative distances 

between nodes is recommended [15]. 

The proposed algorithm allows robust mobility tracking in ad hoc networks using 

RSSI measurements.  Estimated parameters are used to determine the autocorrelation 

function.  The discrete-time processes for the three mobile nodes are modeled as 

independent semi-Markov processes.  The mobility tracking algorithm pre-filters the 
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observations prior to applying an EKF for mobility state estimation.  Root MSE (RMSE) 

is used as the performance measure.  The algorithm is able to follow mobile trajectories 

accurately over a wide range of parameter values and provides the following unique 

advantages over previous proposed algorithms.  It requires information about just one 

stationary network node as opposed to knowing three points to determine the position of 

a mobile node.  The advantage of this is due to the ability of the KF to reduce the 

observation error of all the three nodes simultaneously.  The prior information needed is 

thus greatly reduced.  The proposed mobility tracking algorithm can be applied in a 

variety of scenarios, such as adaptive clustering, routing, and mobility management in ad 

hoc networks [15]. 

B. MODIFIED EKF AND SEQUENTIAL MONTE CARLO FILTER 

Yang et al. [18] consider a SMC method for joint mobility tracking and cellular 

handoff in wireless communication networks.  The mobility tracking is based on the 

measurement of RSSI signals from known base stations.  The system dynamics are 

described by a nonlinear state space model.  The movement of the individual node is 

modeled as a semi-Markov chain with a first-order AR model adopted for random 

acceleration correlation.  The mobility tracking includes estimation of the position and 

velocity of the mobile node.  The EKF is identified as the main technique for solving 

online estimation in a nonlinear dynamic system.  Yang et al. were attempting to solve 

two problems: (1) online mobility estimation and (2) online prediction of the RSSI at 

some future time instance.  The optimal solutions to both problems were prohibitively 

complex due to system nonlinearities.  Therefore, an SMC estimator is built on the 

techniques of importance sampling and resampling and provides an online posterior 

distribution of a node’s location and velocity based on a nonlinear state space model.  

Under the SMC framework, both problems can be solved naturally in a joint fashion.  

The SMC was compared with the modified EKF and was shown to improve tracking 

accuracy and minimize the tradeoff between QoS and resource utilization [18].  However, 

the SMC-based approach comes with a significantly high computational cost. 
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C. EXTENDED KALMAN FILTER, PARTICLE FILTER AND RAO-
BLACKWELLIZED PARTICLE FILTER 

Mihaylova et al. [13] also considers a SMC technique for mobility tracking in 

wireless communication networks by means of RSSI.  The technique allows for accurate 

estimation of mobile position and speed.  The command process is represented by a first-

order semi-Markov model, which takes values from a finite set of acceleration levels that 

cover the range of probable acceleration.  A PF and RBPF are proposed and analyzed 

over real and simulated data.  A comparison with an EKF is performed with respect to 

accuracy and computational complexity.  With a small number of particles the RBPF 

gives more accurate results than the PF or the EKF.  A PCRLB is calculated and it is 

compared to the filter’s RMSE performance [13].  The designed filters are compared to 

the EKF technique to identify enhanced performance with respect to scenarios with 

abrupt maneuvers.  Advantages of the RBPF compared with the PF are decreased 

computational complexity exhibiting similar accuracy with smaller number of particles 

and smaller peak-dynamic errors during abrupt maneuvers, which is important for 

practical purposes [13].  It is important to note that without abrupt changes, the EKF 

performs admirably.  In this thesis, we adapt the state space mobility model from [13]. 
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III. MOBILITY ESTIMATION MODELS 

For our analysis we chose to use a Gauss-Markov state space model [15].  The 

specific model chosen for the implementation of the mobility prediction of a UGV-DTN 

is a discrete-time variant of the Singer model originally proposed in [28].  Mihaylova et 

al. [16] has shown that the modified Springer model used by Yang and Wang [20] 

performs well, is simple, and allows efficient computation of performance indices.  This 

is a Gauss-Markov type model modified to include a discrete semi-Markov type model.  

The dynamic model for the mobile node is linear, but the measurement model is highly 

nonlinear. 

A. MODEL FOR THE STATE OF THE MOBILE NODE 

Let the two-dimensional spatial coordinates be denoted by ( , )x y .  Let k  denote 

the discrete time index, and let T  denote the temporal sampling period.  We let ( , )k kx y  

denote the position of the mobile node at discrete time k .  We then denote the speed by 

( , )k kx y   and the acceleration by ( , )k kx y  .  The parameter α  depends on the duration of a 

maneuver, and is the reciprocal of the maneuver time constant.  The state of the mobile 

node at discrete time k  is then denoted by [ ], , , , , T
k k k k k k kx x x x y y y=      where the 

superscript T  denotes vector transpose.  The linear state for the mobile node is given by: 

 ( ) ( ) ( )1,k k u k w kx A T x B T u B T wα −= + +  (3.1) 

where , ,,
T

k x k y ku u u =    is the discrete-time command process, or system input, and 

, ,,
T

k x k y kw w w =    is a white Gaussian noise sequence with zero mean and a covariance 

matrix 2
wQ Iσ=  where I  denotes the unit, or identity matrix.  Note that the matrix 

( ),A T α  is a function only of the sampling period and the reciprocal of the maneuver 

constant, and the matrices ( )uB T  and ( )wB T  are functions only of the sampling  

period [16]. 
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Over time, in the real world, a mobile node is likely to have both discontinuous 

motion and continuous motion.   A mobile node is likely to have sudden and unexpected 

acceleration changes.  These could be caused by traffic lights, turns in the road, the need 

for collision avoidance, etc.  Simultaneously, we must account for the fact that node 

acceleration is likely to be correlated over time, due to momentum.  For example, if a 

node is accelerating at time sample , then it likely will be accelerating at time sample 

.  For these reasons, we model the mobile node as a dynamic system driven by a 

semi-Markov acceleration process  as shown in Figure 4.   This acceleration 

is the sum of a two-dimensional semi-Markov driving command , ,,
T

k x k y ku u u =    and a 

two-dimensional time-correlated random acceleration vector , ,,
T

k x k y kr r r =   .  The two 

commands  and  are independent semi-Markov processes acting in the x and y 

directions [15], [19], [28]. 

The command  creates discrete unexpected changes in acceleration, which are 

modeled as a semi-Markov process with a finite number of states 1 2, , , mS S S  as shown 

in Figure 4.  A semi-Markov process assumes that we have the Markov state transition 

probability and random duration of time in one state before it switches to another  

state [19]. These finite states represent discrete levels of acceleration, which we denote as 

follows: { }1, ,x y MM M M m m= × = 
, where xΜ  and yΜ are acceleration levels in the x 

and y directions in two-dimensional space, and represent states with associated state 

transition probabilities ( ), 1|i j k j k iP u m u mπ −= = = , where , 1, ,i j M= 
 and the initial 

probability distribution ( ),0i iP m mµ = =  for all im ∈Μ  such that ,0 0iµ ≥  and 

,01
1M

ii
µ

=
=∑  [14].   

The random acceleration , ,,
T

k x k y kr r r =    is modeled as a correlated zero mean 

random vector with a variance designed to cover the “gap” between adjacent acceleration 

states 1 2, ,..., mS S S .  The conditional probability densities of  given the states are 
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depicted in Figure 4 for the one-dimensional case in which the acceleration is a scalar. 

Note that vectors are denoted by bold lettering in this figure [19].  The finite acceleration 

states in Figure 4 lie in the range [ ]max max,A A− . 

 
Figure 4.  (a) Semi-Markov command acceleration input signal process for the UGV 

k k ka u r= + . (b) Conditional probability densities of  given the states 

1 2, ,..., mS S S  for the 1-D (scalar) case [19]. 

Let us now specify how the model produces the correlated random accelerations.  

We can obtain a correlated stochastic process by passing a zero mean white Gaussian 

process  through a shaping filter.  A commonly used representative model of the 

autocorrelation function is given by [19]: 

 2( ) { ( ) ( )} ,T
rr mR E r t r t e Iα ττ τ σ −= + =  (3.2) 

where 0α ≥  and 2
mσ  is the variance of the random acceleration in a single dimension, 

and α  is the reciprocal of the random acceleration time constant.  The desired stochastic 

process can be obtained by passing a zero mean white Gaussian process  

with covariance 2 22 ( )w mR Iασ δ τ=  through a one-pole AR shaping filter specified by the 

following difference equation: 

 1 .k k kr r wα+ = − +  (3.3) 

We can combine the modified dynamic state vector [ ], , , T
k k k k kx x x y y=   with ku  

and kr  to obtain: 
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 1 ,k k k kx Fx Eu Gr+ = + +  (3.4) 

where 

 

0 1 0 0
0 0

0 0 0 0
, 1 0 ,

0 0 0 1
0 1

0 0 0 0

F G

 
  
  = =        

 

 (3.5) 

and kr  is correlated in time. 

By augmenting the state vector with , the discrete time dynamic state equation 

can be expressed in terms of discrete white Gaussian noise kw  and the driving command 

ku  : 

 1 ,k k k kx Ax Bu w+ = + +  (3.6) 

where [ ], ,, , , , , , , , , ,
T T

k k k x k k k y k k k k k k kx x x r y y r x x x y y y =       
 .  The node acceleration is 

extended to include the single-pole filter [21].  The final mobile node dynamic model is 

summarized as follows: 

( ) ( ) ( )1

2 2
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2 2

1

1

1

,
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(3.7) 

 

B. MEASUREMENT (OBSERVATION) MODEL 

The measurements consist of RSSI signals from known-location BSs.  Locating a 

node in a two-dimensional spatial plane requires a minimum of three BSs.  Increasing the 
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number of BSs to seven will improve accuracy [16].  Let BSM  denote the number of BSs.  

We are given measurements of the location ( ), ,,i k i ka b  of each of the BSs at discrete time 

k , where 1, , BSi M=  .  Let us denote the measurement model by a nonlinear vector 

equation of the form: 

 [ ]k k kz h x ν= +  (3.8) 

where kz denotes the measurement vector, [ ]kh x  is an nonlinear function, and kν  is the 

measurement noise.  The RSSI signal can be modeled as a sum of two terms: path loss 

[ ]kh x  and shadow fading kν  .  The one-pole AR filter in Eq. (3.3) has the effect of 

attenuating any Rayleigh or Rican Fading.  The RSSI signal, measured in decibels (dB), 

is a signal that a mobile unit receives from a particular base station or anchor node.  The 

RSSI signal of a single BS is modeled by: 

 [ ]( ), 0, 10 , ,10 logk i i k i k k iz z d xη ν= − +  (3.9) 

where 0,iz  is a constant characterizing the transmission power of the base station.  It is a 

function of wavelength, antenna height, and gain of node i  [16].  The constant η  is 

called the slope index, and it takes on various values, depending on the characteristics of 

the physical environment (i.e., typically 2η =  for highways and 4η =  for microcells in a 

city).  The distance [ ] ( ) ( )2 2
, , ,k i k k i k k i kd x x a y b= − + −  is the distance between the 

mobile node and the base station i  at discrete time k  .  The process ,1 ,, ,
BSk k k Mv v v =    

is the shadowing component.  It has been shown to be stationary and uncorrelated both in 

time and space with white Gaussian distribution 2
, ~ 0,k i vv N σ    for 1, , BSi M=   [16].  

The shadowing component can considerably degrade the estimation process, but this 

difficulty can be overcome by prefiltering in order to reduce observation noise [17]. 
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C. DERIVATION OF THE JACOBIAN MATRIX REQUIRED BY THE EKF 

The EKF used for the estimation algorithm requires a Jacobian, or gradient, 

matrix for approximate linearization of our non-linear measurement.  First, we must 

define the highly nonlinear measurement function [ ]kc x  in the general Gauss-Markov 

model for our application [14].  By inspection, we see that 

 [ ] [ ]( )0, 10 ,( ) 10 log .k k i k i kc x h x z d xη= −  (3.10) 

Let us gather some general relationships and definitions we need for the 

derivation.  First, the general definition of the Jacobian matrix for an EKF is given  

by [15]: 

 [ ]
| 1ˆ

.
k k k

k

k x x

c x
x

−=

∂
∂



   (3.11) 

Second, the Euclidean norm of the difference between vectors x  and θ  is given by [14]  

 ( ) [ ] [ ]
222

, 1
.J T

x j jj
d x x x xθ θ θ θ θ

=
= − = − = − −∑  (3.12) 

Third, the gradient of a general vector y  with respect to general vector x  where 

[ ]1 2, , , T
Lx x x x=   and [ ]1 2, , , T

Jy y y y=   is expressed as follows [30]: 

 

1 1

1

'

1

.
L

x

J J

L

y y
x x

y
y y
x x

∂ ∂ 
 ∂ ∂ 
 ∇ =
 ∂ ∂ 
 ∂ ∂ 



  



 (3.13) 

This derivation assumes three nodes, but it can be extended to N  nodes.  Given 

the measurement matrix ( ) ( ) ( ) ( )1 2 3, ,
T

k k k kh x h x h x h x=     and the modified state vector 

[ ] 1, 4,, 0,0, ,0,0 ,0,0, ,0,0
TT

k k k k kx x y x x = =   , which contains position as the only state 

required for measurement linearization, the Jacobian can be written as 
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 [ ]
| 1ˆk k k

k

k x x

h x
x

−=

∂
Η

∂
  (3.14) 

and expanded to 

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ]( )( ) [ ]( )( )

[ ]( )( ) [ ]( )( )

1 1

1, 4,

2 2

1, 4,

3 3

1, 4,

0,1 10 ,1 0,1 10 ,1

1, 4,

0,2 10 ,2 0,2 10 ,2

1, 4,

0 0 0 0

0 0 0 0

0 0 0 0

10 log 10 log
0 0 0 0

10 log 10 log
0 0

k k

k k

k k

k k

k k

k k

k k k k

k k

k k k k

k

h x h x
x x

h x h x
H

x x

h x h x
x x

z d x z d x

x x

z d x z d x

x x

η η

η η

 ∂ ∂
 

∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 
∂ ∂ 

 ∂ ∂ 

∂ − ∂ −

∂ ∂

∂ − ∂ −
=

∂ ∂

[ ]( )( ) [ ]( )( )0,3 10 ,3 0,3 10 ,3

1, 4,

0 0 .

10 log 10 log
0 0 0 0

k

k k k k

k k

z d x z d x

x x

η η

 
 
 
 
 
 
 
 ∂ − ∂ − 
  ∂ ∂ 
 

(3.15) 

The measurement model of Eq. (3.9) is a scalar model.  We next convert this to a vector 

model by defining a vector of BS coordinates [ ],0,0, ,0,0 T
i i ia bθ = .  Given Eq. (3.9), we 

redefine the distance vector to allow us to write the distances as quadratic forms using 

linear algebra resulting in 

 [ ]

( ) ( )

( ) ( )

( ) ( )

1 1
,1

,2 2 2

,3
3 3

,

T
k k

k
T

k k k k k

Tk
k k

x G x
d

d x d x G x
d

x G x

θ θ

θ θ

θ θ

 − −  
  = = − −  
  

   − −
 

 (3.16) 

where 
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1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

.
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

G

 
 
 
 

=  
 
 
  
 

 (3.17) 

We can plug Eq. (3.16) and Eq. (3.17) into Eq. (3.15), apply the chain rule to take the 

partial differentials of the resultant matrix, and obtain the final Jacobian as 

 

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( ) ( )

,1 1 ,4 1
2 2 2 2

,1 1 ,4 1 ,1 1 ,4 1

,1 2 ,4 2
2 2 2 2

,1 2 ,4 2 ,1 2 ,4 2

,1 3 ,4
2 2

,1 3 ,4 3

10 10
0 0 0 0

ln 10 ln 10

10 10
0 0 0 0

ln 10 ln 10

10 10
0 0

ln 10

k k

k k k k

k k

k k k k

k k

k k

x a x b

x a x b x a x b

x a x b
H

x a x b x a x b

x a x

x a x b

η η

η η

η η

− − − −

   − + − − + −
   
− − − −

=
   − + − − + −
   
− − −

 − + −
 

( )
( ) ( ) ( )

3
2 2

,1 3 ,4 3

.

