

TRAJECTORY OPTIMIZATION FOR SPACECRAFT
COLLISION AVOIDANCE

THESIS

James W Sales, Jr. Lieutenant, USN

AFIT-ENY-13-S-01

DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Navy, United States Air Force, Department of
Defense, or the United States Government. This material is declared a work of the U.S.
Government and is not subject to copyright protection in the United States.

AFIT-ENY-13-S-01

TRAJECTORY OPTIMIZATION FOR SPACECRAFT
COLLISION AVOIDANCE

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

James W Sales, Jr., B.S. Aerospace Engineering

Lieutenant, USN

September 2013

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED

AFIT-ENY-13-S-01

TRAJECTORY OPTIMIZATION FOR SPACECRAFT
COLLISION AVOIDANCE

James W Sales, Jr., B.S. Aerospace Engineering

Lieutenant, USN

Approved:

___________________________________ ________
Jonathan T. Black, PhD (Chairman) Date

___________________________________ ________
Richard G. Cobb, PhD (Member) Date

___________________________________ ________
Bradley J. Ayres, PhD (Member) Date

iii

AFIT-ENY-13-S-01

Abstract

 The last several decades have resulted in an unfortunate byproduct of space

exploration and development: orbital debris. Satellites in Low Earth Orbit have been

required to make an ever increasing number of course corrections in order to avoid

collisions. Despite efforts to the contrary, collisions continue to occur, each time creating

additional debris and increasing the requirement for the remaining satellites to maneuver.

Every required maneuver decreases a satellite’s service life. The purpose of this study is

to develop a minimum thrust profile to maneuver an orbiting satellite out of its projected

error ellipse before a collision occurs. For comparison, both the impulsive and

continuous thrust cases were considered as well as in-plane versus out-of plane

maneuvering. This study made use of the Radau Pseudospectral Method to develop this

minimum thrust profile. This method was run in MATLAB® using General

Pseudospectral Optimal Control Software (GPOPS-II). Once the optimal solution was

obtained, Systems Tool Kit® was used to simulate the resulting calculated trajectories and

confirm avoidance of the error ellipse.

iv

Acknowledgments

 I’d like to thank my family for all of their love and support during my time here at

AFIT, especially my wife who has been willing to patiently listen to all my ramblings

about work. Her constant encouragement and willingness to listen were vital to my

success here at AFIT. I would also like to thank my thesis advisor, Dr Jonathan Black,

for his guidance, insight, and expertise throughout this research. Lastly, I would like to

thank my previous Commanding Officer, CDR Timothy Symons, USN for his continual

support. Without his encouragement my experience here at AFIT would never have

happened.

 James W Sales, Jr.

v

Table of Contents
Page

Abstract .. iii

Acknowledgments.. iv

List of Figures .. viii

List of Tables ...x

List of Symbols .. xi

I. Introduction ...1

1.1 Motivation ...1
1.2 Problem Statement ..3

1.2.1 Case 1: Impulsive In-Plane Thrusting ... 4
1.2.2 Case 2: Impulsive Out-Of-Plane Thrusting ... 5
1.2.3 Case 3: Continuous Thrusting ... 5

1.3 Method of Investigation ..6
1.4 Thesis Overview ..6

II. Background ...7

2.1 Chapter Overview ...7
2.2 Related Work...7
2.3 Equations of Motion ..9

2.3.1 The Two-Body Problem .. 9
2.3.2 Classical Orbital Elements... 12
2.3.3 Equinoctial Orbital Elements ... 18

2.4 Optimal Control Theory ..23
2.4.1 The General Indirect Method .. 23
2.4.2 Primer Vector Theory .. 26
2.4.3 Pseudospectral Methods .. 29

2.5 Chapter Summary ..32

III. Methodology ...33

3.1 Chapter Overview ...33
3.2 Optimal Control Problem Formulation ...33

vi

Page

3.2.1 Equations of Motion .. 33
3.2.2 State and Control Constraints .. 35
3.2.3 Cost Function ... 38
3.2.4 Multiple vs Single Phase Problem ... 39

3.3 General Pseudospectral Optimal Control Software-II41
3.3.1 Overview ... 41
3.3.2 Input Structure ... 42
3.3.3 Additional Required Functions .. 43
3.3.4 Output Structure .. 44
3.3.5 Limitations ... 44

3.4 Systems Tool Kit® v 10 ...45
3.4.1 Component Object Model Interface Library ... 45
3.4.2 Scenario Input .. 46
3.4.3 Maneuver Development .. 49
3.4.4 Optimizer Result Validation .. 51

3.5 Chapter Summary ..52

IV. Analysis and Results ...53

4.1 Chapter Overview ...53
4.2 Optimal Control Results ..53

4.2.1 Case 1 Single Orbit .. 54
4.2.2 Case 1 Multiple Orbit .. 57
4.2.3 Case 2 Single Orbit .. 59
4.2.4 Case 2 Multiple Orbit .. 62
4.2.5 Case 3 Single Orbit .. 62
4.2.6 Case 3 Multiple Orbit .. 64
4.2.7 Summary of Optimal Control Results ... 66

4.3 Systems Tool Kit® Simulation and Validation ..68
4.3.1 Case 1 .. 68
4.3.2 Case 2 .. 73
4.3.3 Case 3 .. 76
4.3.4 Summary of STK Results .. 78

4.4 Chapter Summary ..81

V. Conclusions and Recommendations ..82

vii

Page

5.1 Chapter Overview ...82
5.2 Conclusions ...83
5.3 Research Limitations ...84
5.4 Recommendations for Future Work ..84

Appendix A. MATLAB® Code ..87

Appendix B. GPOPS-II Structure Architecture ..109

Bibliography ..119

Vita ..122

viii

List of Figures

 Page

Figure 1: Orbital Debris Population Growth [1] .. 2

Figure 2: Two-Body Problem [4] .. 11

Figure 3: Classical Orbital Elements [4] .. 13

Figure 4: Eccentric Anomaly ... 17

Figure 5: Equinoctial Reference Frame [16] ... 20

Figure 6: LG, LGR, and LGL collocation points [22] .. 31

Figure 7: Defect Vector [20] .. 32

Figure 8: Thrust Vector .. 34

Figure 9: Penalty Functions .. 40

Figure 10: Area of Regard .. 48

Figure 11: Error Ellipse .. 49

Figure 12: Optimization Routine Flowchart ... 50

Figure 13: Case 1 Single Orbit Thrusting Profile ... 55

Figure 14: Case 1 Single Orbit COE... 55

Figure 15: Case 1 Single Orbit Relative Motion Cross Section 56

Figure 16: Case 1 Multiple Orbit Thrusting Profile.. 58

Figure 17: Case 1 Multiple Orbit COE ... 58

Figure 18: Case 1 Multiple Orbit Relative Motion Cross Section 59

Figure 19: Case 2 Thrusting Profile .. 60

Figure 20: Case 2 COE ... 60

ix

Page

Figure 21: Case 2 Orbit Relative Motion Cross Section ... 61

Figure 22: Case 3 Single Orbit Thrusting Profile ... 63

Figure 23: Case 3 Single Orbit COE... 63

Figure 24: Case 3 Single Orbit Relative Motion Cross Section 64

Figure 25: Case 3 Multiple Orbit Thrusting Profile.. 65

Figure 26: Case 3 Multiple Orbit COE ... 65

Figure 27: Case 3 Multiple Orbit Relative Motion Cross Section 66

Figure 28: Case 1 Single Orbit STK Results .. 70

Figure 29: Case 1 Single Orbit Pitch and Yaw Validation ... 70

Figure 30: Case 1 Single Orbit Thrust Duration Validation ... 71

Figure 31: Case 1 Multiple Orbit STK Results ... 72

Figure 32: Case 1 Multiple Orbit Pitch and Yaw Validation.. 72

Figure 33: Case 1 Multiple Orbit Thrust Duration Validation ... 73

Figure 34: Case 2 STK Results ... 74

Figure 35: Case 2 Pitch and Yaw Validation .. 75

Figure 36: Case 2 Thrust Duration Validation .. 75

Figure 37: Case 3 Single Orbit STK Results .. 76

Figure 38: Case 3 Single Orbit Pitch Profile Validation... 77

Figure 39: Case 3 Multiple Orbit STK Results ... 78

Figure 40: Case 3 Multiple Orbit Pitch and Yaw Validation.. 79

Figure 41: Case 3 Multiple Orbit Thrust Duration Validation ... 79

x

List of Tables

Page

Table 1: Eccentricity .. 15

Table 2: Global State Constraints .. 36

Table 3: Control Constraints .. 37

Table 4: STK COM Interface Library Function List ... 47

Table 5: Area Target Parameters ... 48

Table 6: Satellite Initial States ... 49

Table 7: Fuel Cost Comparison ... 68

xi

List of Symbols

Roman

A Perturbing acceleration vector
a Semi-major axis
E Eccentric anomaly
e Eccentricity
F Eccentric longitude
[f, g, w] Equinoctial reference frame unit vectors
G Universal gravitational constant
H Hamiltonian
h Eccentricity vector component in the f direction
I Identity matrix
i Inclination
[i, j, k] Earth Centered Inertial reference frame unit vectors
J Cost function
k Eccentricity vector component in the g direction
M Mean anomaly
m Mass
n Vector designating the Line of Nodes
n Mean motion
PN Legendre Polynomial
p Equinoctial element
q Equinoctial element
r Inertial position vector
r Magnitude of the inertial position vector
T Thrust magnitude
t Time
t0 Epoch time
u Control vector
v Inertial velocity vector
v Magnitude of the inertial velocity vector
x State vector
x Position along the i vector

xii

x1 Position along the f vector
y Position along the j vector
y1 Position along the g vector
z Position along the k vector

Greek

α Cost function weighting factor
Γ Thrust magnitude
Δ Defect Vector
ε Total mechanical energy
θ Pitch angle
λ Vector of Lagrange multipliers
λ Mean longitude
µ System specific gravitational constant
ν True anomaly
ψ Yaw angle
Ω Right ascension of the ascending node
ω Argument of perigee

1

TRAJECTORY OPTIMIZATION FOR SPACECRAFT
COLLISION AVOIDANCE

I. Introduction

1.1 Motivation

A half century of space research and development has left the near-earth

environment littered with large quantities of orbital debris. Spent rocket bodies and dead

satellites constitute the largest pieces of debris currently being tracked by the US Space

Surveillance Network (SSN). However, in addition to these large pieces of debris there

also exists a large volume of smaller objects formed from collisions between the larger

debris. The estimate for total population in the near-earth environment as of April 2011

was 28,000 objects larger than 10 cm [1]. While the radar cross sections of the smaller

debris makes tracking and cataloging more difficult, hundreds of thousands of objects are

assumed to be in orbit on the 1 cm level and hundreds of millions of objects are expected

at the 1 mm level [1]. Figure 1 details the estimated population growth of orbital debris

over the past five decades. Liou [1] projected through the use of 100 Monte Carlo

simulations the estimated growth over the next century. The 1-σ values for these

projections are also included in this figure.

This trend has been a source of major concern to the international community for

decades, prompting cooperative attempts to minimize this growth and preserve the

accessibility of the near-earth environment. However, recent studies have shown that

thus far the international efforts to mitigate the growth of orbital debris have not proven

effective enough and the population of orbital debris continues to grow. Exploration on

2

how to conduct active debris removal has also been a subject of research in recent years.

Several proposals have been made such as a ground-based or space-based laser system or

attaching inflatable balloons or sails to the larger debris to increase drag and decay the

orbit. Thus far, however, no viable solution has been implemented to actively remove

debris in orbit [1].

Figure 1: Orbital Debris Population Growth [1]

The space environment is divided into three orbital zones. The altitude band

between 200 km and 2000 km is referred to as Low Earth Orbit (LEO) [1]. LEO has seen

the largest volume of traffic of active satellites due to its relative accessibility as well as

allowing for high signal strength communications with ground stations. The

Geosynchronous (GEO) region spans the space within 200 km of the geosynchronous

altitude of 36,000 km. This region is heavily populated by larger satellites in the

Geostationary Arc which is located in the vicinity of the equator. In between these

3

regions is defined as Medium Earth Orbit (MEO) and is primarily used by navigation

satellites. While debris population growth is observed in all three of these regions, the

vast majority of observed growth occurs in LEO [1]. Despite the fact that the debris in

LEO tends to decay relatively quickly due to air drag, new debris is continually being

introduced as smaller debris is formed from collisions in higher orbits that continually

decay into this region. Recent observations have shown that the rate of decay of debris

into LEO is nearly the same as the rate of decay of debris departing LEO but is expected

to begin significantly increasing within the next 50 years due to expected collisions in

MEO [2].

The average impact speed for a satellite in LEO is around 10 km/sec [3]. Even

for collisions of satellites with objects as small as 5 mm, a hypervelocity impact has the

potential to end a satellite’s service life. As the volume of orbital debris increases,

satellites are required to make an ever increasing number of maneuvers to avoid damage.

The year 2010 alone saw nearly 400 warnings and over 100 avoidance maneuvers

conducted in order to minimize the risk of collisions [1]. With each passing year, the

number of necessary maneuvers increases with the population of debris in orbit. Each of

these maneuvers detracts from the overall service life of the maneuvering satellite.

1.2 Problem Statement

The purpose of this research was to develop and test the application of

pseudospectral optimization to orbital maneuvering. This was accomplished through the

determination of a set of minimum fuel thrust profiles to maneuver a satellite for the

purpose of collision avoidance. An Area of Regard (AOR) was specified in order to

4

designate a ‘no-thrust’ region for this scenario. This region was necessary since thrusting

degrades the performance of satellite payloads as well as complicating orbit

determination solutions. Therefore, the start time for this scenario occurs when the

satellite departs the AOR and terminates upon AOR reentry. Upon reentry, the

maneuvering satellite is required to be outside a user-specified error ellipse projected

from its non-thrusting reference trajectory. This research utilized an error ellipse that is

100 km in-track, 10 km out-of-track, and 10 km out-of-plane in size. This study looked

at three distinct cases: Impulsive In-Plane, Impulsive Out-of-Plane, and Continuous In-

Plane.

1.2.1 Case 1: Impulsive In-Plane Thrusting

Impulsive thrusting is the traditional method used to maneuver satellites. This

method is relatively simple to model and provides large accelerations and a rapid satellite

response to commanded maneuvers. It is capable of achieving nearly instantaneous

velocity changes necessary for large orbital maneuvers. However, impulsive thrusting

typically makes use of engines that have relatively low specific impulse (ISP) and are

therefore expensive to operate. Thrusting in the satellite’s orbital plane is considered to

be the least expensive maneuver and is therefore the first case considered. Conventional

wisdom states that the minimum fuel thrust direction is either in the velocity or anti-

velocity direction depending on whether a climb or a descent is desired. Due to a desire

to keep the orbit circular, an impulsive thrust is typically conducted twice, once to climb

or descend and once to re-circularize the orbit at the desired altitude. This maneuver is

referred to as a Hohmann Transfer [4] and is most commonly used when an altitude

5

change is desired. However, if the satellite mission permits small variances in

eccentricity, it may not be optimal to recircularize the orbit after conducting a collision

avoidance maneuver. For the Impulsive In-Plane thrusting case, this research

demonstrates a more fuel efficient maneuver than the Hohmann Transfer for the purpose

of collision avoidance.

1.2.2 Case 2: Impulsive Out-Of-Plane Thrusting

While thrusting out of the satellite’s orbital plane is considered to be less fuel

efficient than the previous case, it allows for alterations to the orbital plane itself and can

therefore be a useful alternative method in collision avoidance. This case is less

generalized than the previous case, however, since it depends heavily on the latitude of

the AOR and the inclination of the orbital plane. Therefore, this research generates an

algorithm to determine the optimal thrust time and direction for an unspecified set of

latitudes and inclinations.

1.2.3 Case 3: Continuous Thrusting

Continuous thrust maneuvers utilize Electric Propulsion (EP) thrusters in order to

generate their accelerations. They are used less often due to the extremely low forces

they generate. However, these engines are more fuel efficient due to their extremely high

ISP. For this reason, the use of continuous thrust engines can therefore extend the service

life of a maneuvering satellite that would otherwise rely on impulsive thrust engines for

collision avoidance. This research demonstrates a method for maneuvering using

continuous thrust that is comparable to the first case by utilizing thrust direction rather

than duration.

6

1.3 Method of Investigation

The scenario start and termination times were developed using Analytical

Graphics Incorporated® (AGI) Systems Tool Kit® (STK) version 10 via an access report

generated between a non-maneuvering reference satellite and an AOR. The scenario start

time along with the current state were then imported into MATLAB® for optimization

using General Pseudospectral Optimal Control Software (GPOPS-II). This software

utilized the Radau Pseudospectral Method (RPM) to optimize thrust/angle profiles for

each of the three scenarios mentioned in the previous section. These profiles were then

converted into a form that was accessible to STK. The Astrogator propagation tool was

used in STK to test these thrust profiles and measure the distance at scenario termination

from the reference satellite to a satellite with identical initial conditions executing each of

the calculated optimal thrust profiles.

1.4 Thesis Overview

 Chapter II provides the mathematical background required in order to formulate

the necessary components of the Optimal Control Problem. It outlines several choices of

states and their corresponding equations of motion as well as the general principles of

Optimal Control Theory. Chapter III details the methods used in setting up the problem

in GPOPS-II as well as STK. Chapter IV presents and discusses the results from the

algorithm developed in Chapter III. Chapter V summarizes the conclusions from this

research and presents suggestions for future study.

7

II. Background

2.1 Chapter Overview

 This chapter establishes the basis for the methods used to determine the optimal

orbital trajectories discussed in this research. First, a general discussion is made on the

recent work this research is based on. Second, a derivation of the equations of motion is

discussed. The benefits and difficulties inherent in several different choices of states are

discussed as well as their corresponding equations of motion. Finally a discussion is

presented on the background of the optimization methods used in later chapters.

2.2 Related Work

 This research combines elements from previous work accomplished in the fields

of responsive spacecraft control and optimal control techniques. The work from

responsive spacecraft control formed the baseline for the formulation of the equations of

motion as well as the choices of the three maneuver cases outlined in Section 1.2. The

optimal control research cited in this section formed the baseline for the development of

the algorithms used to optimize the trajectories presented in Chapter IV.

 This research is most closely based on the work done by Co [5] and Zagaris [6].

