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AFIT-ENY-13-S-01 

Abstract 

 The last several decades have resulted in an unfortunate byproduct of space 

exploration and development: orbital debris.  Satellites in Low Earth Orbit have been 

required to make an ever increasing number of course corrections in order to avoid 

collisions.  Despite efforts to the contrary, collisions continue to occur, each time creating 

additional debris and increasing the requirement for the remaining satellites to maneuver.  

Every required maneuver decreases a satellite’s service life.  The purpose of this study is 

to develop a minimum thrust profile to maneuver an orbiting satellite out of its projected 

error ellipse before a collision occurs.  For comparison, both the impulsive and 

continuous thrust cases were considered as well as in-plane versus out-of plane 

maneuvering.  This study made use of the Radau Pseudospectral Method to develop this 

minimum thrust profile.  This method was run in MATLAB® using General 

Pseudospectral Optimal Control Software (GPOPS-II).  Once the optimal solution was 

obtained, Systems Tool Kit® was used to simulate the resulting calculated trajectories and 

confirm avoidance of the error ellipse. 
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TRAJECTORY OPTIMIZATION FOR SPACECRAFT 
COLLISION AVOIDANCE 

 
I.  Introduction 

1.1 Motivation 

A half century of space research and development has left the near-earth 

environment littered with large quantities of orbital debris.  Spent rocket bodies and dead 

satellites constitute the largest pieces of debris currently being tracked by the US Space 

Surveillance Network (SSN).  However, in addition to these large pieces of debris there 

also exists a large volume of smaller objects formed from collisions between the larger 

debris.  The estimate for total population in the near-earth environment as of April 2011 

was 28,000 objects larger than 10 cm [1].  While the radar cross sections of the smaller 

debris makes tracking and cataloging more difficult, hundreds of thousands of objects are 

assumed to be in orbit on the 1 cm level and hundreds of millions of objects are expected 

at the 1 mm level [1].  Figure 1 details the estimated population growth of orbital debris 

over the past five decades.  Liou [1] projected through the use of 100 Monte Carlo 

simulations the estimated growth over the next century.  The 1-σ values for these 

projections are also included in this figure. 

This trend has been a source of major concern to the international community for 

decades, prompting cooperative attempts to minimize this growth and preserve the 

accessibility of the near-earth environment.  However, recent studies have shown that 

thus far the international efforts to mitigate the growth of orbital debris have not proven 

effective enough and the population of orbital debris continues to grow.  Exploration on 
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how to conduct active debris removal has also been a subject of research in recent years.  

Several proposals have been made such as a ground-based or space-based laser system or 

attaching inflatable balloons or sails to the larger debris to increase drag and decay the 

orbit.  Thus far, however, no viable solution has been implemented to actively remove 

debris in orbit [1]. 

 
Figure 1:  Orbital Debris Population Growth [1] 

The space environment is divided into three orbital zones.  The altitude band 

between 200 km and 2000 km is referred to as Low Earth Orbit (LEO) [1].  LEO has seen 

the largest volume of traffic of active satellites due to its relative accessibility as well as 

allowing for high signal strength communications with ground stations.  The 

Geosynchronous (GEO) region spans the space within 200 km of the geosynchronous 

altitude of 36,000 km.  This region is heavily populated by larger satellites in the 

Geostationary Arc which is located in the vicinity of the equator.  In between these 
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regions is defined as Medium Earth Orbit (MEO) and is primarily used by navigation 

satellites.  While debris population growth is observed in all three of these regions, the 

vast majority of observed growth occurs in LEO [1].  Despite the fact that the debris in 

LEO tends to decay relatively quickly due to air drag, new debris is continually being 

introduced as smaller debris is formed from collisions in higher orbits that continually 

decay into this region.  Recent observations have shown that the rate of decay of debris 

into LEO is nearly the same as the rate of decay of debris departing LEO but is expected 

to begin significantly increasing within the next 50 years due to expected collisions in 

MEO [2]. 

The average impact speed for a satellite in LEO is around 10 km/sec [3].  Even 

for collisions of satellites with objects as small as 5 mm, a hypervelocity impact has the 

potential to end a satellite’s service life.  As the volume of orbital debris increases, 

satellites are required to make an ever increasing number of maneuvers to avoid damage.  

The year 2010 alone saw nearly 400 warnings and over 100 avoidance maneuvers 

conducted in order to minimize the risk of collisions [1].  With each passing year, the 

number of necessary maneuvers increases with the population of debris in orbit.  Each of 

these maneuvers detracts from the overall service life of the maneuvering satellite. 

1.2 Problem Statement 

The purpose of this research was to develop and test the application of 

pseudospectral optimization to orbital maneuvering.  This was accomplished through the 

determination of a set of minimum fuel thrust profiles to maneuver a satellite for the 

purpose of collision avoidance.  An Area of Regard (AOR) was specified in order to 
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designate a ‘no-thrust’ region for this scenario.  This region was necessary since thrusting 

degrades the performance of satellite payloads as well as complicating orbit 

determination solutions.  Therefore, the start time for this scenario occurs when the 

satellite departs the AOR and terminates upon AOR reentry.  Upon reentry, the 

maneuvering satellite is required to be outside a user-specified error ellipse projected 

from its non-thrusting reference trajectory.  This research utilized an error ellipse that is 

100 km in-track, 10 km out-of-track, and 10 km out-of-plane in size.  This study looked 

at three distinct cases:  Impulsive In-Plane, Impulsive Out-of-Plane, and Continuous In-

Plane. 

1.2.1 Case 1: Impulsive In-Plane Thrusting 

Impulsive thrusting is the traditional method used to maneuver satellites.  This 

method is relatively simple to model and provides large accelerations and a rapid satellite 

response to commanded maneuvers.  It is capable of achieving nearly instantaneous 

velocity changes necessary for large orbital maneuvers.  However, impulsive thrusting 

typically makes use of engines that have relatively low specific impulse (ISP) and are 

therefore expensive to operate.  Thrusting in the satellite’s orbital plane is considered to 

be the least expensive maneuver and is therefore the first case considered.  Conventional 

wisdom states that the minimum fuel thrust direction is either in the velocity or anti-

velocity direction depending on whether a climb or a descent is desired.  Due to a desire 

to keep the orbit circular, an impulsive thrust is typically conducted twice, once to climb 

or descend and once to re-circularize the orbit at the desired altitude.  This maneuver is 

referred to as a Hohmann Transfer [4] and is most commonly used when an altitude 
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change is desired.  However, if the satellite mission permits small variances in 

eccentricity, it may not be optimal to recircularize the orbit after conducting a collision 

avoidance maneuver.  For the Impulsive In-Plane thrusting case, this research 

demonstrates a more fuel efficient maneuver than the Hohmann Transfer for the purpose 

of collision avoidance. 

1.2.2 Case 2: Impulsive Out-Of-Plane Thrusting 

While thrusting out of the satellite’s orbital plane is considered to be less fuel 

efficient than the previous case, it allows for alterations to the orbital plane itself and can 

therefore be a useful alternative method in collision avoidance.  This case is less 

generalized than the previous case, however, since it depends heavily on the latitude of 

the AOR and the inclination of the orbital plane.  Therefore, this research generates an 

algorithm to determine the optimal thrust time and direction for an unspecified set of 

latitudes and inclinations. 

1.2.3 Case 3: Continuous Thrusting 

Continuous thrust maneuvers utilize Electric Propulsion (EP) thrusters in order to 

generate their accelerations.  They are used less often due to the extremely low forces 

they generate.  However, these engines are more fuel efficient due to their extremely high 

ISP.  For this reason, the use of continuous thrust engines can therefore extend the service 

life of a maneuvering satellite that would otherwise rely on impulsive thrust engines for 

collision avoidance.  This research demonstrates a method for maneuvering using 

continuous thrust that is comparable to the first case by utilizing thrust direction rather 

than duration. 
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1.3 Method of Investigation 

The scenario start and termination times were developed using Analytical 

Graphics Incorporated® (AGI) Systems Tool Kit® (STK) version 10 via an access report 

generated between a non-maneuvering reference satellite and an AOR.  The scenario start 

time along with the current state were then imported into MATLAB® for optimization 

using General Pseudospectral Optimal Control Software (GPOPS-II).  This software 

utilized the Radau Pseudospectral Method (RPM) to optimize thrust/angle profiles for 

each of the three scenarios mentioned in the previous section.  These profiles were then 

converted into a form that was accessible to STK.  The Astrogator propagation tool was 

used in STK to test these thrust profiles and measure the distance at scenario termination 

from the reference satellite to a satellite with identical initial conditions executing each of 

the calculated optimal thrust profiles. 

1.4 Thesis Overview 

 Chapter II provides the mathematical background required in order to formulate 

the necessary components of the Optimal Control Problem.  It outlines several choices of 

states and their corresponding equations of motion as well as the general principles of 

Optimal Control Theory.  Chapter III details the methods used in setting up the problem 

in GPOPS-II as well as STK.  Chapter IV presents and discusses the results from the 

algorithm developed in Chapter III.  Chapter V summarizes the conclusions from this 

research and presents suggestions for future study.  
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II. Background 

2.1 Chapter Overview 

 This chapter establishes the basis for the methods used to determine the optimal 

orbital trajectories discussed in this research.  First, a general discussion is made on the 

recent work this research is based on.  Second, a derivation of the equations of motion is 

discussed.  The benefits and difficulties inherent in several different choices of states are 

discussed as well as their corresponding equations of motion.  Finally a discussion is 

presented on the background of the optimization methods used in later chapters. 

2.2 Related Work 

 This research combines elements from previous work accomplished in the fields 

of responsive spacecraft control and optimal control techniques.  The work from 

responsive spacecraft control formed the baseline for the formulation of the equations of 

motion as well as the choices of the three maneuver cases outlined in Section 1.2.  The 

optimal control research cited in this section formed the baseline for the development of 

the algorithms used to optimize the trajectories presented in Chapter IV. 

 This research is most closely based on the work done by Co [5] and Zagaris [6].  

In his 2012 dissertation, Co [5] explored the differences between electric and chemical 

propulsion and their applications in generating a desired change in the satellite’s over-

flight time of a ground target.  His work with electric propulsion along with the work 

accomplished by Zagaris [6] in his thesis formed the basis for the formulation of the 

equations of motion as well as the optimal control approach used in this research.  
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Zagaris utilized both optimal control methods as well as a Lyapunov control technique in 

order to modify the time of passage of a satellite over a specified ground target. 

 Jorris [7] and Karasz [8] utilized pseudospectral optimization in the derivation of 

an optimal trajectory for an autonomous reentry vehicle subject to specified ‘no-fly zone’ 

path constraints.  In his 2007 dissertation, Jorris [7]  utilized a direct collocation method 

to design a multiple-phase algorithm that optimized a three-dimensional trajectory subject 

to his specified no-fly constraints.  Karasz [8]  built on this research and demonstrated 

through a sensitivity analysis how changes in the locations of the ‘no-fly zones’ affected 

the solution.  Yaple [9] also followed this research in the development of a more general 

trajectory optimization tool. 

 Darby [10] demonstrated the application of hp-adaptive pseudospectral methods 

in spacecraft maneuver optimization.  He utilized this technique to determine 

maneuvering cost for a spacecraft in LEO executing orbital inclination changes with 

assistance from atmospheric forces.  This was conducted using three impulsive 

maneuvers:  one to de-orbit in order to conduct atmospheric dipping, a boost maneuver to 

direct the satellite to its final altitude, and a final re-circularizing maneuver.  He 

concluded that these aero-assisted maneuvers were more fuel efficient in most cases than 

conventional methods of changing orbital inclination. 

 A considerable amount of work in the area of pseudospectral optimization and its 

applications in orbital mechanics has been conducted by Dr Ross in his work at the Naval 

Postgraduate School.  Ross and Hall [11] demonstrated an unusual approach to the orbit 

transfer problem involving the coupling of attitude dynamics and orbital mechanics in the 

development of a series of coplanar phasing maneuvers optimized for time, fuel, and 
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control limitations.  Their work incorporated the implementation of continuous thrusting 

into the optimal control problem.  Dr Ross’s work in this area culminated in the 

development of unique Zero-Propellant Maneuvers for the International Space Station 

[12].  These maneuvers utilize optimal control as well as feedback control techniques to 

take advantage of environmental conditions to minimize momentum saturation in the 

space station’s control moment gyros.  This development significantly decreased the cost 

of slewing the International Space Station. 

2.3 Equations of Motion 

 The first step to solving any orbital mechanics problem involves developing a 

firm understanding in the dynamics inherent in the system.  This involves first choosing a 

set of states to represent the system.  The following sections detail three common choices 

of states in orbital mechanics and discuss their respective advantages and disadvantages. 

2.3.1 The Two-Body Problem 

 The simplest problem in orbital mechanics is the Two-Body problem.  This 

problem begins with two point masses and describes their mutual gravitational attraction 

to each other [4].  Vallado [13] mentions four fundamental assumptions made in the 

Two-Body problem: 

1. The mass of the satellite is much smaller than the mass of the body it is orbiting.  

This allows the satellite’s mass and its gravitational effects on the larger body to 

be neglected. 

2. The frame of reference is inertial.  This allows for derivatives to be taken without 

regard to the motion of the reference frame. 
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3. Both the Earth and the satellite are point masses. 

4. No other forces are applied to either body. 

 These assumptions allow for the basic formulation of the Two-Body problem but 

constitute an imperfect model.  One method for adjusting the model to account for these 

imperfections is known as Perturbation Theory.  While the natural perturbations 

themselves are not discussed in this research, this theory can also be used to model 

maneuvers as perturbing accelerations. 

The equations of motion are best described initially using an independent inertial 

coordinate frame as shown in Figure 2.  In this figure, RC denotes the position of the 

center of mass of the entire system. The vector r denotes the position of the second mass 

with respect to the system center of mass.  The Equations of Motion for the second mass 

are: 

  
( )1 2

3

G m m+
= −

r
r

r
  (1) 

where G is the universal gravitational constant.  Equation 1 can be simplified as follows: 

  3

µ
= −

r
r

r
  (2) 

where ( )1 2 1= + ≈μ G m m Gm  is the specific gravitational constant for the system. 

 Since mass 2 is very small in comparison to mass 1, its gravitational effects on 

mass 1 can be neglected.  This allows for the inertial frame to be moved to the center of 

mass 1 along with the center of mass of the system.  In the case of a satellite orbiting the 

Earth, this yields what is commonly referred to as the Earth-Centered Inertial (ECI) 
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reference frame.  This reference frame consists of the three unit vectors [i, j, k].  The unit 

vector i is aligned with vernal equinox, k points to the North Pole, and j completes the 

right-handed system. 

 
Figure 2:  Two-Body Problem [4] 

 The Two-Body problem only accounts for the gravitational attraction between the 

two masses.  There are various additional perturbing effects such as J2, which accounts 

for the oblateness of the Earth and air drag, that constantly influence the basic orbital 

motion of a satellite.  Adding a perturbing acceleration, A, into Equation 2 yields the full 

equations of motion. 

  3

µ
= − +

r
r A

r
  (3) 

If the acceleration being modeled is a maneuver, it is a function of only the thrust output 

and the mass of the satellite.  Two cases are considered in this research:  Continuous 
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Thrust and Impulsive Thrust.  For the continuous-thrust case, the satellite mass can be 

modeled as constant due to the very low fuel consumption typical of electric propulsion, 

yielding a constant acceleration.  For the Impulsive Thrust case, the fuel consumption is 

much higher and must be accounted for. 

 For a satellite undergoing constant acceleration, the resulting equations of motion 

in the ECI frame can be expressed as the following set of first-order derivatives. 

  3

3

3

x

x

y y

z

z

vx
vyx
vzy

z x A
rv

v y A
rv

z A
r

µ

µ

µ

− +=

− +

− +

 
 

   
   
   
   
   
   
      

  













  (4) 

 This method allows for a complete, closed form solution.  However, due to their 

relative size, the Two-Body forces tend to dominate this formulation [14].  While 

numerical solvers today can handle the number of significant figures required to account 

for most perturbations, it is preferable to use a choice of states that change more slowly. 

2.3.2 Classical Orbital Elements 

 Kepler’s First Law states that orbital trajectories are conic sections with the 

attracting body at one of the foci.  The Classical Orbital Elements (COE) represent a 

method of completely defining the orbit of a satellite with six parameters using conic 

section geometry.  Figure 3 depicts the relationship between the six COE and the 

satellite’s position and velocity.  The COE are typically written as (a,e,i,Ω,ω,ν) where a 

is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right ascension of 
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the ascending node (RAAN), ω is the argument of perigee, and ν is the true anomaly.  

Depending on the application of the problem, the true anomaly may be replaced with the 

mean anomaly, M, or the eccentric anomaly, E.  The following discussion on Classical 

Orbital Elements is taken from Wiesel [4, pp. 57-68]. 

 
Figure 3:  Classical Orbital Elements [4] 

 The semi-major axis, a, is defined as half the length of the longest axis on an 

ellipse and serves as a general measure of the size of an orbit as well as its orbital period.  

It is derived from the orbital energy of the satellite, ε. 