0 0
ln 10 k k

b

x a x b

 
 
 
 
 
 
 
 
 
 −
 

  − + −
  

(3.18) 

Recall that the model for the state of the mobile node is linear and therefore does not 

require a Jacobian for the EKF algorithm. 
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IV. THE EXTENDED KALMAN FILTER ALGORITHM 

In this chapter, we summarize the general equations for the EKF we use in our 

solution of the mobility estimation problem.  The following is the notation for this 

section.  The discrete time index is denoted t .  A “hat” above a symbol denotes an 

estimate (e.g., ( )x̂ t ).  A tilde above a symbol is used to denote an error or error 

covariance (e.g., ( )| 1x t t −  or ( )| 1P t t −

 ).  The notation ( )| 1x t t −  is read “the error in 

the states at time step t , given data up to time step 1t − .”  The double tilde on ( | 1)P t t −

  

indicates an error covariance matrix. 

The EKF is a state space nonlinear state estimator that provides estimates of the 

state vector at each discrete time step t .  It is the optimal least squares estimator for our 

model.  The EKF is an extension of the KF, a wholly linear estimator, because it handles 

the nonlinear Gauss-Markov model.  The EKF development in [15] and [31] are closely 

followed in this thesis in order to develop the key equations needed for proper 

implementation.  A block diagram of the UGV node and the EKF is illustrated in Figure 

5 and Figure 6.  All the equations in Figure 6 appear in the text. 

 
Figure 5.  Signal flow block diagram of the mobile node model, EKF, and performance 

evaluation techniques along with input and outputs. 
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Figure 6.  Flow diagram depicting the implementation of a discrete-time EKF algorithm for 

the UGV-DTN.  The construction of the flow chart follows [32]. 

A. DISCRETE-TIME NONLINEAR GAUSS-MARKOV MODEL 

Given state vector ( )x t ; initial state vector ( )0x ; system matrices (.)A  , (.)uB , 

and (.)wB ; system input vector ( )u t ; and process noise ( )w t ; we can write the state 

propagation model as follows (see Eq. (3.7)): 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ), 1 .u wx t A T x t B T u t B T w tα= − + +   (4.1) 

Give the system output measurement vector ( ) ( ) ( ) ( )1 2 3, ,
T

z t z t z t z t=    , 

nonlinear function (.)h , and measurement noise vector ( )v t , we can write the 

measurement propagation as follows: 

 ( ) ( ) ( ).z t h x t tν= +    (4.2) 
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Note that for our mobility problem ( ) ( ) ( ),
T

x yw t w t w t =    and 

( ) ( ) ( ) ( )1 2 3, ,
T

v t v t v t v t=     are zero-mean white Gaussian noise sequences with 

covariances wR  and vR  , and distributions ( ) ~ 0, ww t N R  
  and ( ) ~ 0, vv t N R  

  [15]. 

B. DISCRETE-TIME EXTENDED KALMAN FILTER ALGORITHM 

Given the nonlinear Gauss-Markov model for the mobile node, the discrete-time 

EKF algorithm is shown in flow-diagram in Figure 6. The derived EKF algorithm 

equations are summarized as follows [15], [31]: 

1. Prediction 

The state prediction step is 

 ˆ ˆ( | 1) ( , ) ( 1| 1) ( ) ( 1)ux t t A T x t t B T u tα− = − − + −  (4.3) 

and the state error covariance step is 

 ( | 1) ( , ) ( 1| 1) ( , ) ( 1).T
WP t t A T P t t A T R tα α− = − − + − 

    (4.4) 

In the prediction step, we create two quantities: (1) First, we predict the next 

estimate of the state vector by propagating the state estimate from the previous time step 

through the system model (Eq [4.3]).  (2) The predicted state estimation error is defined 

as ˆ( 1) ( ) ( 1)x t t x t x t t− ≡ − − ; and the predicted state error covariance is defined as 

( 1) cov ( 1)P t t x t t− ≡  −  




 .  We predict the next estimate of the state error covariance by 

propagating the state estimation error covariance from the previous time step through the 

system matrix ( , )A T α  and adding the process noise covariance. 

2. Innovation 

The innovation step is  

 ˆ( ) ( ) ( | 1)e t z t z t t= − −  (4.5) 

and the innovation covariance step is  
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 ˆ ˆ( ) [ ( | 1)] ( | 1) [ ( | 1)] ( ).T
e VR t x t t P t t x t t R t= Η − − Η − +

     (4.6) 

The innovations vector is the difference between the current measurement and the 

last estimate of the measurement vector given data up to time 1t − .  The innovations 

represent new information available to the EKF since the last state update; and they 

provide the key information we can use to ensure that the filter converges to a useful state 

estimate.  Once the innovations vector is computed, we calculate the next value of the 

innovations covariance matrix using Eq. (4.6). 

3. Gain 

The Kalman gain is  

 1ˆ( ) ( | 1) [ ( | 1)] ( ).T
eK t P t t x t t R t−= − Η −

    (4.7) 

The Kalman gain matrix provides the key factor we use in the next step to update 

the state estimate in a direction toward minimizing the mean square error.  A small value 

of the Kalman gain indicates that from the filter “believes” (places a large weight on) the 

latest model predictions; whereas, a large gain indicates that the filter “believes” (places a 

large weight on) the latest measurements [15]. 

4. Correction 

The state correction step is  

 ˆ( | ) ( | 1) ( ) ( )x t t x t t K t e t= − +   (4.8) 

and the state error covariance estimator correction step is  

 
1ˆ ˆ( | ) { ( ) [ ( | 1)]} ( | 1){ ( ) [ ( | 1)]}

( ) ( ) ( ).T
v

P t t I K t x t t P t t I K t x t t

K t R t K t

−= − Η − − − Η −

+

 

      

 

 (4.9) 

This is the key step in the EKF.  The filter updates (corrects) the last state 

estimate by adding to it the product of the Kalman gain matrix and the innovations 

vector.  By doing so, it moves the state estimate in a direction that reduces the mean 

square error in the expected value sense.  After many time steps, a properly tuned EKF 
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will converge toward the minimum mean square error estimate of the states.  In this 

correction step, the EKF also updates (corrects) the state estimation error covariance 

matrix as in Eq. (4.9). 

5. Initial Conditions 

The state initial condition matrix is  

 ( ) ( ) ( ) ( ) ( ) ( )1 2 3 4 5 6ˆ ˆ ˆ ˆ ˆ ˆ ˆ(0 | 0) 0 | 0 , 0 | 0 , 0 | 0 , 0 | 0 , 0 | 0 , 0 | 0
T

x x x x x x x=     (4.10) 

and the covariance initial condition matrix is 

( )

( )

( )

( )

( )

( )

1

2

3

4

5

6

0 | 0 0 0 0 0 0

0 0 | 0 0 0 0 0

0 0 0 | 0 0 0 0
(0 | 0) .

0 0 0 0 | 0 0 0

0 0 0 0 0 | 0 0

0 0 0 0 0 0 | 0

x

x

x

x

x

x

P

P

P
P

P

P

P

 
 
 
 
 
 =  
 
 
 
 
 
 





























(4.11) 

Note that initial condition values are chosen and explored in Chapter V. 

6. Jacobian Matrix 

The Jacobian is  

 [ ]
| 1ˆ

.
k k k

k

k x x

h x
x

−=

∂
Η

∂
  (4.12) 

The Jacobian matrix in Eq. (4.12) is used to linearize the nonlinear RSSI measurement 

equation in Eq. (4.2). 

C. PERFORMANCE MEASURES FOR THE EKF 

The following section summarizes methods for evaluating the performance of the 

EKF and its application to the UGV-DTN scenario.  These results coupled with the 

theoretical points developed in the previous chapters lead to the proper evaluation and 
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adjustment, or tuning, of the EKF.  Performance measures serve as a means to ensure all 

the statistics are valid and may be used as valid estimates. 

1. Zero-Mean Test on the Innovations 

A tuned EKF provides the optimal, or minimum MSE estimate of the state vector.  

The innovation sequence is used for evaluating performance.  A necessary and sufficient 

condition for the EKF to be optimal is that the innovations sequence must be zero mean 

and white [15].  If we assume that the innovations ˆ( ) ( ) ( | 1)e t z t z t t= − −  are ergodic and 

Gaussian, we can use the sample mean as a test statistic in a zero-mean hypothesis test.  

The ith component of the mean of ( ) ( )1( ) , , pe t e t e t =    is given by: 

 ( )
1

1ˆ ( )
N

e i
t

m i e t
N =

= ∑  (4.13) 

for 1, 2, ,i p=  , where ( )ˆ ( ) ~ , ( ) /e e em i N m R i N , p  is the number of measurements or 

components in ( )e t , and N  is the number of samples in the innovations sequence.  The 

hypotheses in the hypothesis tests 0H  and 1H  are 

 0 : 0eH m =  (4.14) 

 1 : 0.eH m ≠  (4.15) 

At the significance level Hα  , the probability of rejecting the null hypothesis 0H  is given 

by: 

 ( ) ( )
( )

( ) ( )
( )

ˆ
,

/ /
e e i e

H
e e

m i m i i m i
P

R i N R i N
τ

α
 − − > =
 
 

 (4.16) 

where ( )ˆ
eR i  is the sample variance (assuming ergodicity) is given by: 

 ( )2

1

1ˆ ( ) .
N

e
t

R i e t
N =

= ∑  (4.17) 

Given significance level .05Hα =  or 5%, the hypothesis test threshold is [15] 
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 ( )ˆ
1.96 .e

i

R i
N

τ =  (4.18) 

The zero-mean hypothesis test on each component of the innovation ie  is denoted by: 

 ( ) 1

0
ˆ .H

e iH
m i τ>

<
 (4.19) 

Practical implementation of the zero-mean whiteness test is achieved by plotting the 

innovation time series ( )ie t  along with the positive and negative threshold values on the 

same plot.  The number of points that exceed the threshold are counted, divided by the 

total number of samples in the time series N , and compared to the significance level Hα  

to decide if the innovations can be deemed “white.”  The test has limited value unless the 

data are ergodic and Gaussian [31]. 

2. Innovations Whiteness Test 

The innovations whiteness test is a measure of how well the EKF is tuned.  Recall 

that a discrete-time stochastic process is “white” if the autocorrelation function is a 

Kronecker delta at lag zero [33].  This fact allows a practical statistical hypothesis test for 

whiteness.  Assuming ergodicity, a test based on the normalized sample autocovariance 

function of the innovations sequence is 

 ( ) ( )
( )

ˆ ,ˆ , ,ˆ
e

e
e

R i k
i k

R i
ρ =  (4.20) 

where the ith component’s innovation covariance is  

 ( ) ( ) ( ) ( )
1

1ˆ ˆ ˆ( , ) ,
N

e i e i e
t k

R i k e t m i e t k m i
N = +

= − + −      ∑  (4.21) 

i  is the index for the number of measurements 1, 2, ,i p=  , and k  is the correlation lag 

index.  For this test, the number of samples N  represents the number of samples in the 

innovations sequence, over which the covariance is calculated, such that 1, 2, ,k N=  .  

Note that the sum from 1t k= +  to N  avoids the first sample, or the sample at zero lag, 
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which should equal one (the Kronecker delta) when we apply the hypothesis test 

described next. 

 It can be shown that the test statistic is Gaussian ( )ˆ ( , ) ~ 0,1/e i k N Nρ  for an 

asymptotically large ˆ em  [31]; therefore, the 95% confidence interval estimate of ˆ ( , )e i kρ  

is given by: 

 1.96ˆ ( , ) , ( 30).
e eI i k N

Nρ ρ= ± >  (4.22) 

Under the null hypothesis that the innovations ( )ie t  are white, the normalized 

autocovariance ˆ ( , )e i kρ  must lie within the interval 
e

Iρ  95% of the time for 0H  to be 

accepted (i.e., to declare that the innovation is white). 

 In practice the test is implemented by plotting the normalized autocovariance 

ˆ ( , )e i kρ  over N  lags, where 30N > , with the threshold 1.96 / N  on the same plot.  We 

then sum the number of samples that exceed the threshold, divide by N , and compare 

that fraction to the significance level to decide innovation whiteness [31]. 

3. Root Mean Squared State Estimation Error 

The RMSE provides a measure of accuracy, or sufficiency, of the states of the 

estimator.  The RSME evaluates the difference between the estimate and the true value 

within two standard deviations 2σ  with 95% probability.  With the definition of the state 

estimation error kx  defined as 

 | 1ˆ ,k k k kx x x −−


 (4.23) 

where kx  is the true state vector and | 1ˆk kx −  is the estimated state vector, then the expected 

value of the inner product of the state estimation error ˆk k kx x x−
  is the estimator’s 

variance or mean square error is 

 ( )T
k k kE x x MSE x  =     (4.24) 

for the expectations in all cases [32]. 
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 The square root of the MSE, or RMSE, 

 ( )ˆ varx kxσ 
  (4.25) 

is the standard error, or standard deviation of the state estimation error.  Practically the 

state RMSE is found by taking the difference between the true state vector kx  and the 

estimated state vector | 1ˆk kx −  directly from the EKF and taking the square root, providing 

an accuracy up to two x̂σ  with 95% probability [15], [32]. 

4. Weighted Sum Squared Residual 

The innovations whiteness test above is valuable for evaluating the whiteness of 

one innovations component.  Our system has multiple measurements; therefore, we need 

multiple innovations analysis.  The weighted sum squared residual (WSSR) provides a 

method for whiteness testing over all of the innovations by aggregating innovations 

vector information into a single scalar test statistic.  We define the WSSR as a scalar 

test statistic ρ  as follows: 

 ( ) ( ) ( ) ( )1

1

N
T

e
k l N

l e k R k e kρ −

= − +

= ∑  (4.26) 

for l N≥ .  Note that the WSSR is evaluated only for lag l N≥ , because we wish to 

inspect the error covariance at lags after which the transient in the covariance has settled 

down to a reasonable “steady state.”  Note also that the WSSR is calculated over a 

temporal window of N samples; and the window slides through the innovations data as 

the lag  increases.  The hypothesis test for overall whiteness becomes 

 ( ) 1

0
,H

H
lρ τ>

<
 (4.27) 

where τ  denotes the decision threshold.  Under the null hypothesis, ( ) ( )2~l Npρ χ .  

However, for 30Np > , ( ) ( )~ , 2l N Np Npρ  [31].  The probability of rejecting the null 

hypothesis at significance level α  is  
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 ( ) .
2 2

l Np NpP
Np Np

ρ τ α
 − −

> =  
 

 (4.28) 

For a significance level of .05α = , the threshold is 

 1.96 2 ,Np Npτ = +  (4.29) 

where p  is the number of measurements and N  is the number of covariance lag samples 

after which we evaluate the WSSR.  Note that the value of N  can be adjusted in the 

WSSR test [31]. 

Practical implementation of WSSR is achieved by plotting the WSSR for lags 

beyond N  and plotting τ  on the same plot.  The number of WSSR samples that exceed 

the threshold are summed, divided by the total number of WSSR samples, and compared 

to the significance level α  to determine the whiteness of the aggregated innovation 

information in order to evaluate overall whiteness [31]. 

5. Posterior Cramer-Rao Lower Bound 

The PCRLB gives a lower bound on the achievable variance in the estimation of a 

parameter allowing the evaluation of quality.  According to the PCRLB, the quantity 

related to the likelihood of the function must be smaller than the MSE corresponding to 

the estimator of the parameters.  Therefore, the PCRLB gives a reference point from 

which to evaluate the estimator uncertainty.  Assuming nonbiased estimators and 

nonrandom vector parameters, the PCRLB states that the covariance matrix of the state 

estimate error is bounded as follows: 

 ( )( ) 1
| , | |ˆ ˆ ,

T

k k k x k k k k k k kP E x x x x J − = − − ≥  
 (4.30) 

where 1
kJ −  the lower bound on the mean square of the estimate |ˆk kx .  The Fisher 

Information Matrix (FIM) kJ  is 

 ( ) ( ){ }
0

'
,

k k k
k

k x x k x k
x x

J E x xλ λ
=

   = ∇ ∇     (4.31) 
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with gradient x∇  defined as in Eq. (3.13), the true value of the vector parameter kx  as 

*x , and the likelihood function as ( ) ( )*ln |k kx p x xλ = .  The FIM is the contribution of 

the existing information to the data.  Efficiency is achieved when the amount of extracted 

information is equal to the amount of the existing information.  If the FIM is invertible 

(i.e., it is not singular), then the parameter is observable and sufficient information exists 

to allow estimation without ambiguity [15], [31].  Practical implementation of the 

PCRLB is achieved by taking the state estimation error covariance matrix of the EKF 

algorithm with the Jacobian evaluated at the true state kx  and plotting the resulting 

estimation error sequence along with estimated state |ˆk kx  RMSE on the same plot.  The 

location PCRLB for our model is determined to be [16] 

 ( )| |1,1 (4,4),k k k kPCRLB P P= +  (4.32) 

where ( )| 1,1k kP  and | (4, 4)k kP  correspond to positions within the |k kP  matrix. 
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V. SIMULATION EXPERIMENT AND PERFORMANCE 
EVALUATION 

In this section, we present the results of a simulation study, conducted in 

MATLAB [34], to demonstrate and validate the algorithms described earlier.  We 

simulate a single mobile node traveling along a trajectory that includes abrupt maneuvers.  