In his 2012 dissertation, Co [5] explored the differences between electric and chemical

propulsion and their applications in generating a desired change in the satellite’s over-

flight time of a ground target. His work with electric propulsion along with the work

accomplished by Zagaris [6] in his thesis formed the basis for the formulation of the

equations of motion as well as the optimal control approach used in this research.

8

Zagaris utilized both optimal control methods as well as a Lyapunov control technique in

order to modify the time of passage of a satellite over a specified ground target.

 Jorris [7] and Karasz [8] utilized pseudospectral optimization in the derivation of

an optimal trajectory for an autonomous reentry vehicle subject to specified ‘no-fly zone’

path constraints. In his 2007 dissertation, Jorris [7] utilized a direct collocation method

to design a multiple-phase algorithm that optimized a three-dimensional trajectory subject

to his specified no-fly constraints. Karasz [8] built on this research and demonstrated

through a sensitivity analysis how changes in the locations of the ‘no-fly zones’ affected

the solution. Yaple [9] also followed this research in the development of a more general

trajectory optimization tool.

 Darby [10] demonstrated the application of hp-adaptive pseudospectral methods

in spacecraft maneuver optimization. He utilized this technique to determine

maneuvering cost for a spacecraft in LEO executing orbital inclination changes with

assistance from atmospheric forces. This was conducted using three impulsive

maneuvers: one to de-orbit in order to conduct atmospheric dipping, a boost maneuver to

direct the satellite to its final altitude, and a final re-circularizing maneuver. He

concluded that these aero-assisted maneuvers were more fuel efficient in most cases than

conventional methods of changing orbital inclination.

 A considerable amount of work in the area of pseudospectral optimization and its

applications in orbital mechanics has been conducted by Dr Ross in his work at the Naval

Postgraduate School. Ross and Hall [11] demonstrated an unusual approach to the orbit

transfer problem involving the coupling of attitude dynamics and orbital mechanics in the

development of a series of coplanar phasing maneuvers optimized for time, fuel, and

9

control limitations. Their work incorporated the implementation of continuous thrusting

into the optimal control problem. Dr Ross’s work in this area culminated in the

development of unique Zero-Propellant Maneuvers for the International Space Station

[12]. These maneuvers utilize optimal control as well as feedback control techniques to

take advantage of environmental conditions to minimize momentum saturation in the

space station’s control moment gyros. This development significantly decreased the cost

of slewing the International Space Station.

2.3 Equations of Motion

 The first step to solving any orbital mechanics problem involves developing a

firm understanding in the dynamics inherent in the system. This involves first choosing a

set of states to represent the system. The following sections detail three common choices

of states in orbital mechanics and discuss their respective advantages and disadvantages.

2.3.1 The Two-Body Problem

 The simplest problem in orbital mechanics is the Two-Body problem. This

problem begins with two point masses and describes their mutual gravitational attraction

to each other [4]. Vallado [13] mentions four fundamental assumptions made in the

Two-Body problem:

1. The mass of the satellite is much smaller than the mass of the body it is orbiting.

This allows the satellite’s mass and its gravitational effects on the larger body to

be neglected.

2. The frame of reference is inertial. This allows for derivatives to be taken without

regard to the motion of the reference frame.

10

3. Both the Earth and the satellite are point masses.

4. No other forces are applied to either body.

 These assumptions allow for the basic formulation of the Two-Body problem but

constitute an imperfect model. One method for adjusting the model to account for these

imperfections is known as Perturbation Theory. While the natural perturbations

themselves are not discussed in this research, this theory can also be used to model

maneuvers as perturbing accelerations.

The equations of motion are best described initially using an independent inertial

coordinate frame as shown in Figure 2. In this figure, RC denotes the position of the

center of mass of the entire system. The vector r denotes the position of the second mass

with respect to the system center of mass. The Equations of Motion for the second mass

are:

()1 2

3

G m m+
= −

r
r

r
 (1)

where G is the universal gravitational constant. Equation 1 can be simplified as follows:

 3

µ
= −

r
r

r
 (2)

where ()1 2 1= + ≈μ G m m Gm is the specific gravitational constant for the system.

 Since mass 2 is very small in comparison to mass 1, its gravitational effects on

mass 1 can be neglected. This allows for the inertial frame to be moved to the center of

mass 1 along with the center of mass of the system. In the case of a satellite orbiting the

Earth, this yields what is commonly referred to as the Earth-Centered Inertial (ECI)

11

reference frame. This reference frame consists of the three unit vectors [i, j, k]. The unit

vector i is aligned with vernal equinox, k points to the North Pole, and j completes the

right-handed system.

Figure 2: Two-Body Problem [4]

 The Two-Body problem only accounts for the gravitational attraction between the

two masses. There are various additional perturbing effects such as J2, which accounts

for the oblateness of the Earth and air drag, that constantly influence the basic orbital

motion of a satellite. Adding a perturbing acceleration, A, into Equation 2 yields the full

equations of motion.

 3

µ
= − +

r
r A

r
 (3)

If the acceleration being modeled is a maneuver, it is a function of only the thrust output

and the mass of the satellite. Two cases are considered in this research: Continuous

12

Thrust and Impulsive Thrust. For the continuous-thrust case, the satellite mass can be

modeled as constant due to the very low fuel consumption typical of electric propulsion,

yielding a constant acceleration. For the Impulsive Thrust case, the fuel consumption is

much higher and must be accounted for.

 For a satellite undergoing constant acceleration, the resulting equations of motion

in the ECI frame can be expressed as the following set of first-order derivatives.

 3

3

3

x

x

y y

z

z

vx
vyx
vzy

z x A
rv

v y A
rv

z A
r

µ

µ

µ

− +=

− +

− +

 
 

   
   
   
   
   
   
      

  













 (4)

 This method allows for a complete, closed form solution. However, due to their

relative size, the Two-Body forces tend to dominate this formulation [14]. While

numerical solvers today can handle the number of significant figures required to account

for most perturbations, it is preferable to use a choice of states that change more slowly.

2.3.2 Classical Orbital Elements

 Kepler’s First Law states that orbital trajectories are conic sections with the

attracting body at one of the foci. The Classical Orbital Elements (COE) represent a

method of completely defining the orbit of a satellite with six parameters using conic

section geometry. Figure 3 depicts the relationship between the six COE and the

satellite’s position and velocity. The COE are typically written as (a,e,i,Ω,ω,ν) where a

is the semi-major axis, e is the eccentricity, i is the inclination, Ω is the right ascension of

13

the ascending node (RAAN), ω is the argument of perigee, and ν is the true anomaly.

Depending on the application of the problem, the true anomaly may be replaced with the

mean anomaly, M, or the eccentric anomaly, E. The following discussion on Classical

Orbital Elements is taken from Wiesel [4, pp. 57-68].

Figure 3: Classical Orbital Elements [4]

 The semi-major axis, a, is defined as half the length of the longest axis on an

ellipse and serves as a general measure of the size of an orbit as well as its orbital period.

It is derived from the orbital energy of the satellite, ε.

21

2

2

v
r

a

µ
ε

µ

ε

= −

= −

 (5)

14

Kepler’s Second law states that the vector connecting the central body and the satellite

will sweep out equal areas in equal times. This law led to the formulation of a quantity

known as the mean motion, n defined as:

 2
n

P
π

= (6)

where P is the orbital period. Since the semi-major axis denotes the size of a stable orbit,

it is related to the mean motion as shown in Equation 7. This Equation is known as

Kepler’s Third Law.

 3n
a

µ
= (7)

The eccentricity, e, is a measure of the orbital shape as shown in Table 1. For the

purpose of this discussion, the circular and elliptical cases are all that will be covered.

The eccentricity is determined from the magnitude of the eccentricity vector, e, which is

calculated using the orbital angular momentum vector, H.

 ()1

r

µ

µ

= ×

= × −
 
  

H r v

r
e v H

 (8)

The inclination, i, measures the angle between the orbital plane and the inertial x-y plane.

It is also calculated from the orbital angular momentum as shown in Equation 9.

 ()cos i
⋅

=
k H

H
 (9)

15

Inclination is defined between 0° and 180°. Orbits in the 0° to 90° range are referred to

as prograde orbits and are more commonly used than retrograde orbits, or those that

occur between 90° and 180°.

Table 1: Eccentricity

Eccentricity Shape

e = 0 Circular

0 < e < 1 Elliptical

e = 1 Parabolic

e > 1 Hyperbolic

 The RAAN, Ω, measures the angle between the vernal equinox eastward to the

line of nodes, n, shown in Figure 3 and calculated as follows:

 ×
=

k H
n

k H
 (10)

The RAAN can be calculated by recognizing its relationship to the line of nodes.

 () ()cos sin= +n i jΩ Ω (11)

 The argument of perigee, ω, denotes the location of the point on the orbit that is

closest to the focal point at the center of the Earth. It is also calculated from the

eccentricity vector and the line of nodes.

 ()cos ω
⋅

=
n e

e
 (12)

16

For 𝐞 ∙ 𝐤 > 0, ω can be directly obtained Equation 12 by taking the inverse cosine.

However, if 𝐞 ∙ 𝐤 < 0 then the inverse cosine function will yield an angle 180° from the

true argument of perigee.

 The first five COE denote the size, shape, and orientation of an orbit. The true

anomaly, ν, is a measure of where on that orbit the satellite currently resides. It can be

calculated from the eccentricity and position vectors as shown in Equation 13.

 ()cos ν
⋅

=
e r

e r
 (13)

Just as with the argument of perigee, 𝐫 ∙ 𝐯 determines the quadrant for proper calculation

of the true anomaly. The semi-major axis, eccentricity, and true anomaly may be directly

related back to the magnitude of the position vector as shown in Equation 14.

 ()
()

21

1 cos

a e
r

e ν

−
=

+
 (14)

 Despite the direct interpretation of the true anomaly, it is not always the best

measure to use for orbital position [15]. The eccentric anomaly, E, is another measure of

orbital position that is commonly used. The eccentric anomaly tracks the satellite’s

angular position on the orbit on a projected circle with equal radius to the semi-major

axis as shown in Figure 4. This angle is measured from the center of the fictitious circle,

O, rather than from the elliptical focal point, F. The eccentric anomaly is calculated from

the eccentricity and the true anomaly.

 () ()
()

cos
cos

1 cos

e
E

e

ν

ν

+
=

+
 (15)

17

Figure 4: Eccentric Anomaly

The mean anomaly, M, is another common measure of orbital position created to assist in

relating motion around an ellipse to motion around a circle. It relates directly to both the

eccentric anomaly and the mean motion as shown in Equation 16.

 () ()0sinM E e E n t t= − = − (16)

In Equation 16, 0t is the epoch time and t is time elapsed. It should be noted that at an

eccentricity of zero, the mean, eccentric, and true anomalies are all equal.

 For the basic Two-Body problem, five of the six COE are constant. When

perturbations are added into the equations, these quantities change only due to the

perturbing accelerations [14]. The Lagrange Planetary Equations (LPE) shown in

Equation 17 govern how the COE change with these accelerations.

18

()

() ()

()

()
()

() () ()

2

2

2 22 2

2

2 2

2 2

2 2

2

2 sin 2 1 0
1

11 sin 1 0

cos
0 0

1
sin

0 0
1 sin

1 cos cot sin1 1 sin
(1)

−
  −
   −− −  −    

  
  +
 

−  =  +Ω
 

− 
 

−  −  − + −   −  
  

e a e
da nrn e
dt a ee e rde na na e r
dt

rdi
na edt

rd
dt na e i
d

e r ie rdt
nae nae a edM

dt

ν

ν

ω ν

ω ν

ω
ν ω

ν
()

() ()
()

2 2

2 2

22

0

0

0

0

0
1

1 cos 2 1 1 sin 0
(1)

−

 
                          +              +    −     −  −  − +  −  

A

na e
e r e r n

nae nae a ena

ν

ν
ν

 (17)

where the perturbing acceleration []r t n , , =TA A A A denoting radial, tangential, and

normal components, respectively [14].

 Unlike the previous formulation, five of these six elements change very slowly.

The sixth element, whether it be the true, eccentric, or mean anomaly, changes rapidly

but in a predictable fashion. This method of defining an orbital state is intuitive but

unfortunately has a number of singularities that tend to complicate the equations of

motion. For instance, at zero inclination the RAAN loses meaning. Similarly, for zero

eccentricity the argument of perigee becomes indistinguishable from the true anomaly.

These singularities can be clearly seen in their equations of motion shown in Equation 17.

Due to the location of these singularities, the COE are not necessarily the best set of

states for numerical analysis.

2.3.3 Equinoctial Orbital Elements

 A third method of completely defining an orbit is by the use of the Equinoctial

Orbital Elements. This element set maintains the mathematical advantages of the COE

19

without going singular for circular or prograde equatorial orbits. The following

discussion on the Equinoctial Orbital Elements is taken from Kechichian [16].

 This element set establishes another useful reference frame. The equinoctial

reference frame is comprised of the unit vectors [f,g,w]. The unit vectors f and g span the

orbital plane while w is aligned with the orbit angular momentum vector as shown in

Figure 5.

 The Equinoctial Orbital Elements may be derived directly from the COE. This

change of variables is shown in Equation 18.

()
()

()

()

sin

cos

tan sin
2

tan cos
2

a a

h e

k e

i
p

i
q

M

ω

ω

λ ω

=

= + Ω

= + Ω

= Ω

= Ω

= + + Ω

 
 
 
 
 
 

 (18)

The quantities h and k are the equinoctial reference frame components of the eccentricity

vector. The quantities p and q relate the rotation from the ECI frame to the equinoctial

reference frame as shown in Equation 19.

2 2
1

2 2
12 2

2 2

1 2 2
1 2 1 2

1
2 2 1 0

ECI

x p q pq p x
y pq p q q y

p q
z p q p q

 − +   
    = + − −    + +     − − −    

 (19)

Equinoctial Orbital Elements can be easily translated back into COE via the change of

variables shown in Equation 20.

20

Figure 5: Equinoctial Reference Frame [16]

2 2

1 2 2

1

1 1

1

2 tan

tan

tan tan

tan

−

−

− −

−

=

= +

= +

Ω =

= −

= −

 
 
 

  
      

 
 
 

a a

e h k

i p q

p

q

h p

k q

h
M

k

ω

λ

 (20)

It can be seen from the conversion that while this new element set does not go singular

for the circular or prograde equatorial cases, it does retain a singularity. Fortunately, this

singularity occurs at an inclination of 180°. Since retrograde equatorial orbits are rarely

21

used, this singularity is of little concern in this research [13]. The position and velocity

of the satellite in the Equinoctial Frame is given as:

 1 1

1 1

= +
= +

r
r  

x y
x y

f g
f g

 (21)

The components x1, y1, and their time derivatives from Equation 21 are defined as:

() () ()
() () ()

() () ()
() () ()

2

2

2 1 2

2 1 2

1

1

1

1

1 cos sin

cos 1 sin

cos 1 sin

1 cos sin

−

−

= − + −

= + − −

= − −

= − −

  
  

  
  





x a h F hk F k

y a hk F k F h

x a nr hk F h F

y a nr k F hk F

β β

β β

β β

β β

 (22)

where the quantities r and β are defined as:

() ()()

2 2

1 cos sin

1

1

1

r a k F h F

G

G h k

β

= − −

=
+

= − −

 (23)

 If the state vector is chosen as [], , , , , Ta h k p q λ=z and the perturbing force is of

the form f=f u where u is a unit vector in the direction the force is being applied, then

the state derivative follows the form:

 ∂
= +
∂

A
z

z n
r





 (24)

Provided that the acceleration vector A is given in the equinoctial frame, the 3x6 matrix

M
∂

=
∂

z

r
 becomes:

22

()

()

2 2

2 2 2

2 2 2

2

2

2 2

1 1

1 1 1 1
1 1

1 1 1 1
1 1

1

1

1 1
1 1

2 2
0

0 0
2

0 0
2

1 1
2 2

∂ ∂
− − −

∂ ∂
∂ ∂

− + − + −
∂ ∂

∂ ∂ ∂
− + + − +

∂ ∂

   
   
   
   
   
   

  
    

 

 

 

x y

n a n a
x h x y h yG G k

px qy
na k n na k n Gna

x k x y k yG G h
px qy

na h n na h n Gna
Ky

Gna
Kx

Gna
x x y

x G h k y G h
na h k na

β β

β β

β β β ()2
1 1

1 1
1∂

+ −
∂ ∂

 
 
 
 
 
 
 
 
 
 
 
 
 
   

      

y
k qy px

h k Gna
β

 (25)

In Equation 25, 2 21K p q= + + and the partials of x1 and y1 with respect to h and k are

given below in Equation 26.

() ()() () ()()

() ()() () ()()

() ()() () ()()

() ()() () ()()

2 3

3

3

2 3

1

1

1

1

cos
cos sin sin

1

sin
cos sin 1 sin

1

cos
cos sin 1 cos

1

sin
cos sin cos

1

∂
= − − + − −

∂ −

∂
= − + + −

∂ −

∂
= − − + −

∂ −

∂
= − + + −

∂ −

  
    

 
 
 
 
 
 
  

    

a Fx h
a h F k F h F

h r

a Fx hk
a h F k F F h

k r

a Fy hk
a h F k F k F

h r

a Fy k
a h F k F F k

k r

β
β β

β

β
β

β

β
β

β

β
β β

β 

 (26)

Kechichian [17] stated that using F as the fast element rather than λ removes the

requirement to solve Equation 16 at each integration step. This new set is known as a

modified set of Equinoctial Orbital Elements. The equations of motion for F are given

below in Equation 27.

() ()cos sin

∂
= +

∂
∂ ∂ ∂ ∂ = + + ∂ ∂ ∂ ∂ 

u
r

r r r r





   

na FF f
r

F a h k λF F
r

 (27)

23

The partial derivatives of h, k, and λ are the second, third, and sixth rows of the matrix M

as shown in Equation 25.

While the Equinoctial Orbital Elements avoid the singularities of the COE, the

main disadvantage to using them is that from direct inspection it is not intuitively obvious

what is happening physically to the system. The COE directly relate to the physical

geometry of the orbit and as such are much simpler to directly interpret than the

Equinoctial Orbital Elements.

2.4 Optimal Control Theory

 The purpose of Optimal Control Theory is the determination of a time history of

controls that satisfy the physical constraints of the system while minimizing or

maximizing some performance criterion [18]. There are two primary categories of

numerical methods for solving optimal control problems: Direct and Indirect Methods.