  

21

2

2

v
r

a

µ
ε

µ

ε

= −

= −

  (5) 
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Kepler’s Second law states that the vector connecting the central body and the satellite 

will sweep out equal areas in equal times.  This law led to the formulation of a quantity 

known as the mean motion, n defined as: 

  2
n

P
π

=  (6) 

where P is the orbital period.  Since the semi-major axis denotes the size of a stable orbit, 

it is related to the mean motion as shown in Equation 7.  This Equation is known as 

Kepler’s Third Law. 

  3n
a

µ
=   (7) 

The eccentricity, e, is a measure of the orbital shape as shown in Table 1.  For the 

purpose of this discussion, the circular and elliptical cases are all that will be covered.  

The eccentricity is determined from the magnitude of the eccentricity vector, e, which is 

calculated using the orbital angular momentum vector, H. 

  ( )1

r

µ

µ

= ×

= × −
 
  

H r v

r
e v H

 (8) 

The inclination, i, measures the angle between the orbital plane and the inertial x-y plane.  

It is also calculated from the orbital angular momentum as shown in Equation 9. 

  ( )cos i
⋅

=
k H

H
  (9) 
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Inclination is defined between 0° and 180°.  Orbits in the 0° to 90° range are referred to 

as prograde orbits and are more commonly used than retrograde orbits, or those that 

occur between 90° and 180°. 

Table 1:  Eccentricity 

Eccentricity Shape 

e = 0 Circular 

0 < e < 1 Elliptical 

e = 1 Parabolic 

e > 1 Hyperbolic 
 

 The RAAN, Ω, measures the angle between the vernal equinox eastward to the 

line of nodes, n, shown in Figure 3 and calculated as follows: 

  ×
=

k H
n

k H
 (10) 

The RAAN can be calculated by recognizing its relationship to the line of nodes. 

  ( ) ( )cos sin= +n i jΩ Ω  (11) 

 The argument of perigee, ω, denotes the location of the point on the orbit that is 

closest to the focal point at the center of the Earth.  It is also calculated from the 

eccentricity vector and the line of nodes. 

  ( )cos ω
⋅

=
n e

e
  (12) 
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For 𝐞 ∙ 𝐤 > 0, ω can be directly obtained Equation 12 by taking the inverse cosine.  

However, if 𝐞 ∙ 𝐤 < 0 then the inverse cosine function will yield an angle 180° from the 

true argument of perigee. 

 The first five COE denote the size, shape, and orientation of an orbit.  The true 

anomaly, ν, is a measure of where on that orbit the satellite currently resides.  It can be 

calculated from the eccentricity and position vectors as shown in Equation 13. 

  ( )cos ν
⋅

=
e r

e r
  (13) 

Just as with the argument of perigee, 𝐫 ∙ 𝐯 determines the quadrant for proper calculation 

of the true anomaly.  The semi-major axis, eccentricity, and true anomaly may be directly 

related back to the magnitude of the position vector as shown in Equation 14. 

  ( )
( )

21

1 cos

a e
r

e ν

−
=

+
 (14) 

 Despite the direct interpretation of the true anomaly, it is not always the best 

measure to use for orbital position [15].  The eccentric anomaly, E, is another measure of 

orbital position that is commonly used.  The eccentric anomaly tracks the satellite’s 

angular position on the orbit on a projected circle with equal radius to the semi-major 

axis as shown in Figure 4.  This angle is measured from the center of the fictitious circle, 

O, rather than from the elliptical focal point, F.  The eccentric anomaly is calculated from 

the eccentricity and the true anomaly. 

  ( ) ( )
( )

cos
cos

1 cos

e
E

e

ν

ν

+
=

+
 (15) 
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Figure 4:  Eccentric Anomaly 

The mean anomaly, M, is another common measure of orbital position created to assist in 

relating motion around an ellipse to motion around a circle.  It relates directly to both the 

eccentric anomaly and the mean motion as shown in Equation 16. 

  ( ) ( )0sinM E e E n t t= − = −   (16) 

In Equation 16, 0t  is the epoch time and t  is time elapsed.  It should be noted that at an 

eccentricity of zero, the mean, eccentric, and true anomalies are all equal. 

 For the basic Two-Body problem, five of the six COE are constant.  When 

perturbations are added into the equations, these quantities change only due to the 

perturbing accelerations [14].   The Lagrange Planetary Equations (LPE) shown in 

Equation 17 govern how the COE change with these accelerations. 
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 (17) 

where the perturbing acceleration [ ]r t n ,  ,  =TA A A A  denoting radial, tangential, and 

normal components, respectively [14]. 

 Unlike the previous formulation, five of these six elements change very slowly.  

The sixth element, whether it be the true, eccentric, or mean anomaly, changes rapidly 

but in a predictable fashion.  This method of defining an orbital state is intuitive but 

unfortunately has a number of singularities that tend to complicate the equations of 

motion.  For instance, at zero inclination the RAAN loses meaning.  Similarly, for zero 

eccentricity the argument of perigee becomes indistinguishable from the true anomaly.  

These singularities can be clearly seen in their equations of motion shown in Equation 17.  

Due to the location of these singularities, the COE are not necessarily the best set of 

states for numerical analysis. 

2.3.3 Equinoctial Orbital Elements 

 A third method of completely defining an orbit is by the use of the Equinoctial 

Orbital Elements.  This element set maintains the mathematical advantages of the COE 
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without going singular for circular or prograde equatorial orbits.  The following 

discussion on the Equinoctial Orbital Elements is taken from Kechichian [16]. 

 This element set establishes another useful reference frame.  The equinoctial 

reference frame is comprised of the unit vectors [f,g,w].  The unit vectors f and g span the 

orbital plane while w is aligned with the orbit angular momentum vector as shown in 

Figure 5. 

 The Equinoctial Orbital Elements may be derived directly from the COE.  This 

change of variables is shown in Equation 18. 

  

( )
( )

( )

( )

sin

cos

tan sin
2

tan cos
2

a a

h e

k e

i
p

i
q

M

ω

ω

λ ω

=

= + Ω

= + Ω

= Ω

= Ω

= + + Ω

 
 
 
 
 
 

 (18) 

The quantities h and k are the equinoctial reference frame components of the eccentricity 

vector.  The quantities p and q relate the rotation from the ECI frame to the equinoctial 

reference frame as shown in Equation 19. 

  

2 2
1

2 2
12 2

2 2

1 2 2
1 2 1 2

1
2 2 1 0

ECI

x p q pq p x
y pq p q q y

p q
z p q p q

 − +   
    = + − −    + +     − − −    

 (19) 

Equinoctial Orbital Elements can be easily translated back into COE via the change of 

variables shown in Equation 20. 
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Figure 5:  Equinoctial Reference Frame [16] 
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  (20) 

It can be seen from the conversion that while this new element set does not go singular 

for the circular or prograde equatorial cases, it does retain a singularity.  Fortunately, this 

singularity occurs at an inclination of 180°.  Since retrograde equatorial orbits are rarely 
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used, this singularity is of little concern in this research [13].  The position and velocity 

of the satellite in the Equinoctial Frame is given as: 

  1 1

1 1

= +
= +

r
r  

x y
x y

f g
f g

  (21) 

The components x1, y1, and their time derivatives from Equation 21 are defined as: 

  

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

2

2

2 1 2

2 1 2

1

1

1

1

1 cos sin

cos 1 sin

cos 1 sin
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−

−

= − + −

= + − −

= − −

= − −

  
  

  
  





x a h F hk F k

y a hk F k F h

x a nr hk F h F

y a nr k F hk F

β β

β β

β β

β β   

 (22) 

where the quantities r and β are defined as: 

  

( ) ( )( )

2 2

1 cos sin

1

1

1

r a k F h F

G

G h k

β

= − −

=
+

= − −

 (23) 

 If the state vector is chosen as [ ], , , , , Ta h k p q λ=z  and the perturbing force is of 

the form f=f u where u is a unit vector in the direction the force is being applied, then 

the state derivative follows the form: 

  ∂
= +
∂

A
z

z n
r





  (24) 

Provided that the acceleration vector A is given in the equinoctial frame, the 3x6 matrix 

M
∂

=
∂

z

r
 becomes: 
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In Equation 25, 2 21K p q= + +  and the partials of x1 and y1 with respect to h and k are 

given below in Equation 26. 
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  (26) 

Kechichian [17] stated that using F as the fast element rather than λ removes the 

requirement to solve Equation 16 at each integration step.  This new set is known as a 

modified set of Equinoctial Orbital Elements.  The equations of motion for F are given 

below in Equation 27. 

  
( ) ( )cos sin

∂
= +

∂
∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ 

u
r

r r r r





   

na FF f
r

F a h k λF F
r

 (27) 
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The partial derivatives of h, k, and λ are the second, third, and sixth rows of the matrix M 

as shown in Equation 25. 

While the Equinoctial Orbital Elements avoid the singularities of the COE, the 

main disadvantage to using them is that from direct inspection it is not intuitively obvious 

what is happening physically to the system.  The COE directly relate to the physical 

geometry of the orbit and as such are much simpler to directly interpret than the 

Equinoctial Orbital Elements. 

2.4 Optimal Control Theory 

 The purpose of Optimal Control Theory is the determination of a time history of 

controls that satisfy the physical constraints of the system while minimizing or 

maximizing some performance criterion [18].  There are two primary categories of 

numerical methods for solving optimal control problems:  Direct and Indirect Methods.  

Indirect Methods focus on derivation of first-order necessary conditions using the 

Calculus of Variations.  These conditions are then used to pick a minimum cost extremal 

trajectory.  Direct methods use Nonlinear Programming (NLP) techniques to satisfy a 

similar set of optimality conditions [19]. 

2.4.1 The General Indirect Method 

The first step in Optimal Control Theory is establishing the problem.  This 

consists of determining the equations of motion, cost function, and applicable constraints.  

The following brief explanation of terms is from Kirk [18].  The equations of motion can 

be written in first order form as: 

  ( ) ( ) ( )( ), ,t t t t=x a x u   (28) 
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where x(t) is an n-dimensional time history of the state vector and u(t) is an m-

dimensional time history of the control vector.  The symbols x*(t) and u*(t) below denote 

the optimal state and control vectors. 

Constraints can be broken down into two primary types: path constraints and 

boundary constraints.  Path constraints represent limitations on either the control or state 

at any time.  For instance, engines have a finite amount of thrust yielding a maximum 

value for the control.  It would be meaningless to solve for an optimal control solution 

that would require larger than the maximum available thrust.  Boundary constraints 

pertain to either the final or initial states.  They may be given as a set of equality or 

inequality constraints.  A state vector that does not violate any constraint is referred to as 

an admissible trajectory.  Similarly, a control vector that does not violate any constraint is 

referred to as an admissible control. 

The cost function is generated by the designer and represents the quantities of 

importance. 

  ( )( ) ( ) ( )( )
0

, , ,f

f f

t

t
J h t t g t t t dt= + ∫x x u   (29) 

In the cost function, the function h is referred to as the Mayer term and denotes cost 

related to the final state.  The function g is referred to as the Lagrange term or the running 

cost.  This function tracks state and control costs that occur through their entire time 

histories.  Cost functions may contain just the Mayer term, just the Lagrange term, or 

both depending on what is being optimized.  Separate terms in the cost function are given 

appropriate weights designating their relative importance in the optimization.  This is 

perhaps the most difficult part of designing the cost function.  There are an infinite 
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number of weighting combinations if multiple terms are present.  As such, extreme care 

must be taken in properly balancing the relative weights in the cost function [18]. 

 Equations 28 and 29 along with applicable constraints represent a complete 

optimal control problem.  The first-order necessary conditions for optimality are derived 

using the Calculus of Variations: 
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  (30) 

where H is the Hamiltonian constructed from Equations 28 and 29: 

  ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ), , , , , , ,Tt t t t g t t t t t t t= +   x u λ x u λ a x uH  (31) 

In Equations 30 and 31, λ (t) constitutes an n-dimensional vector of Lagrange multipliers, 

also known as co-states. 

 Boundary Conditions may be added to the problem formulation in Equation 30 as 

applicable.  This research focuses on a fixed final time and free final state problem.  

Since δxf is free, the fourth equation in Equation 30 results in: 

  ( )( ) ( )* *
f fh t t

∂
− =

∂
x λ 0

x
  (32) 
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Conway [20] states that optimal control as applied to spacecraft trajectories run into 

several difficulties: 

1. The dynamics are nonlinear. 

2. Most practical trajectories are discontinuous. 

3. The initial and final states may not be known explicitly. 

4. Many of the forces such as planetary perturbations are time-dependent. 

5. The basic structure of the trajectory may not be possible to specify a priori. 

The use of low-thrust propulsion can alleviate the trajectory discontinuities since it can be 

used nearly continuously.  This creates a very different problem from the traditional 

impulsive thrust model. 

2.4.2 Primer Vector Theory 

Primer vector theory is an indirect optimization method that satisfies the 

Necessary Conditions from Equation 30.  Conway [20, pp. 16-20] describes the setup 

shown below for the problem of an optimal, constant specific impulse spacecraft 

trajectory.  The conditions have been modified to conform to this research. 

 For a low-thrust engine, the acceleration can be constrained as max0 A A≤ ≤ .  The 

cost function for the minimum fuel case with an additional Mayer term is: 

  ( )( )
0

f

f

t

t
J h t Adt= + ∫x   (33) 

In this case the ECI state vector is used: 

  =
 
  
rx
v

 (34) 
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where r is the position vector and v is the velocity vector from the basic Two-Body 

problem discussed in Section 2.1.1.  For this problem, the initial state x0 is specified.  For 

this choice of states, the equations of motion are: 

  
( )=

+ Γ

 
 
 

v
x

g r u


  (35) 

where g(r) is the gravitational acceleration and u is the unit vector in the direction the 

thrust is being applied.  The gravitational acceleration is modeled as shown in Equation 2.  

The Hamiltonian function can be constructed now as: 

  ( )T T
r v= Γ + + + Γ  λ v λ g r uH   (36) 

The necessary conditions for the co-states are calculated from the Hamiltonian similar to 

the solution in Equation 30. 
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In Equation 37, G(r) is the symmetric gravity gradient matrix given as: 

  ( ) ( )∂
=

∂

g r
G r

r
  (38) 

The boundary condition is of similar form as Equation 32.  This yields the following 

equations. 
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The variables left are the acceleration magnitude, Γ, and direction, u.  From inspection, it 

can be seen that the choice of direction that minimizes the Hamiltonian occurs when u is 

aligned opposite in direction to the velocity co-state, λv.  This term is referred to as the 

primer vector, p: 

  ( ) ( )t tv= −p λ   (40) 

Conway [20] derives the primer vector equation from this definition. 

  ( )=p G r p   (41) 

The boundary conditions for this differential equation come from Equation 39. 
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  (42) 

With this choice of u the Hamiltonian becomes: 

  ( )1 T Tp r v= − Γ + +λ v λ gH  (43) 

From Equation 43 it can be seen that the Hamiltonian is a linear function of Γ.  Therefore, 

the choice of acceleration magnitude is based on the sign of its coefficient.  Conway [20] 

introduces the Switching Function to specify the acceleration magnitude. 

  ( ) 1S t p= −   (44) 

Here the choice of Γ comes from what Conway [20] refers to as the bang-bang control 

law: 

  { max 0
0 0

S
S

Γ >
Γ =

<
  (45) 
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Note that this solution for Γ is singular if S = 0 for a finite length of time but will 

otherwise determine both thrust magnitude and direction for the specified optimal control 

problem.  This analytical solution is very useful as a sanity check for the numerical 

solutions derived in later sections. 

 There are two primary advantages to using indirect methods: their relatively high 

accuracy and the absolute knowledge that they satisfy the first-order necessary 

conditions.  However, they unfortunately have relatively small radii of convergence and 

require analytical derivations of the Hamiltonian.  In addition, they also require a certain 

amount of a priori understanding of what the trajectory will look like.  While direct 

methods are not as accurate as indirect methods, they do not suffer from the same 

disadvantages [19].  With the development and improvement of computer processing 

over the past half-century, these methods have become increasingly popular in solving 

optimal control problems without explicitly using the analytical necessary conditions 

[20]. 

2.4.3 Pseudospectral Methods 

 Pseudospectral techniques represent a class of direct methods that use collocation 

to solve optimal control problems numerically rather than analytically.  This technique 

has become increasingly popular over the past several decades.  The following discussion 

is taken from Conway [20, pp. 45-47] and Rao [21]. 

 The first step is to discretize the state and control histories.  This discretization is 

accomplished by the use of global polynomials.  Discretization of the equations of motion 

is performed at collocation points.  There are three sets of these points that are commonly 
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used in pseudospectral methods: Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR), 

and Legendre-Gauss-Lobatto (LGL).  All three of these methods make use of the N-th 

order Legendre Polynomial, bounded on the interval [-1,1]: 

  ( )21 1
2 !