We use a Gauss-Markov state space model for the node dynamics.  Process noise is 

assumed to be zero.  The measurements are constant power RSSI signals transmitted 

from fixed position base stations.  We use the EKF derived in Chapter IV for state 

estimation, including node position coordinates in a two-dimensional spatial grid 

environment.  Estimation performance is measured using zero mean whiteness tests on 

the innovations sequences, RMSE of the state estimates, WSSRs on the innovations, and 

the PCRLB. 

A. CHOICES FOR THE SIMULATION AND EKF INITIAL PARAMETERS 

1. Model simulation parameters 

The parameters for Simulink are shown in Table 1. 

Table 1.   Simulation parameters for MATLAB implementation.  The parameters follow 
from [16]. 

Discretization time step T  [ ]0.5 s  

Correlation coefficient α  0.6  
Path loss index η  3  

Base station transmission power 0,iz  90  

Covariance 2
wσ  of the noise kw  22 20.5 /m s    

Covariance 2
vσ  of the noise ,i kv  [ ]224 dB  

Maximum speed maxV  [ ]45 /m s  
Transition probabilities ,i ip  0.8  

Initial mode probabilities ,0iµ  1/ , 1, , , 5M i M M= =  
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The parameters are chosen such that the node behavior is realistic.  Abrupt 

maneuvers are included to test the estimator’s ability to adapt to rapid trajectory changes. 

2. EKF Initial Conditions 

The initial state and covariance estimates are given in Table 2. 

Table 2.   EKF initial conditions for MATLAB implementation. 

Initial state estimate ˆ(0 | 0)x  3400
5
0

8700
8
0

 
 
 
 
 
 
 
  
 

 

Initial covariance estimate (0 | 0)P  
2

2

2

2

2

2

400 0 0 0 0 0
0 15 0 0 0 0
0 0 5 0 0 0
0 0 0 400 0 0
0 0 0 0 15 0
0 0 0 0 0 5

 
 
 
 
 
 
 
  
 

 

 

The rule of thumb for choosing the initial state estimate is as follows: we assume 

that we have reasonable a priori knowledge of the initial states of the UGV node because 

we deploy the nodes ourselves.  The rule of thumb for choosing the initial covariance 

estimate is as follows: we use our engineering judgment to estimate the standard 

deviations of the node states based on our knowledge of the operational environment and 

node capabilities.  Small values within the initial covariance matrix imply high levels of 

confidence in the initial state estimate.  Conversely, large values place more emphasis on 

the ability of the state estimator to eventually converge to the proper solution. 

B. SIMULATE THE COMMAND INPUT 

The command input in the testing scenario is generated manually and is assumed 

to have zero process noise; thus, the input is deterministic.  Short-time maneuvers are 
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followed by uniform motion similar to the methodology deployed in [16].  The discrete-

time command processes ,x ku  and ,y ku  can change within the range [ ] 25,5 /m s −   .  The 

command process ku  in the filter is assumed to be a Markov chain, taking the values 

between the following discrete acceleration levels ( ) ( ){ 0.0,0.0 , 3.5,0.0 ,x yM M M= × =   

( ) ( ) ( )}0.0,3.5 , 0.0, 3.5 , 3.5,0.0− −  in the units of 2/m s   .  A plot of the command input 

processes ,x ku  and ,y ku  from the first order semi-Markov chain is illustrated in Figure 7.  

From the command input we expect the UGV node to turn twice, 150 and 200 seconds 

into the simulation.  Knowledge of the turn times shown in Figure 7 allows easy 

interpretation of many of the figures to follow. 

 
Figure 7.  Command input processes ,x ku  and ,y ku  of the first order semi-Markov chain 

chosen for this experiment. 
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C. SIMULATE THE UNCERTAINTIES 

White noise sequences are used to mimic the changing UGV-DTN node and the 

noisy signal measurement.  The changing UGV-DTN node is modeled with zero mean, 

white Gaussian process noise , ,,
T

k x k y kw w w =   , where 2
, ~ 0,k i ww N σ    for 1, 2i = .  The 

noisy signal measurement is modeled with zero mean, white Gaussian measurement noise 

kv , where 2
, ~ 0,k i vv N σ    for 1, 2,3i = . 

The trajectory for the UGV-DTN node was created deterministically by using 

zero process noise, essentially removing node acceleration uncertainty and simulating the 

ideal case.  Even though we did not use process noise, an example of process noise over 

time is plotted with the two sigma bounds 2 1wσ± = ±  overlayed and is illustrated in  

Figure 8.  The histogram of the process noise is presented in Figure 9.  We see from the 

figure that the process noise has zero mean and variance equal to one.  The distribution of 

values in the histogram appears Gaussian around zero. 

The randomness of the RSSI comes from the randomness in the shadowing 

component modeled as measurement noise kv .  The measurement noise over time is 

plotted with the two sigma bounds 2 8vσ± = ±  in Figure 10.  The histogram of the 

measurement noise is presented in Figure 11.  We see from the figure that the process 

noise has zero mean and variance equal to eight.  The distribution of values in the 

histogram appears Gaussian around zero. 
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Figure 8.  Process noise , ,,
T

k x k y kw w w =   of the UGV node over time with corresponding 

two sigma bounds 2 1wσ± = ± . 

 

Figure 9.  Histogram of the zero mean, white Gaussian process noise 2
, ~ 0,k i ww N σ    for 

1, 2i = . 
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Figure 10.  Measurement noise [ ]1 2 3, , T
kv v v v=  of the UGV node over time with the 

corresponding two sigma bounds 2 8vσ± = ± . 

 

 

Figure 11.  Histogram of the zero mean, white Gaussian measurement noise 2
, ~ 0,k i vv N σ    

for 1, 2,3i = . 
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D. ESTIMATION OF STATES WITH THE EKF 

A plot of the estimated track ˆkx  from the EKF overlayed on a plot of the actual 

trajectory to include base stations used for triangulation is shown in Figure 12.  After the 

initial track errors during the transient state, the estimation settles into a trajectory that 

tracks closely to the actual trajectory.  A plot of the estimated root mean speed 

2 2
2, 5,

ˆ ˆ ˆk k kx x x= +  and x and y velocity, 2,ˆ kx , overlayed on a plot of the actual root mean 

speed 2 2
2, 5,k k kx x x= +  and x and y velocity, 2,kx  and 5,kx , is illustrated in Figure 13.  The 

initial velocity errors settle after about 40 seconds of transient behavior and closely track 

the true velocity. 

The simulated measurements 1, 2, 3,, ,
T

k k k kz z z z =    from the Gauss-Markov model 

are plotted and overlayed on the estimated measurements 1, 2, 3,ˆ ˆ ˆ ˆ, ,
T

k k k kz z z z =    from the 

EKF in Figure 14.  The estimated measurements ˆkz  carry a small, fluctuating variance 

from the simulated measurements kz .  The error between the estimated and actual states 

ˆk k kx x x= −  over time is presented in Figure 15.  The errors kx  are shown to be 

acceptable in that they are approximately zero mean and Gaussian in distribution.  The 

errors are shown to be zero-mean and lie within the two-sigma bounds an appropriate 

amount of the time at only three tenths of a percent deviation each. 
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Figure 12.  Estimated track, simulated track, and locations of base stations transmitting RSSI 

signals used for triangulation of the UGV node. 

 
Figure 13.  Speed plots of the UGV node.  Top plot: estimated root mean speed 

2 2
2, 5,

ˆ ˆ ˆk k kx x x= +  and actual root mean speed 2 2
2, 5,k k kx x x= +  of the node.  

Bottom plot: estimated x and y velocity, 2,ˆ kx  and 5,ˆ kx  , and actual x and y 
velocity, 2,kx  and 5,kx  , of the node. 
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Figure 14.  Noisy RSSI measurements 1, 2, 3,ˆ ˆ ˆ ˆ, ,
T

k k k kz z z z =    of the UGV node plotted against 

the true measurements 1, 2, 3,, ,
T

k k k kz z z z =   of the UGV node. 

 

 
Figure 15.  Error between the estimated states and the actual states ˆk k kx x x= −  of the UGV 

nodes and their respective two sigma bounds plotted over time.  Top row 
corresponds to the position, middle row corresponds to the velocity, and bottom 

row corresponds to acceleration of the UGV node. 
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E. PERFORMANCE AND TUNING OF THE EKF 

Now we examine the performance of the EKF using the methods described 

earlier.  First we plot the innovations | 1ˆk k k ke z z −= −  from the EKF along with their “two-

sigma bounds” in Figure 16.  This plot shows that the innovations exhibit good behavior 

through the data record with non-zero means and magnitudes appropriately at only 0.3% 

deviation each beyond the bounds (noted at the bottom of each plot). 

 
Figure 16.  Innovations sequences | 1ˆk k k ke z z −= −  of the UGV node and corresponding two-

sigma bounds plotted over time. 

The whiteness test plots for the three components of the innovations vector ke  are 

shown in Figure 17, Figure 18, and Figure 19.  It can be seen that all innovations are 

white.  This indicates that the autocovariances converge to a value within the two-sigma 
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bounds.  In addition, there are not too many samples outside the bounds at small lags, 

meeting the significance criterion of 5%.  The deviation beyond the two-sigma bounds is 

noted at the bottom of each plot. 

 
Figure 17.  Whiteness test for the innovations ( ) ( ) ( )1 1 1̂ | 1e k z k z k k= − −  on the 

measurement from the first base station.  Positive and negative lags with zero lag 
appearing in the middle of the plot at sample 300. 

 
Figure 18.  Whiteness test for the innovations ( ) ( ) ( )2 2 2ˆ | 1e k z k z k k= − −  on the 

measurement from the second base station.  Positive and negative lags with zero 
lag appearing in the middle of the plot at sample 300. 
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Figure 19.  Whiteness test for the innovations ( ) ( ) ( )3 3 3̂ | 1e k z k z k k= − −  on the 

measurement from the third base station.  Positive and negative lags with zero lag 
appearing in the middle of the plot at sample 300. 

In order to assess the closeness of the estimated trajectory ˆkx   to a given trajectory 

kx , we ensemble averaged the RMSE and PCRLB realizations to smooth RMSE and 

PCRLB estimates.  The ensemble average is taken over 100MCN =  Monte Carlo runs of 

the UGV-DTN mobile node scenario in MATLAB.  The position and speed RMSE 

overlayed with the plot of the PCRLB for position and speed are shown in Figure 20 and 

Figure 21, respectively. In addition, the error between the state RMSE position and 

velocity and the PCRLB position and velocity ˆkx x x= −  is examined over 100 Monte 

Carlo runs in Figure 22.  The errors in position are shown to be less than 100 meters on 

average.  The average errors in velocity are shown to be less than 5 meters per second on 

average.  This indicates that at any time the EKF estimated the position to within 100 

meters and velocity to within 5 meters per second of the best possible estimate 

represented by the PCRLB on average.  Given that the initial covariance value was set 

with an expected uncertainty of 400 meters in position and 15 meters per second in 

velocity, the EKF performed quite sufficiently. 
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Figure 20.  Ensemble average of the position RMSE plotted with the ensemble average of the 

position PCRLB of the UGV node over 100 runs. 

 
Figure 21.  Ensemble average of the velocity RMSE plotted with the ensemble average of the 

velocity PCRLB of the UGV node over 100 runs. 
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Figure 22.  Error between the state RMSE and the PCRLB ˆkx x x= −  over 100 Monte Carlo 

runs.  Left plot: difference between the ensemble average of position the RMSE 
and the ensemble average of the PCRLB of the UGV node over 100 runs 

illustrated in Figure 20.  Right plot: difference between the ensemble average of 
the velocity RMSE and the ensemble average of the PCRLB of the UGV node 

over 100 runs illustrated in Figure 21. 

We examine the WSSR to further explore the EKF performance for the 

innovations vector ke  in Figure 23.  From Figure 23, it can be seen that the WSSR never 

exceeds its threshold, so by this criterion, we declare the EKF to be tuned and the overall 

performance to be acceptable. 

 
Figure 23.  Aggregated innovations vector information WSSR threshold in red plotted against 

the aggregated innovations vector information WSSR sequence in blue. 
 48 



It is important to note that EKF performance is highly sensitive to the choice of 

initial conditions on the state vector and state covariance.  The more prior knowledge one 

has of the operational environment and node behavior, the better choices one can make 

for the initial conditions.  The closer the initial state vector and state covariance matrix 

are to the true state vector and state covariance matrix, the more rapidly the EKF will 

converge to the proper solution. 

The EKF initial conditions determine the reaction of the UGV-DTN node in order 

to converge to the desired states.  That is to say that the more confidence you have in 

your initial state conditions, implying low uncertainty or initial covariance levels, the 

slower the UGV-DTN initially reacts to changes in the desired states.  The node behavior 

does, however, normalize over time.  This implies that the filter eventually converges to 

the desired solution in finite time.  Initial conditions in the EKF will likely prove a useful 

parameter to tailor the initial behavior to suit proposed UGV-DTN routing algorithms. 
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VI. CONCLUSIONS 

The success of a reliable cooperative routing protocol in UGV networks is 

contingent upon our ability to accurately estimate the spatial positions of UGV nodes as a 

function of time. The idea is that the path planning strategy will use the mobility 

estimation model as input to achieve cooperation between individual UGV nodes for 

routing of information. 

In this thesis we have implemented a foundational mobility estimation algorithm 

that can be coupled with a cooperative communication routing algorithm to provide a 

basis for real time path planning in UGV-DTNs.   

The algorithm that is developed is this thesis is based on an EKF technique that 

exploits a non-linear Gauss Markov state model to reflect node dynamics.  The algorithm 

utilizes constant power RSSI signals transmitted from fixed position base stations.  The 

EKF uses a Jacobian matrix, derived in Chapter III, for approximate linearization of the 

non-linear measurements. In this thesis, position is the only state required for 

measurement linearization.  The algorithm works with the underlying assumption that the 

process noise and the measurement noise have Gaussian distributions.  The EKF 

algorithm filters recursively, estimating the current state of the UGV node.  The EKF 

algorithm operates recursively in time, meaning that the current state vector estimate is a 

function of only the estimate at the last time step.  The storage of additional past 

information is not required, so storage resource utilization for individual UGV nodes is 

minimized. 

In our performance evaluations, we simulated a single node traveling along a 

trajectory that includes abrupt maneuvers.  Estimation performance is assessed with zero 

mean whiteness tests on the innovation sequences, RMSE of the state estimates, WSSRs 

on the innovations, and the PCRLB. The algorithm is shown to implement efficient 

mobility tracking of UGV nodes in a wireless network. We have demonstrated that the 

mobility estimator performs effectively and therefore can be legitimately integrated into a 

new cooperative routing protocol with enhanced accuracy. 
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A. FUTURE WORK 

In this thesis, the key issue of mobility estimation and prediction in a UGV-DTN 

is studied.  This is the first step to integrating a stochastic prediction algorithm with path 

planning protocols in a UGV-DTN.  Further research directions should address the 

following important issues. 