Indirect Methods focus on derivation of first-order necessary conditions using the

Calculus of Variations. These conditions are then used to pick a minimum cost extremal

trajectory. Direct methods use Nonlinear Programming (NLP) techniques to satisfy a

similar set of optimality conditions [19].

2.4.1 The General Indirect Method

The first step in Optimal Control Theory is establishing the problem. This

consists of determining the equations of motion, cost function, and applicable constraints.

The following brief explanation of terms is from Kirk [18]. The equations of motion can

be written in first order form as:

 () () ()(), ,t t t t=x a x u (28)

24

where x(t) is an n-dimensional time history of the state vector and u(t) is an m-

dimensional time history of the control vector. The symbols x*(t) and u*(t) below denote

the optimal state and control vectors.

Constraints can be broken down into two primary types: path constraints and

boundary constraints. Path constraints represent limitations on either the control or state

at any time. For instance, engines have a finite amount of thrust yielding a maximum

value for the control. It would be meaningless to solve for an optimal control solution

that would require larger than the maximum available thrust. Boundary constraints

pertain to either the final or initial states. They may be given as a set of equality or

inequality constraints. A state vector that does not violate any constraint is referred to as

an admissible trajectory. Similarly, a control vector that does not violate any constraint is

referred to as an admissible control.

The cost function is generated by the designer and represents the quantities of

importance.

 ()() () ()()
0

, , ,f

f f

t

t
J h t t g t t t dt= + ∫x x u (29)

In the cost function, the function h is referred to as the Mayer term and denotes cost

related to the final state. The function g is referred to as the Lagrange term or the running

cost. This function tracks state and control costs that occur through their entire time

histories. Cost functions may contain just the Mayer term, just the Lagrange term, or

both depending on what is being optimized. Separate terms in the cost function are given

appropriate weights designating their relative importance in the optimization. This is

perhaps the most difficult part of designing the cost function. There are an infinite

25

number of weighting combinations if multiple terms are present. As such, extreme care

must be taken in properly balancing the relative weights in the cost function [18].

 Equations 28 and 29 along with applicable constraints represent a complete

optimal control problem. The first-order necessary conditions for optimality are derived

using the Calculus of Variations:

()

()

()() ()

()()

*

*

* *

*

0 ,

,

f f f f

f f f

t

t

T
h t t t

h t t t

δ

δ

∂
=
∂

∂
= −

∂

∂
=
∂

∂
= −

∂

∂
+ +

∂

 
  
 
  

λ

x
λ

x

0
u

x λ x
x

x
x





H

H

H

H

 (30)

where H is the Hamiltonian constructed from Equations 28 and 29:

 () () ()() () ()() () () ()(), , , , , , ,Tt t t t g t t t t t t t= +   x u λ x u λ a x uH (31)

In Equations 30 and 31, λ (t) constitutes an n-dimensional vector of Lagrange multipliers,

also known as co-states.

 Boundary Conditions may be added to the problem formulation in Equation 30 as

applicable. This research focuses on a fixed final time and free final state problem.

Since δxf is free, the fourth equation in Equation 30 results in:

 ()() ()* *
f fh t t

∂
− =

∂
x λ 0

x
 (32)

26

Conway [20] states that optimal control as applied to spacecraft trajectories run into

several difficulties:

1. The dynamics are nonlinear.

2. Most practical trajectories are discontinuous.

3. The initial and final states may not be known explicitly.

4. Many of the forces such as planetary perturbations are time-dependent.

5. The basic structure of the trajectory may not be possible to specify a priori.

The use of low-thrust propulsion can alleviate the trajectory discontinuities since it can be

used nearly continuously. This creates a very different problem from the traditional

impulsive thrust model.

2.4.2 Primer Vector Theory

Primer vector theory is an indirect optimization method that satisfies the

Necessary Conditions from Equation 30. Conway [20, pp. 16-20] describes the setup

shown below for the problem of an optimal, constant specific impulse spacecraft

trajectory. The conditions have been modified to conform to this research.

 For a low-thrust engine, the acceleration can be constrained as max0 A A≤ ≤ . The

cost function for the minimum fuel case with an additional Mayer term is:

 ()()
0

f

f

t

t
J h t Adt= + ∫x (33)

In this case the ECI state vector is used:

 =
 
  
rx
v

 (34)

27

where r is the position vector and v is the velocity vector from the basic Two-Body

problem discussed in Section 2.1.1. For this problem, the initial state x0 is specified. For

this choice of states, the equations of motion are:

()=

+ Γ

 
 
 

v
x

g r u


 (35)

where g(r) is the gravitational acceleration and u is the unit vector in the direction the

thrust is being applied. The gravitational acceleration is modeled as shown in Equation 2.

The Hamiltonian function can be constructed now as:

 ()T T
r v= Γ + + + Γ  λ v λ g r uH (36)

The necessary conditions for the co-states are calculated from the Hamiltonian similar to

the solution in Equation 30.

()T T

r v

T T
v r

∂
= − = −

∂

∂
= − = −

∂

λ λ G r
r

λ λ
v





H

H
 (37)

In Equation 37, G(r) is the symmetric gravity gradient matrix given as:

 () ()∂
=

∂

g r
G r

r
 (38)

The boundary condition is of similar form as Equation 32. This yields the following

equations.

() () ()()

() () ()()

f f
f

f f
f

t h tr t

t h tv t

∂
=
∂

∂
=
∂

λ x
r

λ x
v

 (39)

28

The variables left are the acceleration magnitude, Γ, and direction, u. From inspection, it

can be seen that the choice of direction that minimizes the Hamiltonian occurs when u is

aligned opposite in direction to the velocity co-state, λv. This term is referred to as the

primer vector, p:

 () ()t tv= −p λ (40)

Conway [20] derives the primer vector equation from this definition.

 ()=p G r p (41)

The boundary conditions for this differential equation come from Equation 39.

() () ()()

() () ()()

f f
f

f f
f

t h t
t

t h t
t

∂
= −

∂

∂
=
∂

p x
v

p x
r



 (42)

With this choice of u the Hamiltonian becomes:

 ()1 T Tp r v= − Γ + +λ v λ gH (43)

From Equation 43 it can be seen that the Hamiltonian is a linear function of Γ. Therefore,

the choice of acceleration magnitude is based on the sign of its coefficient. Conway [20]

introduces the Switching Function to specify the acceleration magnitude.

 () 1S t p= − (44)

Here the choice of Γ comes from what Conway [20] refers to as the bang-bang control

law:

 { max 0
0 0

S
S

Γ >
Γ =

<
 (45)

29

Note that this solution for Γ is singular if S = 0 for a finite length of time but will

otherwise determine both thrust magnitude and direction for the specified optimal control

problem. This analytical solution is very useful as a sanity check for the numerical

solutions derived in later sections.

 There are two primary advantages to using indirect methods: their relatively high

accuracy and the absolute knowledge that they satisfy the first-order necessary

conditions. However, they unfortunately have relatively small radii of convergence and

require analytical derivations of the Hamiltonian. In addition, they also require a certain

amount of a priori understanding of what the trajectory will look like. While direct

methods are not as accurate as indirect methods, they do not suffer from the same

disadvantages [19]. With the development and improvement of computer processing

over the past half-century, these methods have become increasingly popular in solving

optimal control problems without explicitly using the analytical necessary conditions

[20].

2.4.3 Pseudospectral Methods

 Pseudospectral techniques represent a class of direct methods that use collocation

to solve optimal control problems numerically rather than analytically. This technique

has become increasingly popular over the past several decades. The following discussion

is taken from Conway [20, pp. 45-47] and Rao [21].

 The first step is to discretize the state and control histories. This discretization is

accomplished by the use of global polynomials. Discretization of the equations of motion

is performed at collocation points. There are three sets of these points that are commonly

30

used in pseudospectral methods: Legendre-Gauss (LG), Legendre-Gauss-Radau (LGR),

and Legendre-Gauss-Lobatto (LGL). All three of these methods make use of the N-th

order Legendre Polynomial, bounded on the interval [-1,1]:

 ()21 1
2 !

N N

N N N

dP x
N dx

 = −  (46)

 The chief difference between these three methods is the inclusion or exclusion of

the endpoints as shown in Figure 6. The LG points include neither set of endpoints, LGR

points include only one set of endpoints, and LGL points include both sets of endpoints

[22].

 1

1

LG N

LGR N N

LGL N

P P
P P P

dP P
dx

−

−

=
= +

=

 (47)

The boundary conditions for the differential equation for the LGL points are the

endpoints. Note that there are two possible sets of LGR points, one set using the initial

point and one using the terminal point. While similar in appearance, these three sets of

points are distinctly different. Garg [23] proved that LG and LGR state and control

solutions converge significantly faster than LGL and went on in [24] to demonstrate that

LGR further improves accuracy. The pseudospectral method introduced in [24] was

termed the Radau Pseudospectral Method (RPM) and is based on collocation using LGR

points. The roots of the LGR polynomial form the set of discretization points for the

RPM.

31

Figure 6: LG, LGR, and LGL collocation points [22]

 It should be noted that there is a tradeoff inherent in this method of fitting points.

A higher order polynomial will provide a better fit but will include more oscillations

between each collocation point. While a lower order polynomial will fit the points less

accurately, it will tend to be better conditioned, providing fewer oscillations between

collocation points [20].

 Once the states have been discretized and fitted with a polynomial, P(x) is

differentiated. P’(x) is then compared to the defined state derivatives at the collocation

points. The difference is referred to as the defect. These defects can be gathered into a

vector as follows:

 [] () () ()(), ,D t t t t∆ = −x a x u (48)

32

where [D] is the derivative matrix of the Legendre Polynomials. Figure 7 demonstrates

this procedure for a single node. The defect then minimized in order to satisfy the

specified equations of motion. Pseudospectral methods are generally known to converge

spectrally. This means that convergence occurs faster than mN− where N is the number of

nodes and m is any finite value [21]. The numerical algorithm utilized in this research is

based on the Radau Pseudospectral Method.

Figure 7: Defect Vector [20]

2.5 Chapter Summary

 This chapter outlined the methodology behind the choices of states as well as the

optimization methods used in this research. The Optimal Control Problem solved in the

following chapters is conducted using equinoctial elements to avoid singularities but is

translated back into classical orbital elements for analysis. The following chapter will

outline in more detail the design and setup of the Optimal Control Problem.

33

III. Methodology

3.1 Chapter Overview

 The following chapter outlines the methods used in this research in the

development and execution of the Optimal Control Problem. The specific setup of the

Optimal Control components is covered as well as an in-depth discussion of the software

that was used in MATLAB®. Appendix A contains MATLAB® code that is discussed in

this chapter.

3.2 Optimal Control Problem Formulation

 This section describes the design and setup of the Optimal Control Problem. The

equations of motion are specified along with their applicable state and control constraints.

In addition, the design of the cost function is discussed in detail.

3.2.1 Equations of Motion

 The modified Equinoctial Orbital Elements as discussed in Section 2.1.3 were

selected as the states for this Optimal Control Problem. The corresponding equations of

motion for this choice of states are outlined in Equations 24 through 27 in first-order

form. The control variables were chosen as [T, θ, ψ] where T is the thrust magnitude, θ is

the in-plane pitch angle shown in Figure 8, and ψ is the out-of-plane yaw angle. The

resulting acceleration vector in the Equinoctial Reference Frame is given as:

() () () ()() ()
() () () ()() ()

()

sin cos cos sin cos

cos cos sin sin cos

sin

T T
m

θ φ θ φ ψ

θ φ θ φ ψ

ψ

−

= +

 
 
 
 
 

A (49)

34

where m is the satellite mass and ϕ represents the satellite’s position in the Equinoctial

Reference Frame as shown in Figure 8. The angle ϕ is calculated from the components of

the equinoctial position vector:

 1 1

1

tan−  
=  

 

y
x

φ (50)

where the quantities x1 and y1 are given in Equation 22.

Figure 8: Thrust Vector

 It should be noted that there are no perturbations to the basic Two-Body problem

included in this realization of the equations of motion. Since the orbital trajectories of the

reference and maneuvering satellites are nearly identical, it was assumed that the

perturbation effects are also nearly identical. The position of the maneuvering satellite

relative to its reference trajectory is one of the quantities of interest for this study and is

incorporated into the cost function. Since the separation between the two trajectories is

small, perturbation effects are not necessary to model and their absence allows for

boosted efficiency in the numerical algorithms, decreasing run time significantly.

35

3.2.2 State and Control Constraints

 Since most satellites generally wish to remain at the same altitude for mission

requirements, the semi-major axis was constrained to a maximum deviation of 20

kilometers from the initial conditions. However, since the altitude component of the

ellipse is only 10 kilometers and the intent is to maneuver as little as possible, this for all

intents and purposes left the semi-major axis unconstrained.

 The only constraint placed on eccentricity in this research was to assign it a

maximum value of 0.5. This value was chosen in order to keep the code from

incidentally generating a non-real value when using Equation 23 in the calculation of the

state derivatives. The limits for the equinoctial elements h and k were determined from

this restriction using Equation 18.

 One of the goals of this research was to compare in-plane with out-of-plane

maneuvers by leaving both as optimization parameters in this algorithm. As such, no

restrictions were placed on inclination or RAAN. However, in order to bound the

equinoctial elements p and q, it was assumed that their corresponding classical elements

would only change by very small amounts using their relationship in Equation 18.

 The final equinoctial element, F, is directly related to the mean anomaly and the

argument of perigee. While the mean anomaly only increases over time, the argument of

perigee changes rapidly at low eccentricity. The bounds applied to F were determined

from extrapolating the final value of the mean anomaly of the reference satellite. Since

the argument of perigee is bounded by ±π radians the bounds on F were established using

its relationship to the mean anomaly and the argument of perigee. A summary of the

global state constraints is given below in Table 2.

36

Table 2: Global State Constraints

State Minimum Maximum

a ()0 20−a t ()0 20+a t

h 0.5− 0.5

k 0.5− 0.5

p ()()02 tan 2− i t ()()02 tan 2i t

q ()()02 tan 2− i t ()()02 tan 2i t

F −π ()ftπ+ F

 The thrust magnitude was constrained in the code from zero to one denoting a full

range from zero to full throttle. The MATLAB® function used for calculating the

equations of motion was designed to scale this normalized throttle to a case-specific

maximum thrust value.

 The thrust angles were designed such that a single unique solution existed for

virtually every thrust direction. The expected solutions for pitch angle were either

velocity or anti-velocity and as such, specifying a limit from -180° to 180° was

undesirable since it would result in a discontinuous solution for any optimal descending

profile. Since pure altitude thrusting was assumed to be inefficient, the chosen

singularity was placed at 270° for the pitch angle. The yaw angle was constrained from

-90° to 90°. Since the satellite could thrust in any pitch direction, only half of a circle

was required for the out-of-plane thrust angle. The applied control constraints are

outlined in Table 3 below.

37

Table 3: Control Constraints

Control Minimum Maximum

T 0 1

θ - 90◦ 270◦

ψ - 90◦ 90◦

 The initial iteration of the problem formulation applied a terminal event constraint

to the Optimal Control Problem. This specified that the final position of the maneuvering

satellite must be outside of the ellipse. This was accomplished using the formula:

2 2 2

In Plane

2

Out of Plane

d h n 1
a b c

n 1
c

−

− −

∆ ∆ ∆     = + + ≥     
     

∆ = ≥ 
 

E

E

 (51)

where Δd is the in-track distance, Δh is the altitude difference, and Δn is the orbit normal

distance between the reference and maneuvering satellites. The values a, b, and c denote

the dimensions of the error ellipse in each of these directions. Due to the fuel

inefficiencies inherent in out-of-plane maneuvering, a separate constraint was generated

for this case in order to force the optimizer to converge on an out-of-plane maneuver.

While this constraint ensured that the final positions would be outside of the ellipse, it

tended to generate undesirable errors if the thrust magnitude or scenario time was

insufficient for the maneuvering satellite to successfully exit the ellipse. Therefore, in

subsequent versions of the code, the ellipse was applied as part of the cost function rather

than as a constraint.

38

3.2.3 Cost Function

 Two quantities were of interest in this research: fuel cost and the final position of

the maneuvering satellite relative to its reference position. This necessitated both a

Lagrange and a Mayer term in the cost function, written generically as:

0

= + ∫
ft

J B Tdtα (52)

 The Lagrange term, T, is the time history of the thrust magnitude, constituting the

minimum thrust portion of the cost function. This term contains a weighting factor, α,

that denotes the relative importance of minimizing fuel to ellipse avoidance. The primary

purpose of the weighting factor was to balance the cost function such that the Mayer and

Lagrange terms were on the same relative order of magnitude for each case. For the

impulsive cases where the thrust time was small relative to the scenario time this required

a weighting factor on the order of 1x10-2. For the continuous case the thrust time was

larger relative to the total scenario time requiring this weighting factor to decrease to the

order of 1x10-6. However, each case required specific manipulation of this variable in

order to properly balance the cost function.

 The Mayer term, B, is a three dimensional penalty function denoting an additional

cost if the maneuvering satellite terminates inside the error ellipse. This method of

representing the error ellipse was chosen in order to offset the undesirable results

generated by the final state event constraint formulation of this problem. This penalty

function would ideally be a Heaviside function, imposing the maximum penalty for any

final state within the ellipse and no penalty for any final state outside of the ellipse.

However, the derivative of a Heaviside function is discontinuous by definition and this

39

problem required a function with a continuous derivative. Two smooth approximations

were experimented with for the quantity B: an exponential form and a sigmoid penalty

function as shown below.

()

()()

exponential

sigmoid

exp

1
1 exp 1

= −

=
+ ⋅ −

B E

B
S E

 (53)

where E is the case-specific ellipse constraint as defined previously in Equation 51, and

S is the desired sharpness of the sigmoid function. These functions were designed to

approximate a Heaviside function, denoting large penalties when inside the ellipse and

sharply dropping off as the maneuvering satellite departs the ellipse. The exponential

form allows for increased control regarding how far outside the ellipse the designer

wishes the satellite to travel. Figure 9 demonstrates the difference for a 2-D ellipse

constraint between the two functions. Figure 9 (a) represents the relative weight

imposed by an exponential function. Figure 9 (b) represents the relative weight generated

by a sigmoid penalty function with S = 50. The weight in this figure is denoted by color

with dark red representing the maximum penalty and dark blue representing the minimum

penalty. The sigmoid penalty function was chosen for the results given in Chapter IV due

to its decreased sensitivity to the weighting factor, α.