N N

N N N

dP x
N dx

 = −   (46) 

 The chief difference between these three methods is the inclusion or exclusion of 

the endpoints as shown in Figure 6.  The LG points include neither set of endpoints, LGR 

points include only one set of endpoints, and LGL points include both sets of endpoints 

[22]. 
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The boundary conditions for the differential equation for the LGL points are the 

endpoints.  Note that there are two possible sets of LGR points, one set using the initial 

point and one using the terminal point.  While similar in appearance, these three sets of 

points are distinctly different.  Garg [23] proved that LG and LGR state and control 

solutions converge significantly faster than LGL and went on in [24] to demonstrate that 

LGR further improves accuracy.  The pseudospectral method introduced in [24] was 

termed the Radau Pseudospectral Method (RPM) and is based on collocation using LGR 

points.  The roots of the LGR polynomial form the set of discretization points for the 

RPM. 
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Figure 6:   LG, LGR, and LGL collocation points [22] 

 It should be noted that there is a tradeoff inherent in this method of fitting points.  

A higher order polynomial will provide a better fit but will include more oscillations 

between each collocation point.  While a lower order polynomial will fit the points less 

accurately, it will tend to be better conditioned, providing fewer oscillations between 

collocation points [20]. 

 Once the states have been discretized and fitted with a polynomial, P(x) is 

differentiated.  P’(x) is then compared to the defined state derivatives at the collocation 

points.  The difference is referred to as the defect.  These defects can be gathered into a 

vector as follows: 

  [ ] ( ) ( ) ( )( ), ,D t t t t∆ = −x a x u  (48) 
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where [D] is the derivative matrix of the Legendre Polynomials.  Figure 7 demonstrates 

this procedure for a single node.  The defect then minimized in order to satisfy the 

specified equations of motion.  Pseudospectral methods are generally known to converge 

spectrally.  This means that convergence occurs faster than mN− where N is the number of 

nodes and m is any finite value [21].  The numerical algorithm utilized in this research is 

based on the Radau Pseudospectral Method. 

 
Figure 7:  Defect Vector [20] 

2.5 Chapter Summary 

 This chapter outlined the methodology behind the choices of states as well as the 

optimization methods used in this research.  The Optimal Control Problem solved in the 

following chapters is conducted using equinoctial elements to avoid singularities but is 

translated back into classical orbital elements for analysis.  The following chapter will 

outline in more detail the design and setup of the Optimal Control Problem.  
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III.  Methodology 

3.1 Chapter Overview 

 The following chapter outlines the methods used in this research in the 

development and execution of the Optimal Control Problem.  The specific setup of the 

Optimal Control components is covered as well as an in-depth discussion of the software 

that was used in MATLAB®.  Appendix A contains MATLAB® code that is discussed in 

this chapter. 

3.2 Optimal Control Problem Formulation 

 This section describes the design and setup of the Optimal Control Problem.  The 

equations of motion are specified along with their applicable state and control constraints.  

In addition, the design of the cost function is discussed in detail. 

3.2.1 Equations of Motion 

 The modified Equinoctial Orbital Elements as discussed in Section 2.1.3 were 

selected as the states for this Optimal Control Problem.  The corresponding equations of 

motion for this choice of states are outlined in Equations 24 through 27 in first-order 

form.  The control variables were chosen as [T, θ, ψ] where T is the thrust magnitude, θ is 

the in-plane pitch angle shown in Figure 8, and ψ is the out-of-plane yaw angle.  The 

resulting acceleration vector in the Equinoctial Reference Frame is given as: 
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where m is the satellite mass  and ϕ represents the satellite’s position in the Equinoctial 

Reference Frame as shown in Figure 8.  The angle ϕ is calculated from the components of 

the equinoctial position vector: 

  1 1

1

tan−  
=  

 

y
x

φ  (50) 

where the quantities x1 and y1 are given in Equation 22. 

 
Figure 8:  Thrust Vector 

 It should be noted that there are no perturbations to the basic Two-Body problem 

included in this realization of the equations of motion.  Since the orbital trajectories of the 

reference and maneuvering satellites are nearly identical, it was assumed that the 

perturbation effects are also nearly identical.  The position of the maneuvering satellite 

relative to its reference trajectory is one of the quantities of interest for this study and is 

incorporated into the cost function.  Since the separation between the two trajectories is 

small, perturbation effects are not necessary to model and their absence allows for 

boosted efficiency in the numerical algorithms, decreasing run time significantly. 
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3.2.2 State and Control Constraints 

 Since most satellites generally wish to remain at the same altitude for mission 

requirements, the semi-major axis was constrained to a maximum deviation of 20 

kilometers from the initial conditions.  However, since the altitude component of the 

ellipse is only 10 kilometers and the intent is to maneuver as little as possible, this for all 

intents and purposes left the semi-major axis unconstrained. 

 The only constraint placed on eccentricity in this research was to assign it a 

maximum value of 0.5.  This value was chosen in order to keep the code from 

incidentally generating a non-real value when using Equation 23 in the calculation of the 

state derivatives.  The limits for the equinoctial elements h and k were determined from 

this restriction using Equation 18. 

 One of the goals of this research was to compare in-plane with out-of-plane 

maneuvers by leaving both as optimization parameters in this algorithm.  As such, no 

restrictions were placed on inclination or RAAN.  However, in order to bound the 

equinoctial elements p and q, it was assumed that their corresponding classical elements 

would only change by very small amounts using their relationship in Equation 18. 

 The final equinoctial element, F, is directly related to the mean anomaly and the 

argument of perigee.  While the mean anomaly only increases over time, the argument of 

perigee changes rapidly at low eccentricity.  The bounds applied to F were determined 

from extrapolating the final value of the mean anomaly of the reference satellite.  Since 

the argument of perigee is bounded by ±π radians the bounds on F were established using 

its relationship to the mean anomaly and the argument of perigee.  A summary of the 

global state constraints is given below in Table 2. 
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Table 2:  Global State Constraints 

State Minimum Maximum 

a ( )0 20−a t  ( )0 20+a t  

h 0.5−  0.5  

k 0.5−  0.5  

p ( )( )02 tan 2− i t  ( )( )02 tan 2i t  

q ( )( )02 tan 2− i t  ( )( )02 tan 2i t  

F −π  ( )ftπ+ F  

 

 The thrust magnitude was constrained in the code from zero to one denoting a full 

range from zero to full throttle.  The MATLAB® function used for calculating the 

equations of motion was designed to scale this normalized throttle to a case-specific 

maximum thrust value. 

 The thrust angles were designed such that a single unique solution existed for 

virtually every thrust direction.  The expected solutions for pitch angle were either 

velocity or anti-velocity and as such, specifying a limit from -180° to 180° was 

undesirable since it would result in a discontinuous solution for any optimal descending 

profile.  Since pure altitude thrusting was assumed to be inefficient, the chosen 

singularity was placed at 270° for the pitch angle.  The yaw angle was constrained from   

-90° to 90°.  Since the satellite could thrust in any pitch direction, only half of a circle 

was required for the out-of-plane thrust angle.  The applied control constraints are 

outlined in Table 3 below. 
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Table 3:  Control Constraints 

Control Minimum Maximum 

T 0 1 

θ - 90◦ 270◦ 

ψ - 90◦ 90◦ 

 

 The initial iteration of the problem formulation applied a terminal event constraint 

to the Optimal Control Problem.  This specified that the final position of the maneuvering 

satellite must be outside of the ellipse.  This was accomplished using the formula: 
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where Δd is the in-track distance, Δh is the altitude difference, and Δn is the orbit normal 

distance between the reference and maneuvering satellites.  The values a, b, and c denote 

the dimensions of the error ellipse in each of these directions.  Due to the fuel 

inefficiencies inherent in out-of-plane maneuvering, a separate constraint was generated 

for this case in order to force the optimizer to converge on an out-of-plane maneuver.  

While this constraint ensured that the final positions would be outside of the ellipse, it 

tended to generate undesirable errors if the thrust magnitude or scenario time was 

insufficient for the maneuvering satellite to successfully exit the ellipse.  Therefore, in 

subsequent versions of the code, the ellipse was applied as part of the cost function rather 

than as a constraint. 
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3.2.3 Cost Function 

 Two quantities were of interest in this research: fuel cost and the final position of 

the maneuvering satellite relative to its reference position.  This necessitated both a 

Lagrange and a Mayer term in the cost function, written generically as: 

  
0

= + ∫
ft

J B Tdtα  (52) 

 The Lagrange term, T, is the time history of the thrust magnitude, constituting the 

minimum thrust portion of the cost function.  This term contains a weighting factor, α, 

that denotes the relative importance of minimizing fuel to ellipse avoidance.  The primary 

purpose of the weighting factor was to balance the cost function such that the Mayer and 

Lagrange terms were on the same relative order of magnitude for each case.  For the 

impulsive cases where the thrust time was small relative to the scenario time this required 

a weighting factor on the order of 1x10-2.  For the continuous case the thrust time was 

larger relative to the total scenario time requiring this weighting factor to decrease to the 

order of 1x10-6.  However, each case required specific manipulation of this variable in 

order to properly balance the cost function. 

 The Mayer term, B, is a three dimensional penalty function denoting an additional 

cost if the maneuvering satellite terminates inside the error ellipse.  This method of 

representing the error ellipse was chosen in order to offset the undesirable results 

generated by the final state event constraint formulation of this problem.  This penalty 

function would ideally be a Heaviside function, imposing the maximum penalty for any 

final state within the ellipse and no penalty for any final state outside of the ellipse.  

However, the derivative of a Heaviside function is discontinuous by definition and this 
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problem required a function with a continuous derivative.  Two smooth approximations 

were experimented with for the quantity B:  an exponential form and a sigmoid penalty 

function as shown below. 
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where E  is the case-specific ellipse constraint as defined previously in Equation 51, and 

S  is the desired sharpness of the sigmoid function.  These functions were designed to 

approximate a Heaviside function, denoting large penalties when inside the ellipse and 

sharply dropping off as the maneuvering satellite departs the ellipse.  The exponential 

form allows for increased control regarding how far outside the ellipse the designer 

wishes the satellite to travel.  Figure 9 demonstrates the difference for a 2-D ellipse 

constraint between the two functions.   Figure 9 (a) represents the relative weight 

imposed by an exponential function.  Figure 9 (b) represents the relative weight generated 

by a sigmoid penalty function with S = 50.  The weight in this figure is denoted by color 

with dark red representing the maximum penalty and dark blue representing the minimum 

penalty.  The sigmoid penalty function was chosen for the results given in Chapter IV due 

to its decreased sensitivity to the weighting factor, α. 

3.2.4 Multiple vs Single Phase Problem 

 The thrust profiles for the two impulsive cases were by their nature discontinuous.  

For this reason, an early attempt was made at separating thrusting and non-thrusting 

phases in the optimal control problem.  This was accomplished by assigning three phases 

to the problem:  two coasting phases and one thrusting phase.  The problem was designed  
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Figure 9:   Penalty Functions 

such that the thrusting phase was always the second phase with an associated event 

constraint that was used to force a minimum and maximum time to this phase in order to 

keep the solution within reasonable tolerances with respect to fuel expenditure.  

However, the existence of two phases independent of all three control variables yielded 

complications with convergence in GPOPS-II.  For this reason, this attempt was 

abandoned and a formulation containing a single phase was designed that satisfied all 

three cases. 
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3.3  General Pseudospectral Optimal Control Software-II 

 GPOPS-II is an optimization software package created by Dr Anil Rao based on 

the Radau Pseudospectral Method as discussed in Section 2.4.3 and is specifically 

designed to run in MATLAB®.  It incorporates an hp-adaptive mesh refinement algorithm 

for determination of the distribution of the collocation points [25].  It is designed 

specifically to work in conjunction with the nonlinear programming solvers IPOPT and 

SNOPT.  The following is a summary of how GPOPS-II was utilized in this research to 

solve the Optimal Control Problem.  For more detailed information on specific GPOPS-II 

functionality, see the GPOPS-II Manual [25]. 

3.3.1 Overview 

 The formulation of GPOPS-II involves a transformation from the standard method 

of describing the Optimal Control Problem discussed previously in Section 2.5.1 for a 

more generalized method.  This method involves treating the Lagrange term in the cost 

function as a part of the Mayer term.  This is valid once the Lagrange term has been 

integrated and is therefore only a function of initial and final time.  When this transition 

is made, the integrand of the Lagrange term becomes another discretized vector in this 

formulation of the Optimal Control Problem.  Any changes made to the state, co-state, 

and control history vectors during the optimization process generate an alternate 

integrand vector that subsequently changes the cost function. 

 In order to specify the Optimal Control Problem in GPOPS-II, several 

MATLAB® functions are required that define each component of the problem.  These 

functions include but are not limited to: 
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1. Main code function 

2. Continuous function 

3. Endpoint function 

In addition, upper, lower, and global limits must be specified for all variables 

manipulated within GPOPS-II.  These limits are specified in MATLAB® through a 

complex array of structures [25]. 

3.3.2 Input Structure 

 Data is input to GPOPS-II through a single complex structure.  Fields within this 

structure allow for everything from references to other required functions to an initial 

guess to limits on the states to be included in a single structure.  The following is a 

summary of the input fields used in this research.  The necessary substructures for the 

setup structure were summarized by Masternak [26] and are given in Appendix B. 

 The ‘bounds’ substructure specifies the upper, lower and global boundaries 

assigned to all variables manipulated within GPOPS-II.  For the time limit field, 

minimum and maximum times at the scenario beginning and end may be specified, 

allowing for fixed or free initial or final time options within specified tolerances.  Since 

this problem is fixed initial and final time, these minimum and maximum limits were 

identical.  For the state and control limit fields, minimum and maximum bounds are 

placed on the initial, global, and final states in that order.  This allows each state to be 

specified as either free or fixed at the endpoints as well as providing global restrictions to 

keep the state and control variables meaningful.  In addition, each boundary condition or 
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phase constraint that is expressed in a separate MATLAB® function requires a 

corresponding upper and lower bound to be specified in the limits substructure. 

 Like most optimization software, GPOPS-II requires an initial guess.  This 

requires the user to have a priori knowledge of what the optimal solution should 

generally look like.  Often, a poor guess can lead to convergence onto a suboptimal 

solution if the software determines the existence of a local minimum in the vicinity of the 

guess.  Even without the presence of an additional local minimum to converge on, a poor 

initial guess can significantly increase the convergence time of the software. 

Several additional MATLAB® functions must be specified for GPOPS-II to run 

properly.  These functions are referenced under the ‘functions’ substructure as shown in 

Appendix B.  Additional functions are optional depending on the problem statement but 

were not used in this research.  The necessary components of these files are specified in 

later sections. 

Not all subfields must be specified for proper functionality of GPOPS-II.  One 

example is the optional ‘mesh’ subfield used in this research.  This substructure allows 

for the user to specify settings for the hp-adaptive mesh.  It may be used to place bounds 

on the number of desired collocation points as well as the criteria to set optimality and 

feasibility tolerances. 

3.3.3 Additional Required Functions 

 The Continuous function is used to specify the quantities that are interior to the 

problem defined on an open interval (to, tf) such as the equations of motion for the states.  

These quantities are read into the function via a complex input structure that contains the 
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discretized vectors for each interior variable.  This function may pass back three fields in 

its output structure:  dynamics, path, and integrand. 

The Endpoint function is used to specify conditions that apply to the boundaries 

of the Optimal Control Problem such as an event constraint.  This function receives an 

input structure containing only the boundary values of each variable.  Its output structure 

may contain two fields: objective and eventgroup.  The objective field refers to the full 

Mayer term (including the integrated Lagrange term) of the cost function. 

3.3.4 Output Structure 

Upon convergence, GPOPS-II returns the calculated optimal solution through a 

single complex output structure.  This structure includes but is not limited to state, co-

state, control, and time histories.  A complete list of the subfields to the GPOPS-II output 

structure is outlined in Appendix B. 

3.3.5 Limitations 

 GPOPS-II has several important limitations inherent in its programming [21].  

First, the states, controls, and co-states are assumed to be smooth.  This was the reason 

for the choice of equinoctial elements as the states in this research as well as the 

requirement that the penalty function be continuous in the cost function.  The lack of 

applicable discontinuities minimizes this problem.  Second, despite the fact that the 

inequality path constraints are always satisfied at the collocation points, it is entirely 

possible for the constraints to be violated in between the collocation points.  This 

problem is also minimized by the relatively loose constraints applied to this research and 

the use of an adaptive mesh inherent in the ‘hp’ method. 
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3.4 Systems Tool Kit® v 10 

 Systems Tool Kit® (STK) v 10 is a software geometry engine designed by 

Analytical Graphics Incorporated® (AGI) in order to display dynamic positions and 

attitudes of space vehicles.  It was utilized in this research both as the engine to generate 

realistic scenario data as well as the method of visualizing and verifying the optimal 

thrust solution.  Access between MATLAB® and STK was accomplished through the 

built-in Component Object Model (COM) Interface.  This tool allowed for direct control 

of virtually all STK functionality from within MATLAB® using a complex structure of 

handles.  Appendix A contains a library of reference functions that were designed 

specifically for use in this research in order to better facilitate communication between 

these two programs. 

3.4.1 Component Object Model Interface Library 

 A library of functions was designed as part of this research in order to facilitate 

direct control of STK from within MATLAB®.  This library utilized the COM interface 

in order to establish an active communication pathway to MATLAB®.  This interface was 

created specifically for the purpose of providing users with the ability to control and 

automate objects within STK and requires the STK/Integration Module license in order to 

operate [27]. 