1. Combination with Routing Algorithm 

The formulation of a path planning strategy using the mobility prediction model 

developed in this thesis is the next logical and necessary step towards increased reliability 

in UGV-DTN communications.  The mobility prediction model will be used to provide 

external situational awareness (i.e., the position of a UGV node at time t ) which will 

facilitate the development of a usable communication path planning strategy for UGV 

nodes within an individual cluster island.  A UGV-DTN requires a uniquely formulated 

cooperative QoS routing approach that considers realistic resource constraints and 

situational awareness of terrain and surrounding environment.  In that regard, a 

cooperative communication routing algorithm among UGV nodes coupled with the 

mobility prediction algorithm discussed in this thesis will be developed to ensure a real 

time assessment of the best next forwarding nodes in terms of resource availability.  The 

QoS in UGV-DTNs depends on the integration of mobility and situational awareness into 

path planning algorithms so that the probability of connectivity between a pair of UGVs 

is maximized and the aggregate resource consumption is minimized.  The path planning 

strategy will be developed to uniquely suit the constraints and parameters of a UGV-DTN 

ad hoc network. 

2. Utilization of GPS-Enabled Anchor nodes 

This measurement strategy obviates the need for BSs by allowing a subset of the 

mobile nodes (anchor nodes) to carry GPS sensors in addition to their built-in RSSI 

sensors while a subset of non-anchor nodes carry only RSSI sensors.  In addition, a UAV 

will be allowed to carry both GPS and RSSI sensors.  This scheme would allow for the 

superior performance associated with the use of BSs, but with some savings of the costs 

associated with the use of GPS sensors.  This measurement scheme may allow the signal 
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models, modified from those provided in this paper, to be observable.  The adjustment of 

the model to utilize GPS sensors as available can be the subject of a future study. 

3. Estimation Using RBPF 

The process of Rao-Blackwellization is a technique for improving particle 

filtering by analytically marginalizing some of the variables (linear and Gaussian) from 

the joint posterior distributions used in particle filtering.  The linear part of the system 

model is then estimated by a KF, an optimal estimator, while the nonlinear part is 

estimated by a PF.  This leads to the fact that a KF is attached to each particle.  In the 

mobility tracking problem the positions of the mobile unit are estimated with a PF, while 

the speeds and accelerations with a KF [15].  This type of filter is shown in [15] to 

decrease the computational complexity of the PF and decrease the peak-dynamic errors 

during abrupt maneuvers.  These behaviors are important for practical use and may prove 

useful in the UGV-DTN mobility problem.  Mobility estimation of this nature applied to 

the UGV-DTN problem can be the subject of a future study. 

4. Estimation Using Actual UGV-DTN node mobility data 

Actual UGV-DTN mobility data are not currently available.  Generating data by 

deploying a UGV-DTN in a suitable operating environment with RSSI and GPS sensors 

would allow for more realistic evaluation of the algorithm proposed in this thesis and 

future mobility estimation algorithms for the UGV-DTN scenario.  Generation and 

processing of this type of data with the state estimate can be the subject of a future study. 
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APPENDIX 

The appendices that follow document the MATLAB code utilized for simulation 

of the UGV-DTN mobility estimation and tracking problem. 

A. FLOW DIAGRAM OF MATLAB FUNCTIONS 

This appendix presents the flow diagram of the EKF algorithms. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%  BLOCK DIAGRAM OF PROGRAM FLOW %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% 
%                            EKF_Caller_TMB.m 
%                             ^     ^     ^ 
%                             |     |     | 
%                *PLOTS*      |     |     | *PERFORMANCE TESTS* 
%            -----------------      |      --------------------- 
%            |                      |                          | 
%            |                      |                  Whiteness_EKF_TMB 
%            |                   EKF_TMB                   WSSR_TMB    
%      SS_Noise_Plot             ^ ^  ^ ^                  PCRLB_TMB   
%     SS_Nonlin_Plot             | |  | |                      ^ 
%                                | |  | |                      | 
%                                | |  | |             Outlier_Counter_TMB 
%                                | |  | | 
%              ------------------- |  | ------------------------           
%              |            --------  -----                    |            
%              |            |             |                    |          
%              |            |             |                    | 
%           EKF_IC     Build_HH_TMB       |           SS_Model_Build_TMB    
%                      Build_hk_TMB       |              ^     ^            
%                           ^             |              |     |            
%                           |             |              |     |            
%                           ------------- | --------------     |            
%                                       | | |                  | 
%                                   SS_Model_Const       MC_Input_Build 
%                                         ^               ^    ^ 
%                                         |               |    | 
%                                         |  --------------    | 
%                                         |  |                 |         
%                                   Sim_Parameters     getTransitionMatrix 
%                                                              ^ 
%                                                              | 
%                                                              | 
%                                                        getMarkovChain 
%  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

B. EKF CALLER FUNCTION 

This appendix presents the function for building the Jacobian for the AGV mobile 

node problem. 
        function [HH] = Build_HH_TMB(Xp) 
% 
%         FUNCTION: Build_HH_TMB.m 
% 
%         PURPOSE: Function for building the Jacobian for the AGV mobile node problem. 
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% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 28, 2012 
%         DATE OF LAST MODIFICATION:    November 28, 2012    
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:   
%            The user must specify the following inputs: 
                %  
% 
%         OUTPUTS:    
%            The function produces the following results that are passed to the calling 
program 
                % HH = Jacobian 
% 
%         CODES THAT CALL THIS FUNCTION: 
%            1.  EKF_TMB.m                     % Code for EKF 
  
%         CODES CALLED BY THIS FUNCTION: 
%            1.  Sim_Parameters.m              % Passes simulation parameters 
  
%         VARIABLES USED IN THE CODE: 
%            1.  BS                            % matrix of base station coordinates in x 
and y 
%            2.  NBS                           % total number of base stations 
%            3.  Xp                            % predicted state for current EKF 
iteration 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Define simulation parameters 
  
            [Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax]=Sim_Parameters;  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 % C0NSTRUCT THE JACOBIAN (HH) Necessary for the EKF: 
                             
            if NBS <3 
                display('Need more Base Stations for triangulation. (Sim_Parameters.m)'); 
                return; 
            end 
             
            if NBS > 1 
                HH = [-10*eta*(Xp(1)-BS(1,1))/(log(10)*((Xp(1)-BS(1,1))^2+(Xp(4)-
BS(1,2))^2)),0,0,-10*eta*(Xp(4)-BS(1,2))/(log(10)*((Xp(1)-BS(1,1))^2+(Xp(4)-
BS(1,2))^2)),0,0; 
                      -10*eta*(Xp(1)-BS(2,1))/(log(10)*((Xp(1)-BS(2,1))^2+(Xp(4)-
BS(2,2))^2)),0,0,-10*eta*(Xp(4)-BS(2,2))/(log(10)*((Xp(1)-BS(2,1))^2+(Xp(4)-
BS(2,2))^2)),0,0; 
                      -10*eta*(Xp(1)-BS(3,1))/(log(10)*((Xp(1)-BS(3,1))^2+(Xp(4)-
BS(3,2))^2)),0,0,-10*eta*(Xp(4)-BS(3,2))/(log(10)*((Xp(1)-BS(3,1))^2+(Xp(4)-
BS(3,2))^2)),0,0]; 
            end 
             
            if NBS > 3 
                HH = [HH;-10*eta*(Xp(1)-BS(4,1))/(log(10)*((Xp(1)-BS(4,1))^2+(Xp(4)-
BS(4,2))^2)),0,0,-10*eta*(Xp(4)-BS(4,2))/(log(10)*((Xp(1)-BS(4,1))^2+(Xp(4)-
BS(4,2))^2)),0,0]; 
            end 
             
            if NBS > 4 
                HH = [HH;-10*eta*(Xp(1)-BS(5,1))/(log(10)*((Xp(1)-BS(5,1))^2+(Xp(4)-
BS(5,2))^2)),0,0,-10*eta*(Xp(4)-BS(5,2))/(log(10)*((Xp(1)-BS(5,1))^2+(Xp(4)-
BS(5,2))^2)),0,0]; 
            end 
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            if NBS > 5 
                HH = [HH;-10*eta*(Xp(1)-BS(6,1))/(log(10)*((Xp(1)-BS(6,1))^2+(Xp(4)-
BS(6,2))^2)),0,0,-10*eta*(Xp(4)-BS(6,2))/(log(10)*((Xp(1)-BS(6,1))^2+(Xp(4)-
BS(6,2))^2)),0,0]; 
            end 
             
            if NBS > 6 
                HH = [HH;-10*eta*(Xp(1)-BS(7,1))/(log(10)*((Xp(1)-BS(7,1))^2+(Xp(4)-
BS(7,2))^2)),0,0,-10*eta*(Xp(4)-BS(7,2))/(log(10)*((Xp(1)-BS(7,1))^2+(Xp(4)-
BS(7,2))^2)),0,0]; 
            end 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%  END of M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

C. WSSR FUNCTION 

This appendix presents the function that performs the WSSR test on the 

innovations vector. 
           function WSSR_TMB(E,RRe,Nsamples,Nw,Nz,Ts)   
  
  
%      PURPOSE:  Perform Weighted Sum Squared Residual (WSSR) test on an innovations 
vector 
% 
%      SOURCE:                     Matlab M-files 
%      VERSION:                    2.0 
%      DATE FIRST WRITTEN:         December 5, 2012 
%      DATE LAST MODIFIED:         December 5, 2012 
  
%      AUTHOR:      Timothy M. Beach (TMB)   
% 
%      INPUTS:   
%               1. E = the innovations vector (Nz by Nsamps) 
%               2. RRe = Innovations covariance matrix for all times (Nz by Nz by Nsamps) 
%               3. Nsamples = the number of time samples over which to compute the 
variables 
%               4. Nw = Window length over which to compute the WSSR 
%               5. Nz = Number of output measurements in the state-space model 
%               6. Ts = the temporal sampling interval 
%               7. Tstart = the starting time (sample) to use for the innovations signals 
  
%     OUTPUTS:  WSSR plot    
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Set up some constants, etc. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    tplot_start     = Nw*Ts;                    % Time at which to start plotting WSSR  
    tplot_end       = (Nsamples-1)*Ts;          % Ending time on the plot             
     
     
    Cinterval = 1.96;       % The constant for the confidence interval 
    alpha = .05;            % The significance level for the hypothesis test 
    Nlags = Nsamples-Nw;    % The number of lags over which WSSR is calculated 
     
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Compute quantities needed to plot the WSSR results 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%----------------------------------------------------------------------------------------    
    % Set up a loop for calculating the WSSR 
%---------------------------------------------------------------------------------------- 
     
        WSSR = zeros(1,Nlags);  % Initialize the WSSR vector  
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        for m = Nw:(Nlags) 
            k = m - Nw + 1;               % Define the index over which to sum the WSSR 
             
            WSSR(m)     = WSSR(m) + E(:,k)'*(inv(RRe(:,:,k)))*E(:,k); % Sum up the 
quadratic forms computing inverse each time 
             
        end; 
         
         
%----------------------------------------------------------------------------------------  
    % Compute bounds (threshold(s)) and count number of samples that exceed the bounds 
%---------------------------------------------------------------------------------------- 
     
        tau = Nw*Nz + 1.96*sqrt(2*Nw*Nz);           % Threshold for the WSSR test 
     
        icount = 0;                                 % Initialize the counter 
         
        [icount,nn] = size(find(WSSR(:) > tau));    % Search for the indices of the WSSR 
values that exceed the threshold, tau 
                                                                                 
        percent = (icount/Nlags)*100.;              % Find percentage of WSSR values 
                                                    % that lie outside the bounds 
%---------------------------------------------------------------------------------------- 
    % Test if more than alpha percent of the WSSR values exceed the threshold, tau 
%---------------------------------------------------------------------------------------- 
     
        if (percent > alpha)                % Test if the percentage of WSSR values that 
                                            % lie outside the bounds is greater than 
alpha 
                disp(' ') 
                disp('   ##### WSSR > Tau, so the EKF is NOT tuned #####') % Print to 
command window 
                disp(' ') 
                badcnt=1; 
                good='n'; 
               
           else 
                disp(' ') 
                disp('   ***** WSSR < Tau, so the EKF is tuned *****') % Print to command 
window 
                disp(' ') 
                good='y'; 
                 
        end 
         
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   
% Plot the WSSR results 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        tplot = (0:Nlags-1)*Ts + tplot_start;                % Create a time vector for 
plotting WSSR 
         
        wtitle = sprintf('Lags  (Percent  /  # samples out of bounds = %4.2f  (%g))',  
percent,  icount);  % Prepare a plot title 
  
        ttitle = sprintf('WSSR  =  Weighted Sum Squared Residuals,   Nw = %4.0f ',Nw); 
         
         
        figure 
        plot(tplot,WSSR,'-b',tplot,tau,'--r') 
        grid on 
        %title(ttitle) 
      % axis([tplot_start tplot_end 0 400])            % Force my own axis limits 
        ylabel('WSSR') 
        xlabel(wtitle) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%   END OF M-FILE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

D. WHITENESS FUNCTION 

This appendix presents the function that performs a statistical whiteness test on a 

given signal. 
        function Whiteness_EKF_TMB(E,Ts,Tstart) 
  
   
%         PURPOSE: Perform statistical whiteness tests on a given signal 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             December 1, 2012 
%         DATE OF LAST MODIFICATION:    December 1, 2012     
%  
%         AUTHOR:       TMB (TMB) 
% 
%         INPUTS:        
%               1. E = the signal to test for whiteness 
%               2. t = the sampling interval 
%               3. Tstart = the starting time (sample) to use for the signal E 
  
  
%         OUTPUTS:      None     
  
%   Code(s) that call this function:  
%           1. EKF_Caller_TMB.m 
  
%   Codes called by this function:  
%           none 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% DEFINE PARAMETERS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        Cinterval = 1.96;       % Cinterval = the multiplier on the "sigma" of the  
                                % distribution used to define the bounds 
         
        bndpct = 5;             % bndpct = the probability used to define the confidence 
                                % interval as follows: 
                                % P(Lower bound < variable < Upper bound) = 1-bncpct 
  
             
        Nsamps = length(E);     % E = error signal = innovations 
         
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% DEFINE AUTOCORRELATIONS: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
  
         Rinnov = xcorr(E,'coeff');     % Rinnov = the normalized autocorrelation of E 
(rho) 
          
         Nlags = length(Rinnov);        % Nlags = No. of lags over which to calculate Ree 
          
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%          
% PRINT OUT THE MEAN OF THE INNOVATIONS (TEST FOR ZERO MEAN INNOVATIONS) 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
  
         innovMean = sprintf('ZERO MEAN / WHITENESS TEST: (Innov. Mean = %7.2e < 2Sigma 
Bound = %7.2e) ', ... 
                             abs(mean(E)), Cinterval*sqrt(Rinnov(1)/Nlags)); 
    
          
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
% COMPUTE THE BOUNDS, ETC. OF THE CONFIDENCE INTERVAL: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%% 
  
         boundup = ( Cinterval/(sqrt(Nsamps)) )*ones(Nlags,1);      % Compute upper two-
sigma bound 
          
         icount = 0;                                                % Initialize icount 
to zero 
                                                                    % icount = the number 
of autocorr. 
                                                                    % samples that fall 
outside the  
                                                                    % two sigma bounds. 
          
         ictup = find(Rinnov(2:Nlags) > boundup(1:Nlags-1));        % Find the values of 
the autocorr. 
                                                                    % that exceed the 
upper two-sigma bound 
                                                                    % "find(X)" finds the 
indices and values 
                                                                    % of nonzero elements 
in X.  Don't count 
                                                                    % the first point in 
Rinnov 
  
         ictlow = find(Rinnov(2:Nlags) < -boundup(1:Nlags-1));      % Find the values of 
the autocorr. 
                                                                    % that exceed the 
lower bound.  Don't  
                                                                    % count the first 
point in Rinnov 
          
         [ict1,nn] = size(ictup);                                   % Find the size of 
ictup 
         [ict2,nn] = size(ictlow);                                  % Find the size of 
ictlow 
                 
  
         icount = ict1 + ict2;                      % Total number of autocorrelation 
values  
                                                        % that fall outside the bounds 
  
         percent = (icount/Nlags)*100.;             % Find percentage of autocorrelation 
values 
                                                        % that lie outside the bounds 
                                                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
% PLOT WHITENESS TEST RESULTS: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
                                         
    figure('NumberTitle','on','Name','Whiteness Test','color',[.75 .75 .75], ...  
                                            'units','norm');                                     
    subplot(1,1,1) 
    wtitle = sprintf('Lag Time in Seconds  (No. Pts. Outside Bound = %3.0f  ( Percent = 
%2.1g))',icount,percent); 
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    %------------------------------------------------------------------------------------
--------- 
    % Compute the times in seconds corresponding to the lags we wish to plot 
    %------------------------------------------------------------------------------------
--------- 
     