3.2.4 Multiple vs Single Phase Problem

 The thrust profiles for the two impulsive cases were by their nature discontinuous.

For this reason, an early attempt was made at separating thrusting and non-thrusting

phases in the optimal control problem. This was accomplished by assigning three phases

to the problem: two coasting phases and one thrusting phase. The problem was designed

40

Figure 9: Penalty Functions

such that the thrusting phase was always the second phase with an associated event

constraint that was used to force a minimum and maximum time to this phase in order to

keep the solution within reasonable tolerances with respect to fuel expenditure.

However, the existence of two phases independent of all three control variables yielded

complications with convergence in GPOPS-II. For this reason, this attempt was

abandoned and a formulation containing a single phase was designed that satisfied all

three cases.

41

3.3 General Pseudospectral Optimal Control Software-II

 GPOPS-II is an optimization software package created by Dr Anil Rao based on

the Radau Pseudospectral Method as discussed in Section 2.4.3 and is specifically

designed to run in MATLAB®. It incorporates an hp-adaptive mesh refinement algorithm

for determination of the distribution of the collocation points [25]. It is designed

specifically to work in conjunction with the nonlinear programming solvers IPOPT and

SNOPT. The following is a summary of how GPOPS-II was utilized in this research to

solve the Optimal Control Problem. For more detailed information on specific GPOPS-II

functionality, see the GPOPS-II Manual [25].

3.3.1 Overview

 The formulation of GPOPS-II involves a transformation from the standard method

of describing the Optimal Control Problem discussed previously in Section 2.5.1 for a

more generalized method. This method involves treating the Lagrange term in the cost

function as a part of the Mayer term. This is valid once the Lagrange term has been

integrated and is therefore only a function of initial and final time. When this transition

is made, the integrand of the Lagrange term becomes another discretized vector in this

formulation of the Optimal Control Problem. Any changes made to the state, co-state,

and control history vectors during the optimization process generate an alternate

integrand vector that subsequently changes the cost function.

 In order to specify the Optimal Control Problem in GPOPS-II, several

MATLAB® functions are required that define each component of the problem. These

functions include but are not limited to:

42

1. Main code function

2. Continuous function

3. Endpoint function

In addition, upper, lower, and global limits must be specified for all variables

manipulated within GPOPS-II. These limits are specified in MATLAB® through a

complex array of structures [25].

3.3.2 Input Structure

 Data is input to GPOPS-II through a single complex structure. Fields within this

structure allow for everything from references to other required functions to an initial

guess to limits on the states to be included in a single structure. The following is a

summary of the input fields used in this research. The necessary substructures for the

setup structure were summarized by Masternak [26] and are given in Appendix B.

 The ‘bounds’ substructure specifies the upper, lower and global boundaries

assigned to all variables manipulated within GPOPS-II. For the time limit field,

minimum and maximum times at the scenario beginning and end may be specified,

allowing for fixed or free initial or final time options within specified tolerances. Since

this problem is fixed initial and final time, these minimum and maximum limits were

identical. For the state and control limit fields, minimum and maximum bounds are

placed on the initial, global, and final states in that order. This allows each state to be

specified as either free or fixed at the endpoints as well as providing global restrictions to

keep the state and control variables meaningful. In addition, each boundary condition or

43

phase constraint that is expressed in a separate MATLAB® function requires a

corresponding upper and lower bound to be specified in the limits substructure.

 Like most optimization software, GPOPS-II requires an initial guess. This

requires the user to have a priori knowledge of what the optimal solution should

generally look like. Often, a poor guess can lead to convergence onto a suboptimal

solution if the software determines the existence of a local minimum in the vicinity of the

guess. Even without the presence of an additional local minimum to converge on, a poor

initial guess can significantly increase the convergence time of the software.

Several additional MATLAB® functions must be specified for GPOPS-II to run

properly. These functions are referenced under the ‘functions’ substructure as shown in

Appendix B. Additional functions are optional depending on the problem statement but

were not used in this research. The necessary components of these files are specified in

later sections.

Not all subfields must be specified for proper functionality of GPOPS-II. One

example is the optional ‘mesh’ subfield used in this research. This substructure allows

for the user to specify settings for the hp-adaptive mesh. It may be used to place bounds

on the number of desired collocation points as well as the criteria to set optimality and

feasibility tolerances.

3.3.3 Additional Required Functions

 The Continuous function is used to specify the quantities that are interior to the

problem defined on an open interval (to, tf) such as the equations of motion for the states.

These quantities are read into the function via a complex input structure that contains the

44

discretized vectors for each interior variable. This function may pass back three fields in

its output structure: dynamics, path, and integrand.

The Endpoint function is used to specify conditions that apply to the boundaries

of the Optimal Control Problem such as an event constraint. This function receives an

input structure containing only the boundary values of each variable. Its output structure

may contain two fields: objective and eventgroup. The objective field refers to the full

Mayer term (including the integrated Lagrange term) of the cost function.

3.3.4 Output Structure

Upon convergence, GPOPS-II returns the calculated optimal solution through a

single complex output structure. This structure includes but is not limited to state, co-

state, control, and time histories. A complete list of the subfields to the GPOPS-II output

structure is outlined in Appendix B.

3.3.5 Limitations

 GPOPS-II has several important limitations inherent in its programming [21].

First, the states, controls, and co-states are assumed to be smooth. This was the reason

for the choice of equinoctial elements as the states in this research as well as the

requirement that the penalty function be continuous in the cost function. The lack of

applicable discontinuities minimizes this problem. Second, despite the fact that the

inequality path constraints are always satisfied at the collocation points, it is entirely

possible for the constraints to be violated in between the collocation points. This

problem is also minimized by the relatively loose constraints applied to this research and

the use of an adaptive mesh inherent in the ‘hp’ method.

45

3.4 Systems Tool Kit® v 10

 Systems Tool Kit® (STK) v 10 is a software geometry engine designed by

Analytical Graphics Incorporated® (AGI) in order to display dynamic positions and

attitudes of space vehicles. It was utilized in this research both as the engine to generate

realistic scenario data as well as the method of visualizing and verifying the optimal

thrust solution. Access between MATLAB® and STK was accomplished through the

built-in Component Object Model (COM) Interface. This tool allowed for direct control

of virtually all STK functionality from within MATLAB® using a complex structure of

handles. Appendix A contains a library of reference functions that were designed

specifically for use in this research in order to better facilitate communication between

these two programs.

3.4.1 Component Object Model Interface Library

 A library of functions was designed as part of this research in order to facilitate

direct control of STK from within MATLAB®. This library utilized the COM interface

in order to establish an active communication pathway to MATLAB®. This interface was

created specifically for the purpose of providing users with the ability to control and

automate objects within STK and requires the STK/Integration Module license in order to

operate [27].

The COM interface facilitates external control for compatible programs using a

series of handles. These handles are structures containing pointer variables that access

specific objects in the active program. The most important handles used in this code are

the User Interface Application (uiapp) and Object Model Root handles. The uiapp handle

46

serves as the variable that tracks the COM Automation server default interface between

the two programs. If at any time this variable is deleted or overwritten, the program is

closed and all related handles are released. The root handle can be obtained from the

uiapp handle via its ‘Personality2’ subfield. Objects within STK can then be directly

manipulated through the COM interface using subfields contained within the root handle

[27].

Each function in this library was designed to complete a specific task in STK and

relay the relevant Object Model handles back to MATLAB®. These functions are all

designed generically with no scenario-specific information included. This was conducted

such that the scenario-specific data could be housed in the main MATLAB® code,

allowing this library to be useful for future research in this area. Table 4 below details

the name and purpose of each of the functions in the STK COM Interface Library.

3.4.2 Scenario Input

 The main code for this research began by initializing STK and designating the

scenario start time. The chosen scenario was set to occur on 1 Jan 2013 at 0900. Once

the scenario was created the code automatically generated the appropriate area target.

The parameters for the area target are given below in Table 5. This location is also

shown below in the STK 2D plot in Figure 10.

Both a reference and maneuvering satellite were then created in STK with

identical initial conditions. The COE sets shown in Table 6 were used for these initial

conditions. These two sets of initial conditions were chosen in order to explore the

differences between single orbit reentry into the AOR versus a multiple orbit scenario.

47

The satellite dry mass used was 400 kg with 100 kg of on-board fuel for a total satellite

wet mass of 500 kg. A 0.5 N Electric Propulsion thruster was used for the continuous

thrust case while the impulsive thrust case utilized a 22 N thruster.

Table 4: STK COM Interface Library Function List

Function Description

Area_Target Creates an area target object

Astrogator Creates a satellite object in utilizing the Astrogator engine to
propagate maneuvers

Compute Access Generates an access report between two objects

Create_Engine_Model Creates a custom engine model in the Component Library

Elements Calculates the orbital element time history for the specified
satellite object

FTV_Maneuver Generates a Finite Thrust Vectored maneuver in the Maneuver
Control Sequence (MCS) in Astrogator

Initialize Opens new STK window and automatically fills general
scenario information

ITV_Maneuver Generates an Impulsive Thrust Vectored maneuver in the
Maneuver Control Sequence (MCS) in Astrogator

Maneuver_From_File
Generates a Finite Thrust Vectored maneuver in the Maneuver
Control Sequence (MCS) in Astrogator utilizing an external
text file for attitude control

Output_to_text Generates a text file conforming to the *.a thrust attitude
external file input parameters

Propagate Adds propagation step in the Maneuver Control Sequence in
Astrogator

48

Table 5: Area Target Parameters

Location Latitude Longitude Radius Min elevation angle

AFIT 39.783 N 275.917 W 500 km 20°

Figure 10: Area of Regard

An error ellipse was then generated around the reference satellite with a semi-

major axis of 100 kilometers oriented along the velocity vector and semi-minor axes of

length 10 kilometers denoting altitude and distance along the reference satellite’s orbit

normal vectors. This error ellipse is shown in the STK 3D plot in Figure 11.

Using the given initial conditions, STK then generated an access report between

the area target and reference satellite for each scenario. This report was imported into

MATLAB® to determine the first AOR departure time. This time served to account for

the coast time from the specified STK scenario epoch until the optimzation start time.

49

The access report also generated the subsequent AOR reentry time which served as the

optimization scenario termination time. With this information, GPOPS-II was able to

solve the optimal control problem.

Table 6: Satellite Initial States

 Altitude Eccentricity Inclination RAAN Argument of
perigee

True
anomaly

1 500 km 10-6 45° 0° 0° 60°

2 500 km 10-6 45° 50° 0° 60°

Figure 11: Error Ellipse

3.4.3 Maneuver Development

 Upon convergence in GPOPS-II, the commanded thrust profile was uploaded into

STK. The maneuvering satellite was then commanded to execute the calculated profile.

Orbital element reports were generated via STK for the resulting trajectories based on the

50

COE history of both the reference and maneuvering satellites. The flowchart shown in

Figure 12 depicts the interface between MATLAB® and STK. The dotted line on this

figure demonstrates a critical step in the design process for this algorithm.

Inconsistencies in the output from GPOPS-II and STK were compared and additional test

runs were conducted using alternate GPOPS-II settings in order to refine the solution.

Figure 12: Optimization Routine Flowchart

51

One of the most powerful capabilities that STK added to this code was the ability

to easily simulate the effects of perturbations to ensure that they did not interfere with

ellipse avoidance generated by the thrust profiles being calculated. As was previously

mentioned, the code within GPOPS-II only ran the Two-Body equations of motion since

the reference and maneuvering satellites were in such close proximity for the entire

scenario. However, once the profile had been uploaded to STK, perturbations could be

easily added back into the scenario in order to visualize their effects on the calculated

trajectories.

3.4.4 Optimizer Result Validation

 In addition to data collection and visualization, STK was utilized in this research

in order to validate the maneuver results from GPOPS-II. This was accomplished using a

basic parameter search on the control variables. This search was conducted in

MATLAB® and utilized the STK COM Interface Library in order to input a large variety

of potential maneuvers and compare their relative cost as defined in Section 3.2.3.

For the impulsive parameter searches, pitch and yaw were varied in accordance

with the constraints given in Table 3. In each of these cases, the pitch angles were varied

while thrust magnitude and duration were held constant. Since this yielded identical delta

v costs for each of these maneuvers, the particular value of interest in the cost function

then becomes ellipse avoidance. The ellipse constraint from Equation 51 was then

utilized to evaluate the relative value of each combination of pitch and yaw angles.

These relative values were visualized using the imagesc command in MATLAB®. This

command visually illustrates the relative sizes of elements in a matrix using color coding.

52

For the thrust duration parameter search, the thrust time was varied from 80% to 120% of

the GPOPS-II solution. At each value of thrust duration, ellipse avoidance was

calculated in identical fashion to the pitch and yaw angle parameter search.

For the continuous single orbit parameter search, the pitch angle was varied by

both translating ±10◦ and skewing 80% to 120% from the GPOPS-II solution. After the

pitch angle solution was perturbed, the same ellipse avoidance calculation was conducted

as with the thrust angle and duration parameter searches. The imagesc command was

also used in this case to visualize the result of perturbing the pitch angle solution. Due to

the relatively short thrust duration for the continuous multiple orbit scenario, it was

treated as an impulsive case for this analysis.

3.5 Chapter Summary

 This chapter outlined the setup of the Optimal Control Problem, the design of the

problem within GPOPS-II, and the implementation of STK in determining and validating

the solution. The next chapter will discuss the results returned by GPOPS-II and the

analysis of those results when executed in STK.

53

IV. Analysis and Results

4.1 Chapter Overview

 This chapter outlines the results of the three test cases described in Chapter I

using the algorithm developed in Chapter III. The first portion of this chapter describes

the solution to the optimal control problem for each of the three cases as determined by

GPOPS-II. The next portion of this chapter outlines the results from Systems Tool Kit®

when these maneuvers are input from the GPOPS-II code for validation and proof of

concept.

4.2 Optimal Control Results

 This section presents the optimal thrust results for each of the three cases outlined

in Chapter I: Impulsive In-Pane, Impulsive Out-of-Plane, and Continuous In-Plane. For

the first and third cases, two families of solutions exist. The first solution is to the

scenario in which the satellite only takes one orbit from AOR departure until re-entry.

The second solution consists of multiple orbits between AOR departure and subsequent

re-entry. The size and geographic location of the specified AOR will dictate how

frequently this second scenario occurs. However, even for a relatively small AOR the

single orbit scenario is easily the most common. The results presented in this section

represent the Two-Body approximations calculated in GPOPS-II. The maneuvers from

this section are tested in STK with perturbations in Section 4.3.

 Each solution presented for Cases 1 and 3 represent a desire to climb when

maneuvering. There is a corresponding solution that allows for a descent in both of these

54

cases. Case 2 also contains two possible solutions depicting thrusting in either orbit

normal direction. These additional solutions have been excluded from this section due to

redundancy. For each case, a short coast time occurs at the beginning of each solution.

This is the result of beginning the STK scenario prior to AOR entry.

 For all three cases, a convergence tolerance of 1 x 10-8 was set for the adaptive

mesh in GPOPS-II. The optimizer was allowed a maximum of 45 mesh iterations in

order to converge to this tolerance. Each case required manipulation of the weighting

factor as previously discussed in Section 3.1.3 as well as manipulation of the initial

number, distribution, and iterative increment of collocation points. The nodal distribution

required adjustment in each case due to scenario length and complexity. The default

nodal distribution in GPOPS-II is ten segments with four nodes per segment. However,

due to the length of time between each node, an increase in the number of total points in

the state history in GPOPS-II was required. For this reason, the single orbit nodal

distributions are smaller than the multiple orbit nodal distributions.

4.2.1 Case 1 Single Orbit

For the Impulsive In-Plane single orbit scenario, the satellite was given the first

set of initial conditions specified in Table 6 in Chapter III. For this case the weighting

factor was set at 9 x 10-3. The optimizer started with ten segments containing seven

nodes per segment and was allowed to increase the nodes in each segment at a range from

20 to 25 points per mesh iteration. The optimized thrust profile for this scenario is shown

in Figure 13 with the resulting Two-Body orbital elements for the maneuvering satellite

given in Figure 14.

55

Figure 13: Case 1 Single Orbit Thrusting Profile

Figure 14: Case 1 Single Orbit COE

56

To better understand the relative motion between the two trajectories, the orbital

elements were converted to give a cross-sectional view of the error ellipse shown in

Figure 15. In this figure, the solid line represents the trajectory of the maneuvering

satellite and the dashed line shown in this figure depicts the ellipse. This reference frame

is fixed with the current position of the non-maneuvering trajectory always at the origin.

Figure 15: Case 1 Single Orbit Relative Motion Cross Section

Due to the short duration of the scenario, insufficient time is available for the

satellite to achieve significant in-track spacing. Therefore, this solution represents intent

to use a change in altitude as the primary method to exit the ellipse. From this solution, it

can be seen that the best place to insert an impulsive thrust is half an orbit prior to AOR

reentry. This maneuver effectively places apogee at the final position as shown in Figure

15 and uses the change in the semi-major axis to maneuver out of the ellipse. The

calculated fuel cost for this maneuver is approximately 3.7 m/s.

57

4.2.2 Case 1 Multiple Orbit

 The second set of initial conditions from Table 6 defines the multiple orbit

scenario for Case 1 as discussed in this section. For this scenario, the weighting factor

was set at 1 x 10-2. The multiple orbit scenario consisted of a much smaller impulse

relative to the overall scenario time, requiring the initial number of collocation points to

be initially increased to 25 nodes per segment in order to obtain a solution with finer

resolution. The number of nodes added per mesh iteration was also increased to a range

of 20 to 25. The optimized profile for this scenario is shown below in Figure 16. The

resulting Two-Body orbital elements for this solution are given in Figure 17 and its cross

sectional plot is given in Figure 18.

This scenario demonstrates that if multiple orbits are expected to occur prior to

AOR reentry it is advantageous to thrust early. Even a small initial change in semi-major

axis creates an difference in orbital period that when propagated over the approximately

17 hour scenario will allow for a large enough in-track spacing between the maneuvering

satellite and its projected reference trajectory to escape the ellipse. This maneuver can

therefore be accomplished with a much smaller impulse than the single orbit scenario.