The COM interface facilitates external control for compatible programs using a 

series of handles.  These handles are structures containing pointer variables that access 

specific objects in the active program.  The most important handles used in this code are 

the User Interface Application (uiapp) and Object Model Root handles.  The uiapp handle 
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serves as the variable that tracks the COM Automation server default interface between 

the two programs.  If at any time this variable is deleted or overwritten, the program is 

closed and all related handles are released.  The root handle can be obtained from the 

uiapp handle via its ‘Personality2’ subfield.  Objects within STK can then be directly 

manipulated through the COM interface using subfields contained within the root handle 

[27]. 

Each function in this library was designed to complete a specific task in STK and 

relay the relevant Object Model handles back to MATLAB®.  These functions are all 

designed generically with no scenario-specific information included.  This was conducted 

such that the scenario-specific data could be housed in the main MATLAB® code, 

allowing this library to be useful for future research in this area.  Table 4  below details 

the name and purpose of each of the functions in the STK COM Interface Library. 

3.4.2 Scenario Input 

 The main code for this research began by initializing STK and designating the 

scenario start time.  The chosen scenario was set to occur on 1 Jan 2013 at 0900.  Once 

the scenario was created the code automatically generated the appropriate area target.  

The parameters for the area target are given below in Table 5.  This location is also 

shown below in the STK 2D plot in Figure 10. 

Both a reference and maneuvering satellite were then created in STK with 

identical initial conditions.  The COE sets shown in Table 6 were used for these initial 

conditions.  These two sets of initial conditions were chosen in order to explore the 

differences between single orbit reentry into the AOR versus a multiple orbit scenario.  
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The satellite dry mass used was 400 kg with 100 kg of on-board fuel for a total satellite 

wet mass of 500 kg.  A 0.5 N Electric Propulsion thruster was used for the continuous 

thrust case while the impulsive thrust case utilized a 22 N thruster. 

Table 4:  STK COM Interface Library Function List 

Function Description 

Area_Target Creates an area target object 

Astrogator Creates a satellite object in utilizing the Astrogator engine to 
propagate maneuvers 

Compute Access Generates an access report between two objects 

Create_Engine_Model Creates a custom engine model in the Component Library 

Elements Calculates the orbital element time history for the specified 
satellite object 

FTV_Maneuver Generates a Finite Thrust Vectored maneuver in the Maneuver 
Control Sequence (MCS) in Astrogator 

Initialize Opens new STK window and automatically fills general 
scenario information 

ITV_Maneuver Generates an Impulsive Thrust Vectored maneuver in the 
Maneuver Control Sequence (MCS) in Astrogator 

Maneuver_From_File 
Generates a Finite Thrust Vectored maneuver in the Maneuver 
Control Sequence (MCS) in Astrogator utilizing an external 
text file for attitude control 

Output_to_text Generates a text file conforming to the *.a thrust attitude 
external file input parameters 

Propagate Adds propagation step in the Maneuver Control Sequence in 
Astrogator 
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Table 5:  Area Target Parameters 

Location Latitude Longitude Radius Min elevation angle 

AFIT 39.783 N 275.917 W 500 km 20° 

 

 
Figure 10: Area of Regard 

An error ellipse was then generated around the reference satellite with a semi-

major axis of 100 kilometers oriented along the velocity vector and semi-minor axes of 

length 10 kilometers denoting altitude and distance along the reference satellite’s orbit 

normal vectors.  This error ellipse is shown in the STK 3D plot in Figure 11. 

Using the given initial conditions, STK then generated an access report between 

the area target and reference satellite for each scenario.  This report was imported into 

MATLAB® to determine the first AOR departure time.  This time served to account for 

the coast time from the specified STK scenario epoch until the optimzation start time.  
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The access report also generated the subsequent AOR reentry time which served as the 

optimization scenario termination time.  With this information, GPOPS-II was able to 

solve the optimal control problem. 

Table 6:  Satellite Initial States 

 Altitude Eccentricity Inclination RAAN Argument of 
perigee 

True 
anomaly 

1 500 km 10-6 45° 0° 0° 60° 

2 500 km 10-6 45° 50° 0° 60° 

 

 
Figure 11: Error Ellipse 

3.4.3 Maneuver Development 

 Upon convergence in GPOPS-II, the commanded thrust profile was uploaded into 

STK.  The maneuvering satellite was then commanded to execute the calculated profile.  

Orbital element reports were generated via STK for the resulting trajectories based on the 
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COE history of both the reference and maneuvering satellites.  The flowchart shown in 

Figure 12 depicts the interface between MATLAB® and STK.  The dotted line on this 

figure demonstrates a critical step in the design process for this algorithm.  

Inconsistencies in the output from GPOPS-II and STK were compared and additional test 

runs were conducted using alternate GPOPS-II settings in order to refine the solution. 

 
Figure 12: Optimization Routine Flowchart 
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One of the most powerful capabilities that STK added to this code was the ability 

to easily simulate the effects of perturbations to ensure that they did not interfere with 

ellipse avoidance generated by the thrust profiles being calculated.  As was previously 

mentioned, the code within GPOPS-II only ran the Two-Body equations of motion since 

the reference and maneuvering satellites were in such close proximity for the entire 

scenario.  However, once the profile had been uploaded to STK, perturbations could be 

easily added back into the scenario in order to visualize their effects on the calculated 

trajectories. 

3.4.4 Optimizer Result Validation 

 In addition to data collection and visualization, STK was utilized in this research 

in order to validate the maneuver results from GPOPS-II.  This was accomplished using a 

basic parameter search on the control variables.  This search was conducted in 

MATLAB® and utilized the STK COM Interface Library in order to input a large variety 

of potential maneuvers and compare their relative cost as defined in Section 3.2.3. 

For the impulsive parameter searches, pitch and yaw were varied in accordance 

with the constraints given in Table 3.  In each of these cases, the pitch angles were varied 

while thrust magnitude and duration were held constant.  Since this yielded identical delta 

v costs for each of these maneuvers, the particular value of interest in the cost function 

then becomes ellipse avoidance.  The ellipse constraint from Equation 51 was then 

utilized to evaluate the relative value of each combination of pitch and yaw angles.  

These relative values were visualized using the imagesc command in MATLAB®.  This 

command visually illustrates the relative sizes of elements in a matrix using color coding.  
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For the thrust duration parameter search, the thrust time was varied from 80% to 120% of 

the GPOPS-II solution.  At each value of thrust duration, ellipse avoidance was 

calculated in identical fashion to the pitch and yaw angle parameter search. 

For the continuous single orbit parameter search, the pitch angle was varied by 

both translating ±10◦ and skewing 80% to 120% from the GPOPS-II solution.  After the 

pitch angle solution was perturbed, the same ellipse avoidance calculation was conducted 

as with the thrust angle and duration parameter searches.  The imagesc command was 

also used in this case to visualize the result of perturbing the pitch angle solution.  Due to 

the relatively short thrust duration for the continuous multiple orbit scenario, it was 

treated as an impulsive case for this analysis. 

3.5 Chapter Summary 

 This chapter outlined the setup of the Optimal Control Problem, the design of the 

problem within GPOPS-II, and the implementation of STK in determining and validating 

the solution.  The next chapter will discuss the results returned by GPOPS-II and the 

analysis of those results when executed in STK.  
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IV.  Analysis and Results 

4.1  Chapter Overview 

 This chapter outlines the results of the three test cases described in Chapter I 

using the algorithm developed in Chapter III.  The first portion of this chapter describes 

the solution to the optimal control problem for each of the three cases as determined by 

GPOPS-II.  The next portion of this chapter outlines the results from Systems Tool Kit® 

when these maneuvers are input from the GPOPS-II code for validation and proof of 

concept. 

4.2  Optimal Control Results 

 This section presents the optimal thrust results for each of the three cases outlined 

in Chapter I:  Impulsive In-Pane, Impulsive Out-of-Plane, and Continuous In-Plane.  For 

the first and third cases, two families of solutions exist.  The first solution is to the 

scenario in which the satellite only takes one orbit from AOR departure until re-entry.  

The second solution consists of multiple orbits between AOR departure and subsequent 

re-entry.  The size and geographic location of the specified AOR will dictate how 

frequently this second scenario occurs.  However, even for a relatively small AOR the 

single orbit scenario is easily the most common.  The results presented in this section 

represent the Two-Body approximations calculated in GPOPS-II.  The maneuvers from 

this section are tested in STK with perturbations in Section 4.3. 

 Each solution presented for Cases 1 and 3 represent a desire to climb when 

maneuvering.  There is a corresponding solution that allows for a descent in both of these 
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cases.  Case 2 also contains two possible solutions depicting thrusting in either orbit 

normal direction.  These additional solutions have been excluded from this section due to 

redundancy.  For each case, a short coast time occurs at the beginning of each solution.  

This is the result of beginning the STK scenario prior to AOR entry. 

 For all three cases, a convergence tolerance of 1 x 10-8 was set for the adaptive 

mesh in GPOPS-II.  The optimizer was allowed a maximum of 45 mesh iterations in 

order to converge to this tolerance.  Each case required manipulation of the weighting 

factor as previously discussed in Section 3.1.3 as well as manipulation of the initial 

number, distribution, and iterative increment of collocation points.  The nodal distribution 

required adjustment in each case due to scenario length and complexity.  The default 

nodal distribution in GPOPS-II is ten segments with four nodes per segment.  However, 

due to the length of time between each node, an increase in the number of total points in 

the state history in GPOPS-II was required.  For this reason, the single orbit nodal 

distributions are smaller than the multiple orbit nodal distributions. 

4.2.1 Case 1 Single Orbit 

For the Impulsive In-Plane single orbit scenario, the satellite was given the first 

set of initial conditions specified in Table 6 in Chapter III.  For this case the weighting 

factor was set at 9 x 10-3.  The optimizer started with ten segments containing seven 

nodes per segment and was allowed to increase the nodes in each segment at a range from 

20 to 25 points per mesh iteration.  The optimized thrust profile for this scenario is shown 

in Figure 13 with the resulting Two-Body orbital elements for the maneuvering satellite 

given in Figure 14. 
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Figure 13: Case 1 Single Orbit Thrusting Profile 

 
Figure 14: Case 1 Single Orbit COE 
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To better understand the relative motion between the two trajectories, the orbital 

elements were converted to give a cross-sectional view of the error ellipse shown in 

Figure 15.  In this figure, the solid line represents the trajectory of the maneuvering 

satellite and the dashed line shown in this figure depicts the ellipse.  This reference frame 

is fixed with the current position of the non-maneuvering trajectory always at the origin. 

 
Figure 15: Case 1 Single Orbit Relative Motion Cross Section 

Due to the short duration of the scenario, insufficient time is available for the 

satellite to achieve significant in-track spacing.  Therefore, this solution represents intent 

to use a change in altitude as the primary method to exit the ellipse.  From this solution, it 

can be seen that the best place to insert an impulsive thrust is half an orbit prior to AOR 

reentry.  This maneuver effectively places apogee at the final position as shown in Figure 

15 and uses the change in the semi-major axis to maneuver out of the ellipse.  The 

calculated fuel cost for this maneuver is approximately 3.7 m/s. 
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4.2.2 Case 1 Multiple Orbit 

 The second set of initial conditions from Table 6 defines the multiple orbit 

scenario for Case 1 as discussed in this section.  For this scenario, the weighting factor 

was set at 1 x 10-2.  The multiple orbit scenario consisted of a much smaller impulse 

relative to the overall scenario time, requiring the initial number of collocation points to 

be initially increased to 25 nodes per segment in order to obtain a solution with finer 

resolution.  The number of nodes added per mesh iteration was also increased to a range 

of 20 to 25.  The optimized profile for this scenario is shown below in Figure 16.  The 

resulting Two-Body orbital elements for this solution are given in Figure 17 and its cross 

sectional plot is given in Figure 18. 

This scenario demonstrates that if multiple orbits are expected to occur prior to 

AOR reentry it is advantageous to thrust early. Even a small initial change in semi-major 

axis creates an difference in orbital period that when propagated over the approximately 

17 hour scenario will allow for a large enough in-track spacing between the maneuvering 

satellite and its projected reference trajectory to escape the ellipse.  This maneuver can 

therefore be accomplished with a much smaller impulse than the single orbit scenario.  

The altitude change completed in this scenario is approximately 2 km rather than the 

nearly 14 km of altitude change observed from the single orbit scenario.  Figure 18 

demonstrates the path this maneuver takes to exit the ellipse.  As this figure demonstrates, 

the slightly larger orbital period allows for long-term divergence between the two 

trajectories to increase the in-track spacing.  This maneuver has an approximate delta v 

requirement of 0.6 m/s. 
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Figure 16: Case 1 Multiple Orbit Thrusting Profile 

 
Figure 17: Case 1 Multiple Orbit COE 
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Figure 18: Case 1 Multiple Orbit Relative Motion Cross Section 

4.2.3  Case 2 Single Orbit 

 As discussed in Section 3.2, the cost function was modified for the Impulsive 

Out-of-Plane case according to Equation 51 in order to remove any advantage to 

maneuvering for either altitude or in-track spacing from the terminal cost.  This 

modification to the cost function allowed the software to converge on an optimal out-of-

plane maneuver.  Since this solution required modification of the Mayer term in the cost 

function in order to converge, the Case 2 profile is by no means globally optimal.  

However, this solution provides other advantages that are discussed later in this chapter. 

The satellite was given the first set of initial conditions shown in Table 6.  The 

weighting factor was set at 1 x 10-4 for this scenario.  The number of collocation points 

was initially set at 4 nodes per segments and was increased between 4 and 10 nodes per 

mesh iteration.  The optimal thrust profile for this case is shown in Figure 19.  Due to the  
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Figure 19: Case 2 Thrusting Profile 

 
Figure 20: Case 2 COE 
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Figure 21: Case 2 Orbit Relative Motion Cross Section 

out-of-plane nature, the thrusting angle shown in this figure is yaw rather than pitch.  The 

resulting Two-Body orbital elements for this solution are given in Figure 20 and its cross 

sectional plot is given in Figure 21.  For this case, the cross sections depict the orbit 

normal component relative to the in-track axis. 

 This solution demonstrates thrusting entirely out of the orbital plane in order to 

maneuver out of the ellipse.  Thus, the timing of this impulse is as important as the 

duration.  Figure 19 demonstrates placing the thrust a quarter of an orbit prior to AOR 

reentry.  Another nearly identical maneuver may also be conducted three quarters of an 

orbit prior to re-entry without significantly affecting the cost or result.  As this figure 

demonstrates, the thrust magnitude solution generated by GPOPS-II did not yield a 

constant maximum thrust.  This fluctuation in thrust is due to the automatic scaling used 

in the design of the Optimal Control Problem combined with slight inaccuracies in the 

GPOPS-II solution. 
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From these results it can be seen that the resulting changes in altitude and 

eccentricity are negligible when thrusting out-of-plane.  This case focuses instead on 

modifying the inclination and RAAN in order to achieve out-of-plane spacing from the 

reference trajectory at the final time.  The estimated delta v requirement for this case is 

14 m/s. 

4.2.4  Case 2 Multiple Orbit 

The multiple orbit solution for the Impulsive Out-of-Plane Case showed no 

significant advantages over the single orbit solution.  While there is a very slight change 

in the semi-major axis for the maneuvering satellite, the drift caused by the difference in 

orbital periods is not significant over this scenario time and as such this solution still 

yields no maneuvering until a quarter orbit prior to AOR reentry followed by an identical 

maneuver to the single orbit scenario for this case. 

4.2.5  Case 3 Single Orbit 

 For the Continuous Thrust single orbit scenario, the satellite was given the first set 

of initial conditions shown in Table 6 with the weighting factor set at 1 x 10-7.  The 

number of collocation points was initially set at 4 nodes per segments and was increased 

between 4 and 10 nodes per mesh iteration.  The optimal thrust solution for this profile is 

given in Figure 22.  The resulting Two-Body orbital elements for this solution are given 

in Figure 23 and the cross section is given in Figure 24. 

This solution maneuvers the satellite to place apogee at the final position resulting 

in a similar final position to the Case 1 single orbit solution.  Where the Impulsive Case 

controls perigee position by determining when to thrust, this case accomplishes the same  
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Figure 22: Case 3 Single Orbit Thrusting Profile 

 
Figure 23: Case 3 Single Orbit COE 
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Figure 24: Case 3 Single Orbit Relative Motion Cross Section 

goal using the pitch angle.  The result is a solution that is not entirely in the velocity 

direction but rather oscillates within 30◦ of the velocity vector.  It should be noted as well 

that since this case involves thrusting immediately after AOR departure, slightly larger 

in-track spacing is accomplished along with the altitude avoidance maneuver.  This 

estimated maneuver cost was 5.5 m/s for this scenario. 