        Tplot = (0:Nlags-1)*Ts + Tstart;                % Compute times (in seconds) for 
plotting 
                                                        % This is where Tstart enters the 
formulation 
   
  
    %------------------------------------------------------------------------------------
--------- 
    % PLOT THE AUTOCORRELATION: 
    %------------------------------------------------------------------------------------
--------- 
            
        plot(Tplot,Rinnov,'-b',Tplot,boundup, '--r' ...              
                                     ,Tplot,-boundup,'--r');     % Plot the 
autocorrelation and the 
                                                                 % two-sigma bounds 
around it 
        grid on;         
        ylabel('Normalized Autocorrelation of E') 
        %title(innovMean)                                         % Get the title from 
above 
        xlabel(wtitle)                                           % Get the xlabel from 
above   
  
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
% COMPUTE THE PERCENTAGE OF SAMPLES THAT LIE OUTSIDE THE BOUNDS 
%       AND DECLARE THE SIGNAL TO BE WHITE OR NON-WHITE 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%% 
  
  
      if (percent > bndpct)                     % Test if the percentage of 
autocorrelation values that 
                                                % lie outside the bounds is greater than 
bndpct 
              disp(' ') 
              disp('   ##### Non-White #####')  % If so, declare the signal to be non-
white 
              badcnt=1; 
              good='n'; 
           else 
                
              disp(' ') 
              disp('   ***** White *****')      % If not, declare the signal to be white 
              good='y'; 
               
      end 
       
       
       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   END OF M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

E. STATE SPACE NONLINEAR FUNCTION 

This appendix presents the function that plots the nonlinear state space model 

inputs and outputs. 
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          function SS_Nonlin_Plot(t,u,x,BS,NBS,z,Zpr,E,Rin,Xcor,Xtilda,Pcor) 
  
%     
%         PURPOSE: Plot nonlinear state space model inputs, outputs 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 18, 2012 
%         DATE OF LAST MODIFICATION:    December 1, 2012     
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:        
%            Input arguments are of the following form: 
%                t = vector of time samples used in the simulation 
%                u = vector of inputs to the state space system 
%                z = vector of outputs from the state space system 
%                x = vector of states of the state space system 
  
  
%         OUTPUTS:      None - The results are plots     
  
%   Code(s) that call this function:  
%           1. SS_Model_Build_TMB.m 
  
%   Codes called by this function:    
%           None 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
            Nsamples=size(t,1); 
  
       % Plot the command input values (u) 
         
            figure 
             
            hold on; 
            subplot(2,1,1) 
            plot(t,u(1,:),'r') 
            title('Command Input in x direction (uk)') 
            ylabel('Acceleration (m/s^2)') 
            xlabel('Time (s)') 
            grid on 
            subplot(2,1,2) 
            plot(t,u(2,:),'b') 
            title('Command Input in y direction (uk)') 
            ylabel('Acceleration (m/s^2)') 
            xlabel('Time (s)') 
            grid on 
             
        % Plot the Actual Trajectory (x), Estimated Trajectoryj, Base Stations (BS) 
        % and Error of the state estimate (Xtilda), Two Sigma Bounds (Bound_Xtilda)  
        % and No. of points lying outside the Two Sigma Bounds 
          
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    % DEFINE PARAMETERS  
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
     
        Cinterval = 1.96;                           % (TMB) Cinterval = the multiplier on 
the "sigma" of the distribution used to define the bounds 
         
        bndpct = 5;                                 % (TMB) bndpct = the probability used 
to define the confidence interval as follows: P(Lower bound < variable < Upper bound) = 
1-bncpct 
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    % Calculate the Two Sigma Bounds for Xtilda to use on the plot 
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                         
            clear Bound_Xtilda; 
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            Bound_Xtilda = (Cinterval)*sqrt(Pcor);      % Upper (Positive) Bound 
         
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    % COUNT THE NO. OF POINTS LYING OUTSIDE THE BOUNDS 
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
     
        % Count the number of signal points lie outside the given two sigma bounds 
        % for the 2 components of the vector Xtilda: 
  
            [icount_1,percent_1] = 
Outlier_Counter_TMB(Xtilda(1,:),Bound_Xtilda(1,:),Nsamples,NBS);                               
            [icount_2,percent_2] = 
Outlier_Counter_TMB(Xtilda(2,:),Bound_Xtilda(2,:),Nsamples,NBS); 
            if NBS > 2 
                [icount_3,percent_3] = 
Outlier_Counter_TMB(Xtilda(3,:),Bound_Xtilda(3,:),Nsamples,NBS); 
            end 
            if NBS > 3 
                [icount_4,percent_4] = 
Outlier_Counter_TMB(Xtilda(4,:),Bound_Xtilda(4,:),Nsamples,NBS); 
            end 
            if NBS > 4 
                [icount_5,percent_5] = 
Outlier_Counter_TMB(Xtilda(5,:),Bound_Xtilda(5,:),Nsamples,NBS); 
            end 
            if NBS > 5 
                [icount_6,percent_6] = 
Outlier_Counter_TMB(Xtilda(6,:),Bound_Xtilda(6,:),Nsamples,NBS); 
            end 
            if NBS > 6 
                [icount_7,percent_7] = 
Outlier_Counter_TMB(Xtilda(7,:),Bound_Xtilda(7,:),Nsamples,NBS); 
            end 
             
  
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     
    % Plot 
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
            figure 
             
            hold on; 
            plot(x(1,:),x(4,:),'r') 
            plot(Xcor(1,:),Xcor(4,:),'--b') 
            plot (BS(1,1),BS(1,2),'bd') 
            plot (BS(2,1),BS(2,2),'gd') 
            if NBS > 2 
                plot (BS(3,1),BS(3,2),'rd') 
            end 
            if NBS > 3 
                plot (BS(4,1),BS(4,2),'cd') 
            end 
            if NBS > 4 
                plot (BS(5,1),BS(5,2),'md') 
            end 
            if NBS > 5 
                plot (BS(6,1),BS(6,2),'yd') 
            end 
            if NBS > 6 
                plot (BS(7,1),BS(7,2),'kd') 
            end 
            title('Trajectories'); 
            xlabel('x coordinate, [m]'); 
            ylabel('y coordinate, [m]'); 
            if NBS == 2 
                legend('Actual Trajectory','Estimated Trajectory','BS1','BS2') 
            elseif NBS == 3 
                legend('Actual Trajectory','Estimated Trajectory','BS1','BS2','BS3') 
            elseif NBS == 4 
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                legend('Actual Trajectory','Estimated 
Trajectory','BS1','BS2','BS3','BS4') 
            elseif NBS == 5 
                legend('Actual Trajectory','Estimated 
Trajectory','BS1','BS2','BS3','BS4','BS5') 
            elseif NBS == 6 
                legend('Actual Trajectory','Estimated 
Trajectory','BS1','BS2','BS3','BS4','BS5','BS6') 
            elseif NBS == 7 
                legend('Actual Trajectory','Estimated 
Trajectory','BS1','BS2','BS3','BS4','BS5','BS6','BS7') 
            end 
            grid on 
             
             
            figure 
             
            subplot(NBS,1,1) 
            hold on; 
            plot(t,Xtilda(1,:),'r',t,Bound_Xtilda(1,:),'--b',t,-Bound_Xtilda(1,:),'--b') 
            title('Xtilda_1 = x(t) - xhat_1(t|t) and Two Sigma Bounds vs. Time');              
            ylabel('Xtilda_1(t)'); 
            xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( Percent = 
%2.1g))',icount_1,percent_1)); 
            grid on 
            if NBS > 1 
                subplot(NBS,1,2) 
                hold on; 
                plot(t,Xtilda(2,:),'r',t,Bound_Xtilda(2,:),'--b',t,-Bound_Xtilda(2,:),'--
b') 
                title('Xtilda_2 = x(t) - xhat_2(t|t) and Two Sigma Bounds vs. Time');              
                ylabel('Xtilda_2(t)'); 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_2,percent_2)); 
                grid on 
            end 
            if NBS > 2 
                subplot(NBS,1,3) 
                hold on; 
                plot(t,Xtilda(3,:),'r',t,Bound_Xtilda(3,:),'--b',t,-Bound_Xtilda(3,:),'--
b') 
                title('Xtilda_3 = x(t) - xhat_3(t|t) and Two Sigma Bounds vs. Time');              
                ylabel('Xtilda_3(t)'); 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_3,percent_3)); 
            end 
            if NBS > 3 
                subplot(NBS,1,4) 
                hold on; 
                plot(t,Xtilda(4,:),'r',t,Bound_Xtilda(4,:),'--b',t,-Bound_Xtilda(4,:),'--
b') 
                title('Xtilda_4 = x(t) - xhat_4(t|t) and Two Sigma Bounds vs. Time');              
                ylabel('Xtilda_4(t)'); 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_4,percent_4)); 
                grid on 
            end 
            if NBS > 4 
                subplot(NBS,1,5) 
                hold on; 
                plot(t,Xtilda(5,:),'r',t,Bound_Xtilda(5,:),'--b',t,-Bound_Xtilda(5,:),'--
b') 
                title('Xtilda_5 = x(t) - xhat_5(t|t) and Two Sigma Bounds vs. Time');              
                ylabel('Xtilda_5(t)'); 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_5,percent_5)); 
                grid on 
            end 
            if NBS > 5 
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                subplot(NBS,1,6) 
                hold on; 
                plot(t,Xtilda(6,:),'r',t,Bound_Xtilda(6,:),'--b',t,-Bound_Xtilda(6,:),'--
b') 
                title('Xtilda_6 = x(t) - xhat_6(t|t) and Two Sigma Bounds vs. Time');              
                ylabel('Xtilda_6(t)'); 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_6,percent_6)); 
                grid on 
            end 
            if NBS > 6 
                subplot(NBS,1,7) 
                hold on; 
                plot(t,Xtilda(7,:),'r',t,Bound_Xtilda(7,:),'--b',t,-Bound_Xtilda(7,:),'--
b') 
                title('Xtilda_7 = x(t) - xhat_7(t|t) and Two Sigma Bounds vs. Time');              
                ylabel('Xtilda_7(t)'); 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_7,percent_7)); 
                grid on 
            end 
             
        % Plot the measurment values (z), predicted measurment values (Zpr), 
        % innovations (E), Two Sigma Bounds (Bound_E) and No. of points  
        % lying outside the Two Sigma Bounds 
         
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
    % COMPUTE THE BOUNDS for E, COUNT THE NO. OF POINTS LYING OUTSIDE THE BOUNDS 
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
        % Calculate the Two Sigma Bounds for E to use on the plot 
                         
            Bound_E = (Cinterval)*sqrt(Rin);      % 2 X Nsamples Upper (Positive) Bound 
             
                             
        % Count the number of signal points lie outside the given two sigma bounds 
        % for the 3 components of the innovations vector E: 
  
            [icount_1,percent_1] = Outlier_Counter_TMB(E(1,:),Bound_E(1,:),Nsamples,NBS);                                
            [icount_2,percent_2] = Outlier_Counter_TMB(E(2,:),Bound_E(2,:),Nsamples,NBS); 
            if NBS > 2 
                [icount_3,percent_3] = 
Outlier_Counter_TMB(E(3,:),Bound_E(3,:),Nsamples,NBS); 
            end 
            if NBS > 3 
                [icount_4,percent_4] = 
Outlier_Counter_TMB(E(4,:),Bound_E(4,:),Nsamples,NBS); 
            end 
            if NBS > 4 
                [icount_5,percent_5] = 
Outlier_Counter_TMB(E(5,:),Bound_E(5,:),Nsamples,NBS); 
            end 
            if NBS > 5 
                [icount_6,percent_6] = 
Outlier_Counter_TMB(E(6,:),Bound_E(6,:),Nsamples,NBS); 
            end 
            if NBS > 6 
                [icount_7,percent_7] = 
Outlier_Counter_TMB(E(7,:),Bound_E(7,:),Nsamples,NBS); 
            end 
            
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     
    % Plot 
    %~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
                 
            figure 
             
            hold on; 
            subplot(NBS,1,1) 
            plot(t,z(1,:),'r',t,Zpr(1,:),'b') 
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            title('Actual Measurement (zk_1)') 
            ylabel('Distance from BS_1 (m)') 
            xlabel('Time (s)') 
            grid on 
            subplot(NBS,1,2) 
            plot(t,z(2,:),'r',t,Zpr(2,:),'b') 
            title('Actual Measurement (zk_2)') 
            ylabel('Distance from BS_2 (m)') 
            xlabel('Time (s)') 
            grid on 
             
           if NBS > 2 
                subplot(NBS,1,3) 
                plot(t,z(3,:),'r',t,Zpr(3,:),'b') 
                title('Actual Measurement (zk_3)') 
                ylabel('Distance from BS_3 (m)') 
                xlabel('Time (s)') 
                grid on 
            end 
            
            elseif NBS > 3 
                subplot(NBS,1,4) 
                plot(t,z(4,:),'r',t,Zpr(4,:),'b') 
                title('Actual Measurement (zk_4)') 
                ylabel('Distance from BS_4 (m)') 
                xlabel('Time (s)') 
                grid on                 
            end 
             
            elseif NBS > 4 
                subplot(NBS,1,5) 
                plot(t,z(5,:),'r',t,Zpr(5,:),'b') 
                title('Actual Measurement (zk_5)') 
                ylabel('Distance from BS_5 (m)') 
                xlabel('Time (s)') 
                grid on   
            end 
             
            if NBS > 5 
                subplot(NBS,1,6) 
                plot(t,z(6,:),'r',t,Zpr(6,:),'b') 
                title('Actual Measurement (zk_6)') 
                ylabel('Distance from BS_6 (m)') 
                xlabel('Time (s)') 
                grid on 
            end 
             
            if NBS > 6 
                subplot(NBS,1,7) 
                plot(t,z(7,:),'r',t,Zpr(7,:),'b') 
                title('Actual Measurement (zk_7)') 
                ylabel('Distance from BS_7 (m)') 
                xlabel('Time (s)') 
                grid on 
            end 
             
             
            figure 
            
            hold on 
            subplot(NBS,1,1) 
            plot(t,E(1,:),'-r',t,Bound_E(1,:),'--b',t,-Bound_E(1,:),'--b'); 
            title('Innovations E = e(t) and Two Sigma Bounds vs. Time') 
            xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( Percent = 
%2.1g))',icount_1,percent_1)) 
            ylabel('E_1(t)') 
            grid on 
            subplot(2,1,2) 
            plot(t,E(2,:),'-r',t,Bound_E(2,:),'--b',t,-Bound_E(2,:),'--b'); 
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            title('Innovations E = e(t) and Two Sigma Bounds vs. Time') 
            xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( Percent = 
%2.1g))',icount_2,percent_2)) 
            ylabel('E_2(t)') 
            grid on            
  
             
  