The altitude change completed in this scenario is approximately 2 km rather than the

nearly 14 km of altitude change observed from the single orbit scenario. Figure 18

demonstrates the path this maneuver takes to exit the ellipse. As this figure demonstrates,

the slightly larger orbital period allows for long-term divergence between the two

trajectories to increase the in-track spacing. This maneuver has an approximate delta v

requirement of 0.6 m/s.

58

Figure 16: Case 1 Multiple Orbit Thrusting Profile

Figure 17: Case 1 Multiple Orbit COE

59

Figure 18: Case 1 Multiple Orbit Relative Motion Cross Section

4.2.3 Case 2 Single Orbit

 As discussed in Section 3.2, the cost function was modified for the Impulsive

Out-of-Plane case according to Equation 51 in order to remove any advantage to

maneuvering for either altitude or in-track spacing from the terminal cost. This

modification to the cost function allowed the software to converge on an optimal out-of-

plane maneuver. Since this solution required modification of the Mayer term in the cost

function in order to converge, the Case 2 profile is by no means globally optimal.

However, this solution provides other advantages that are discussed later in this chapter.

The satellite was given the first set of initial conditions shown in Table 6. The

weighting factor was set at 1 x 10-4 for this scenario. The number of collocation points

was initially set at 4 nodes per segments and was increased between 4 and 10 nodes per

mesh iteration. The optimal thrust profile for this case is shown in Figure 19. Due to the

60

Figure 19: Case 2 Thrusting Profile

Figure 20: Case 2 COE

61

Figure 21: Case 2 Orbit Relative Motion Cross Section

out-of-plane nature, the thrusting angle shown in this figure is yaw rather than pitch. The

resulting Two-Body orbital elements for this solution are given in Figure 20 and its cross

sectional plot is given in Figure 21. For this case, the cross sections depict the orbit

normal component relative to the in-track axis.

 This solution demonstrates thrusting entirely out of the orbital plane in order to

maneuver out of the ellipse. Thus, the timing of this impulse is as important as the

duration. Figure 19 demonstrates placing the thrust a quarter of an orbit prior to AOR

reentry. Another nearly identical maneuver may also be conducted three quarters of an

orbit prior to re-entry without significantly affecting the cost or result. As this figure

demonstrates, the thrust magnitude solution generated by GPOPS-II did not yield a

constant maximum thrust. This fluctuation in thrust is due to the automatic scaling used

in the design of the Optimal Control Problem combined with slight inaccuracies in the

GPOPS-II solution.

62

From these results it can be seen that the resulting changes in altitude and

eccentricity are negligible when thrusting out-of-plane. This case focuses instead on

modifying the inclination and RAAN in order to achieve out-of-plane spacing from the

reference trajectory at the final time. The estimated delta v requirement for this case is

14 m/s.

4.2.4 Case 2 Multiple Orbit

The multiple orbit solution for the Impulsive Out-of-Plane Case showed no

significant advantages over the single orbit solution. While there is a very slight change

in the semi-major axis for the maneuvering satellite, the drift caused by the difference in

orbital periods is not significant over this scenario time and as such this solution still

yields no maneuvering until a quarter orbit prior to AOR reentry followed by an identical

maneuver to the single orbit scenario for this case.

4.2.5 Case 3 Single Orbit

 For the Continuous Thrust single orbit scenario, the satellite was given the first set

of initial conditions shown in Table 6 with the weighting factor set at 1 x 10-7. The

number of collocation points was initially set at 4 nodes per segments and was increased

between 4 and 10 nodes per mesh iteration. The optimal thrust solution for this profile is

given in Figure 22. The resulting Two-Body orbital elements for this solution are given

in Figure 23 and the cross section is given in Figure 24.

This solution maneuvers the satellite to place apogee at the final position resulting

in a similar final position to the Case 1 single orbit solution. Where the Impulsive Case

controls perigee position by determining when to thrust, this case accomplishes the same

63

Figure 22: Case 3 Single Orbit Thrusting Profile

Figure 23: Case 3 Single Orbit COE

64

Figure 24: Case 3 Single Orbit Relative Motion Cross Section

goal using the pitch angle. The result is a solution that is not entirely in the velocity

direction but rather oscillates within 30◦ of the velocity vector. It should be noted as well

that since this case involves thrusting immediately after AOR departure, slightly larger

in-track spacing is accomplished along with the altitude avoidance maneuver. This

estimated maneuver cost was 5.5 m/s for this scenario.

4.2.6 Case 3 Multiple Orbit

For the Continuous Thrust multiple orbit scenario, the satellite was given the

second set of initial conditions in Table 6 along with a weighting factor at 1 x 10-6. The

number of collocation points was initially set at 10 nodes per segment and was increased

between 15 and 25 nodes per mesh iteration. The optimal thrust solution for this scenario

is shown in Figure 25. The resulting Two-Body orbital elements for this solution are

given in Figure 26 and the cross section for this maneuver is given in Figure 27.

65

Figure 25: Case 3 Multiple Orbit Thrusting Profile

Figure 26: Case 3 Multiple Orbit COE

66

Figure 27: Case 3 Multiple Orbit Relative Motion Cross Section

Due to the length of this scenario, a much smaller delta v was required in order to

achieve ellipse avoidance. For this reason, the resulting thrust profile appears more

impulsive than it does continuous and represents a similar type of solution to the

impulsive multiple orbit scenario, choosing to maneuver early for altitude and allowing

the difference in orbital period to drive the increase in in-track distance in order to exit

the ellipse. As with the Case 2 thrust profile, a slight deviation can be observed in the

maximum thrust. The estimated maneuver cost was 0.7 m/s for this scenario.

4.2.7 Summary of Optimal Control Results

 The Case 1 single orbit solution presents a viable alternative to the Hohmann

Transfer, which would require maneuvering twice in order to re-circularize after

changing altitudes. This solution focuses on something more closely related to a phasing

maneuver, thrusting once and placing the furthest point from the reference orbit over the

67

AOR. In order to achieve ellipse avoidance using the Hohmann Transfer method for this

scenario, a 37% smaller burn would be required initially upon AOR departure followed

by an identical burn half an orbit later. The leads to a 26% increase in fuel costs to

conduct the Hohmann Transfer over the single orbit solution for this case. The Case 1

multiple orbit solution allows for this single impulse to occur early in the profile, creating

a slightly longer orbital period and allowing the new trajectory to diverge from its

reference trajectory naturally. This maneuver requires far less fuel than the either the

Hohmann Transfer or the phasing maneuver but unfortunately occurs with considerably

less frequency than the single orbit scenario.

 The Case 2 solution presents an interesting alternative to more traditional methods

of maneuvering. Rather than attempting to change altitude or in-track spacing, this

maneuver could be accomplished as late as a quarter orbit prior to AOR reentry such that

the out-of-track spacing is maximized. This method provides for the most rapid response

but unfortunately comes at the highest cost. This case alone shows no significant

advantage in the multiple orbit scenario due to its negligible change in orbital period.

The Case 3 solution is similar in many respects to the solution to Case 1. It is by

definition a more gradual change based on the nature of the engine being used. It should

be noted that for the Case 3 single orbit solution a considerable amount of attitude

maneuvering is required in order to accomplish the specified thrust vectoring for the

single orbit scenario. The multiple orbit scenario is nearly identical to the Case 1

solution, requiring either velocity or anti-velocity thrusting for much shorter time periods

than the single orbit scenario and allowing for the differences in orbital periods to

generate maneuvering and reference trajectories that diverge.

68

The total fuel expenditures for each Case are given below in Table 7. For both

the single orbit and the multiple orbit scenarios, the Impulsive In-Plane thrust solution

yields the minimum delta v requirement while the Impulsive Out-of-Plane solution yields

the maximum requirement.

Table 7: Fuel Cost Comparison

Case Δv (m/s)

1 Impulsive Thrust In Plane
Single Orbit 3.7
Multiple Orbit 0.6

2 Impulsive Thrust Out-of-Plane Single Orbit 14

3 Continuous Thrust
Single Orbit 5.5
Multiple Orbit 0.7

4.3 Systems Tool Kit® Simulation and Validation

 In addition to data generation, Systems Tool Kit® was also utilized in order to

check the validity of the optimal solutions generated by GPOPS-II. This software also

provided the ability not only to verify the Two-Body solutions but to also to demonstrate

the effects that orbital perturbations have on the calculated maneuvers. The following

sections provide the results when the profiles presented in Section 4.2 were implemented

and propagated in STK using the full High-Precision Orbit Propagator (HPOP) engine.

4.3.1 Case 1

 The simulation run for the Case 1 single orbit scenario yielded the results shown

in Figure 28. The elements for the reference satellite are given in blue and represent the

STK HPOP solution. The elements for the maneuvering satellite are given in red and

also represent the HPOP solution. Since no out-of-plane thrusting was conducted, the

inclination and RAAN were left out of this figure. Also, since the argument of perigee

69

and mean anomaly are nearly identical for these two trajectories, those elements were

also disregarded. It can be seen that the relative altitude changes occur as predicted by the

GPOPS-II solution. The eccentricity plot also demonstrates that the orbit remains nearly

circular within the bounds of normal perturbations. This deviation from the reference

trajectory also changes predictably in accordance with the Two-Body approximation.

The results for the Case 1 single orbit pitch and yaw parameter searches are given

below in Figure 29. The ellipse avoidance factor in this figure represents the value of the

ellipse constraint as defined in Equation 51. The thrust angle parameter search yielded an

optimal pitch angle at approximately 2◦ above the velocity direction for a climb and 2◦

below the anti-velocity direction for a descent. Both pitch angles had a corresponding

yaw angle at zero. These results are nearly consistent with the solution from GPOPS-II

presented previously in Figure 13 which indicated a 5◦ deviation from the velocity vector

was optimal. The results from the Case 1 single orbit thrust duration parameter search

are given below in Figure 30. This figure demonstrates that the thrust duration presented

previously could have accomplished the ellipse avoidance with a delta v that was 6%

smaller. This discrepancy is due to round off error in the conversion process within

MATLAB® between the GPOPS-II output and STK. However, this deviation is on the

order of 5 seconds and is well within the margin for error of a commanded maneuver.

When the correction is made for this maneuver the delta v requirement becomes 3.5 m/s.

 The simulation run for the Case 1 multiple orbit scenario yielded the results

shown in Figure 31. As with the single orbit scenario, only altitude and eccentricity are

presented in this plot. Despite the added perturbations in this figure, the differences in

relative position between the two satellites remain consistent with GPOPS-II predictions.

70

Figure 28: Case 1 Single Orbit STK Results

Figure 29: Case 1 Single Orbit Pitch and Yaw Validation

71

Figure 30: Case 1 Single Orbit Thrust Duration Validation

The results for the Case 1 multiple orbit pitch and yaw parameter searches are given in

Figure 32. The thrust angle yielded an optimal pitch angle of 1.5◦ above the velocity

vector for a climb and 1.5◦ below the anti-velocity vector for a descent. Both pitch angle

solutions had a corresponding yaw angle at zero as in the single orbit scenario. These

results are consistent with the profile presented previously in Figure 16. The results from

the Case 1 multiple orbit thrust duration parameter search are given in Figure 33. This

figure again demonstrates that the previously presented thrust duration could have been

13% smaller corresponding to a difference in thrust duration of 2 seconds and still

accomplished the in track spacing necessary for ellipse avoidance. When this thrust

duration is corrected, the delta v requirement for this maneuver becomes 0.5 m/s.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

0.8

1

1.2

1.4

1.6

Percentage of Base Thrust Duration

El
lip

se
 F

ac
to

r

Ellipse
Min Avoidance Criteria

72

Figure 31: Case 1 Multiple Orbit STK Results

Figure 32: Case 1 Multiple Orbit Pitch and Yaw Validation

73

Figure 33: Case 1 Multiple Orbit Thrust Duration Validation

4.3.2 Case 2

The STK HPOP simulation results for Case 2 are shown below in Figure 34.

Since this case does not significantly affect orbital period, the altitude, eccentricity,

argument of perigee, and mean anomaly plots were excluded. The elements of interest

shown for this case are inclination and RAAN. This figure shows responses in these

elements consistent with their Two-Body predictions given in Section 4.2. It is

interesting in this case to note that the changes made in inclination were on the order of

the orbital perturbations while the changes in RAAN were an order of magnitude smaller

than the perturbation effects. This would imply that this maneuver generates a negligible

impact on the maneuvering satellite’s mission effectiveness.

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.8

1

1.2

1.4

1.6

1.8

2

Percentage of Base Thrust Duration

El
lip

se
 F

ac
to

r

Ellipse
Min Avoidance Criteria

74

The results for the Case 2 pitch and yaw parameter searches are given below in

Figure 35. The thrust angle parameter search indicated that pitch angle was irrelevant in

this case since the only factor of interest was out-of-plane ellipse avoidance. This was

consistent with the results previously presented in Figure 19. The results for the Case 2

thrust duration parameter search are given below in Figure 35. These two figures

confirm that the GPOPS-II solution is optimal in this case.

The thrust magnitude from Figure 19 demonstrates slight fluctuations while

thrusting. These fluctuations in thrust are an artificial construct of the GPOPS-II

algorithm and are due to the manipulation of the code required to obtain this solution.

However, the standard deviation of the thrust magnitude was 0.25 N and is well within

the margin of error for a commanded maneuver.

Figure 34: Case 2 STK Results

75

Figure 35: Case 2 Pitch and Yaw Validation

Figure 36: Case 2 Thrust Duration Validation

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Percentage of Base Thrust Duration

El
lip

se
 F

ac
to

r

Ellipse
Min Avoidance Criteria

76

4.3.3 Case 3

The STK HPOP simulation for the Case 3 single orbit scenario yielded the results

shown below in Figure 37. As with the first case, only the altitude and eccentricity

values are shown. From this figure it can be seen that the relative altitude and

eccentricity changes continue to be portrayed accurately by the Two-Body solution. The

results for the Case 3 Single Orbit pitch profile parameter search are given in Figure 38.

This figure demonstrates that the optimal pitch profile is actually slightly perturbed from

the GPOPS-II solution. However, the optimal solution from this method has a maximum

deviation from the GPOPS-II solution of 4◦ and is within a reasonable margin of error for

a maneuvering satellite. Due to the fact that the single orbit scenario requires

maneuvering for the entire scenario, no thrust duration validation was conducted.

Figure 37: Case 3 Single Orbit STK Results

77

Figure 38: Case 3 Single Orbit Pitch Profile Validation

The STK HPOP simulation for the Case 3 multiple orbit scenario yielded the

results shown below in Figure 39. As with the single orbit scenario only altitude and

eccentricity are presented in this plot. Similar to the Case 1 multiple orbit scenario, the

addition of perturbations still generate consistent differences in relative position between

the two satellites with the GPOPS-II predictions.

The results for the Case 3 Multiple Orbit pitch and yaw parameter searches are

given below in Figure 40. The thrust angle yielded an optimal pitch angle of 1.5 degrees

for a climb and 1.5 degrees for a descent. The optimal yaw angle remained at zero as in

Case 1. These results were consistent with the GPOPS-II solution for this case. The

results for the Case 3 Multiple Orbit thrust duration parameter search are given in Figure

41. This figure indicates that the thrust duration determined by GPOPS-II is again

slightly less than ideal. The validation routine returned an error of 13% and represents a

78

difference of 91 seconds in thrust duration. When this deviation was corrected, a smaller

delta v requirement of 0.5 m/s was able to achieve the required in track spacing necessary

to achieve the required ellipse avoidance criteria.

4.3.4 Summary of STK Results

 The STK simulation runs presented in this section demonstrate that these

maneuvers will in fact create the changes predicted by the GPOPS-II solution from

Section 4.2. Additionally, the usage of the HPOP engine in Astrogator demonstrates that

the lack of perturbing accelerations in the equations of motion had a negligible effect on

the calculation of valid final solutions.

Figure 39: Case 3 Multiple Orbit STK Results

79

Figure 40: Case 3 Multiple Orbit Pitch and Yaw Validation

Figure 41: Case 3 Multiple Orbit Thrust Duration Validation

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2
0.8

1

1.2

1.4

1.6

1.8

2

Percentage of Base Thrust Duration

El
lip

se
 F

ac
to

r

Ellipse
Min Avoidance Criteria

80

The parameter search yielded confirmation of the optimality of the GPOPS-II

solution within reasonable tolerances. The primary source of error between the solutions

presented in Section 4.2 and the validation routine conducted in Section 4.3 is the

conversion process between the GPOPS-II solution and Astrogator within STK. Many of

the thrust profile results from the GPOPS-II solution indicated a magnitude or angle that

had small deviations. The conversion process to STK required the removal of many of

these deviations. Even with these removals, the final solutions presented did not deviate

significantly in most cases. The primary exceptions to this are the thrust duration results

for each of the multiple maneuver cases. In both of these cases, GPOPS-II depicted a

significantly larger thrust than was strictly required for ellipse avoidance.

Together, these three cases yielded three optimal families of solutions. First, if

time permits it is most advantageous to make a small increase in altitude and allow time

for the difference in orbital periods to slowly increase in-track spacing. If that is not

possible, the next best solution involves thrusting in order to place apogee or perigee over

the AOR reentry position. For the impulsive cases, this is accomplished using the timing

of the thrust and for the In-Plane case involves a slightly lower delta v than the

Continuous case which uses pitch angle to control apogee or perigee. This maneuver is

roughly seven to nine times more expensive than the first solution. The least efficient

solution involves making very small changes in the inclination and/or RAAN at a quarter

or three quarters of an orbit prior to AOR reentry. This solution costs roughly three to

four times the fuel cost of the single orbit solution and nearly twenty-four times the fuel

cost of the multiple orbit solution. Its primary advantage is in maintaining previous

81

altitude and eccentricity. Together, these three solutions outline the optimal set of

potential maneuvers for collision avoidance.

4.4 Chapter Summary

 This chapter presented the results from the optimal control problem solved using

GPOPS-II in Section 4.2. Next, Section 4.3 demonstrated these maneuvers in STK and

tested how adding perturbing accelerations altered the solution. STK was also utilized in

this chapter to further optimize the solution and present reasonable minimum fuel

requirements for each maneuver. The next chapter will present conclusions from this

research and recommended future work.