4.2.6  Case 3 Multiple Orbit 

For the Continuous Thrust multiple orbit scenario, the satellite was given the 

second set of initial conditions in Table 6 along with a weighting factor at 1 x 10-6.  The 

number of collocation points was initially set at 10 nodes per segment and was increased 

between 15 and 25 nodes per mesh iteration.  The optimal thrust solution for this scenario 

is shown in Figure 25.  The resulting Two-Body orbital elements for this solution are 

given in Figure 26 and the cross section for this maneuver is given in Figure 27. 
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Figure 25: Case 3 Multiple Orbit Thrusting Profile 

 

Figure 26: Case 3 Multiple Orbit COE 
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Figure 27: Case 3 Multiple Orbit Relative Motion Cross Section 

Due to the length of this scenario, a much smaller delta v was required in order to 

achieve ellipse avoidance.  For this reason, the resulting thrust profile appears more 

impulsive than it does continuous and represents a similar type of solution to the 

impulsive multiple orbit scenario, choosing to maneuver early for altitude and allowing 

the difference in orbital period to drive the increase in in-track distance in order to exit 

the ellipse.  As with the Case 2 thrust profile, a slight deviation can be observed in the 

maximum thrust.  The estimated maneuver cost was 0.7 m/s for this scenario. 

4.2.7  Summary of Optimal Control Results 

 The Case 1 single orbit solution presents a viable alternative to the Hohmann 

Transfer, which would require maneuvering twice in order to re-circularize after 

changing altitudes.  This solution focuses on something more closely related to a phasing 

maneuver, thrusting once and placing the furthest point from the reference orbit over the 
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AOR.  In order to achieve ellipse avoidance using the Hohmann Transfer method for this 

scenario, a 37% smaller burn would be required initially upon AOR departure followed 

by an identical burn half an orbit later.  The leads to a 26% increase in fuel costs to 

conduct the Hohmann Transfer over the single orbit solution for this case.  The Case 1 

multiple orbit solution allows for this single impulse to occur early in the profile, creating 

a slightly longer orbital period and allowing the new trajectory to diverge from its 

reference trajectory naturally.  This maneuver requires far less fuel than the either the 

Hohmann Transfer or the phasing maneuver but unfortunately occurs with considerably 

less frequency than the single orbit scenario. 

 The Case 2 solution presents an interesting alternative to more traditional methods 

of maneuvering.  Rather than attempting to change altitude or in-track spacing, this 

maneuver could be accomplished as late as a quarter orbit prior to AOR reentry such that 

the out-of-track spacing is maximized.  This method provides for the most rapid response 

but unfortunately comes at the highest cost.  This case alone shows no significant 

advantage in the multiple orbit scenario due to its negligible change in orbital period. 

The Case 3 solution is similar in many respects to the solution to Case 1.  It is by 

definition a more gradual change based on the nature of the engine being used.  It should 

be noted that for the Case 3 single orbit solution a considerable amount of attitude 

maneuvering is required in order to accomplish the specified thrust vectoring for the 

single orbit scenario.  The multiple orbit scenario is nearly identical to the Case 1 

solution, requiring either velocity or anti-velocity thrusting for much shorter time periods 

than the single orbit scenario and allowing for the differences in orbital periods to 

generate maneuvering and reference trajectories that diverge. 
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The total fuel expenditures for each Case are given below in Table 7.  For both 

the single orbit and the multiple orbit scenarios, the Impulsive In-Plane thrust solution 

yields the minimum delta v requirement while the Impulsive Out-of-Plane solution yields 

the maximum requirement. 

Table 7:  Fuel Cost Comparison 

Case Δv (m/s) 

1 Impulsive Thrust In Plane 
Single Orbit 3.7 
Multiple Orbit 0.6 

2 Impulsive Thrust Out-of-Plane Single Orbit 14 

3 Continuous Thrust 
Single Orbit 5.5 
Multiple Orbit 0.7 

4.3  Systems Tool Kit® Simulation and Validation 

 In addition to data generation, Systems Tool Kit® was also utilized in order to 

check the validity of the optimal solutions generated by GPOPS-II.  This software also 

provided the ability not only to verify the Two-Body solutions but to also to demonstrate 

the effects that orbital perturbations have on the calculated maneuvers.  The following 

sections provide the results when the profiles presented in Section 4.2 were implemented 

and propagated in STK using the full High-Precision Orbit Propagator (HPOP) engine. 

4.3.1  Case 1 

 The simulation run for the Case 1 single orbit scenario yielded the results shown 

in Figure 28.  The elements for the reference satellite are given in blue and represent the 

STK HPOP solution.  The elements for the maneuvering satellite are given in red and 

also represent the HPOP solution.  Since no out-of-plane thrusting was conducted, the 

inclination and RAAN were left out of this figure.  Also, since the argument of perigee 
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and mean anomaly are nearly identical for these two trajectories, those elements were 

also disregarded. It can be seen that the relative altitude changes occur as predicted by the 

GPOPS-II solution.  The eccentricity plot also demonstrates that the orbit remains nearly 

circular within the bounds of normal perturbations.  This deviation from the reference 

trajectory also changes predictably in accordance with the Two-Body approximation. 

The results for the Case 1 single orbit pitch and yaw parameter searches are given 

below in Figure 29.  The ellipse avoidance factor in this figure represents the value of the 

ellipse constraint as defined in Equation 51.  The thrust angle parameter search yielded an 

optimal pitch angle at approximately 2◦ above the velocity direction for a climb and 2◦ 

below the anti-velocity direction for a descent.  Both pitch angles had a corresponding 

yaw angle at zero.  These results are nearly consistent with the solution from GPOPS-II 

presented previously in Figure 13 which indicated a 5◦ deviation from the velocity vector 

was optimal.  The results from the Case 1 single orbit thrust duration parameter search 

are given below in Figure 30.  This figure demonstrates that the thrust duration presented 

previously could have accomplished the ellipse avoidance with a delta v that was 6% 

smaller.  This discrepancy is due to round off error in the conversion process within 

MATLAB® between the GPOPS-II output and STK.  However, this deviation is on the 

order of 5 seconds and is well within the margin for error of a commanded maneuver.  

When the correction is made for this maneuver the delta v requirement becomes 3.5 m/s. 

 The simulation run for the Case 1 multiple orbit scenario yielded the results 

shown in Figure 31.  As with the single orbit scenario, only altitude and eccentricity are 

presented in this plot.  Despite the added perturbations in this figure, the differences in 

relative position between the two satellites remain consistent with GPOPS-II predictions. 
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Figure 28: Case 1 Single Orbit STK Results 

 

Figure 29: Case 1 Single Orbit Pitch and Yaw Validation 
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Figure 30: Case 1 Single Orbit Thrust Duration Validation 

The results for the Case 1 multiple orbit pitch and yaw parameter searches are given in 

Figure 32.  The thrust angle yielded an optimal pitch angle of 1.5◦ above the velocity 

vector for a climb and 1.5◦ below the anti-velocity vector for a descent.  Both pitch angle 

solutions had a corresponding yaw angle at zero as in the single orbit scenario.  These 

results are consistent with the profile presented previously in Figure 16.  The results from 

the Case 1 multiple orbit thrust duration parameter search are given in Figure 33.  This 

figure again demonstrates that the previously presented thrust duration could have been 

13% smaller corresponding to a difference in thrust duration of 2 seconds and still 

accomplished the in track spacing necessary for ellipse avoidance.  When this thrust 

duration is corrected, the delta v requirement for this maneuver becomes 0.5 m/s. 
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Figure 31: Case 1 Multiple Orbit STK Results 

 

Figure 32: Case 1 Multiple Orbit Pitch and Yaw Validation 
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Figure 33: Case 1 Multiple Orbit Thrust Duration Validation 

4.3.2  Case 2 

The STK HPOP simulation results for Case 2 are shown below in Figure 34.  

Since this case does not significantly affect orbital period, the altitude, eccentricity, 

argument of perigee, and mean anomaly plots were excluded.  The elements of interest 

shown for this case are inclination and RAAN.  This figure shows responses in these 

elements consistent with their Two-Body predictions given in Section 4.2.  It is 

interesting in this case to note that the changes made in inclination were on the order of 

the orbital perturbations while the changes in RAAN were an order of magnitude smaller 

than the perturbation effects.  This would imply that this maneuver generates a negligible 

impact on the maneuvering satellite’s mission effectiveness. 
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The results for the Case 2 pitch and yaw parameter searches are given below in 

Figure 35.  The thrust angle parameter search indicated that pitch angle was irrelevant in 

this case since the only factor of interest was out-of-plane ellipse avoidance.  This was 

consistent with the results previously presented in Figure 19.  The results for the Case 2 

thrust duration parameter search are given below in Figure 35.  These two figures 

confirm that the GPOPS-II solution is optimal in this case. 

The thrust magnitude from Figure 19 demonstrates slight fluctuations while 

thrusting.  These fluctuations in thrust are an artificial construct of the GPOPS-II 

algorithm and are due to the manipulation of the code required to obtain this solution.  

However, the standard deviation of the thrust magnitude was 0.25 N and is well within 

the margin of error for a commanded maneuver. 

 
Figure 34: Case 2 STK Results 
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Figure 35: Case 2 Pitch and Yaw Validation 

 

Figure 36: Case 2 Thrust Duration Validation 
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4.3.3  Case 3 

The STK HPOP simulation for the Case 3 single orbit scenario yielded the results 

shown below in Figure 37.  As with the first case, only the altitude and eccentricity 

values are shown.  From this figure it can be seen that the relative altitude and 

eccentricity changes continue to be portrayed accurately by the Two-Body solution.  The 

results for the Case 3 Single Orbit pitch profile parameter search are given in Figure 38.  

This figure demonstrates that the optimal pitch profile is actually slightly perturbed from 

the GPOPS-II solution.  However, the optimal solution from this method has a maximum 

deviation from the GPOPS-II solution of 4◦ and is within a reasonable margin of error for 

a maneuvering satellite.  Due to the fact that the single orbit scenario requires 

maneuvering for the entire scenario, no thrust duration validation was conducted. 

 
Figure 37: Case 3 Single Orbit STK Results 
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Figure 38: Case 3 Single Orbit Pitch Profile Validation 

The STK HPOP simulation for the Case 3 multiple orbit scenario yielded the 

results shown below in Figure 39.  As with the single orbit scenario only altitude and 

eccentricity are presented in this plot.  Similar to the Case 1 multiple orbit scenario, the 

addition of perturbations still generate consistent differences in relative position between 

the two satellites with the GPOPS-II predictions. 

The results for the Case 3 Multiple Orbit pitch and yaw parameter searches are 

given below in Figure 40.  The thrust angle yielded an optimal pitch angle of 1.5 degrees 

for a climb and 1.5 degrees for a descent.  The optimal yaw angle remained at zero as in 

Case 1.  These results were consistent with the GPOPS-II solution for this case.  The 

results for the Case 3 Multiple Orbit thrust duration parameter search are given in Figure 

41.  This figure indicates that the thrust duration determined by GPOPS-II is again 

slightly less than ideal.  The validation routine returned an error of 13% and represents a 
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difference of 91 seconds in thrust duration.  When this deviation was corrected, a smaller 

delta v requirement of 0.5 m/s was able to achieve the required in track spacing necessary 

to achieve the required ellipse avoidance criteria. 

4.3.4  Summary of STK Results 

 The STK simulation runs presented in this section demonstrate that these 

maneuvers will in fact create the changes predicted by the GPOPS-II solution from 

Section 4.2.  Additionally, the usage of the HPOP engine in Astrogator demonstrates that 

the lack of perturbing accelerations in the equations of motion had a negligible effect on 

the calculation of valid final solutions. 

 
Figure 39: Case 3 Multiple Orbit STK Results 
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Figure 40: Case 3 Multiple Orbit Pitch and Yaw Validation 

 

Figure 41: Case 3 Multiple Orbit Thrust Duration Validation 
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The parameter search yielded confirmation of the optimality of the GPOPS-II 

solution within reasonable tolerances.  The primary source of error between the solutions 

presented in Section 4.2 and the validation routine conducted in Section 4.3 is the 

conversion process between the GPOPS-II solution and Astrogator within STK.  Many of 

the thrust profile results from the GPOPS-II solution indicated a magnitude or angle that 

had small deviations.  The conversion process to STK required the removal of many of 

these deviations.  Even with these removals, the final solutions presented did not deviate 

significantly in most cases.  The primary exceptions to this are the thrust duration results 

for each of the multiple maneuver cases.  In both of these cases, GPOPS-II depicted a 

significantly larger thrust than was strictly required for ellipse avoidance. 

Together, these three cases yielded three optimal families of solutions.  First, if 

time permits it is most advantageous to make a small increase in altitude and allow time 

for the difference in orbital periods to slowly increase in-track spacing.  If that is not 

possible, the next best solution involves thrusting in order to place apogee or perigee over 

the AOR reentry position.  For the impulsive cases, this is accomplished using the timing 

of the thrust and for the In-Plane case involves a slightly lower delta v than the 

Continuous case which uses pitch angle to control apogee or perigee.  This maneuver is 

roughly seven to nine times more expensive than the first solution.  The least efficient 

solution involves making very small changes in the inclination and/or RAAN at a quarter 

or three quarters of an orbit prior to AOR reentry.  This solution costs roughly three to 

four times the fuel cost of the single orbit solution and nearly twenty-four times the fuel 

cost of the multiple orbit solution.  Its primary advantage is in maintaining previous 
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altitude and eccentricity.  Together, these three solutions outline the optimal set of 

potential maneuvers for collision avoidance. 

4.4  Chapter Summary 

 This chapter presented the results from the optimal control problem solved using 

GPOPS-II in Section 4.2.  Next, Section 4.3 demonstrated these maneuvers in STK and 

tested how adding perturbing accelerations altered the solution.  STK was also utilized in 

this chapter to further optimize the solution and present reasonable minimum fuel 

requirements for each maneuver.  The next chapter will present conclusions from this 

research and recommended future work. 
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V.  Conclusions and Recommendations 

5.1  Chapter Overview 

 The purpose of this research was to develop and test the application of 

pseudospectral optimization for debris avoidance in orbital mechanics.  This study 

focused on the development of a set of minimum thrust maneuvers for the purpose of 

orbital debris collision avoidance.  These thrust profiles were determined from the 

requirement that a satellite maneuver result in an orbit that is completely outside of an 

error ellipse of fixed dimensions projected from its non-thrusting reference trajectory 

within a set time frame.  This was accomplished via GPOPS-II, a pseudospectral optimal 

control algorithm designed to run in MATLAB®.  The results from this work were further 

developed and tested using the Component Object Model Interface to automate 

functionality in Systems Tool Kit® in order to propagate the calculated thrust profiles and 

compare the relative position between the maneuvering satellite and its reference 

trajectory. 

 This research developed maneuvers for three specific cases.  The first case 

consisted of an impulsive thrust profile in the satellite’s orbital plane.  The second case 

maintained the impulsive nature while considering maneuvering independent of the 

satellite’s orbital plane.  The final case compared continuous thrusting to the impulsive 

case.  STK was used for each of the three cases in order to validate the calculated optimal 

solutions as well as to demonstrate the effects of adding perturbations to the propagated 

trajectories. 
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5.2  Conclusions 

 Both the problem setup and solution developed in this study demonstrated the 

viability of GPOPS-II as an optimal control algorithm for application in orbital 

mechanics as well as serving as a basis for future study in this area.  However, the 

sensitivity of this algorithm to scenario settings indicates that this tool is best suited for 

theoretical maneuver development in a controlled environment.  Small changes to the 

scenario settings within this problem required extensive manipulation of variables such as 

the cost function weighting factor and nodal distribution in order to obtain meaningful 

results. 

 The results from the three test cases demonstrated that the most efficient way to 

maneuver out of the error ellipse consisted of thrusting mostly in the velocity or anti-

velocity direction with a single impulse.  If time permits, it is most efficient to thrust for a 

shorter time with the intent of slightly changing the orbital period.  This allows the 

maneuvering satellite to slowly diverge from its reference trajectory, allowing for 

separation dependent almost entirely on in-track spacing to maneuver out of the ellipse.  

If time does not permit the in-track solution, however, the next best option consists of 

maneuvering to place apogee or perigee over the final position.  This method allows for 

the satellite to leave the ellipse temporarily for the collision avoidance maneuver but does 

not attempt to re-circularize the orbit afterwards.  As expected, out-of-plane thrusting was 

shown to be the least efficient but had the advantage of an almost negligible change in 

virtually all of the orbital elements. 

 Analysis in STK demonstrated the effects of the addition of perturbations into the 

propagator after convergence of the optimal control algorithm.  This analysis 
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demonstrated that typical perturbing forces did not significantly change the predicted 

trajectories of the maneuvering satellites relative to their non-maneuvering reference 

trajectories.  This was consistent with the initial assumption that only Two-Body 

mechanics were necessary to properly model the dynamics of this problem. 

5.3 Research Limitations 

 Every optimal control problem begins with the question of what, exactly, 

constitutes optimality.  This is specified in the problem statement in the form of the cost 

function.  This research made use of specific choices for several values used in the cost 

function.  Obviously, there are a nearly infinite number of possible permutations of these 

choices available for even this single formulation of the cost function, not even including 

additional forms designed to alternately express either the Mayer error ellipse penalty or 

the Lagrange minimum fuel running cost.  Therefore, the claim that these trajectories are 

optimal or even near-optimal is made only after test runs were conducted in STK to 

verify functionality and optimality of the solution.  Different problem formulations could 

potentially yield better solutions in terms of optimality and robustness. 