             
           if NBS > 2 
                figure 
             
                hold on; 
                subplot(2,1,1) 
                plot(t,z(3,:),'r',t,Zpr(3,:),'b') 
                title('Actual Measurement (zk_3)') 
                ylabel('Distance from BS_3 (m)') 
                xlabel('Time (s)') 
                grid on 
                subplot(2,1,2) 
                plot(t,E(3,:),'-r',t,Bound_E(3,:),'--b',t,-Bound_E(3,:),'--b'); 
                title('Innovations E = e(t) and Two Sigma Bounds vs. Time') 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_3,percent_3)) 
                ylabel('E_3(t)') 
                grid on 
            end 
            
            if NBS > 3 
                figure 
             
                hold on; 
                subplot(2,1,1) 
                plot(t,z(4,:),'r',t,Zpr(4,:),'b') 
                title('Actual Measurement (zk_4)') 
                ylabel('Distance from BS_4 (m)') 
                xlabel('Time (s)') 
                grid on 
                subplot(2,1,2) 
                plot(t,E(4,:),'-r',t,Bound_E(4,:),'--b',t,-Bound_E(4,:),'--b'); 
                title('Innovations E = e(t) and Two Sigma Bounds vs. Time') 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_4,percent_4)) 
                ylabel('E_4(t)') 
                grid on 
            end 
             
            if NBS > 4 
                figure 
             
                hold on; 
                subplot(2,1,1) 
                plot(t,z(5,:),'r',t,Zpr(5,:),'b') 
                title('Actual Measurement (zk_5)') 
                ylabel('Distance from BS_5 (m)') 
                xlabel('Time (s)') 
                grid on 
                subplot(2,1,2) 
                plot(t,E(5,:),'-r',t,Bound_E(5,:),'--b',t,-Bound_E(5,:),'--b'); 
                title('Innovations E = e(t) and Two Sigma Bounds vs. Time') 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_5,percent_5)) 
                ylabel('E_5(t)') 
                grid on 
            end 
             
            if NBS > 5 
                figure 
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                hold on; 
                subplot(2,1,1) 
                plot(t,z(6,:),'r',t,Zpr(6,:),'b') 
                title('Actual Measurement (zk_6)') 
                ylabel('Distance from BS_6 (m)') 
                xlabel('Time (s)') 
                grid on 
                subplot(2,1,2) 
                plot(t,E(6,:),'-r',t,Bound_E(6,:),'--b',t,-Bound_E(6,:),'--b'); 
                title('Innovations E = e(t) and Two Sigma Bounds vs. Time') 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_6,percent_6)) 
                ylabel('E_6(t)') 
                grid on 
            end 
             
            if NBS > 6 
                figure 
             
                hold on; 
                subplot(2,1,1) 
                plot(t,z(7,:),'r',t,Zpr(7,:),'b') 
                title('Actual Measurement (zk_7)') 
                ylabel('Distance from BS_7 (m)') 
                xlabel('Time (s)') 
                grid on 
                subplot(2,1,2) 
                plot(t,E(7,:),'-r',t,Bound_E(7,:),'--b',t,-Bound_E(7,:),'--b'); 
                title('Innovations E = e(t) and Two Sigma Bounds vs. Time') 
                xlabel(sprintf('Time in Seconds  (No. Pts. Outside Bound = %3.0g  ( 
Percent = %2.1g))',icount_7,percent_7)) 
                ylabel('E_7(t)') 
                grid on 
            end 
             
             
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%  End of M-File   %%%%%%%%%%%%%%%%%%%%%%%%%%%%     
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

F. STATE SPACE NOISE FUNCTION 

This appendix presents the function that plots the process and measurement noise 

of the state space model. 
        function SS_Noise_Plot(NBS,t,V,W) 
  
% 
%         FUNCTION: SS_Noinse_Plot 
% 
%         PURPOSE: Plot process and measurment noise of the SS model 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 18, 2012 
%         DATE OF LAST MODIFICATION:    November 18, 2012 
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:        
%            Input arguments are of the following form: 
%                t = vector of time samples used in the simulation 
%                u = vector of inputs to the state space system 
%                z = vector of outputs from the state space system 
%                x = vector of states of the state space system 
  
  
%         OUTPUTS:      None - The results are plots     
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%   Code(s) that call this function:  
%           1. SS_Model_Build_TMB.m 
  
%   Codes called by this function:    
%           None 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
    [Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax,p_t]=Sim_Parameters; 
  
% Condition Matrices for plotting 
  
    V=V.'; 
    W=W.'; 
  
% Plot the SS model noise sequences 
    figure 
                    
    figname=['Process Noise W(t):   ']; 
    subplot(2,1,1) 
    plot(t,W(:,1),'b',t,2*stdW*(ones(size(t))),'--r',t,-2*stdW*(ones(size(t))),'--r') 
    %title('Process Noise W_x(t) vs. Time'); 
    xlabel('Time in Seconds'); 
    ylabel('W_x(t)'); 
    grid on 
    subplot(2,1,2) 
    plot(t,W(:,2),'r',t,2*stdW*(ones(size(t))),'--r',t,-2*stdW*(ones(size(t))),'--r') 
    %title('Process Noise W_y(t) vs. Time'); 
    xlabel('Time in Seconds'); 
    ylabel('W_y(t)'); 
    grid on 
     
    figure 
     
    figname=['Measurement Noise V(t):   ']; 
    subplot(NBS,1,1) 
    plot(t,V(:,1),'b',t,2*stdV*(ones(size(t))),'--r',t,-2*stdV*(ones(size(t))),'--r') 
    %title('Measurement Noise V_1(t) vs. Time'); 
    xlabel('Time in Seconds'); 
    ylabel('V_1(t)'); 
    grid on 
    subplot(NBS,1,2) 
    plot(t,V(:,2),'r',t,2*stdV*(ones(size(t))),'--b',t,-2*stdV*(ones(size(t))),'--b') 
    %title('Measurement Noise V_2(t) vs. Time'); 
    xlabel('Time in Seconds'); 
    ylabel('V_2(t)');     
    if (NBS > 2) 
        subplot(NBS,1,3) 
        plot(t,V(:,3),'g',t,2*stdV*(ones(size(t))),'--b',t,-2*stdV*(ones(size(t))),'--b') 
        %title('Measurement Noise V_3(t) vs. Time'); 
        xlabel('Time in Seconds'); 
        ylabel('V_3(t)'); 
    end    
    if (NBS > 3) 
        subplot(NBS,1,4) 
        plot(t,V(:,4),'c',t,2*stdV*(ones(size(t))),'--b',t,-2*stdV*(ones(size(t))),'--b') 
        title('Measurement Noise V_4(t) vs. Time'); 
        xlabel('Time in Seconds'); 
        ylabel('V_4(t)'); 
    end         
    if (NBS > 4) 
        subplot(NBS,1,5) 
        plot(t,V(:,5),'m',t,2*stdV*(ones(size(t))),'--b',t,-2*stdV*(ones(size(t))),'--b') 
        title('Measurement Noise V_5(t) vs. Time'); 
        xlabel('Time in Seconds'); 
        ylabel('V_5(t)'); 
    end   
    if (NBS > 5) 
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        subplot(NBS,1,6) 
        plot(t,V(:,6),'y',t,2*stdV*(ones(size(t))),'--b',t,-2*stdV*(ones(size(t))),'--b') 
        title('Measurement Noise V_6(t) vs. Time'); 
        xlabel('Time in Seconds'); 
        ylabel('V_6(t)'); 
    end 
    if (NBS > 6)  
        subplot(NBS,1,7) 
        plot(t,V(:,7),'k',t,2*stdV*(ones(size(t))),'--b',t,-2*stdV*(ones(size(t))),'--b') 
        title('Measurement Noise V_7(t) vs. Time'); 
        xlabel('Time in Seconds'); 
        ylabel('V_7(t)'); 
    end 
    grid on    
     
     
% Plot the noise statistics for diagnostic purposes 
  
     figure 
          
     figname=['Histogram of the Process Noise W(t):   ']; 
     hist(W);    % Plot the Histogram 
     %title('Histogram of the Process Noise W(t)'); 
     xlabel('Bin'); 
     ylabel('Number of Counts in Each Bin'); 
     legend('W_1(t)','W_2(t)') 
     grid on 
             
     figure 
            
     figname=['Histogram of the Measurement Noise V(t):   ']; 
     hist(V);    % Plot the Histogram 
     %title('Histogram of the Measurement Noise V(t)'); 
     xlabel('Bin'); 
     ylabel('Number of Counts in Each Bin'); 
     if NBS == 2 
         legend('V_1(t)','V_2(t)')     
     end 
     if NBS == 3 
          legend('V_1(t)','V_2(t)','V_3(t)') 
     end 
     if NBS == 4 
          legend('V_1(t)','V_2(t)','V_3(t)','V_4(t)') 
     end 
     if NBS == 5 
          legend('V_1(t)','V_2(t)','V_3(t)','V_4(t)','V_5(t)') 
     end 
     if NBS == 6 
          legend('V_1(t)','V_2(t)','V_3(t)','V_4(t)','V_5(t)','V_6(t)') 
     end 
     if NBS == 7 
          legend('V_1(t)','V_2(t)','V_3(t)','V_4(t)','V_5(t)','V_6(t)','V_7(t)') 
     end 
     grid on 
     
      
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  End of M-File   %%%%%%%%%%%%%%%%%%%%%%%%%%%%  

G. STATE SPACE MODEL CONSTANT FUNCTION 

This appendix presents the function that defines the state space model constants. 
        function [a,bu,bw]=SS_Model_Const(Ts,alpha) 
  
% 
%         FUNCTION: SS_Model_Const.m 
% 
%         PURPOSE: Function for defining the State Space Model Constants. 
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% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 18, 2012 
%         DATE OF LAST MODIFICATION:    November 18, 2012    
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:   
%            The user must specify the following inputs: 
                % Ts = Sampling period for the discrete-time signals 
                % alpha = reciprocal of the maneuvering constant             
% 
%         OUTPUTS:    
%            The function produces the following results that are passed to the calling 
program 
                % a = the discrete system matrix (Nx by Nx) 
                % bu = the discrete input matrix (Nx by Nu) 
                % bw = the discrete process noise matrix (Nx by Nu) 
% 
%         CODES THAT CALL THIS FUNCTION: 
%            1.  SS_Model_Build_TMB.m          % Gauss_Markov model builder code 
%            2.  EKF_TMB.m                     % Code for EKF 
  
%         CODES CALLED BY THIS FUNCTION: 
%            None 
  
%         VARIABLES USED IN THE CODE: 
%            None 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        %Define constants used in the State Space Model builder 
         
                a = [1, Ts, (Ts^2)/2, 0,  0,        0;      % Discrete system matrix 
                     0,  1,       Ts, 0,  0,        0; 
                     0,  0,    alpha, 0,  0,        0; 
                     0,  0,        0, 1, Ts, (Ts^2)/2; 
                     0,  0,        0, 0,  1,       Ts; 
                     0,  0,        0, 0,  0,     alpha]; 
                bu = [(Ts^2)/2,        0;                   % Discrete input matrix 
                            Ts,        0; 
                             0,        0; 
                             0, (Ts^2)/2; 
                             0,       Ts; 
                             0,        0]; 
                bw = [(Ts^2)/2,        0;                   % Discrete process noise 
matrix 
                            Ts,        0; 
                             1,        0; 
                             0, (Ts^2)/2; 
                             0,       Ts; 
                             0,        1]; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%  END of M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

H. STATE SPACE MODEL BUILD FUNCTION 

This appendix presents the function that builds the mobile node discrete-time 

linear and nonlinear ODE models for the AGV mobile node problem. 
        function [h,W,V,x,z] = SS_Model_Build_TMB(u) 
% 
%         FUNCTION: SS_Model_Build_TMB.m 
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% 
%         PURPOSE: Function for building the Mobile node discrete-time linear and 
nonlinear  
%                  ODE models for the AGV mobile node problem. 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 4, 2012 
%         DATE OF LAST MODIFICATION:    December 1, 2012     
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:   
%            The user must specify the following inputs: 
                % Ts = Sampling period for the discrete-time signals 
                % t = a vector of time values of size Nsamples by 1 
                % Nsamples = size of vector t or number of time intervals TS 
                % stdW = Standard Deviation of the process noise wk 
                % stdV = Standard Deviation of the measurement noise vk 
                % BS = Base Station location matrix 
                % uk = input matrix 
% 
%         OUTPUTS:    
%            The function produces the following results that are passed to the calling 
program 
                % h = the discrete measurment matrix (Nz by 1) 
                % W = the discrete process noise (Nu by 1) 
                % V = the discrete measurement noise (Nu by 1) 
                % x = actual state vector 
% 
%         CODES THAT CALL THIS FUNCTION: 
%            1.  EKF_Caller_TMB.m              % Supervisor code for the EKF 
  
%         CODES CALLED BY THIS FUNCTION: 
%            1.  Sim_Parameters.m              % Passes simulation parameters 
%            2.  SS_Model_Const.m              % Passes state space model constants 
  
%         VARIABLES USED IN THE CODE: 
%            1.  MeanW                         % Mean of discrete process noise 
%            2.  sigmaW                        % Standard deviation of discrete process 
noise 
%            3.  varianceW                     % Variance of discrete process noise 
%            4.  MeanV                         % Mean of discrete measurement noise 
%            5.  sigmaV                        % Standard deviation of discrete 
measurement noise 
%            6.  varianceV                     % Variation of discrete measurement noise 
%            7.  Nx                            % Number of states 
%            8.  hi                            % Single node measurment calculation 
%            9.  dk                            % Single distance between the node and the 
BS used for node measurement 
%            10. k                             % Used as increment for loop building SS 
matrices (x and h) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Define simulation parameters 
  
            
[Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax,p_t]=Sim_Parameters; 
  
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 % BUILD THE NONLINEAR STATE-SPACE MODEL (ODE's) for the AGV Node 
  
  
    % Build a random number generator to generate a zero mean white Gaussian noise 
        % sequence W ~ N[0,covW] to simulate the process noise 
        % sequence V ~ N[0,covV] to simulate the measurement noise 
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        % Fill the vector W with noise N[0,stdW] and V with noise N[0,stdV] 
                % I used the "random" function as follows: 
                %   W = random(NAME,A,B,M,N) & V = random(NAME,A,B,M,N), where: 
                %       NAME = name of the distribution 
                %       A = mean desired 
                %       B = standard deviation desired 
                %       M,N = size of the array I wish to generate 
         
                W = random('Normal',0,stdW,size(t,1),2)';       % AWGN for process 
                 
                V = random('Normal',0,stdV,size(t,1),NBS)';     % AWGN for measurement                 
                 
             
            % Compute statistics of the noises for diagnostic purposes: 
                     
                    MeanW = mean(W); 
                    sigmaW = std(W); 
                    varianceW = sigmaW.^2; 
                    MeanV = mean(V); 
                    sigmaV = std(V); 
                    varianceV = sigmaV.^2;   
                    
                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Loop to evaluate the dynamic difference equations 
  
        % Define constants in the model, so I don't have to calculate  
        %    them at each index 
  
                                          
            [a,bu,bw]=SS_Model_Const(Ts,alpha); 
                                 
                 
        % Initial condition for the state matrix 
         
            x=x0; 
             
        % Initial condition for measurement matrix 
         
             h=[]; 
             
             
        % Loops: 
             for k = 1:Nsamples-1 
  
%                     size(u(:,k)) 
%                     size(W(:,k)) 
%                     size(x(:,k)) 
                    x = [x,a*x(:,k) + bu*u(:,k+1)];% + bw*W(:,k+1)];        % State 
equation (Linear) 
                     
                    if abs(x(2,k+1)) > vmax 
                        x(2,k+1) = sign(x(2,k+1))*vmax; 
                    end 
                    if abs(x(5,k+1)) > vmax 
                        x(5,k+1) = sign(x(5,k+1))*vmax; 
                    end 
                     
                    hi=[]; 
  
                     
                    for j = 1:NBS                                     % Measurement 
equation (Nonlinear) 
                     
                        dk = sqrt(((x(1,k))-BS(j,1)).^2+((x(4,k)-BS(j,2)).^2)); 
                        hi = [hi,z0(j) - 10*eta*log10(dk)]; 
                        
                    end 
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                    h=[h;hi]; 
                     
             end 
              
              
        % Correct the "size" of the vectors so they match the convention I defined for W, 
V, etc. 
                                 
                hi=[]; 
                     
                for j = 1:NBS                                      % Measurement equation 
(Nonlinear) 
                   
                    dk = sqrt(((x(1,Nsamples))-BS(j,1)).^2+((x(4,Nsamples)-BS(j,2)).^2)); 
                    hi = [hi,z0(j) - 10*eta*log10(dk)]; 
                        
                end 
                     
                h=[h;hi]; 
         
                h=h.'; 
                z=h+V;       % Measurements for plotting 
                               
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%  END of M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

I. SIMULATION PARAMETERS FUNCTION 

This appendix presents the function that defines the simulation parameters for the 

AGV mobile node problem. 
        function 
[Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax,p_t]=Sim_Parameters 
  
% 
%         FUNCTION: Sim_Parameters.m 
% 
%         PURPOSE: Function for defining the Simulation Parameters. 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 18, 2012 
%         DATE OF LAST MODIFICATION:    November 18, 2012    
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:   
%            The user must specify the following inputs: 
                % None 
                 