82

V. Conclusions and Recommendations

5.1 Chapter Overview

 The purpose of this research was to develop and test the application of

pseudospectral optimization for debris avoidance in orbital mechanics. This study

focused on the development of a set of minimum thrust maneuvers for the purpose of

orbital debris collision avoidance. These thrust profiles were determined from the

requirement that a satellite maneuver result in an orbit that is completely outside of an

error ellipse of fixed dimensions projected from its non-thrusting reference trajectory

within a set time frame. This was accomplished via GPOPS-II, a pseudospectral optimal

control algorithm designed to run in MATLAB®. The results from this work were further

developed and tested using the Component Object Model Interface to automate

functionality in Systems Tool Kit® in order to propagate the calculated thrust profiles and

compare the relative position between the maneuvering satellite and its reference

trajectory.

 This research developed maneuvers for three specific cases. The first case

consisted of an impulsive thrust profile in the satellite’s orbital plane. The second case

maintained the impulsive nature while considering maneuvering independent of the

satellite’s orbital plane. The final case compared continuous thrusting to the impulsive

case. STK was used for each of the three cases in order to validate the calculated optimal

solutions as well as to demonstrate the effects of adding perturbations to the propagated

trajectories.

83

5.2 Conclusions

 Both the problem setup and solution developed in this study demonstrated the

viability of GPOPS-II as an optimal control algorithm for application in orbital

mechanics as well as serving as a basis for future study in this area. However, the

sensitivity of this algorithm to scenario settings indicates that this tool is best suited for

theoretical maneuver development in a controlled environment. Small changes to the

scenario settings within this problem required extensive manipulation of variables such as

the cost function weighting factor and nodal distribution in order to obtain meaningful

results.

 The results from the three test cases demonstrated that the most efficient way to

maneuver out of the error ellipse consisted of thrusting mostly in the velocity or anti-

velocity direction with a single impulse. If time permits, it is most efficient to thrust for a

shorter time with the intent of slightly changing the orbital period. This allows the

maneuvering satellite to slowly diverge from its reference trajectory, allowing for

separation dependent almost entirely on in-track spacing to maneuver out of the ellipse.

If time does not permit the in-track solution, however, the next best option consists of

maneuvering to place apogee or perigee over the final position. This method allows for

the satellite to leave the ellipse temporarily for the collision avoidance maneuver but does

not attempt to re-circularize the orbit afterwards. As expected, out-of-plane thrusting was

shown to be the least efficient but had the advantage of an almost negligible change in

virtually all of the orbital elements.

 Analysis in STK demonstrated the effects of the addition of perturbations into the

propagator after convergence of the optimal control algorithm. This analysis

84

demonstrated that typical perturbing forces did not significantly change the predicted

trajectories of the maneuvering satellites relative to their non-maneuvering reference

trajectories. This was consistent with the initial assumption that only Two-Body

mechanics were necessary to properly model the dynamics of this problem.

5.3 Research Limitations

 Every optimal control problem begins with the question of what, exactly,

constitutes optimality. This is specified in the problem statement in the form of the cost

function. This research made use of specific choices for several values used in the cost

function. Obviously, there are a nearly infinite number of possible permutations of these

choices available for even this single formulation of the cost function, not even including

additional forms designed to alternately express either the Mayer error ellipse penalty or

the Lagrange minimum fuel running cost. Therefore, the claim that these trajectories are

optimal or even near-optimal is made only after test runs were conducted in STK to

verify functionality and optimality of the solution. Different problem formulations could

potentially yield better solutions in terms of optimality and robustness.

5.4 Recommendations for Future Work

 The STK Component Object Model Interface library developed in this research

was designed broadly with the intention of providing an automation tool for future

research requiring rapid communication and control of STK from within MATLAB®.

While this research utilized this tool to facilitate optimization in orbital maneuvering,

autonomous control from MATLAB® yields a wide variety of data processing and

scenario generation options not currently available in STK by itself. Further

85

development of this tool to expand functionality would be extremely beneficial for future

study in orbital mechanics.

This research was conducted using pseudospectral optimization to determine a set

of appropriate thrust profiles for collision avoidance. Future work should include an

analytical approach, such as Primer Vector Theory, that could be used to further validate

the methods presented in this study. An analytical approach would offer the ability to

study how alterations to this scenario such as satellite mass and maximum thrust would

affect the solution. Additionally, the use of alternate direct optimization routines as well

as alternate problem formulations would be advantageous in order to compare accuracy

and convergence times. Alternate problem formulations should include techniques to

automatically scale the weighting factor in the cost function. Static values for this

weighting factor provided one of the primary limitations in the robustness of the

algorithm developed in this research. Further development of the multiple phase

formulation should also be explored to better model impulsive thrusting.

Another potential area of future study for this research would be to analyze the

effects, if any, that these maneuvers would have on a constellation of satellites.

Maintaining relative positions is critical to a properly functioning satellite constellation.

While the maneuvers covered in this research are by design extremely small, their effects

on a constellation of satellites might still degrade overall coverage and should therefore

be explored. This would require expansion into perturbation theory within the dynamics

of the optimal control problem since the proximity assumption used in this research is no

longer valid.

86

This research briefly considered how general perturbing accelerations affected the

difference in relative position from the Two-Body solution and demonstrated that these

effects had a negligible impact on the ellipse avoidance. However, it is conceivable that

incorporating perturbation effects into the equations of motion prior to the optimization

step might allow the satellite to use these effects to further improve maneuver efficiency

and should be considered as an additional area for future study.

87

Appendix A. MATLAB® Code

 The MATLAB® code used in this research merges the use of GPOPS-II to solve

the optimal control problem via the Radau Pseudospectral Method with the visualization

and propagation capabilities from Systems Tool Kit®. STK is used both as a

visualization tool as well as a source of realistic data input. This code is broken out into

the main code and two structures of functions. The first structure is the RO structure and

contains the function library used in the main code in order to set up and run GPOPS-II.

The second structure is the STK Component Object Model Interface Library designed to

facilitate automatic communication between STK and MATLAB®.

A.1 Responsive Orbits Main Code

%% Created by James Sales

clear all; close all; clc;

global Scen

%% Select Thesis Case to Run

fprintf(1,'Please select a case:\n');

fprintf(1,['\t 1: Impulsive In Plane Single Orbit\n']);

fprintf(1,['\t 2: Impulsive In Plane Multiple Orbit\n']);

fprintf(1,['\t 3: Impulsive Out of Plane\n']);

fprintf(1,['\t 4: Continuous Single Orbit\n']);

fprintf(1,['\t 5: Continuous Multiple Orbit\n']);

p2 = input('>> ');

Scen.InPlane = 1;

Scen.Continuous = 0;

switch p2

 case 1

 Scen.T_max = 22/1e3;

 omega = 50;

 Scen.Fraction = 0.1;

 Scen.alpha = 9e-3;

 Scen.Nodes = [20 25 7];

 Scen.angle = 0;

 case 2

 Scen.T_max = 22/1e3;

 omega = 0;

 Scen.Fraction = 0.05;

88

 Scen.alpha = 1e-2;

 Scen.Nodes = [20 25 25];

 Scen.angle = 0;

 case 3

 Scen.InPlane = 0;

 Scen.T_max = 22/1e3;

 omega = 50;

 Scen.Fraction = 1;

 Scen.alpha = 1e-4;

 Scen.Nodes = [4 10 4];

 Scen.angle = pi/2;

 case 4

 Scen.T_max = 0.5/1e3;

 omega = 50;

 Scen.Fraction = 1;

 Scen.alpha = 1e-7;

 Scen.Nodes = [4 10 4];

 Scen.angle = 0;

 Scen.Continuous = 1;

 case 5

 Scen.T_max = 0.5/1e3;

 omega = 0;

 Scen.Fraction = 0.1;

 Scen.alpha = 1e-6;

 Scen.Nodes = [15 25 10];

 Scen.angle = 0;

 Scen.Continuous = 0;

 otherwise

 fprintf(1,'\n Error: Incorrect entry. Please try again.\n');

 return

end

%% Set Commonly Manipulated Variables

Scen.NumDays = 10;

Scen.Prop = 'Earth HPOP Default v8-1-1';

Scen.m_sat = 400;

Scen.m_fuel = 100;

Scen.Path = 'I:\My Documents\Thesis\STK Test Runs\';

% Satellite IC's: [a e i omega w M]

Scen.COE = [6878 1e-6 45 omega 0 60];

% Specify Area Target dimmensions and location for the Midwest Scen

Scen.Centroid = [39.7828, 275.917, 0];

Scen.Size = [500, 500, 0];

Scen.ElevAngle = 20; % deg

Scen.mu = 3.98601e5; % km^3/s^2

Scen.Re_e = 6378; % km

% Convert COE's to Equinoctal Elements [a h k p q F]

89

Scen.EE(1) = Scen.COE(1);

Scen.EE(2) = Scen.COE(2)*sind(Scen.COE(4)+Scen.COE(5));

Scen.EE(3) = Scen.COE(2)*cosd(Scen.COE(4)+Scen.COE(5));

Scen.EE(4) = tand(Scen.COE(3)/2)*sind(Scen.COE(4));

Scen.EE(5) = tand(Scen.COE(3)/2)*cosd(Scen.COE(4));

Scen.EE(6) = (Scen.COE(4)+Scen.COE(5)+Scen.COE(6))*pi/180;

%% Set Start and End Times and format for use in STK

Scen.clock = [2013, 1, 1, 9, 0, 0];

Scen.Now = 0;

Scen.StartTime = RO.Time_Sequencer(Scen.clock, 0);

Scen.EndTime = RO.Time_Sequencer(Scen.clock, Scen.NumDays*86400);

% Create unique title based on current date and time

if Scen.StartTime(3)==' '

 Scen.Title = [Scen.StartTime(1:2) Scen.StartTime(4:6) Scen.StartTime(8:11)];

else

 Scen.Title = [Scen.StartTime(1) Scen.StartTime(3:5) Scen.StartTime(7:10)];

end

Scen.Epoch = Scen.StartTime;

Scen.TimeStep = 10;

%% Initialize STK and create Scen componants

[uiapp, root] = STK.Initialize(Scen);

[ref, MCS_r] = STK.Astrogator('R',root,Scen);

target = STK.Area_Target('AOR',root,Scen);

% Create Engine to meet specs listed above

Scen.EngineName = 'Responsive Orbits Engine Model';

STK.Create_Engine_Model(root,Scen.EngineName, Scen.T_max*1e3);

% Set the Reference satellite to propagate for 1 day

STK.Propagate('Reference Trajectory',86400*10,MCS_r, Scen.Prop);

ref.Graphics.Attributes.Intervals.RemoveAll;

ref.Graphics.Attributes.Default.Inherit = 0;

ref.Graphics.Attributes.Default.IsOrbitVisible = 0;

ref.Propagator.RunMCS;

%% Compute access times and determine coast and maneuvering profile durations

Scen.AccessTimes = STK.Compute_Access(root,ref,target,Scen.clock);

Scen.Coast = Scen.AccessTimes.EpSec(1,2);

Scen.t = Scen.AccessTimes.EpSec(2,1)-Scen.Coast;

%% Account for coast time before entering data into GPOPS

Out.coast_t = linspace(Scen.Now,Scen.Now+Scen.Coast,15);

[Out.t,Out.z] = ode45(@RO.ODE_dynamics,Out.coast_t,Scen.EE);

Scen.EE = Out.z(end,:);

%% Run GPOPS and retrieve Optimal Profile Solution

Solution = RO.Run_GPOPS();

% Convert states out of GPOPS solution into COE's

Solution.phase.time = Solution.phase.time + Scen.Coast;

Out.length = length(Out.t);

Out.t = [Out.t; Solution.phase.time];

90

% solution.state = [a h k p q F]

Out.a = [Out.z(:,1); Solution.phase.state(:,1)];

Out.h = [Out.z(:,2); Solution.phase.state(:,2)];

Out.k = [Out.z(:,3); Solution.phase.state(:,3)];

Out.p = [Out.z(:,4); Solution.phase.state(:,4)];

Out.q = [Out.z(:,5); Solution.phase.state(:,5)];

Out.F = [Out.z(:,6); Solution.phase.state(:,6)];

Out.e = sqrt(Out.h.^2+Out.k.^2);

Out.i = 2.*atan(sqrt(Out.p.^2+Out.q.^2));

Out.omega = atan2(Out.p,Out.q);

Out.w = atan2(Out.h,Out.k)-atan2(Out.p,Out.q);

Out.M = Out.F-atan2(Out.h,Out.k);

for count=1:length(Out.M)

 while Out.M(count)>2*pi

 Out.M(count) = Out.M(count) - 2*pi;

 end

end

% Read controls out of GPOPS Out structure

Out.T = [zeros(length(Out.z),1);Solution.phase.control(:,1)]...

 *Scen.T_max*1e3; % N

Out.Thrusting = [];

for count = 1:length(Out.T)

 if Out.T(count) < 1e-3

 Out.theta(count,1) = 0;

 Out.psi(count,1) = 0;

 else

 Out.theta(count,1) = Solution.phase.control(count-length(Out.z),2);

 Out.psi(count,1) = Solution.phase.control(count-length(Out.z),3);

 Out.Thrusting = [Out.Thrusting;

 Out.t(count) Out.theta(count) Out.psi(count)];

 end

end

%% Convert controls into ECI Componants and write to text file

Out.ECI = RO.Convert_to_ECI(Out,Scen);

Scen.Dur = STK.Output_to_text(Scen, Out, Out.length, 1);

%% Set the Maneuvering satellite to respond to the calculated trajectory and propagate

[man, MCS_m] = STK.Astrogator('M',root,Scen);

if Scen.Continuous == 1

 STK.Propagate('Coasting',Out.coast_t(end),MCS_m,Scen.Prop);

 STK.Maneuver_From_File('GPOPS_Profile',MCS_m,Scen,1);

else

 STK.Propagate('Coasting',Out.Thrusting(1,1),MCS_m,Scen.Prop);

 v = [cos(Out.Thrusting(1,2))*cos(Out.Thrusting(1,3));

 sin(Out.Thrusting(1,3));

 sin(Out.Thrusting(1,2))*cos(Out.Thrusting(1,3))]';

 STK.FTV_Maneuver('GPOPS_Profile', MCS_m, v, Solution.phase.integral);

91

end

STK.Propagate('Propagate',86400,MCS_m,Scen.Prop);

man.Graphics.Attributes.Intervals.RemoveAll;

man.Graphics.Attributes.Default.Inherit = 0;

man.Graphics.Attributes.Default.IsOrbitVisible = 0;

man.Propagator.RunMCS;

%% Plot Data in MATLAB

RO.XLSWrite();

Out.dv = Solution.phase.integral*Scen.T_max*1e3/(Scen.m_sat + Scen.m_fuel);

fprintf(1,'Total Delta v for the maneuver shown is: %4.1f m/s \n',Out.dv);

A.2 Responsive Orbits Function Library

classdef RO

% Created by James Sales

% Establishes the function library for the Responsive Orbits main code.

properties

end

methods(Static)

 function[Time] = Time_Sequencer(clock, Now)

 % Takes a MATLAB-standard clock vector as input along with the

 % variable ‘Now’ in seconds. This function is used in the main

 % code in order to convert MATLAB clock time to an STK-compatible

 % input.

 % Break Scen.Now down into ellapsed days, hours, minutes, & seconds

 Days = floor(Now/86400);

 Hours = floor((Now-86400*Days)/3600);

 Minutes = floor((Now-86400*Days-3600*Hours)/60);

 Seconds = floor((Now-86400*Days-3600*Hours-60*Minutes));

 Month_str = ['Jan';

 'Feb';

 'Mar';

 'Apr';

 'May';

 'Jun';

 'Jul';

 'Aug';

 'Sep';

 'Oct';

 'Nov';

 'Dec'];

 if round(clock(1)/4) == clock(1)/4

 DPM = [31;29;31;30;31;30;31;31;30;31;30;31];

 else

 DPM = [31;28;31;30;31;30;31;31;30;31;30;31];

92

 end

 % Wrap Seconds, Minutes, Hours, Days, Months to make a legible date.

 if clock(6) + Seconds >= 60

 clock(6) = clock(6) + Seconds - 60;

 Minutes = Minutes + 1;

 else

 clock(6) = clock(6) + Seconds;

 end

 if clock(5) + Minutes >= 60

 clock(5) = clock(5) + Minutes - 60;

 Hours = Hours + 1;

 else

 clock(5) = clock(5) + Minutes;

 end

 if clock(4) + Hours >= 24

 clock(4) = clock(4) + Hours - 24;

 Days = Days + 1;

 else

 clock(4) = clock(4) + Hours;

 end

 if clock(3) + Days > DPM(clock(2))

 clock(3) = clock(3) + Days - DPM(clock(2))+1;

 clock(2) = clock(2) + 1;

 else

 clock(3) = clock(3) + Days;

 end

 if clock(2) > 12

 clock(2) = 1;

 clock(1) = clock(1)+1;

 end

 if clock(3)<10

 Day = ['0',num2str(clock(3))];

 else

 Day = num2str(clock(3));

 end

 Today = [Day,' ',Month_str(clock(2),:),' ',num2str(clock(1))];

 if clock(4)<10;

 Hour = ['0',num2str(clock(4))];

 else

 Hour = num2str(clock(4));

 end

 if clock(5)<10;

 Min = ['0',num2str(clock(5))];

 else

 Min = num2str(clock(5));

 end

93

 if clock(6)<10;

 Sec = ['0',num2str(clock(6))];

 else

 Sec = num2str(clock(6));

 end

 Time = [Hour,':',Min,':',Sec];

 Time = [Today,' ',Time];

 end

 function [zd] = ODE_dynamics(t,z)

 % Non-maneuvering equations of motion for ODE 45. This function is

 % used in the main code in order to model the coast time prior to

 % AOR departure in STK as well as to forecast the reference

 % satellite position in GPOPS.

 %% Define constants

 % Defined in Responsive_Orbits

 global Scen

 %% State and control Vector Inputs

 % EOM are computed in Equinoctal Elements [a h k p q F]

 a = z(1);

 n = sqrt(Scen.mu/a^3);

 % State Derivatives

 zd(1) = 0;

 zd(2) = 0;

 zd(3) = 0;

 zd(4) = 0;

 zd(5) = 0;

 zd(6) = n;

 % ode45 requires column vectors as output

 zd=zd';

 end

 function [Solution] = Run_GPOPS()

 % This file builds the GPOPS-II input structure. It delineates

 % state, control, and time limitations as well as providing an

 % appropriate guess. It allows the main code to dictate the

 % different number of collocation points required for each scenario

 % being executed.