5.4 Recommendations for Future Work 

 The STK Component Object Model Interface library developed in this research 

was designed broadly with the intention of providing an automation tool for future 

research requiring rapid communication and control of STK from within MATLAB®.  

While this research utilized this tool to facilitate optimization in orbital maneuvering, 

autonomous control from MATLAB® yields a wide variety of data processing and 

scenario generation options not currently available in STK by itself.  Further 
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development of this tool to expand functionality would be extremely beneficial for future 

study in orbital mechanics. 

This research was conducted using pseudospectral optimization to determine a set 

of appropriate thrust profiles for collision avoidance.  Future work should include an 

analytical approach, such as Primer Vector Theory, that could be used to further validate 

the methods presented in this study.  An analytical approach would offer the ability to 

study how alterations to this scenario such as satellite mass and maximum thrust would 

affect the solution.  Additionally, the use of alternate direct optimization routines as well 

as alternate problem formulations would be advantageous in order to compare accuracy 

and convergence times.  Alternate problem formulations should include techniques to 

automatically scale the weighting factor in the cost function.  Static values for this 

weighting factor provided one of the primary limitations in the robustness of the 

algorithm developed in this research.  Further development of the multiple phase 

formulation should also be explored to better model impulsive thrusting. 

Another potential area of future study for this research would be to analyze the 

effects, if any, that these maneuvers would have on a constellation of satellites.  

Maintaining relative positions is critical to a properly functioning satellite constellation.  

While the maneuvers covered in this research are by design extremely small, their effects 

on a constellation of satellites might still degrade overall coverage and should therefore 

be explored.  This would require expansion into perturbation theory within the dynamics 

of the optimal control problem since the proximity assumption used in this research is no 

longer valid. 
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This research briefly considered how general perturbing accelerations affected the 

difference in relative position from the Two-Body solution and demonstrated that these 

effects had a negligible impact on the ellipse avoidance.  However, it is conceivable that 

incorporating perturbation effects into the equations of motion prior to the optimization 

step might allow the satellite to use these effects to further improve maneuver efficiency 

and should be considered as an additional area for future study. 
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Appendix A.  MATLAB® Code 

 The MATLAB® code used in this research merges the use of GPOPS-II to solve 

the optimal control problem via the Radau Pseudospectral Method with the visualization 

and propagation capabilities from Systems Tool Kit®.  STK is used both as a 

visualization tool as well as a source of realistic data input.  This code is broken out into 

the main code and two structures of functions.  The first structure is the RO structure and 

contains the function library used in the main code in order to set up and run GPOPS-II.  

The second structure is the STK Component Object Model Interface Library designed to 

facilitate automatic communication between STK and MATLAB®. 

A.1 Responsive Orbits Main Code 

%% Created by James Sales 

clear all; close all; clc; 

global Scen 

%% Select Thesis Case to Run 

fprintf(1,'Please select a case:\n'); 

fprintf(1,['\t 1: Impulsive In Plane Single Orbit\n']); 

fprintf(1,['\t 2: Impulsive In Plane Multiple Orbit\n']); 

fprintf(1,['\t 3: Impulsive Out of Plane\n']); 

fprintf(1,['\t 4: Continuous Single Orbit\n']); 

fprintf(1,['\t 5: Continuous Multiple Orbit\n']); 

p2               = input('>> '); 

Scen.InPlane    = 1; 

Scen.Continuous = 0; 

switch p2 

    case 1 

        Scen.T_max    = 22/1e3; 

        omega         = 50; 

        Scen.Fraction = 0.1; 

        Scen.alpha    = 9e-3; 

        Scen.Nodes    = [20 25 7]; 

        Scen.angle    = 0; 

    case 2 

        Scen.T_max    = 22/1e3; 

        omega         = 0; 

        Scen.Fraction = 0.05; 
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        Scen.alpha    = 1e-2; 

        Scen.Nodes    = [20 25 25]; 

        Scen.angle    = 0; 

    case 3 

        Scen.InPlane  = 0; 

        Scen.T_max    = 22/1e3; 

        omega         = 50; 

        Scen.Fraction = 1; 

        Scen.alpha    = 1e-4; 

        Scen.Nodes    = [4 10 4]; 

        Scen.angle    = pi/2; 

    case 4 

        Scen.T_max    = 0.5/1e3; 

        omega         = 50; 

        Scen.Fraction = 1; 

        Scen.alpha    = 1e-7; 

        Scen.Nodes    = [4 10 4]; 

        Scen.angle    = 0; 

        Scen.Continuous = 1; 

    case 5 

        Scen.T_max    = 0.5/1e3; 

        omega         = 0; 

        Scen.Fraction = 0.1; 

        Scen.alpha    = 1e-6; 

        Scen.Nodes    = [15 25 10]; 

        Scen.angle    = 0; 

        Scen.Continuous = 0; 

    otherwise 

        fprintf(1,'\n Error: Incorrect entry.  Please try again.\n'); 

        return 

end 

%% Set Commonly Manipulated Variables 

Scen.NumDays    = 10; 

Scen.Prop       = 'Earth HPOP Default v8-1-1'; 

Scen.m_sat      = 400; 

Scen.m_fuel     = 100; 

Scen.Path       = 'I:\My Documents\Thesis\STK Test Runs\'; 

% Satellite IC's:     [a      e       i     omega    w    M ] 

Scen.COE        =     [6878   1e-6    45    omega    0    60]; 

% Specify Area Target dimmensions and location for the Midwest Scen 

Scen.Centroid   = [39.7828, 275.917, 0]; 

Scen.Size       = [500, 500, 0]; 

Scen.ElevAngle  = 20;                                        % deg 

Scen.mu         = 3.98601e5;                                 % km^3/s^2 

Scen.Re_e       = 6378;                                      % km 

% Convert COE's to Equinoctal Elements      [a h k p q F] 
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Scen.EE(1)      = Scen.COE(1); 

Scen.EE(2)      = Scen.COE(2)*sind(Scen.COE(4)+Scen.COE(5)); 

Scen.EE(3)      = Scen.COE(2)*cosd(Scen.COE(4)+Scen.COE(5)); 

Scen.EE(4)      = tand(Scen.COE(3)/2)*sind(Scen.COE(4)); 

Scen.EE(5)      = tand(Scen.COE(3)/2)*cosd(Scen.COE(4)); 

Scen.EE(6)      = (Scen.COE(4)+Scen.COE(5)+Scen.COE(6))*pi/180; 

%% Set Start and End Times and format for use in STK 

Scen.clock      = [2013, 1, 1, 9, 0, 0]; 

Scen.Now        = 0; 

Scen.StartTime  = RO.Time_Sequencer(Scen.clock, 0); 

Scen.EndTime    = RO.Time_Sequencer(Scen.clock, Scen.NumDays*86400); 

% Create unique title based on current date and time 

if Scen.StartTime(3)==' ' 

    Scen.Title  = [Scen.StartTime(1:2) Scen.StartTime(4:6) Scen.StartTime(8:11)]; 

else 

    Scen.Title  = [Scen.StartTime(1) Scen.StartTime(3:5) Scen.StartTime(7:10)]; 

end 

Scen.Epoch      = Scen.StartTime; 

Scen.TimeStep   = 10; 

%% Initialize STK and create Scen componants 

[uiapp, root]       = STK.Initialize(Scen); 

[ref, MCS_r]        = STK.Astrogator('R',root,Scen); 

target              = STK.Area_Target('AOR',root,Scen); 

% Create Engine to meet specs listed above 

Scen.EngineName = 'Responsive Orbits Engine Model'; 

STK.Create_Engine_Model(root,Scen.EngineName, Scen.T_max*1e3); 

% Set the Reference satellite to propagate for 1 day 

STK.Propagate('Reference Trajectory',86400*10,MCS_r, Scen.Prop); 

ref.Graphics.Attributes.Intervals.RemoveAll; 

ref.Graphics.Attributes.Default.Inherit = 0; 

ref.Graphics.Attributes.Default.IsOrbitVisible = 0; 

ref.Propagator.RunMCS; 

%% Compute access times and determine coast and maneuvering profile durations 

Scen.AccessTimes = STK.Compute_Access(root,ref,target,Scen.clock); 

Scen.Coast       = Scen.AccessTimes.EpSec(1,2); 

Scen.t           = Scen.AccessTimes.EpSec(2,1)-Scen.Coast; 

%% Account for coast time before entering data into GPOPS 

Out.coast_t      = linspace(Scen.Now,Scen.Now+Scen.Coast,15); 

[Out.t,Out.z]    = ode45(@RO.ODE_dynamics,Out.coast_t,Scen.EE); 

Scen.EE          = Out.z(end,:); 

%% Run GPOPS and retrieve Optimal Profile Solution 

Solution         = RO.Run_GPOPS(); 

% Convert states out of GPOPS solution into COE's 

Solution.phase.time = Solution.phase.time + Scen.Coast; 

Out.length       = length(Out.t); 

Out.t            = [Out.t; Solution.phase.time]; 
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% solution.state    = [a h k p q F] 

Out.a            = [Out.z(:,1); Solution.phase.state(:,1)]; 

Out.h            = [Out.z(:,2); Solution.phase.state(:,2)]; 

Out.k            = [Out.z(:,3); Solution.phase.state(:,3)]; 

Out.p            = [Out.z(:,4); Solution.phase.state(:,4)]; 

Out.q            = [Out.z(:,5); Solution.phase.state(:,5)]; 

Out.F            = [Out.z(:,6); Solution.phase.state(:,6)]; 

Out.e            = sqrt(Out.h.^2+Out.k.^2); 

Out.i            = 2.*atan(sqrt(Out.p.^2+Out.q.^2)); 

Out.omega        = atan2(Out.p,Out.q); 

Out.w            = atan2(Out.h,Out.k)-atan2(Out.p,Out.q); 

Out.M            = Out.F-atan2(Out.h,Out.k); 

for count=1:length(Out.M) 

    while Out.M(count)>2*pi 

        Out.M(count) = Out.M(count) - 2*pi; 

    end 

end 

% Read controls out of GPOPS Out structure 

Out.T            = [zeros(length(Out.z),1);Solution.phase.control(:,1)]... 

                       *Scen.T_max*1e3;                                 % N 

Out.Thrusting    = []; 

for count = 1:length(Out.T) 

    if Out.T(count)        < 1e-3 

        Out.theta(count,1) = 0; 

        Out.psi(count,1)   = 0; 

    else 

        Out.theta(count,1) = Solution.phase.control(count-length(Out.z),2); 

        Out.psi(count,1)   = Solution.phase.control(count-length(Out.z),3); 

        Out.Thrusting      = [Out.Thrusting; 

                              Out.t(count) Out.theta(count) Out.psi(count)]; 

    end 

end 

%% Convert controls into ECI Componants and write to text file 

Out.ECI          = RO.Convert_to_ECI(Out,Scen); 

Scen.Dur        = STK.Output_to_text(Scen, Out, Out.length, 1); 

%% Set the Maneuvering satellite to respond to the calculated trajectory and propagate 

[man, MCS_m]        = STK.Astrogator('M',root,Scen); 

if Scen.Continuous == 1 

    STK.Propagate('Coasting',Out.coast_t(end),MCS_m,Scen.Prop); 

    STK.Maneuver_From_File('GPOPS_Profile',MCS_m,Scen,1); 

else 

    STK.Propagate('Coasting',Out.Thrusting(1,1),MCS_m,Scen.Prop); 

    v               = [cos(Out.Thrusting(1,2))*cos(Out.Thrusting(1,3)); 

                       sin(Out.Thrusting(1,3)); 

                       sin(Out.Thrusting(1,2))*cos(Out.Thrusting(1,3))]'; 

    STK.FTV_Maneuver('GPOPS_Profile', MCS_m, v, Solution.phase.integral); 
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end 

STK.Propagate('Propagate',86400,MCS_m,Scen.Prop); 

man.Graphics.Attributes.Intervals.RemoveAll; 

man.Graphics.Attributes.Default.Inherit = 0; 

man.Graphics.Attributes.Default.IsOrbitVisible = 0; 

man.Propagator.RunMCS; 

%% Plot Data in MATLAB 

RO.XLSWrite(); 

Out.dv = Solution.phase.integral*Scen.T_max*1e3/(Scen.m_sat + Scen.m_fuel); 

fprintf(1,'Total Delta v for the maneuver shown is: %4.1f m/s \n',Out.dv); 

 

A.2 Responsive Orbits Function Library 

classdef RO 

% Created by James Sales 

% Establishes the function library for the Responsive Orbits main code. 

properties 

end 

methods(Static) 

    function[Time] = Time_Sequencer(clock, Now) 

        % Takes a MATLAB-standard clock vector as input along with the 

        % variable ‘Now’ in seconds.  This function is used in the main 

        % code in order to convert MATLAB clock time to an STK-compatible 

        % input. 

         

        % Break Scen.Now down into ellapsed days, hours, minutes, & seconds 

        Days         = floor(Now/86400); 

        Hours        = floor((Now-86400*Days)/3600); 

        Minutes      = floor((Now-86400*Days-3600*Hours)/60); 

        Seconds      = floor((Now-86400*Days-3600*Hours-60*Minutes)); 

        Month_str    = ['Jan'; 

 'Feb'; 

 'Mar'; 

 'Apr'; 

 'May'; 

 'Jun'; 

 'Jul'; 

 'Aug'; 

 'Sep'; 

 'Oct'; 

 'Nov'; 

 'Dec']; 

        if round(clock(1)/4) == clock(1)/4 

            DPM          = [31;29;31;30;31;30;31;31;30;31;30;31]; 

        else 

            DPM          = [31;28;31;30;31;30;31;31;30;31;30;31]; 
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        end 

        % Wrap Seconds, Minutes, Hours, Days, Months to make a legible date. 

        if clock(6) + Seconds >= 60 

           clock(6) = clock(6) + Seconds - 60; 

           Minutes           = Minutes + 1;     

        else  

            clock(6) = clock(6) + Seconds; 

        end 

        if clock(5) + Minutes >= 60 

           clock(5) = clock(5) + Minutes - 60; 

           Hours             = Hours + 1; 

        else  

            clock(5) = clock(5) + Minutes; 

        end 

        if clock(4) + Hours >= 24 

           clock(4) = clock(4) + Hours - 24; 

           Days              = Days + 1; 

        else  

            clock(4) = clock(4) + Hours; 

        end 

        if clock(3) + Days > DPM(clock(2)) 

           clock(3) = clock(3) + Days - DPM(clock(2))+1; 

           clock(2) = clock(2) + 1; 

        else  

            clock(3) = clock(3) + Days; 

        end 

        if clock(2) > 12 

           clock(2) = 1; 

           clock(1) = clock(1)+1; 

        end 

        if clock(3)<10 

            Day = ['0',num2str(clock(3))]; 

        else 

            Day = num2str(clock(3)); 

        end 

        Today      = [Day,' ',Month_str(clock(2),:),' ',num2str(clock(1))]; 

        if clock(4)<10; 

            Hour = ['0',num2str(clock(4))]; 

        else 

            Hour = num2str(clock(4)); 

        end 

        if clock(5)<10; 

            Min = ['0',num2str(clock(5))]; 

        else 

            Min = num2str(clock(5)); 

        end 
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        if clock(6)<10; 

            Sec = ['0',num2str(clock(6))]; 

        else 

            Sec = num2str(clock(6)); 

        end 

        Time       = [Hour,':',Min,':',Sec]; 

        Time  = [Today,' ',Time]; 

    end 

     

    function [zd] = ODE_dynamics(t,z) 

        % Non-maneuvering equations of motion for ODE 45.  This function is 

        % used in the main code in order to model the coast time prior to 

        % AOR departure in STK as well as to forecast the reference 

        % satellite position in GPOPS. 

         

        %% Define constants 

        % Defined in Responsive_Orbits 

        global Scen 

        %% State and control Vector Inputs 

        % EOM are computed in Equinoctal Elements   [a h k p q F] 

        a     = z(1); 

        n     = sqrt(Scen.mu/a^3); 

        % State Derivatives 

        zd(1) = 0; 

        zd(2) = 0; 

        zd(3) = 0; 

        zd(4) = 0; 

        zd(5) = 0; 

        zd(6) = n; 

        % ode45 requires column vectors as output 

        zd=zd'; 

    end 

     

    function [Solution] = Run_GPOPS() 

        % This file builds the GPOPS-II input structure.  It delineates 

        % state, control, and time limitations as well as providing an 

        % appropriate guess.  It allows the main code to dictate the 

        % different number of collocation points required for each scenario 

        % being executed. 