% 
%         OUTPUTS:    
%            The function produces the following results that are passed to the calling 
program 
                % BS = matrix of base station coordinates in x and y 
                % NBS = total number of base station 
                % x0 = initial position of AGV in x and y 
                % Ts = discretisation time step 
                % alpha = reciprocal of the maneuvering constant or correlation 
coefficient 
                % eta = slope index constant 
                % z0 = base station transmission power 
                % stdW = covariance of the process noise W 
                % stdV = covariance of the process noise V 
                % vmax = maximum AGV speed 
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                % p_t = transition probability p between states 
% 
%         CODES THAT CALL THIS FUNCTION: 
%            1.  EKF_Caller_TMB.m              % Supervisor code for EKF 
%            2.  MC_Input_Build_TMB.m          % Markov Chain input builder code 
%            3.  SS_Model_Build_TMB.m          % Gauss_Markov model builder code 
%            4.  EKF_TMB.m                     % Code for EKF  
%            5.  Build_P_TMB.m                 % Code for building PCRLB covariance 
matrix 
  
%         CODES CALLED BY THIS FUNCTION: 
%            None 
  
%         VARIABLES USED IN THE CODE: 
%            1.  Tstart = simulation start time 
%            2.  Tfinal = simulation stop time 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
        % Define the Gauss Markov model order (0 is default test, 1 is AGV node) 
                Mord=0; 
                %Mord=1; 
         
        % Define Base Station (BS) and Number of Base Stations (NBS) 
                 
                BS = [4000,  9700; 
                      7000, 11400; 
                      6000,  9000]; 
                NBS = size(BS,1); 
  
        % Define initial state of AGV node in x and y 
         
                x0 = [3500;10;0;8500;10;0]; 
         
        % Define constants used in the State Space Model builder 
         
                Ts = 0.5; 
                Tstart = 0; 
                Tfinal = 300; 
                t = (Tstart:Ts:Tfinal)'; 
                Nsamples = ((Tfinal-Tstart)/Ts) +1; 
                alpha = 0.6; 
                eta = 3; 
                z0 = 90*ones(NBS,1); 
                stdW = 0.5; 
                stdV = 4; 
                vmax = 45; 
                p_t = 0.8; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%  END of M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

J. OUTLIER COUNTER FUNCTION 

This appendix presents the function that counts the number of signal points that 

lie outside the give two sigma bounds of a given sequence. 
            function [icount,percent] = Outlier_Counter_TMB(E,Bound_E,Nsamples,NBS) 
            % Count the number of signal points lie outside the given two sigma bounds 
  
  
%   CODE NAME:      Outlier_Counter_TMB.m 
%                   Count the number of signal points that lie outside the given two 
sigma bounds 
% 
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% 
%         SOURCE:   Outlier_Counter_TMB.m 
  
%         PURPOSE: Given a particular waveform and its 2*sigma bounds, 
%                  this code counts the number of points that lie outside the bounds 
%            
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 29, 2012 
%         DATE OF LAST MODIFICATION:    December 5, 2012     
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:        
  
                %   E           = 1 X Nsamples signal/waveform that is being plotted and 
analyzed 
                %   Bound_E     = 1 X Nsamples (scalar) two sigma bound on the signal E 
  
%         OUTPUTS:      Later    
  
%           Code(s) that call this function:  
%               1. SS_Nonlin_Plot.m 
  
%           Codes called by this function:           
%               none 
  
         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INITIALIZE VARIABLES BEFORE WE START: 
  
        icount  = 0; 
        ictup   = 0; 
        ictlow  = 0; 
        ict1    = 0; 
        ict2    = 0; 
        nn      = 0; 
        percent = 0; 
      
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% COMPUTE THE BOUNDS for E, COUNT THE NO. OF POINTS LYING OUTSIDE THE BOUNDS 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
    % Change a variable name, so existing code can use it easily: 
                         
         boundup = Bound_E;                                         % Variable name 
change - Bound_E is 1 X Nsamples 
                     
             
    % COUNT: 
          
         icount = 0;                                                % Initialize icount 
to zero 
                                                                    % icount = the number 
of signal 
                                                                    % samples that fall 
outside the  
                                                                    % two sigma bounds. 
          
         ictup = find(E(2:Nsamples) > boundup(1:Nsamples-1));       % Find the E values  
                                                                    % that exceed the 
upper two-sigma bound 
                                                                    % "find(X)" finds the 
indices and values 
                                                                    % of nonzero elements 
in X.  Don't count 
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                                                                    % the first point in 
E. 
  
         ictlow = find(E(2:Nsamples) < -boundup(1:Nsamples-1));     % Find the values of 
the innovations 
                                                                    % that exceed the 
lower bound.  Don't  
                                                                    % count the first 
point in E 
          
         [ict1,nn] = size(ictup);                                   % Find the size of 
ictup 
         [ict2,nn] = size(ictlow);                                  % Find the size of 
ictlow 
                 
  
         icount = ict1 + ict2;                                      % Total number of 
innovation values  
                                                                    % that fall outside 
the bounds 
  
         percent = (icount/(Nsamples-1))*100.;                      % Find percentage of 
innovation values 
                                                                    % that lie outside 
the boun 
                                                       
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%% End of M-File %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

K. MARKOV CHAIN INPUT BUILDER FUNCTION 

This appendix presents the function that builds the Markov Chain input model for 

the AGV mobility problem. 
    function  [u] = MC_Input_Build_TMB   
% 
% 
%         FUNCTION: MC_Input_Build_TMB.m 
  
%         PURPOSE: Function for building the Markov Chain input model for the AGV 
mobility problem 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 7, 2012 
%         DATE OF LAST MODIFICATION:    December 5, 2012     
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS: 
%            The user must specify the following inputs: 
                % None 
                 
%         OUTPUTS: 
%            The function produces the following results that are passed to the calling 
program 
                % Nx = the number of states 
                % Nz = the number of measurements 
                % W = the discrete process noise (Nu by 1) 
                % h = the discrete measurment matrix (Nz by 1) 
                % V = the discrete measurement noise (Nu by 1) 
                % u = random acceleration command input vector (Nsamples by 1) 
                % Rw = system or process noise matrices (Nx x Nx) 
                % Rv = measurement noise  matrices (Nz x Nz) 
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%         CODES THAT CALL THIS FUNCTION: 
%            1.  Sim_Supervisor_TMB.m            % Supervisory code for the simulator 
%            2.  EKF_Caller_TMB.m                % Code to call the Extended Kalman 
Filter 
  
  
%         CODES CALLED BY THIS FUNCTION: 
%            1.  Sim_Parameters                  % Passes the simulation parameters 
%            2.  getMarkovChain.m                % Constructs the n order Markov Chain 
%            3.  getTransitionMatrix.m           % Constructs the n order Markov Chain 
Transition Matrix 
  
%         VARIABLES USED IN THE CODE: 
%            1.  Axmax                           % Maximum acceleration in x direction 
%            2.  Aymax                           % Maximum acceleration in y direction 
%            3.  Mx                              % Set of discrete acceleration levels in 
x direction 
%            4.  My                              % Set of discrete acceleration levels in 
y direction 
%            5.  k                               % Increment for loop building command 
input matrix  
%            6.  M                               % Markov Chain set returned by 
getMarkovChain.m 
%            7.  p                               % Markov Chain Transition Matrix 
returned by getTransitionMatrix.m 
%            8.  pij                             % Markov Chain Transition Matrix of all 
time storing p 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Ask the user to enter desired parameters (or just hard-wire them): 
  
    % Define simulation parameters 
  
            
[Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax,p_t]=Sim_Parameters; 
             
             
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
:::::::::::::::::: 
% Define the discrete acceleration levels 
  
            Axmax = 5;        %Maximum acceleration in x direction [m/s^2] 
            Aymax = 5;        %Maximum acceleration in y direction [m/s^2] 
            Mx = [-Axmax,-Axmax/3.0,-Axmax/30.0,1,Axmax/30.0,Axmax/3.0,Axmax]; 
            My = [-Aymax,-Aymax/3.0,-Aymax/30.0,1,Aymax/30.0,Aymax/3.0,Aymax]; 
  
% Run the code written to create the discrete-time Markov-Chain input 
         
            if Mord==0 %Zero order is the deterministic track generator designed by user 
%                u=zeros(Nsamples,2); 
                u1=zeros(Nsamples/(Nsamples/300)+1,2); 
                u2=[3.5*ones(15,1),zeros(15,1)]; 
                u3=zeros(Nsamples/(Nsamples/300)-215,2); 
                u4=[-3.5*ones(25,1),zeros(25,1)]; 
                u5=[zeros(3,1),3.5*ones(3,1)]; 
                total=Nsamples-(Nsamples/(Nsamples/300)+1)-15-(Nsamples/(Nsamples/300)-
215)-28; 
                u6=zeros(total,2); 
                u=[u1;u2;u3;u4;u5;u6]; 
            else   
                for k = 1:Nsamples 
                 
                    [M] = getMarkovChain(Mord,Mx,My); 
                    [p] = getTransitionMatrix(M); 
                    pij(k)=p; 
                    u(k,1)=M(p,1); 
                    u(k,2)=M(p,2); 
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                end 
                                 
            end 
             
            u=u.';           
  
              
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  END OF M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

L. GET TRANSITION MATRIX FUNCTION 

This appendix presents the function that constructs the transition matrix of a first 

order Markov chain. 
function [transitionMatrix] = getTransitionMatrix(markovChain) 
%% 
% function getTransitionMatrix constructs the transition matrix of 
% a first order markov chain, given the markovChain. 
% 
% Inputs: 
%    markovChain : the markov chain, in integers. 
% Ouptuts:  
%    transitionMatrix: the state-transition matrix (TM), where each value represents 
%                      the number of occurrence for a sequence of states, which is the  
%                      previous state (column of TM) followed by the current state (row 
of TM). 
%                      (See references for more info.) 
%    Nstates: the number of states in Markov Chain IOT plot. 
% 
%% 
% ref: http://en.wikipedia.org/wiki/Markov_chain 
%      http://stackoverflow.com/questions/11072206/constructing-a-multi-order-markov-
chain-transition-matrix-in-matlab 
%       
% $ version 1   $ by TMB $ 31OCT2012 $ created for command input u(t) generation $  
% 
%% 
Norder=1; 
  
if nargin < 1, 
    display('Need more data for the 1st input. (getTransitionMatrix.m)'); 
    return; 
end 
  
if numel(markovChain) <= Norder 
    display('Need more data for the 1st input. (getTransitionMatrix.m)'); 
    return; 
end 
  
%make markovChain a column 
if size(markovChain,1) > 1; 
    markovChain = markovChain'; 
end 
  
%number of states 
Nstates = size(markovChain,2); 
  
%get transition matrix 
%if(Mord==1) 
    transitionMatrix =  fix(Nstates*rand)+1;      % fix rounds down to nearest integer 
                                                  % Nstates*rand generates integer 
[0,Nstates-1] 
                                                  % +1 moves values to integer 
[1,Nstates] 
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% else 
%     transitionMatrix = 0; 
% end 
  
end 

M. GET MARKOV CHAIN FUNCTION 

This appendix presents the function that constructs the first order Markov chain 

given the maximum acceleration levels in the x and y direction. 
function [markovChain] = getMarkovChain(Mord,Mx,My) 
%% 
% function getMarkovChain constructs the first order Markov Chain 
% given the acceleration levels in the x and y direction. 
% 
% Inputs: 
%    Mord: Markov Chain Order (allow for default testing based on Ristic p.3594) 
%    Mx: x direction acceleration levels. 
%    My: y direction acceleration levels. 
% Ouptuts:  
%    markovChain : the markov chain, in integers. 
%% 
% %Example 1: 
% %outputs the 1st order transition matrix of the below markov chain based on Ristic 
p.3594. 
%  uk range [-5,5] [m/s^2] 
%  markovChain = M= Mx X My = markovChain=[0.0,0.0;3.5,0;0.0,3.5;0.0,-3.5;-3.5,0.0] 
[m/s^2]; Norder = 1; 
% [transitionMatrix,columnStates,Nstates] = getTransitionMatrix(markovChain,Norder); 
%% 
% ref: http://en.wikipedia.org/wiki/Markov_chain 
%      http://stackoverflow.com/questions/11072206/constructing-a-multi-order-markov-
chain-transition-matrix-in-matlab 
%       
% $ version 1   $ by TMB $ 31OCT2012 $ created for command input u(t) generation $  
% 
%% 
  
if(Mord==1)  
    a=3.5;    
    markovChain=[0]; 
else 
    %make markovChain 
    y=length(Mx); 
    x=length(My); 
    markovChain=[]; 
  
    for a=1:y 
     for b=1:x 
        markovChain=[markovChain;Mx(a),My(b)]; 
     end 
    end 
end 
  
  
end 

N. EKF FUNCTION 

This appendix presents the function that is the supervisor code to implement the 

EKF within the algorithm. 
      function [Xc,Pc,K,inov,Rinov,zp] = EKF_TMB(Nx,Rw,Rv,Pc,Xc,zk,uk) 

 80 



% 
% 
%         SOURCE:   EKF_TMB.m 
  
%         PURPOSE: This is a supervisor code to implement an Extended Kalman Filter (EKF) 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 4, 2012 
%         DATE OF LAST MODIFICATION:    December 1, 2012     
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:            
%               a   =   Linear system or process matrix (Nx x Nx) 
%               bu  =   Linear system input or command process matrix (Nx x Nu) 
%               h   =   Nonlinear measurement matrix (Nz x 1) 
%               HH  =   Jacobian of the nonlinear measurement matrix h (Nz x Nx) 
%               Rw  =   system or process noise matrices (Nx x Nx) 
%               Rv  =   measurement noise  matrices (Nx x Nx) 
%               Xc  =   Corrected state vector (Nx x 1):   Xc = xhat(t-1|t-1) 
%               Pc  =   Corrected state error covariance matrix (Nx x Nx): Pc = Phat(t-
1|t-1) 
%               zk  =   Measurement vector (Nz x 1) at time t 
%               uk  =   Input vector (Nu x 1) at time t 
  
% 
%       OUTPUTS: 
%               Xc  =   Corrected state estimate vector (Nx x 1) 
%               Pc  =   Corrected state error covariance matrix (Nx x Nx) 
%               K   =   Kalman gain or weighting matrix (Nx x Nz) 
%               inov =  Innovations sequence (residual) (Nz x 1) 
%               Rinov = Innovations covariance matrix (Nz x Nz) 
%               zp  =   Predicted (filtered) measurement vector (Nz x 1) 
% 
  
%   Code(s) that call this function: 
%               1. EKF_Caller_TMB.m               % Supervisor code for EKF 
  
%   Code(s) called by this function: 
%               1.  Sim_Parameters.m              % Passes simulation parameters 
%               2.  SS_Model_Const.m              % Passes State Space model constants 
%               3.  Build_HH_TMB.m                % Build Jacobian for EKF 
%               4.  Build_hk_TMB.m                % Build Measurement Prediction for EKF 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% C0NSTRUCT THE LINEAR AND NONLINEAR FUNCTIONS (a,bu) for the system model: 
                         
           [Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax,p_t] = 
Sim_Parameters; 
  
           [a,bu,bw] = SS_Model_Const(Ts,alpha); 
  
                         
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PREDICTION: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             
            Xp = a*Xc + bu*uk;                 % (TMB's) state prediction for the linear 
problem    
            if abs(Xp(2)) > vmax               % Xp = Xhat(t|t-1) with velocity 
limitation 
                Xp(2) = sign(Xp(2))*vmax; 
            end 
            if abs(Xp(5)) > vmax 
                Xp(5) = sign(Xp(5))*vmax;     
            end                                   
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        %-------------------------------------------------------------------------------- 
          
            [HH] = Build_HH_TMB(Xp);           % (TMB's) Jacobian 
         
        %-------------------------------------------------------------------------------- 
                         
            [hk] = Build_hk_TMB(Xp);           % (TMB's) measurement prediction hk = 
h[xhat(t|t-1)]  
         
        %-------------------------------------------------------------------------------- 
             
            Pp= a*Pc*a' + Rw;                  % (TMB's) state prediction covariance Pp = 
Ptilda(t|t-1) for  
                                               % the linear "stuctures" problem 
                                                
        %--------------------------------------------------------------------------------  
                     
            zp = hk;                            % TMB's predicted measurement for the 
nonlinear problem  
                                                % zp = zhat(t|t-1) 
                                             