 %% Define constants

 global Scen REF

 t = Scen.t;

 COE = Scen.COE;

 %% Create Initial State Vector

 a = Scen.EE(1);

94

 h = Scen.EE(2);

 k = Scen.EE(3);

 p = Scen.EE(4);

 q = Scen.EE(5);

 F = Scen.EE(6);

 REF.z0 = [a h k p q F]';

 %% Create Final State Vector for the REF satellite

 % This utilizes ode45 to extrapolate the position of the non-manuevering

 % satellite at the final time.

 time = linspace(0,t);

 [time,zref] = ode45(@RO.ODE_dynamics,time,REF.z0);

 [row column] = size(zref);

 REF.zf = zref(row,:)';

 %% Determine reference satellite final position

 a = REF.zf(1);

 h = REF.zf(2);

 k = REF.zf(3);

 p = REF.zf(4);

 q = REF.zf(5);

 F = REF.zf(6);

 root = sqrt(1-h.^2-k.^2);

 n = sqrt(Scen.mu/a^3);

 r = a*(1-k*cos(F)-h*sin(F));

 B = 1/(1+root);

 x = a*((1-h^2*B)*cos(F)+h*k*B*sin(F)-k);

 y = a*(h*k*B*cos(F)+(1-k^2*B)*sin(F)-h);

 % Determine Rotation Matrix R_ir

 i = 2.*atan(sqrt(p.^2+q.^2));

 REF.p = p;

 REF.q = q;

 REF.phi = atan2(y,x);

 REF.N = x*cos(REF.phi)+y*sin(REF.phi);

 REF.T = y*cos(REF.phi)-x*sin(REF.phi);

 %% Create bounds sub-structure for GPOPS

 % State Limitations

 bounds.phase.initialtime.lower = 0;

 bounds.phase.initialtime.upper = 0;

 bounds.phase.finaltime.lower = t;

 bounds.phase.finaltime.upper = t;

 bounds.phase.initialstate.lower = REF.z0;

 bounds.phase.initialstate.upper = REF.z0;

 bounds.phase.state.lower = [REF.z0(1)-5,-0.5,-0.5,-2*tan(i/2),-2*tan(i/2), -pi];

 bounds.phase.state.upper = [REF.z0(1)+20, 0.5, 0.5, 2*tan(i/2), 2*tan(i/2),F+pi];

 bounds.phase.finalstate.lower=[REF.z0(1),-0.5,-0.5,-2*tan(i/2),-2*tan(i/2),F-pi];

 bounds.phase.finalstate.upper=[REF.z0(1)+20,0.5,0.5,2*tan(i/2),2*tan(i/2),F+pi];

 bounds.phase.control.lower = [0, -pi/2,-pi/2];

95

 bounds.phase.control.upper = [1,3*pi/2, pi/2];

 bounds.phase.integral.lower = 0;

 bounds.phase.integral.upper = t;

 %% Create guess sub-structure for GPOPS

 guess.phase.time = time;

 guess.phase.state = zref;

 n = round(Scen.Fraction*length(time));

 m = length(time) - n;

 guess.phase.control = [[ones(1,n),zeros(1,m)]',zeros(m+n,1), ...

 Scen.angle.*ones(m+n,1)];

 guess.phase.integral = Scen.Fraction*t;

 %% Build HP-adaptive mesh settings

 mesh.method = 'hp1';

 mesh.tolerance = 1e-8;

 mesh.maxiteration = 45;

 mesh.colpointsmin = Scen.Nodes(1);

 mesh.colpointsmax = Scen.Nodes(2);

 mesh.phase.colpoints = Scen.Nodes(3)*ones(1,10);

 mesh.phase.fraction = 0.1*ones(1,10);

 %% Concatenate substructures into setup input structure and run GPOPS

 setup.name = 'Responsive Orbits';

 setup.functions.continuous = @RO.Continuous;

 setup.functions.endpoint = @RO.Endpoint;

 setup.bounds = bounds;

 setup.guess = guess;

 setup.mesh = mesh;

 setup.nlp.solver = 'snopt';

 setup.derivatives.supplier = 'sparseCD';

 setup.derivatives.derivativelevel = 'first';

 setup.method = 'RPMintegration';

 % Run GPOPS

 output = gpops2(setup);

 Solution = output.result.solution;

 end

 function [output] = Continuous(input)

 % This function references the full history components of the

 % optimal control problem. It establishes the state derivatives

 % for the equations of motion as well as specifying the portion

 % of the Lagrange term in the cost function.

 global Scen

 mass = Scen.m_sat + Scen.m_fuel;

 T_max = Scen.T_max;

 mu = Scen.mu;

 %% State and control Vector Inputs

96

 % EOM are computed in Equinoctal Elements [a h k p q F]

 a = input.phase.state(:,1);

 h = input.phase.state(:,2);

 k = input.phase.state(:,3);

 p = input.phase.state(:,4);

 q = input.phase.state(:,5);

 F = input.phase.state(:,6);

 A = input.phase.control(:,1)*T_max/mass;

 th = input.phase.control(:,2);

 psi = input.phase.control(:,3);

 %% Equations of Motion

 % Equinoctal Reference Frame

 n = sqrt(mu./a.^3);

 r = a.*(1-k.*cos(F)-h.*sin(F));

 G = sqrt(1-h.^2-k.^2);

 B = 1./(1+G);

 K = 1+p.^2+q.^2;

 x = a.*((1-h.^2.*B).*cos(F)+h.*k.*B.*sin(F)-k);

 y = a.*(h.*k.*B.*cos(F)+(1-k.^2.*B).*sin(F)-h);

 xd = a.^2.*n./r.*(h.*k.*B.*cos(F)-(1-h.^2.*B).*sin(F));

 yd = a.^2.*n./r.*((1-k.^2.*B).*cos(F)-h.*k.*B.*sin(F));

 % Partial Derivatives

 dx_dk = a.*(h.*B.*sin(F)-1);

 dy_dk = a.*(h.*B.*cos(F)-2.*k.*B.*sin(F));

 dx_dh = a.*(-2.*h.*B.*cos(F)+k.*B.*sin(F));

 dy_dh = a.*(k.*B.*cos(F)-1);

 % Matrix Values

 M11 = 2.*xd./(n.^2.*a);

 M12 = 2.*yd./(n.^2.*a);

 M13 = 0;

 M21 = G./(n.*a.^2).*(dx_dk-h.*B.*xd./n);

 M22 = G./(n.*a.^2).*(dy_dk-h.*B.*yd./n);

 M23 = k.*(p.*x-q.*y)./(n.*a.^2.*G);

 M31 = -G./(n.*a.^2).*(dx_dh+k.*B.*xd./n);

 M32 = -G./(n.*a.^2).*(dy_dh+k.*B.*yd./n);

 M33 = h.*(p.*x-q.*y)./(n.*a.^2.*G);

 M41 = 0;

 M42 = 0;

 M43 = K.*y./(2.*n.*a.^2.*G);

 M51 = 0;

 M52 = 0;

 M53 = K.*x./(2.*n.*a.^2.*G);

 M61 = (G.*(h.*B.*dx_dh+k.*B.*dx_dk)-2.*x)./(n.*a.^2);

 M62 = (G.*(h.*B.*dy_dh+k.*B.*dy_dk)-2.*y)./(n.*a.^2);

 M63 = (q.*y-p.*x)./(n.*a.^2.*G);

 % Disturbing Acceleration

97

 phi = atan2(y,x);

 Ax = A.*((sin(th).*cos(phi)-cos(th).*sin(phi))).*cos(psi);

 Ay = A.*((cos(th).*cos(phi)+sin(th).*sin(phi))).*cos(psi);

 Az = A.*sin(psi);

 % State Derivatives

 dynamics(:,1) = M11.*Ax + M12.*Ay + M13.*Az;

 dynamics(:,2) = M21.*Ax + M22.*Ay + M23.*Az;

 dynamics(:,3) = M31.*Ax + M32.*Ay + M33.*Az;

 dynamics(:,4) = M41.*Ax + M42.*Ay + M43.*Az;

 dynamics(:,5) = M51.*Ax + M52.*Ay + M53.*Az;

 dynamics(:,6) = n + M61.*Ax + M62.*Ay + M63.*Az;

 %% Build output file

 output.dynamics = dynamics;

 output.integrand = input.phase.control(:,1);

 end

 function [output] = Endpoint(input)

 % This function references the endpoint components of the

 % optimal control problem. It establishes the terminal cost as

 % well as any applicable endpoint constraints (which are not

 % applicable to this problem).

 %% Define constants

 % Defined in Responsive_Orbits

 global Scen REF

 phi = REF.phi;

 N_r = REF.N;

 T_r = REF.T;

 P = REF.p;

 Q = REF.q;

 %% Read relavent componants out of input structure

 a = input.phase.finalstate(1);

 h = input.phase.finalstate(2);

 k = input.phase.finalstate(3);

 p = input.phase.finalstate(4);

 q = input.phase.finalstate(5);

 cf = cos(input.phase.finalstate(6));

 sf = sin(input.phase.finalstate(6));

 Lagrange = input.phase.integral;

 %% Determine final state in the equinoctial reference frame

 % Misc quantities

 G = sqrt(1-h.^2-k.^2);

 B = 1./(1+G);

 % Position in ERF

 x = a.*((1-h.^2.*B).*cf+h.*k.*B.*sf-k);

 y = a.*(h.*k.*B.*cf+(1-k.^2.*B).*sf-h);

98

 % Determine Rotation Matrix R_ir

 R_ir = [1-P^2+Q^2 2*P*Q 2*P;

 2*P*Q 1+P^2-Q^2 -2*Q;

 -2*P 2*Q 1-P^2-Q^2]./(1+P^2+Q^2);

 % Determine Rotation Matrix R_im

 R_im = [1-p^2+q^2 2*p*q 2*p;

 2*p*q 1+p^2-q^2 -2*q;

 -2*p 2*q 1-p^2-q^2]./(1+p^2+q^2);

 % Modify the maneuvering satellite into the reference satellite's orbital

 % frame coordinate system.

 zm_r = R_ir*R_im'*[x;y;0];

 N_m = zm_r(1)*cos(phi) + zm_r(2)*sin(phi);

 T_m = zm_r(2)*cos(phi) - zm_r(1)*sin(phi);

 % Determine distance from reference satellite

 dT = T_m-T_r;

 dN = N_m-N_r;

 dz = zm_r(3);

 %% Calculate cost

 if Scen.InPlane == 1

 ellipse = (dT/100)^2 + (dN/10)^2 + (dz/10)^2;

 else

 ellipse = (dz/10)^2;

 end

 Mayer = 1/(1+exp(50*(ellipse-1)));

 output.objective = Mayer+Scen.alpha.*Lagrange;

 end

 function[ECI] = Convert_to_ECI(Output,Scen)

 % This function converts the thrust and angle solutions derived from

 % MATLAB into the Earth-Centered Inertial Reference frame. It takes the

 % following inputs:

 % [ECI] = Convert_to_ECI(solution,total,Scen)

 % Solution is a structure consisting of several fields listed below:

 %

 % state: The Equinoctal Elements for each time step

 %

 % Output is a structure consisting of several fields listed below:

 %

 % T: The thrust profile in Newtons for each time step

 % theta: The in plane angle in the equinoctal frame in radians

 % psi: The out of plane angle in the equinoctal frame in

 % radians

 %

 % Scen is a structure consisting of several fields listed below:

 %

 % m_sat: The satellite mass in kg%

99

 %

 % The output ECI are the [x y z] componants in the Earth-Centered Inertial

 % Reference frame for each time step.

 for count = 1:length(Output.a)

 %% Read Output structure

 a = Output.a(count);

 h = Output.h(count);

 k = Output.k(count);

 p = Output.p(count);

 q = Output.q(count);

 F = Output.F(count);

 A = Output.T(count)*1e-3/Scen.m_sat; % km/sec^2

 th = Output.theta(count);

 psi = Output.psi(count);

 %% Calculate useful quantities to generate Equinoctial Frame vector

 % and Rotation matrix

 cf = cos(F);

 sf = sin(F);

 G = sqrt(1-h^2-k^2);

 B = 1/(1+G);

 x = a*((1-h^2*B)*cf+h*k*B*sf-k);

 y = a*(h*k*B*cf+(1-k^2*B)*sf-h);

 phi = atan2(y,x);

 %% Calulate Equinoctial Frame Acceleration Vector

 sth = sin(th);

 cth = cos(th);

 sph = sin(phi);

 cph = cos(phi);

 sps = sin(psi);

 cps = cos(psi);

 E(count,:) = [(sth*cph-cth*sph)*cps;

 (cth*cph+sth*sph)*cps;

 sps]*A;

 %% Calculate Rotation Matrix

 R = [1-p^2+q^2 2*p*q 2*p;

 2*p*q 1+p^2-q^2 -2*q;

 -2*p 2*q 1-p^2-q^2]./(1+p^2+q^2);

 %% Caluclate ECI Acceleration Vector

 ECI(count,:)= R*E(count,:)';

 end

 end

 function[] = XLSWrite()

 % This function takes the output data from MATLAB and converts it

 % into an excel document for plotting.

100

 delete CurrentTestRun.xlsx;

 %% Read GPOPS solution

 t = Out.t/60; % hr

 T = Out.T; % N

 theta = Out.theta*180/pi; % deg

 psi = Out.psi*180/pi; % deg

 Out.r = Out.a.*(1-Out.e.^2)./(1+Out.e.*cos(Out.M));

 count = 1;

 while Out.T(count) == 0

 count = count +1;

 end

 thrust_time = Out.t(count);

 %% Read COE for ref and man from STK and interpret/concatenate

 % [m.t,m.COE] = Elements(man, [0 Output.t(end)+15*60], 'C');

 [m.t,m.COE] = STK.Elements(man, [0 Out.t(end)], 'C');

 m.a = m.COE(:,1);

 m.e = m.COE(:,2);

 m.i = m.COE(:,3);

 m.omega = m.COE(:,4);

 m.w = atand(tand(m.COE(:,5)));

 m.M = atand(tand(m.COE(:,6)));

 m.lat = m.COE(:,7);

 m.nu = m.COE(:,8);

 m.t = m.t./60;

 count1 = 1;

 while abs(thrust_time/60-m.t(count1)) ~= min(abs(thrust_time/60-m.t))

 count1 = count1 +1;

 end

 ref_angle = m.lat(count1);

 % [r.t,r.COE] = Elements(ref, [0 Output.t(end)+15*60], 'C');

 [r.t,r.COE] = STK.Elements(ref, [0 Out.t(end)], 'C');

 r.a = r.COE(:,1);

 r.e = r.COE(:,2);

 r.i = r.COE(:,3);

 r.omega = r.COE(:,4);

 r.w = atand(tand(r.COE(:,5)));

 r.M = atand(tand(r.COE(:,6)));

 r.lat = r.COE(:,7);

 r.nu = r.COE(:,8);

 r.t = r.t./60;

 %% Convert for 2-D plot

 m.r = m.a.*(1-m.e.^2)./(1+m.e.*cosd(m.nu));

 r.r = r.a.*(1-r.e.^2)./(1+r.e.*cosd(r.nu));

 x = 2.*m.r.*sind((r.lat-m.lat)./2);

 y = m.r - r.r;

101

 oop = (m.i + m.omega - r.i - r.omega).*sind(m.lat - ref_angle);

 z = 2.*m.r.*sind(oop./2);

 %% Generate ellipse values

 ellipse.x = linspace(-100,100,1000);

 ellipse.y = 10.*sqrt(1-ellipse.x.^2./100^2);

 circle.x = linspace(-10,10,1000);

 circle.y = 10.*sqrt(1-circle.x.^2./10^2);

 Filename = [cd '\CurrentTestRun.xlsx'];

 xlswrite(Filename,[Out.t./60 Out.T Out.theta.*180/pi Out.psi.*180/pi],1);

 xlswrite(Filename,[x y z],2);

 xlswrite(Filename,[Out.t./60 Out.r-6378 Out.e Out.i.*180/pi Out.omega.*180/pi...

 Out.w.*180/pi Out.M.*180/pi],3);

 xlswrite(Filename,[r.t r.a-6378 r.e r.i r.omega r.w r.M],4);

 xlswrite(Filename,[m.t m.a-6378 m.e m.i m.omega m.w m.M],5);

 end

end

end

A.3 Systems Tool Kit® Function Library

classdef STK

% STK Library Explanation of Structure Fields

%

% Created by James Sales

%

% The structure 'Scen' was designed specifically for use in the STK

% library for my Thesis research but can be fairly easily adapted to work

% elsewhere. Not all of the following fields are necessary for every

% function but this is a summary of all of the fields used in the library.

%

% Scen Structure Fields:

% Centroid: The Lattitude, Longitude, and Elevation of the

% desired ellipse for an Area Target.

% COE: The Initial State Classical Orbital Elements

% formatted as follows:

% [r_p e i RAAN w nu]

% the Radius of Periapsis is in kilometers and all

% angles are in degrees.

% ElevAngle: Minimum Elevation Angle for Access to satellite.

% EndTime: The Scen end time formatted as follows:

% 'DD MMM YYYY HH:MM:SS'

% EngineName: String for the desired engine name.

% Epoch: The Epoch time formatted as follows:

% 'DD MMM YYYY HH:MM:SS'

102

% m_sat: The satellite dry mass in kg.

% m_fuel: The fuel mass in kg.

% Now: Tracks time from Epoch to current maneuver in

% seconds.

% Path: The filepath for external file storage.

% Size: The semi-major axis, semi-minor axis, and bearing

% formatted as a vector for the desired ellipse for

% an Area Target.

% StartTime: The Scen start time formatted as follows:

% 'DD MMM YYYY HH:MM:SS'

% TimeStep: Animation increment given in seconds.

% Title: A string describing the desired Scen title.

% This string must contain no spaces.

% T_max: Max thrust in kN for custom engine.

%

% For the function 'Out_to_text.m' an additional structure is used.

% The following fields are necessary for this function.