         

        %% Define constants 

        global Scen REF 

        t               = Scen.t; 

        COE             = Scen.COE; 

        %% Create Initial State Vector 

        a               = Scen.EE(1); 
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        h               = Scen.EE(2); 

        k               = Scen.EE(3); 

        p               = Scen.EE(4); 

        q               = Scen.EE(5); 

        F               = Scen.EE(6); 

        REF.z0          = [a h k p q F]'; 

        %% Create Final State Vector for the REF satellite 

        % This utilizes ode45 to extrapolate the position of the non-manuevering 

        % satellite at the final time. 

        time            = linspace(0,t); 

        [time,zref]     = ode45(@RO.ODE_dynamics,time,REF.z0); 

        [row column]    = size(zref); 

        REF.zf    = zref(row,:)'; 

        %% Determine reference satellite final position 

        a               = REF.zf(1); 

        h               = REF.zf(2); 

        k               = REF.zf(3); 

        p               = REF.zf(4); 

        q               = REF.zf(5); 

        F               = REF.zf(6); 

        root            = sqrt(1-h.^2-k.^2); 

        n               = sqrt(Scen.mu/a^3); 

        r               = a*(1-k*cos(F)-h*sin(F)); 

        B               = 1/(1+root); 

        x               = a*((1-h^2*B)*cos(F)+h*k*B*sin(F)-k); 

        y               = a*(h*k*B*cos(F)+(1-k^2*B)*sin(F)-h); 

        % Determine Rotation Matrix R_ir 

        i               = 2.*atan(sqrt(p.^2+q.^2)); 

        REF.p           = p; 

        REF.q           = q; 

        REF.phi         = atan2(y,x); 

        REF.N           = x*cos(REF.phi)+y*sin(REF.phi); 

        REF.T           = y*cos(REF.phi)-x*sin(REF.phi); 

        %% Create bounds sub-structure for GPOPS 

        % State Limitations 

        bounds.phase.initialtime.lower  = 0; 

        bounds.phase.initialtime.upper  = 0; 

        bounds.phase.finaltime.lower    = t; 

        bounds.phase.finaltime.upper    = t; 

        bounds.phase.initialstate.lower = REF.z0;  

        bounds.phase.initialstate.upper = REF.z0; 

        bounds.phase.state.lower = [REF.z0(1)-5,-0.5,-0.5,-2*tan(i/2),-2*tan(i/2), -pi]; 

        bounds.phase.state.upper = [REF.z0(1)+20, 0.5, 0.5, 2*tan(i/2), 2*tan(i/2),F+pi]; 

        bounds.phase.finalstate.lower=[REF.z0(1),-0.5,-0.5,-2*tan(i/2),-2*tan(i/2),F-pi]; 

        bounds.phase.finalstate.upper=[REF.z0(1)+20,0.5,0.5,2*tan(i/2),2*tan(i/2),F+pi]; 

        bounds.phase.control.lower      = [0, -pi/2,-pi/2]; 
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        bounds.phase.control.upper      = [1,3*pi/2, pi/2]; 

        bounds.phase.integral.lower     = 0;  

        bounds.phase.integral.upper     = t; 

        %% Create guess sub-structure for GPOPS 

        guess.phase.time     = time; 

        guess.phase.state    = zref; 

        n                    = round(Scen.Fraction*length(time)); 

        m                    = length(time) - n; 

        guess.phase.control  = [[ones(1,n),zeros(1,m)]',zeros(m+n,1), ...  

  Scen.angle.*ones(m+n,1)]; 

        guess.phase.integral = Scen.Fraction*t; 

        %% Build HP-adaptive mesh settings 

        mesh.method = 'hp1'; 

        mesh.tolerance = 1e-8; 

        mesh.maxiteration = 45; 

        mesh.colpointsmin = Scen.Nodes(1); 

        mesh.colpointsmax = Scen.Nodes(2); 

        mesh.phase.colpoints = Scen.Nodes(3)*ones(1,10); 

        mesh.phase.fraction =  0.1*ones(1,10); 

        %% Concatenate substructures into setup input structure and run GPOPS 

        setup.name = 'Responsive Orbits'; 

        setup.functions.continuous = @RO.Continuous; 

        setup.functions.endpoint = @RO.Endpoint; 

        setup.bounds = bounds; 

        setup.guess = guess; 

        setup.mesh  = mesh; 

        setup.nlp.solver = 'snopt'; 

        setup.derivatives.supplier = 'sparseCD'; 

        setup.derivatives.derivativelevel = 'first'; 

        setup.method = 'RPMintegration'; 

        % Run GPOPS 

        output = gpops2(setup); 

        Solution = output.result.solution; 

    end 

     

    function [output] = Continuous(input) 

        % This function references the full history components of the 

        % optimal control problem.  It establishes the state derivatives 

        % for the equations of motion as well as specifying the portion 

        % of the Lagrange term in the cost function. 

         

        global Scen 

        mass       = Scen.m_sat + Scen.m_fuel; 

        T_max      = Scen.T_max; 

        mu         = Scen.mu; 

        %% State and control Vector Inputs 
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        % EOM are computed in Equinoctal Elements   [a h k p q F] 

        a          = input.phase.state(:,1); 

        h          = input.phase.state(:,2); 

        k          = input.phase.state(:,3); 

        p          = input.phase.state(:,4); 

        q          = input.phase.state(:,5); 

        F          = input.phase.state(:,6); 

        A          = input.phase.control(:,1)*T_max/mass; 

        th         = input.phase.control(:,2); 

        psi        = input.phase.control(:,3); 

        %% Equations of Motion 

        % Equinoctal Reference Frame 

        n          = sqrt(mu./a.^3); 

        r          = a.*(1-k.*cos(F)-h.*sin(F)); 

        G          = sqrt(1-h.^2-k.^2); 

        B          = 1./(1+G); 

        K          = 1+p.^2+q.^2; 

        x          = a.*((1-h.^2.*B).*cos(F)+h.*k.*B.*sin(F)-k); 

        y          = a.*(h.*k.*B.*cos(F)+(1-k.^2.*B).*sin(F)-h); 

        xd         = a.^2.*n./r.*(h.*k.*B.*cos(F)-(1-h.^2.*B).*sin(F)); 

        yd         = a.^2.*n./r.*((1-k.^2.*B).*cos(F)-h.*k.*B.*sin(F)); 

        % Partial Derivatives 

        dx_dk      = a.*(h.*B.*sin(F)-1); 

        dy_dk      = a.*(h.*B.*cos(F)-2.*k.*B.*sin(F)); 

        dx_dh      = a.*(-2.*h.*B.*cos(F)+k.*B.*sin(F)); 

        dy_dh      = a.*(k.*B.*cos(F)-1); 

        % Matrix Values 

        M11        =  2.*xd./(n.^2.*a); 

        M12        =  2.*yd./(n.^2.*a); 

        M13        =  0; 

        M21        =  G./(n.*a.^2).*(dx_dk-h.*B.*xd./n); 

        M22        =  G./(n.*a.^2).*(dy_dk-h.*B.*yd./n); 

        M23        =  k.*(p.*x-q.*y)./(n.*a.^2.*G); 

        M31        = -G./(n.*a.^2).*(dx_dh+k.*B.*xd./n); 

        M32        = -G./(n.*a.^2).*(dy_dh+k.*B.*yd./n); 

        M33        =  h.*(p.*x-q.*y)./(n.*a.^2.*G); 

        M41        =  0; 

        M42        =  0; 

        M43        =  K.*y./(2.*n.*a.^2.*G); 

        M51        =  0; 

        M52        =  0; 

        M53        =  K.*x./(2.*n.*a.^2.*G); 

        M61        =  (G.*(h.*B.*dx_dh+k.*B.*dx_dk)-2.*x)./(n.*a.^2); 

        M62        =  (G.*(h.*B.*dy_dh+k.*B.*dy_dk)-2.*y)./(n.*a.^2); 

        M63        =  (q.*y-p.*x)./(n.*a.^2.*G); 

        % Disturbing Acceleration 



97 

        phi        = atan2(y,x); 

        Ax         = A.*((sin(th).*cos(phi)-cos(th).*sin(phi))).*cos(psi); 

        Ay         = A.*((cos(th).*cos(phi)+sin(th).*sin(phi))).*cos(psi); 

        Az         = A.*sin(psi); 

        % State Derivatives 

        dynamics(:,1) =     M11.*Ax + M12.*Ay + M13.*Az; 

        dynamics(:,2) =     M21.*Ax + M22.*Ay + M23.*Az; 

        dynamics(:,3) =     M31.*Ax + M32.*Ay + M33.*Az; 

        dynamics(:,4) =     M41.*Ax + M42.*Ay + M43.*Az; 

        dynamics(:,5) =     M51.*Ax + M52.*Ay + M53.*Az; 

        dynamics(:,6) = n + M61.*Ax + M62.*Ay + M63.*Az; 

        %% Build output file 

        output.dynamics  = dynamics; 

        output.integrand = input.phase.control(:,1); 

    end 

     

    function [output] = Endpoint(input) 

        % This function references the endpoint components of the 

        % optimal control problem.  It establishes the terminal cost as 

        % well as any applicable endpoint constraints (which are not 

        % applicable to this problem). 

         

        %% Define constants 

        % Defined in Responsive_Orbits 

        global Scen REF 

        phi        = REF.phi; 

        N_r        = REF.N; 

        T_r        = REF.T; 

        P          = REF.p; 

        Q          = REF.q; 

        %% Read relavent componants out of input structure 

        a          = input.phase.finalstate(1); 

        h          = input.phase.finalstate(2); 

        k          = input.phase.finalstate(3); 

        p          = input.phase.finalstate(4); 

        q          = input.phase.finalstate(5); 

        cf         = cos(input.phase.finalstate(6)); 

        sf         = sin(input.phase.finalstate(6)); 

        Lagrange   = input.phase.integral; 

        %% Determine final state in the equinoctial reference frame 

        % Misc quantities 

        G          = sqrt(1-h.^2-k.^2); 

        B          = 1./(1+G); 

        % Position in ERF 

        x          = a.*((1-h.^2.*B).*cf+h.*k.*B.*sf-k); 

        y          = a.*(h.*k.*B.*cf+(1-k.^2.*B).*sf-h); 
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        % Determine Rotation Matrix R_ir 

        R_ir       = [ 1-P^2+Q^2    2*P*Q        2*P; 

                       2*P*Q        1+P^2-Q^2   -2*Q; 

                      -2*P          2*Q          1-P^2-Q^2]./(1+P^2+Q^2); 

        % Determine Rotation Matrix R_im 

        R_im       = [ 1-p^2+q^2    2*p*q        2*p; 

                       2*p*q        1+p^2-q^2   -2*q; 

                      -2*p          2*q          1-p^2-q^2]./(1+p^2+q^2); 

        % Modify the maneuvering satellite into the reference satellite's orbital 

        % frame coordinate system. 

        zm_r     = R_ir*R_im'*[x;y;0]; 

        N_m      = zm_r(1)*cos(phi) + zm_r(2)*sin(phi); 

        T_m      = zm_r(2)*cos(phi) - zm_r(1)*sin(phi); 

        % Determine distance from reference satellite 

        dT       = T_m-T_r; 

        dN       = N_m-N_r; 

        dz       = zm_r(3); 

        %% Calculate cost 

        if Scen.InPlane  == 1 

            ellipse      = (dT/100)^2 + (dN/10)^2 + (dz/10)^2; 

        else 

            ellipse      = (dz/10)^2; 

        end 

        Mayer            = 1/(1+exp(50*(ellipse-1))); 

        output.objective = Mayer+Scen.alpha.*Lagrange; 

    end 

     

    function[ECI] = Convert_to_ECI(Output,Scen) 

        % This function converts the thrust and angle solutions derived from 

        % MATLAB into the Earth-Centered Inertial Reference frame.  It takes the 

        % following inputs: 

        %       [ECI] = Convert_to_ECI(solution,total,Scen) 

        % Solution is a structure consisting of several fields listed below: 

        %  

        %       state:      The Equinoctal Elements for each time step 

        %  

        % Output is a structure consisting of several fields listed below: 

        %  

        %       T:          The thrust profile in Newtons for each time step 

        %       theta:      The in plane angle in the equinoctal frame in radians 

        %       psi:        The out of plane angle in the equinoctal frame in 

        %                   radians 

        %  

        % Scen is a structure consisting of several fields listed below: 

        %  

        %       m_sat:      The satellite mass in kg% 
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        %  

        % The output ECI are the [x y z] componants in the Earth-Centered Inertial 

        % Reference frame for each time step. 

         

        for count       = 1:length(Output.a) 

            %% Read Output structure 

            a           = Output.a(count); 

            h           = Output.h(count); 

            k           = Output.k(count); 

            p           = Output.p(count); 

            q           = Output.q(count); 

            F           = Output.F(count); 

            A           = Output.T(count)*1e-3/Scen.m_sat;                  % km/sec^2 

            th          = Output.theta(count); 

            psi         = Output.psi(count); 

            %% Calculate useful quantities to generate Equinoctial Frame vector 

            %  and Rotation matrix 

            cf          = cos(F); 

            sf          = sin(F); 

            G           = sqrt(1-h^2-k^2); 

            B           = 1/(1+G); 

            x           = a*((1-h^2*B)*cf+h*k*B*sf-k); 

            y           = a*(h*k*B*cf+(1-k^2*B)*sf-h); 

            phi         = atan2(y,x); 

            %% Calulate Equinoctial Frame Acceleration Vector     

            sth        = sin(th); 

            cth        = cos(th); 

            sph        = sin(phi); 

            cph        = cos(phi); 

            sps        = sin(psi); 

            cps        = cos(psi); 

            E(count,:) = [(sth*cph-cth*sph)*cps; 

                          (cth*cph+sth*sph)*cps; 

                          sps]*A; 

            %% Calculate Rotation Matrix 

            R           = [ 1-p^2+q^2    2*p*q       2*p; 

                            2*p*q        1+p^2-q^2  -2*q; 

                           -2*p          2*q         1-p^2-q^2]./(1+p^2+q^2); 

            %% Caluclate ECI Acceleration Vector 

            ECI(count,:)= R*E(count,:)'; 

        end 

    end 

     

    function[] = XLSWrite() 

        % This function takes the output data from MATLAB and converts it 

        % into an excel document for plotting. 
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        delete CurrentTestRun.xlsx; 

        %% Read GPOPS solution 

        t     = Out.t/60;                                                 % hr 

        T     = Out.T;                                                    % N 

        theta = Out.theta*180/pi;                                         % deg 

        psi   = Out.psi*180/pi;                                           % deg 

        Out.r = Out.a.*(1-Out.e.^2)./(1+Out.e.*cos(Out.M)); 

        count = 1; 

        while Out.T(count) == 0 

        count = count +1; 

        end 

        thrust_time = Out.t(count); 

        %% Read COE for ref and man from STK and interpret/concatenate 

        % [m.t,m.COE] = Elements(man, [0 Output.t(end)+15*60], 'C'); 

        [m.t,m.COE] = STK.Elements(man, [0 Out.t(end)], 'C'); 

        m.a         = m.COE(:,1); 

        m.e         = m.COE(:,2); 

        m.i         = m.COE(:,3); 

        m.omega     = m.COE(:,4); 

        m.w         = atand(tand(m.COE(:,5))); 

        m.M         = atand(tand(m.COE(:,6))); 

        m.lat       = m.COE(:,7); 

        m.nu        = m.COE(:,8); 

        m.t         = m.t./60; 

        count1 = 1; 

        while abs(thrust_time/60-m.t(count1)) ~= min(abs(thrust_time/60-m.t)) 

            count1 = count1 +1; 

        end 

        ref_angle   = m.lat(count1); 

        % [r.t,r.COE] = Elements(ref, [0 Output.t(end)+15*60], 'C'); 

        [r.t,r.COE] = STK.Elements(ref, [0 Out.t(end)], 'C'); 

        r.a         = r.COE(:,1); 

        r.e         = r.COE(:,2); 

        r.i         = r.COE(:,3); 

        r.omega     = r.COE(:,4); 

        r.w         = atand(tand(r.COE(:,5))); 

        r.M         = atand(tand(r.COE(:,6))); 

        r.lat       = r.COE(:,7); 

        r.nu        = r.COE(:,8); 

        r.t         = r.t./60; 

        %% Convert for 2-D plot 

        m.r         = m.a.*(1-m.e.^2)./(1+m.e.*cosd(m.nu)); 

        r.r         = r.a.*(1-r.e.^2)./(1+r.e.*cosd(r.nu)); 

        x           = 2.*m.r.*sind((r.lat-m.lat)./2); 

        y           = m.r - r.r; 
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        oop         = (m.i + m.omega - r.i - r.omega).*sind(m.lat - ref_angle); 

        z           = 2.*m.r.*sind(oop./2); 

        %% Generate ellipse values 

        ellipse.x   = linspace(-100,100,1000); 

        ellipse.y   = 10.*sqrt(1-ellipse.x.^2./100^2); 

        circle.x    = linspace(-10,10,1000); 

        circle.y    = 10.*sqrt(1-circle.x.^2./10^2); 

        Filename = [cd '\CurrentTestRun.xlsx']; 

        xlswrite(Filename,[Out.t./60 Out.T Out.theta.*180/pi Out.psi.*180/pi],1); 

        xlswrite(Filename,[x y z],2); 

        xlswrite(Filename,[Out.t./60 Out.r-6378 Out.e Out.i.*180/pi Out.omega.*180/pi...  