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% INNOVATION: 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
           
            inov = zk - zp;                    % (TMB's) innovation 
  
       %--------------------------------------------------------------------------------- 
             
            Rinov = HH*Pp*HH' + Rv;            % (TMB's) innovation covariance for 
nonlinear problem 
                                               % Note: HH is the Jacobian for measurement 
equation                                                         
                        
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% GAIN: 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
             
            K = (Pp*HH')*inv(Rinov);                % TMB's Kalman gain for the nonlinear 
problem 
                                               % Note: HH is the Jacobian for the 
measurement equation 
             
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% CORRECTION: 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
  
       %--------------------------------------------------------------------------------- 
        
            Xc = Xp + K*inov;                  % TMB's corrected state estimate for the 
linear problem 
            if abs(Xc(2)) > vmax               % with velocity limitation 
               Xc(2) = sign(Xc(2))*vmax; 
           end 
           if abs(Xc(5)) > vmax 
               Xc(5) = sign(Xc(5))*vmax;     
           end                                    
                                                          
       %--------------------------------------------------------------------------------- 
                                                             
            Pc = (eye(Nx)- K*HH)*Pp*(eye(Nx)- K*HH)' + K*Rv*K';   % (TMB's) corrected 
covariance estimate for the  nonlinear problem. Note: HH is the Jacobian for the 
measurement equation                                                         
                                                         
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  End of M-File %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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O. EKF INITIAL CONDITIONS FUNCTION 

This appendix presents the function that defines the EKF initial conditions. 
        function [Xc,Pc]=EKF_IC(Nx) 
  
% 
%         FUNCTION: EKF_IC.m 
% 
%         PURPOSE: Function for defining the EKF Initial Conditions Xc, PC. 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 18, 2012 
%         DATE OF LAST MODIFICATION:    November 18, 2012    
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:   
%            The user must specify the following inputs: 
                % None 
                 
% 
%         OUTPUTS:    
%            The function produces the following results that are passed to the calling 
program 
                % Xc = initial state matrix 
                % Pc = initial covariance matrix 
% 
%         CODES THAT CALL THIS FUNCTION: 
%            1.  EKF_Caller_TMB.m              % Supervisor code for the EKF 
  
%         CODES CALLED BY THIS FUNCTION: 
%            None 
  
%         VARIABLES USED IN THE CODE: 
%            1.  VarX                          % Initial covariance error 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
% Construct the initial error covariance matrix Pc  
%     (subscript C is for Corrected State--just like a hat) 
  
    % TMB's Pc for the AGV mobility problem: 
            VarX = diag([400^2;15^2;5^2]);  % Initial error covariance large due to high 
                                            % level of uncertainty in first 
                                            % initial EKF values 
            Pc = blkdiag(VarX,VarX);        % Create diagonal matrix for P0 
                                            % Size of P0 = Nx by Nx 
            
% Construct the initial state vector estimate Xc 
      
    % TMB's Xc for the AGV mobility problem: 
            Xc = [3400;5;0;8700;8;0];       % Intial estimated state input for EKF 
             
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%  END of M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

P. BUILD PCRLB FUNCTION 

This appendix presents the function that builds the true covariance matrix needed 

for PCRLB and RMSE calculations for AGV node. 
function [P] = Build_P_TMB(Nx,Nz,x,W,h,z,V,u) 
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%         PURPOSE: This is a code to build the true covariance matrix   
%                  needed for RMSE calculations for the AGV node problem 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             December 5, 2012 
%         DATE OF LAST MODIFICATION:    December 5, 2012     
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:  
%               None 
  
%         OUTPUTS:   
%               Xc = corrected state estimate vector (Nx x 1) 
%               Pc = corrected state error covariance matrix (Nx x Nx) 
%               K = Kalman gain or weighting matrix (Nx x Nz) 
%               inov = innovations sequence (residual) (Nz x 1) 
%               Rinov = innovations covariance matrix (Nz x Nz) at time t 
%               RRe = Innovations covariance matrix for all time (Nz by Nz by Nsamps) 
%               zp = predicted (filtered) measurement vector (Nz x 1) 
  
%   CODES THAT CALL THIS FUNCTION:  
%               1.  State_Est_Sup_GAC.m              % 
  
%   CODES CALLED BY THIS FUNCTION: 
%               1.  Sim_Parameters.m                 % Pass Simulation parameters 
%               2.  MC_Input_Build_TMB.m             % Code to define the Gauss-Markov 
state-space model                     
%               3.  EKF_TMB.m                        % EKF algorithm 
%               4.  EKF_IC.m                         % EKF Initial Conditions 
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% DEFINE PARAMETERS TO BE USED   
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
  
            % Pass simulation parameters         
                    
[Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax,p_t]=Sim_Parameters; 
  
            % Define EKF specific parameters 
             
                    time=t;                               % time for plots 
                    Nmod=fix(Nsamples/10);                % print index every Nmod 
                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% INITIAL VARIABLES, VECTORS AND MATRICES USED FOR STATE ESTIMATION 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
                                                      
                    [Xc,Pc]=EKF_IC(Nx);                        % EKF Initial Conditions 
                     
                    [a,bu,bw] = SS_Model_Const(Ts,alpha);      % State Spacial Model 
Constants 
                     
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% CONSTRUCT THE PROCESS NOISE MATRIX Rw 
                                         
    % TMB's  Rw for the AGV mobility problem example problem:            
                    Rw = zeros(Nx,Nx);              % Create a diagonal matrix for Rw  
                    Rw(1,1)=stdW^2;Rw(4,4)=stdW^2;  % Size of Rw = Mord by Mord = Nx by 
Nx 
  
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% CONSTRUCT THE MEASUREMENT NOISE MATRIX Rv 
                                     
    % TMB's Rv for the AGV mobility problem example problem: 
                    Rv = stdV^2*eye(Nz,Nz);         % Create a diagonal matrix for Rv 
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                                                   % Size of Rv = Mord by Mord = Nz by Nz 
                 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% INITIALIZE PLOT MATRICES 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
  
                    P = zeros(Nx,Nsamples);        % Corrected covariances 
                    P(:,1) = diag(Pc);             % Initial covariance - use the 
diagonal 
   
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% MAIN LOOP FOR BUILDING THE TRUE COVARIANCE MATRIX 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
  
            for k = 2:Nsamples 
                 
                    %-------------------------------------------------------------------- 
                    % For the AGV Node mobility problem: 
                    %-------------------------------------------------------------------- 
                    % DEFINE VARIABLES TO BE PASSED TO THE EKF: 
                    %-------------------------------------------------------------------- 
                     
                            zk = z(:,k-1);          % zk is an Nz by 1 vector of 
measurements to be passed  
                                                    % to the EKF for the kth iteration 
                         
                            uk = u(:,k);            % uk is an Nu by 1 vector of inputs 
to be passed to the EKF  
                                                    % for the kth iteration 
                                                       
                            xk = x(:,k-1);          % xk is used for performance 
evaluation only 
                                                       
                                                                             
                    %--------------------------------------------------------------------  
                    % RUN THE EXTENDED KALMAN FILTER code EKF_TMB to produce results at 
time t: 
                    %-------------------------------------------------------------------- 
                       
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% PREDICTION: 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
             
            Xp = a*Xc + bu*uk;                 % (TMB's) state prediction for the linear 
problem    
            if abs(Xp(2)) > vmax               % Xp = Xhat(t|t-1) with velocity 
limitation 
                Xp(2) = sign(Xp(2))*vmax; 
            end 
            if abs(Xp(5)) > vmax 
                Xp(5) = sign(Xp(5))*vmax;     
            end                                   
                 
        %-------------------------------------------------------------------------------- 
          
            [HH] = Build_HH_TMB(xk);           % (TMB's) Jacobian 
         
        %-------------------------------------------------------------------------------- 
                         
            [hk] = Build_hk_TMB(Xp);           % (TMB's) measurement prediction hk = 
h[xhat(t|t-1)]  
         
        %-------------------------------------------------------------------------------- 
             
            Pp= a*Pc*a' + Rw;                  % (TMB's) state prediction covariance Pp = 
Ptilda(t|t-1) for  
                                               % the linear "stuctures" problem 
                                                
        %-------------------------------------------------------------------------------- 
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            zp = hk;                            % TMB's predicted measurement for the 
nonlinear problem  
                                                % zp = zhat(t|t-1) 
                                             
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::  
% INNOVATION: 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
           
            inov = zk - zp;                    % (TMB's) innovation 
  
       %---------------------------------------------------------------------------------
------------ 
             
            Rinov = HH*Pp*HH' + Rv;            % (TMB's) innovation covariance for 
nonlinear problem 
                                               % Note: HH is the Jacobian for measurement 
equation                                                         
                        
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% GAIN: 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
             
            K = (Pp*HH')*inv(Rinov);                % TMB's Kalman gain for the nonlinear 
problem 
                                               % Note: HH is the Jacobian for the 
measurement equation 
             
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
% CORRECTION: 
%:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 
  
       %---------------------------------------------------------------------------------  
        
            Xc = Xp + K*inov;                  % TMB's corrected state estimate for the 
linear problem 
            if abs(Xc(2)) > vmax               % with velocity limitation 
               Xc(2) = sign(Xc(2))*vmax; 
           end 
           if abs(Xc(5)) > vmax 
               Xc(5) = sign(Xc(5))*vmax;     
           end                                    
                                                          
       %---------------------------------------------------------------------------------  
                                                             
            Pc = (eye(Nx)- K*HH)*Pp*(eye(Nx)- K*HH)' + K*Rv*K';   % (TMB's) corrected 
covariance estimate for the  
                                                                     % nonlinear problem. 
Note: HH is the Jacobian  
                                                                     % for the 
measurement equation                                                         
                                                         
 
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::  
                             
                    %-------------------------------------------------------------------- 
                    %   SAVE RESULTS FOR PLOTTING, etc. 
                    %-------------------------------------------------------------------- 
                                     
                                        P(:,k) = diag(Pc);       % Corrected covariance - 
use the diagonal 
                                                   
            end  
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Q. BUILD EKF MEASUREMENT FUNCTION 

This appendix presents the function that builds the mobile node measurement 

predictions within the EKF. 
        function [hk] = Build_hk_TMB(Xp) 
% 
% 
%         FUNCTION: Build_hk_TMB.m 
% 
%         PURPOSE: Function for building the Mobile node measurement prediction  
%                  for the AGV mobile node problem. 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 28, 2012 
%         DATE OF LAST MODIFICATION:    November 28, 2012    
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:   
%            The user must specify the following inputs: 
                % Xp = state prediction vector (Nx x 1) 
% 
%         OUTPUTS:    
%            The function produces the following results that are passed to the calling 
program 
                % hk = measurment prediction 
% 
%         CODES THAT CALL THIS FUNCTION: 
%            1.  EKF_Caller_TMB.m              % Markov Chain input builder code 
  
%         CODES CALLED BY THIS FUNCTION: 
%            1.  Sim_Parameters.m              % Passes simulation parameters 
  
%         VARIABLES USED IN THE CODE: 
%            1.  j                             % Used as increment for loop building hk 
vector 
%            2.  BS                            % matrix of base station coordinates in x 
and y 
%            3.  NBS                           % total number of base stations 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Define simulation parameters 
  
            [Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax]=Sim_Parameters; 
  
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 % Initialize variables 
            hk=[]; 
  
  
 % BUILD THE MEASUREMENT PREDICTION VECTOR for the AGV Node 
  
            for j = 1:NBS                                      % Measurement equation 
(Nonlinear) 
                
                   dk = sqrt((Xp(1)-BS(j,1))^2+(Xp(4)-BS(j,2))^2); 
                   hk = [hk,z0(j) - 10*eta*log10(dk)]; 
                        
            end 
                    
% Structure vectors for EKF  
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            hk=hk.'; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%  END of M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

R. BUILD EKF JACOBIAN FUNCTION 

This appendix presents the function that builds the Jacobian for the EKF for the 

mobile node problem. 
        function [HH] = Build_HH_TMB(Xp) 
% 
% 
%         FUNCTION: Build_HH_TMB.m 
% 
%         PURPOSE: Function for building the Jacobian for the AGV mobile node problem. 
% 
%         SOURCE:                       Matlab M-file 
%         VERSION:                      1.0 
%         ORIGINATION DATE:             November 28, 2012 
%         DATE OF LAST MODIFICATION:    November 28, 2012    
%  
%         AUTHOR:       Timothy M. Beach (TMB) 
% 
%         INPUTS:   
%            The user must specify the following inputs: 
                %  
% 
%         OUTPUTS:    
%            The function produces the following results that are passed to the calling 
program 
                % HH = Jacobian 
% 
%         CODES THAT CALL THIS FUNCTION: 
%            1.  EKF_TMB.m                     % Code for EKF 
  
%         CODES CALLED BY THIS FUNCTION: 
%            1.  Sim_Parameters.m              % Passes simulation parameters 
  
%         VARIABLES USED IN THE CODE: 
%            1.  BS                            % matrix of base station coordinates in x 
and y 
%            2.  NBS                           % total number of base stations 
%            3.  Xp                            % predicted state for current EKF 
iteration 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 % Define simulation parameters 
  
            [Mord,BS,NBS,x0,Ts,t,Nsamples,alpha,eta,z0,stdW,stdV,vmax]=Sim_Parameters; 
  
  
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
 % C0NSTRUCT THE JACOBIAN (HH) Necessary for the EKF: 
                             
            if NBS <3 
                display('Need more Base Stations for triangulation. (Sim_Parameters.m)'); 
                return; 
            end 
             
            if NBS > 1 
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                HH = [-10*eta*(Xp(1)-BS(1,1))/(log(10)*((Xp(1)-BS(1,1))^2+(Xp(4)-
BS(1,2))^2)),0,0,-10*eta*(Xp(4)-BS(1,2))/(log(10)*((Xp(1)-BS(1,1))^2+(Xp(4)-
BS(1,2))^2)),0,0; 
                      -10*eta*(Xp(1)-BS(2,1))/(log(10)*((Xp(1)-BS(2,1))^2+(Xp(4)-
BS(2,2))^2)),0,0,-10*eta*(Xp(4)-BS(2,2))/(log(10)*((Xp(1)-BS(2,1))^2+(Xp(4)-
BS(2,2))^2)),0,0; 
                      -10*eta*(Xp(1)-BS(3,1))/(log(10)*((Xp(1)-BS(3,1))^2+(Xp(4)-
BS(3,2))^2)),0,0,-10*eta*(Xp(4)-BS(3,2))/(log(10)*((Xp(1)-BS(3,1))^2+(Xp(4)-
BS(3,2))^2)),0,0]; 
            end 
             
            if NBS > 3 
                HH = [HH;-10*eta*(Xp(1)-BS(4,1))/(log(10)*((Xp(1)-BS(4,1))^2+(Xp(4)-
BS(4,2))^2)),0,0,-10*eta*(Xp(4)-BS(4,2))/(log(10)*((Xp(1)-BS(4,1))^2+(Xp(4)-
BS(4,2))^2)),0,0]; 
            end 
             
            if NBS > 4 
                HH = [HH;-10*eta*(Xp(1)-BS(5,1))/(log(10)*((Xp(1)-BS(5,1))^2+(Xp(4)-
BS(5,2))^2)),0,0,-10*eta*(Xp(4)-BS(5,2))/(log(10)*((Xp(1)-BS(5,1))^2+(Xp(4)-
BS(5,2))^2)),0,0]; 
            end 
             
            if NBS > 5 
                HH = [HH;-10*eta*(Xp(1)-BS(6,1))/(log(10)*((Xp(1)-BS(6,1))^2+(Xp(4)-
BS(6,2))^2)),0,0,-10*eta*(Xp(4)-BS(6,2))/(log(10)*((Xp(1)-BS(6,1))^2+(Xp(4)-
BS(6,2))^2)),0,0]; 
            end 
             
            if NBS > 6 
                HH = [HH;-10*eta*(Xp(1)-BS(7,1))/(log(10)*((Xp(1)-BS(7,1))^2+(Xp(4)-
BS(7,2))^2)),0,0,-10*eta*(Xp(4)-BS(7,2))/(log(10)*((Xp(1)-BS(7,1))^2+(Xp(4)-
BS(7,2))^2)),0,0]; 
            end 
  
  
%%%%%%%%%%%%%%%%%%%%%%%%%%%  END of M-FILE  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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