    Out.w.*180/pi Out.M.*180/pi],3); 

        xlswrite(Filename,[r.t r.a-6378 r.e r.i r.omega r.w r.M],4); 

        xlswrite(Filename,[m.t m.a-6378 m.e m.i m.omega m.w m.M],5); 

    end 

     

end 

end 

 

A.3 Systems Tool Kit® Function Library 

classdef STK 

% STK Library Explanation of Structure Fields 

%  

% Created by James Sales 

%  

% The structure 'Scen' was designed specifically for use in the STK 

% library for my Thesis research but can be fairly easily adapted to work 

% elsewhere.  Not all of the following fields are necessary for every 

% function but this is a summary of all of the fields used in the library. 

%  

% Scen Structure Fields: 

%       Centroid:       The Lattitude, Longitude, and Elevation of the 

%                       desired ellipse for an Area Target. 

%       COE:            The Initial State Classical Orbital Elements 

%                       formatted as follows: 

%                           [r_p   e   i   RAAN   w   nu] 

%                       the Radius of Periapsis is in kilometers and all 

%                       angles are in degrees. 

%       ElevAngle:      Minimum Elevation Angle for Access to satellite. 

%       EndTime:        The Scen end time formatted as follows: 

%                           'DD MMM YYYY HH:MM:SS' 

%       EngineName:     String for the desired engine name. 

%       Epoch:          The Epoch time formatted as follows: 

%                           'DD MMM YYYY HH:MM:SS' 
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%       m_sat:          The satellite dry mass in kg. 

%       m_fuel:         The fuel mass in kg. 

%       Now:            Tracks time from Epoch to current maneuver in 

%                       seconds. 

%       Path:           The filepath for external file storage. 

%       Size:           The semi-major axis, semi-minor axis, and bearing 

%                       formatted as a vector for the desired ellipse for 

%                       an Area Target. 

%       StartTime:      The Scen start time formatted as follows: 

%                           'DD MMM YYYY HH:MM:SS' 

%       TimeStep:       Animation increment given in seconds. 

%       Title:          A string describing the desired Scen title. 

%                       This string must contain no spaces. 

%       T_max:          Max thrust in kN for custom engine. 

%  

% For the function 'Out_to_text.m' an additional structure is used. 

% The following fields are necessary for this function. 

%  

% Out Structure Fields: 

%       length:         length of the time vector 

%       t:              The time vector in seconds 

%       ECI:            The Earth-Centered Inertial attitude vector  

properties 

end 

methods(Static) 

    function [uiapp, root] = Initialize(Scen) 

        % This function initializes STK and passes back the applicable handles for 

        % further use in MATLAB.  The function takes the following inputs: 

        %  

        %      [uiapp, root] = STK_init(Scen) 

  

        %% Grab STK handle if already if running or open STK and retrieve handle  

        %  if not running 

        try 

            uiapp = actxGetRunningServer('STK10.application'); 

        catch 

            uiapp = actxserver('STK10.application'); 

        end 

        root      = uiapp.Personality2; 

        %% Close existing Scen and open a new one 

        try 

            root.CloseScen(); 

            root.NewScenario(Scen.Title); 

        catch 

            root.NewScenario(Scen.Title); 

        end 
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        %% Set Scen Preferences 

        %  Set Date/Time Format 

        root.UnitPreferences.Item('DateFormat').SetCurrentUnit('UTCG'); 

        %  Assign Scen time period 

        scen                                = root.CurrentScen; 

        scen.SetTimePeriod(Scen.StartTime,Scen.EndTime); 

        scen.Animation.StartTime            = Scen.StartTime; 

        scen.Epoch                          = Scen.StartTime; 

        scen.Animation.AnimStepValue        = Scen.TimeStep; 

        %% Set Animation to Start Time 

        root.Rewind() 

    end 

     

    function [sat, MCS] = Astrogator(Name, root, Scen) 

        % This function initializes a satellite in Astrogator and returns the 

        % applicable handles for further use in MATLAB.  It takes the following 

        % inputs: 

        %  

        %       [sat, MCS_root] = Astrogator(Name, root, Scen) 

  

        %% Initialize Satellite 

        scen                         = root.CurrentScen; 

        missionStartDate             = scen.StartTime; 

        sat                          = root.CurrentScen.Children.New(18, Name); 

        sat.SetPropagatorType('ePropagatorAstrogator') 

        sat.Graphics.Attributes.Intervals.RemoveAll; 

        sat.Graphics.Attributes.Default.Inherit = 0; 

        sat.Graphics.Attributes.Default.IsOrbitVisible = 0; 

        % Create handle to the Astrogator portion of the satellite's object model 

        prop                         = sat.Propagator; 

        % Create handle to the MCS and remove all existing segments 

        MCS                          = prop.MainSequence; 

        MCS.RemoveAll; 

        %% Define the Initial States 

        % Create handle to the Initial States 

        IS = MCS.Insert('eVASegmentTypeInitialState','Initial State','-'); 

        % Designate satellite and fuel masses 

        IS.SpacecraftParameters.DryMass = Scen.m_sat; 

        IS.FuelTank.FuelMass            = Scen.m_fuel; 

        IS.FuelTank.MaximumFuelMass     = Scen.m_fuel; 

        % Input orbital elements 

        IS.SetElementType('eVAElementTypeModKeplerian'); 

        IS.Element.RadiusOfPeriapsis    = Scen.COE(1); 

        IS.Element.Eccentricity         = Scen.COE(2); 

        IS.Element.Inclination          = Scen.COE(3); 

        IS.Element.RAAN                 = Scen.COE(4); 
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        IS.Element.ArgOfPeriapsis       = Scen.COE(5); 

        IS.Element.TrueAnomaly          = Scen.COE(6); 

        % Sets the orbit Epoch for the mission start time 

        IS.OrbitEpoch                   = missionStartDate; 

    end 

     

    function [Target] = Area_Target(Name, root, Scen) 

        % This function initializes an Area Target in STK and returns the 

        % applicable handles for further use in MATLAB.  It takes the following 

        % inputs: 

        %  

        %       Target = AreaTarget(Name, root, Scen) 

  

        Size     = Scen.Size; 

        Centroid = Scen.Centroid; 

        Target   = root.CurrentScen.Children.New(2, Name); 

        Target.AreaType = 'eEllipse'; 

        Target.AreaTypeData.SemiMajorAxis = Size(1); 

        Target.AreaTypeData.SemiMinorAxis = Size(2); 

        Target.AreaTypeData.Bearing       = Size(3); 

        Target.Position.AssignGeodetic(Centroid(1),Centroid(2),Centroid(3)); 

        Target.AccessConstraints.AddNamedConstraint('ElevationAngle'); 

        Target.AccessConstraints.GetActiveNamedConstraint('ElevationAngle').Angle = 

Scen.ElevAngle; 

    end 

     

    function[Eng]=Create_Engine_Model(root, Name, T) 

        % This function creates a custom engine model in the Componant Library and 

        % returns the applicable handle for further use in MATLAB. It takes the 

        % following inputs: 

        %  

        %       Eng = CreateEngingModel(root, Name, T) 

  

        scen         = root.CurrentScen; 

        EM           = 

scen.ComponentDirectory.GetComponents('eComponentAstrogator').GetFolder('Engine Models'); 

        ConstThrust  = EM.Item('Constant Thrust and Isp'); 

        ConstThrust.CloneObject; 

        num          = EM.count; 

        for count = 0:num-1 

            if length(EM.Item(count).Name) > 23 

                if strcmp(EM.Item(count).Name(1:24),'Constant Thrust and Isp1') 

                    Eng = EM.Item(count); 

                end 

            end 

        end 
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        Eng.Name     = Name; 

        Eng.Thrust   = T; 

    end 

     

    function [prop] = Propagate(Name, t, MCS, Prop) 

        % This function adds a propagation step to the given satellite in 

        % Astrogator and returns the applicable handle for further use in MATLAB. 

        % It takes inputs as follows: 

        %  

        %       [prop] = Propagate(Name, t, MCS, Prop) 

  

        prop = MCS.Insert('eVASegmentTypePropagate',Name,'-'); 

        prop.PropagatorName = Prop; 

        prop.StoppingConditions.Item('Duration').Properties.Trip = t; 

    end 

     

    function[AccessTimes] = Compute_Access(root, sat, target, clock) 

        % This function takes two handles and computes coverage encounters over 

        % the entire Scen.  However, the values it returns are specific to my 

        % thesis work and will likely require modification for use elsewhere.  It 

        % takes the following inputs: 

        %  

        %       [CoastTime, Duration] = ComputeAccess(root, sat, target, count) 

  

        root.UnitPreferences.Item('DateFormat').SetCurrentUnit('EpSec'); 

        scen       = root.CurrentScen; 

        access     = target.GetAccessToObject(sat); 

        access.ComputeAccess; 

        DP =access.DataProviders.Item('Access Data').Exec(scen.StartTime, scen.StopTime); 

        Enter      = cell2mat(DP.DataSets.GetDataSetByName('Start Time').GetValues); 

        Depart     = cell2mat(DP.DataSets.GetDataSetByName('Stop Time').GetValues); 

        for count = 1:min(length(Enter),length(Depart)) 

            Entry(count,:) = RO.Time_Sequencer(clock, Enter(count)); 

            Exit(count,:) = RO.Time_Sequencer(clock, Depart(count)); 

            Spaces(count,:) = '     '; 

        end 

        AccessTimes.DT    = [Entry Spaces Exit]; 

        AccessTimes.EpSec = [Enter Depart]; 

    end 

     

    function[t_end]=Output_to_text(Scen, Out, L, count) 

        % This function generates a text file conforming to the Astrogator *.a 

        % thrust attitude external file input parameters.  It takes inputs as 

        % follows: 

        %  

        %       t_end = Out_to_text(Scen, Out, L, count) 
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        Filename = [Scen.Path,Scen.Title,'Profile',num2str(count),'.a']; 

        t        = Out.t+Scen.Now; 

        t_end    = Out.t(end)-Scen.Coast(count)+Scen.Now; 

        ECI      = Out.ECI; 

        Epoch    = Scen.Epoch; 

        Maneuver = [t ECI]'; 

        Points   = length(t)-L; 

        Factor   = 20; 

        Order    = 1; 

        Body     = 'Earth'; 

        Axes     = 'Inertial'; 

        % Open file & begin writing data conforming to the STK format requirements. 

        fclose('all'); 

        FID = fopen(Filename,'w'); 

        fprintf(FID,'stk.v.5.0\r\n \r\n'); 

        fprintf(FID,'BEGIN Attitude\r\n \r\n'); 

        fprintf(FID,'NumberOfAttitudePoints\t%1.0f\r\n',Points); 

        fprintf(FID,['Scen Epoch\t\t',Epoch,'\r\n']); 

        fprintf(FID,'Blocking Factor\t\t%2.0f\r\n',Factor); 

        fprintf(FID,'InterpolationOrder\t%1.0f\r\n',Order); 

        fprintf(FID,['CentralBody\t\t',Body,'\r\n']); 

        fprintf(FID,['CoordinateAxes\t\t',Axes,'\r\n\r\n']); 

        fprintf(FID,'AttitudeTimeECIVector\r\n\r\n'); 

        fprintf(FID,'\t%6.6f \t\t%8.8f \t\t%8.8f \t\t%8.8f \r\n',Maneuver(:,L+1:end)); 

        fprintf(FID,'\r\nEND Attitude'); 

        fclose('all'); 

    end 

     

    function [M] = Maneuver_From_File(Name, MCS, Scen, index) 

        % This function conducts a Finite Thrust Vectored manuever in Astrogator  

        % and returns the applicable maneuver handle for further use in MATLAB. 

        % It takes inputs as follows: 

        %  

        %       M = ITV_Maneuver(Name, MCS_root, Scen, index) 

  

        Filename = [Scen.Path,Scen.Title,'Profile',num2str(index),'.a']; 

        M = MCS.Insert('eVASegmentTypeManeuver',Name,'-'); 

        M.SetManeuverType('eVAManeuverTypeFinite'); 

        M.Maneuver.SetAttitudeControlType('eVAAttitudeControlFile'); 

        Att_Control = M.Maneuver.AttitudeControl; 

        Att_Control.Filename = Filename; 

        M.Maneuver.SetPropulsionMethod('eVAPropulsionMethodEngineModel', 

Scen.EngineName); 

        M.Maneuver.Propagator.StoppingConditions.Item('Duration').Properties.Trip = 

Scen.Dur(index); 



107 

        M.Maneuver.Propagator.PropagatorName = Scen.Prop; 

    end 

     

    function [M] = FTV_Maneuver(Name, MCS, v, t) 

        % This function conducts a Finite Thrust Vectored manuever in Astrogator  

        % and returns the applicable maneuver handle for further use in MATLAB. 

        % It takes inputs as follows: 

        %  

        %       M = FTV_Maneuver(Name, MCS_root, Vector, Duration) 

        global Scen 

        M = MCS.Insert('eVASegmentTypeManeuver',Name,'-'); 

        M.SetManeuverType('eVAManeuverTypeFinite'); 

        M.Maneuver.SetAttitudeControlType('eVAAttitudeControlThrustVector'); 

        Att_Control = M.Maneuver.AttitudeControl; 

        Att_Control.ThrustVector.AssignXYZ(v(1),v(2),v(3)); 

        M.Maneuver.SetPropulsionMethod('eVAPropulsionMethodEngineModel', 

Scen.EngineName); 

        M.Maneuver.Propagator.StoppingConditions.Item('Duration').Properties.Trip=t; 

        M.Maneuver.Propagator.PropagatorName = Scen.Prop; 

    end 

     

    function [M] = ITV_Maneuver(Name, MCS_root, v) 

        % This function conducts an Impulsive Thrust Vectored manuever in 

        % Astrogator and returns the applicable maneuver handle for further use in 

        % MATLAB.  It takes inputs as follows: 

        %  

        %       M = ITV_Maneuver(Name, MCS_root, Vector) 

        M = MCS_root.Insert('eVASegmentTypeManeuver',Name,'-'); 

        M.Maneuver.SetAttitudeControlType('eVAAttitudeControlThrustVector'); 

        Att_Control = M.Maneuver.AttitudeControl; 

        Att_Control.DeltaVVector.AssignCartesian(v(1),v(2),v(3)); 

    end 

     

    function [t, Elem] = Elements(sat, time, Type) 

        % This function takes a satellite and returns its orbital element time 

        % history.  It takes the following inputs: 

        %  

        %       [t, Elem] = Elements(sat, time, Type) 

        root = sat.root; 

        root.UnitPreferences.SetCurrentUnit('DateFormat','EpSec'); 

        if Type == 'E' 

            EE         = sat.DataProviders.Item('Equinoctial Elements'); 

            EEICRF     = EE.Group.Item('ICRF'); 

            EEResults  = EEICRF.Exec(time(1), time(2), 5); 

            t = cell2mat(EEResults.DataSets.GetDataSetByName('Time').GetValues()); 
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            a = cell2mat(EEResults.DataSets.GetDataSetByName('Semi-Major 

Axis').GetValues()); 

            h = cell2mat(EEResults.DataSets.GetDataSetByName('e * 

sin(omegaBar)').GetValues()); 

            k = cell2mat(EEResults.DataSets.GetDataSetByName('e * 

cos(omegaBar)').GetValues()); 

            p = cell2mat(EEResults.DataSets.GetDataSetByName('tan(i/2) * 

sin(raan)').GetValues()); 

            q = cell2mat(EEResults.DataSets.GetDataSetByName('tan(i/2) * 

cos(raan)').GetValues()); 

            F = cell2mat(EEResults.DataSets.GetDataSetByName('Mean Lon').GetValues()); 

            Elem = [a h k p q F]; 

        elseif Type == 'C' 

            COE        = sat.DataProviders.Item('Classical Elements'); 

            COEICRF    = COE.Group.Item('ICRF'); 

            COEResults = COEICRF.Exec(time(1),time(2),5); 

            t = cell2mat(COEResults.DataSets.GetDataSetByName('Time').GetValues()); 

            a = cell2mat(COEResults.DataSets.GetDataSetByName('Semi-major 

Axis').GetValues()); 

            e = 

cell2mat(COEResults.DataSets.GetDataSetByName('Eccentricity').GetValues()); 

            i = 

cell2mat(COEResults.DataSets.GetDataSetByName('Inclination').GetValues()); 

            omega = cell2mat(COEResults.DataSets.GetDataSetByName('RAAN').GetValues()); 

            w = cell2mat(COEResults.DataSets.GetDataSetByName('Arg of 

Perigee').GetValues()); 

            M = cell2mat(COEResults.DataSets.GetDataSetByName('Mean 

Anomaly').GetValues()); 

            lat = cell2mat(COEResults.DataSets.GetDataSetByName('Arg of 

Latitude').GetValues()); 

            nu = cell2mat(COEResults.DataSets.GetDataSetByName('True 

Anomaly').GetValues()); 

            Elem = [a e i omega w M lat nu]; 

        else 

            t = []; 

            Elem = []; 

            fprintf('Specified Type not recognized\n') 

        end 

    end 

end 

end  
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Appendix B.  GPOPS-II Structure Architecture 
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