%

% Out Structure Fields:

% length: length of the time vector

% t: The time vector in seconds

% ECI: The Earth-Centered Inertial attitude vector

properties

end

methods(Static)

 function [uiapp, root] = Initialize(Scen)

 % This function initializes STK and passes back the applicable handles for

 % further use in MATLAB. The function takes the following inputs:

 %

 % [uiapp, root] = STK_init(Scen)

 %% Grab STK handle if already if running or open STK and retrieve handle

 % if not running

 try

 uiapp = actxGetRunningServer('STK10.application');

 catch

 uiapp = actxserver('STK10.application');

 end

 root = uiapp.Personality2;

 %% Close existing Scen and open a new one

 try

 root.CloseScen();

 root.NewScenario(Scen.Title);

 catch

 root.NewScenario(Scen.Title);

 end

103

 %% Set Scen Preferences

 % Set Date/Time Format

 root.UnitPreferences.Item('DateFormat').SetCurrentUnit('UTCG');

 % Assign Scen time period

 scen = root.CurrentScen;

 scen.SetTimePeriod(Scen.StartTime,Scen.EndTime);

 scen.Animation.StartTime = Scen.StartTime;

 scen.Epoch = Scen.StartTime;

 scen.Animation.AnimStepValue = Scen.TimeStep;

 %% Set Animation to Start Time

 root.Rewind()

 end

 function [sat, MCS] = Astrogator(Name, root, Scen)

 % This function initializes a satellite in Astrogator and returns the

 % applicable handles for further use in MATLAB. It takes the following

 % inputs:

 %

 % [sat, MCS_root] = Astrogator(Name, root, Scen)

 %% Initialize Satellite

 scen = root.CurrentScen;

 missionStartDate = scen.StartTime;

 sat = root.CurrentScen.Children.New(18, Name);

 sat.SetPropagatorType('ePropagatorAstrogator')

 sat.Graphics.Attributes.Intervals.RemoveAll;

 sat.Graphics.Attributes.Default.Inherit = 0;

 sat.Graphics.Attributes.Default.IsOrbitVisible = 0;

 % Create handle to the Astrogator portion of the satellite's object model

 prop = sat.Propagator;

 % Create handle to the MCS and remove all existing segments

 MCS = prop.MainSequence;

 MCS.RemoveAll;

 %% Define the Initial States

 % Create handle to the Initial States

 IS = MCS.Insert('eVASegmentTypeInitialState','Initial State','-');

 % Designate satellite and fuel masses

 IS.SpacecraftParameters.DryMass = Scen.m_sat;

 IS.FuelTank.FuelMass = Scen.m_fuel;

 IS.FuelTank.MaximumFuelMass = Scen.m_fuel;

 % Input orbital elements

 IS.SetElementType('eVAElementTypeModKeplerian');

 IS.Element.RadiusOfPeriapsis = Scen.COE(1);

 IS.Element.Eccentricity = Scen.COE(2);

 IS.Element.Inclination = Scen.COE(3);

 IS.Element.RAAN = Scen.COE(4);

104

 IS.Element.ArgOfPeriapsis = Scen.COE(5);

 IS.Element.TrueAnomaly = Scen.COE(6);

 % Sets the orbit Epoch for the mission start time

 IS.OrbitEpoch = missionStartDate;

 end

 function [Target] = Area_Target(Name, root, Scen)

 % This function initializes an Area Target in STK and returns the

 % applicable handles for further use in MATLAB. It takes the following

 % inputs:

 %

 % Target = AreaTarget(Name, root, Scen)

 Size = Scen.Size;

 Centroid = Scen.Centroid;

 Target = root.CurrentScen.Children.New(2, Name);

 Target.AreaType = 'eEllipse';

 Target.AreaTypeData.SemiMajorAxis = Size(1);

 Target.AreaTypeData.SemiMinorAxis = Size(2);

 Target.AreaTypeData.Bearing = Size(3);

 Target.Position.AssignGeodetic(Centroid(1),Centroid(2),Centroid(3));

 Target.AccessConstraints.AddNamedConstraint('ElevationAngle');

 Target.AccessConstraints.GetActiveNamedConstraint('ElevationAngle').Angle =

Scen.ElevAngle;

 end

 function[Eng]=Create_Engine_Model(root, Name, T)

 % This function creates a custom engine model in the Componant Library and

 % returns the applicable handle for further use in MATLAB. It takes the

 % following inputs:

 %

 % Eng = CreateEngingModel(root, Name, T)

 scen = root.CurrentScen;

 EM =

scen.ComponentDirectory.GetComponents('eComponentAstrogator').GetFolder('Engine Models');

 ConstThrust = EM.Item('Constant Thrust and Isp');

 ConstThrust.CloneObject;

 num = EM.count;

 for count = 0:num-1

 if length(EM.Item(count).Name) > 23

 if strcmp(EM.Item(count).Name(1:24),'Constant Thrust and Isp1')

 Eng = EM.Item(count);

 end

 end

 end

105

 Eng.Name = Name;

 Eng.Thrust = T;

 end

 function [prop] = Propagate(Name, t, MCS, Prop)

 % This function adds a propagation step to the given satellite in

 % Astrogator and returns the applicable handle for further use in MATLAB.

 % It takes inputs as follows:

 %

 % [prop] = Propagate(Name, t, MCS, Prop)

 prop = MCS.Insert('eVASegmentTypePropagate',Name,'-');

 prop.PropagatorName = Prop;

 prop.StoppingConditions.Item('Duration').Properties.Trip = t;

 end

 function[AccessTimes] = Compute_Access(root, sat, target, clock)

 % This function takes two handles and computes coverage encounters over

 % the entire Scen. However, the values it returns are specific to my

 % thesis work and will likely require modification for use elsewhere. It

 % takes the following inputs:

 %

 % [CoastTime, Duration] = ComputeAccess(root, sat, target, count)

 root.UnitPreferences.Item('DateFormat').SetCurrentUnit('EpSec');

 scen = root.CurrentScen;

 access = target.GetAccessToObject(sat);

 access.ComputeAccess;

 DP =access.DataProviders.Item('Access Data').Exec(scen.StartTime, scen.StopTime);

 Enter = cell2mat(DP.DataSets.GetDataSetByName('Start Time').GetValues);

 Depart = cell2mat(DP.DataSets.GetDataSetByName('Stop Time').GetValues);

 for count = 1:min(length(Enter),length(Depart))

 Entry(count,:) = RO.Time_Sequencer(clock, Enter(count));

 Exit(count,:) = RO.Time_Sequencer(clock, Depart(count));

 Spaces(count,:) = ' ';

 end

 AccessTimes.DT = [Entry Spaces Exit];

 AccessTimes.EpSec = [Enter Depart];

 end

 function[t_end]=Output_to_text(Scen, Out, L, count)

 % This function generates a text file conforming to the Astrogator *.a

 % thrust attitude external file input parameters. It takes inputs as

 % follows:

 %

 % t_end = Out_to_text(Scen, Out, L, count)

106

 Filename = [Scen.Path,Scen.Title,'Profile',num2str(count),'.a'];

 t = Out.t+Scen.Now;

 t_end = Out.t(end)-Scen.Coast(count)+Scen.Now;

 ECI = Out.ECI;

 Epoch = Scen.Epoch;

 Maneuver = [t ECI]';

 Points = length(t)-L;

 Factor = 20;

 Order = 1;

 Body = 'Earth';

 Axes = 'Inertial';

 % Open file & begin writing data conforming to the STK format requirements.

 fclose('all');

 FID = fopen(Filename,'w');

 fprintf(FID,'stk.v.5.0\r\n \r\n');

 fprintf(FID,'BEGIN Attitude\r\n \r\n');

 fprintf(FID,'NumberOfAttitudePoints\t%1.0f\r\n',Points);

 fprintf(FID,['Scen Epoch\t\t',Epoch,'\r\n']);

 fprintf(FID,'Blocking Factor\t\t%2.0f\r\n',Factor);

 fprintf(FID,'InterpolationOrder\t%1.0f\r\n',Order);

 fprintf(FID,['CentralBody\t\t',Body,'\r\n']);

 fprintf(FID,['CoordinateAxes\t\t',Axes,'\r\n\r\n']);

 fprintf(FID,'AttitudeTimeECIVector\r\n\r\n');

 fprintf(FID,'\t%6.6f \t\t%8.8f \t\t%8.8f \t\t%8.8f \r\n',Maneuver(:,L+1:end));

 fprintf(FID,'\r\nEND Attitude');

 fclose('all');

 end

 function [M] = Maneuver_From_File(Name, MCS, Scen, index)

 % This function conducts a Finite Thrust Vectored manuever in Astrogator

 % and returns the applicable maneuver handle for further use in MATLAB.

 % It takes inputs as follows:

 %

 % M = ITV_Maneuver(Name, MCS_root, Scen, index)

 Filename = [Scen.Path,Scen.Title,'Profile',num2str(index),'.a'];

 M = MCS.Insert('eVASegmentTypeManeuver',Name,'-');

 M.SetManeuverType('eVAManeuverTypeFinite');

 M.Maneuver.SetAttitudeControlType('eVAAttitudeControlFile');

 Att_Control = M.Maneuver.AttitudeControl;

 Att_Control.Filename = Filename;

 M.Maneuver.SetPropulsionMethod('eVAPropulsionMethodEngineModel',

Scen.EngineName);

 M.Maneuver.Propagator.StoppingConditions.Item('Duration').Properties.Trip =

Scen.Dur(index);

107

 M.Maneuver.Propagator.PropagatorName = Scen.Prop;

 end

 function [M] = FTV_Maneuver(Name, MCS, v, t)

 % This function conducts a Finite Thrust Vectored manuever in Astrogator

 % and returns the applicable maneuver handle for further use in MATLAB.

 % It takes inputs as follows:

 %

 % M = FTV_Maneuver(Name, MCS_root, Vector, Duration)

 global Scen

 M = MCS.Insert('eVASegmentTypeManeuver',Name,'-');

 M.SetManeuverType('eVAManeuverTypeFinite');

 M.Maneuver.SetAttitudeControlType('eVAAttitudeControlThrustVector');

 Att_Control = M.Maneuver.AttitudeControl;

 Att_Control.ThrustVector.AssignXYZ(v(1),v(2),v(3));

 M.Maneuver.SetPropulsionMethod('eVAPropulsionMethodEngineModel',

Scen.EngineName);

 M.Maneuver.Propagator.StoppingConditions.Item('Duration').Properties.Trip=t;

 M.Maneuver.Propagator.PropagatorName = Scen.Prop;

 end

 function [M] = ITV_Maneuver(Name, MCS_root, v)

 % This function conducts an Impulsive Thrust Vectored manuever in

 % Astrogator and returns the applicable maneuver handle for further use in

 % MATLAB. It takes inputs as follows:

 %

 % M = ITV_Maneuver(Name, MCS_root, Vector)

 M = MCS_root.Insert('eVASegmentTypeManeuver',Name,'-');

 M.Maneuver.SetAttitudeControlType('eVAAttitudeControlThrustVector');

 Att_Control = M.Maneuver.AttitudeControl;

 Att_Control.DeltaVVector.AssignCartesian(v(1),v(2),v(3));

 end

 function [t, Elem] = Elements(sat, time, Type)

 % This function takes a satellite and returns its orbital element time

 % history. It takes the following inputs:

 %

 % [t, Elem] = Elements(sat, time, Type)

 root = sat.root;

 root.UnitPreferences.SetCurrentUnit('DateFormat','EpSec');

 if Type == 'E'

 EE = sat.DataProviders.Item('Equinoctial Elements');

 EEICRF = EE.Group.Item('ICRF');

 EEResults = EEICRF.Exec(time(1), time(2), 5);

 t = cell2mat(EEResults.DataSets.GetDataSetByName('Time').GetValues());

108

 a = cell2mat(EEResults.DataSets.GetDataSetByName('Semi-Major

Axis').GetValues());

 h = cell2mat(EEResults.DataSets.GetDataSetByName('e *

sin(omegaBar)').GetValues());

 k = cell2mat(EEResults.DataSets.GetDataSetByName('e *

cos(omegaBar)').GetValues());

 p = cell2mat(EEResults.DataSets.GetDataSetByName('tan(i/2) *

sin(raan)').GetValues());

 q = cell2mat(EEResults.DataSets.GetDataSetByName('tan(i/2) *

cos(raan)').GetValues());

 F = cell2mat(EEResults.DataSets.GetDataSetByName('Mean Lon').GetValues());

 Elem = [a h k p q F];

 elseif Type == 'C'

 COE = sat.DataProviders.Item('Classical Elements');

 COEICRF = COE.Group.Item('ICRF');

 COEResults = COEICRF.Exec(time(1),time(2),5);

 t = cell2mat(COEResults.DataSets.GetDataSetByName('Time').GetValues());

 a = cell2mat(COEResults.DataSets.GetDataSetByName('Semi-major

Axis').GetValues());

 e =

cell2mat(COEResults.DataSets.GetDataSetByName('Eccentricity').GetValues());

 i =

cell2mat(COEResults.DataSets.GetDataSetByName('Inclination').GetValues());

 omega = cell2mat(COEResults.DataSets.GetDataSetByName('RAAN').GetValues());

 w = cell2mat(COEResults.DataSets.GetDataSetByName('Arg of

Perigee').GetValues());

 M = cell2mat(COEResults.DataSets.GetDataSetByName('Mean

Anomaly').GetValues());

 lat = cell2mat(COEResults.DataSets.GetDataSetByName('Arg of

Latitude').GetValues());

 nu = cell2mat(COEResults.DataSets.GetDataSetByName('True

Anomaly').GetValues());

 Elem = [a e i omega w M lat nu];

 else

 t = [];

 Elem = [];

 fprintf('Specified Type not recognized\n')

 end

 end

end

end

109

Appendix B. GPOPS-II Structure Architecture

110

111

112

113

114

115

116

117

118

119

Bibliography

[1] J. C. Liou, Active Debris Removal and the Challenges for Environment Remediation,
Houston: NASA Orbital Debris Program Office, NASA Johnson Space Center,
2012.

[2] "Instability of the present LEO satellite populatuons," Advances in Space Research,
vol. 41, pp. 1046-1053, 2008.

[3] D. S. F. Portree, Orbital Debris: A Chronology, NASA-TP-1999-208856, (1999),
1999.

[4] W. E. Wiesel, Spaceflight Dynamics (Third Edition), Beavercreek: Aphelion Press,
2010.

[5] T. C. Co, Operationally Responsive Spacecraft Using Electric Propulsion, PhD
Thesis, Graduate School of Engineering and Management, Air Force Institute of
Technology, Wright Patterson AFB, OH, 2012.

[6] C. Zagaris, Trajectory Control and Optimization for Responsive Spacecraft, Master's
Thesis, Graduate School of Engineering and Management, Air Force Institute of
Technology, Wright Patterson AFB, OH, 2012.

[7] T. R. Jorris, Common Aero Vehicle Autonomous Re-entry Trajectory Optimization
Satisfying Waypoint and No-Fly Zone Constraints, PhD Thesis, Graduate School
of Engineering and Management, Air Force Institute of Technology, Wright
Patterson AFB, OH, 2007.

[8] W. J. Karasz, Optimal Re-entry Trajectory Terminal State Due to Variations in
Wapoint Locations, Master's Thesis, Graduate School of Engineering and
Management, Air Force Institute of Technology, Wright Patterson AFB, OH,
2008.

[9] D. E. Yaple, Simulation and Application of GPOPS for a Trajectory Optimization
and Mission Planning Tool, Master's Thesis, Graduate School of Engineering
and Management, Air Force Institute of Technology, Wright Patterson AFB,
OH, 2010.

120

[10] C. L. Darby, hp-Pseudospectral Method for Solving Continuous-Time Nonlinear
Optimal Control Problems, PhD Thesis, University of Florida, Gainesville, FL,
2011.

[11] C. D. Hall and I. M. Ross, "Optimal Attitude Control for Coplanar Orbit Phasing
Transfers," Advances in Astronautical Sciences, vol. 115, pp. 79-94, 2003.

[12] N. S. Bedrossian, S. Bhatt, W. Kang and I. M. Ross, "Zero-Propellant Maneuver
Guidance," IEEE Control Systems Magazine, pp. 53-73, October 2009.

[13] D. A. Vallado, Fundamentals of Astrodynamics and Applications Third Edition,
Hawthorne: Microcosm Press, 2007.

[14] W. E. Wiesel, Modern Astrodynamics (Second Edition), Beavercreek: Aphelion
Press, 2010.

[15] H. Schaub and J. Junkins, Analytical Mechanics of Space Systems, Reston:
American Istitute of Aeronautics and Astronautics, 2003.

[16] J. A. Kechichian, "Optimal Low-Thrust Rendezvous Using Equinoctial Orbit
Elements," Acta Astronautica, vol. 38, no. 1, pp. 1-14, 1996.

[17] J. Kechichian, "Trajectory Optimization with a Modified Set of Equinoctial Orbit
Elements. AAS/AIAA 91-524," in Astrodynamics Specialist Conference,
Durango, CO, 1991.

[18] D. E. Kirk, Optimal Control Theory An Introduction, Mineola: Dover Publications,
Inc, 1970.

[19] D. A. Benson, G. T. Huntington, T. P. Thorvaldsen and A. V. Rao, "Direct
Trajectory Optimization and Costate Estimation via an Orthogonal Collocation
Method," Journal of Guidance, Control, and Dynamics, vol. 29, no. 6, pp. 1435-
1440, 2006.

[20] B. A. Conway, Spacecraft Trajectory Optimization, Cambridge: Cambridge
University Press, 2010.

[21] A. V. Rao, D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin, I. Sanders and
G. T. Huntington, "Algorithm 902: GPOPS, A MATLAB Software for Solving

121

Multiple-Phase Optimal Control Problems Using the Gauss Pseudospectral
Method," ACM Transactions on Mathematical Software, vol. 37, no. 2, 2010.

[22] D. Garg, M. A. Patterson, C. L. Darby, C. Francolin, G. T. Huntington, W. W. Hager
and A. V. Rao, "Direct Trajectory Optimization and Costate Estimation of
Finite-Horizon and Infinite-Horizon Optimal Control Problems Using a Radau
Pseudospectral Method," Computational Optimization and Applications, vol. 49,
no. 2, pp. 335-358, 2011.

[23] D. Garg, M. A. Patterson, W. W. Hager, A. V. Rao, A. Benson and G. T.
Huntington, "A Unified Framework for the Numerical Solution of Optimal
Control Problems Using Pseudospectral Methods," Automatica, vol. 46, no. 11,
pp. 1843-1851, 2010.

[24] D. Garg, W. W. Hager and A. V. Rao, "Pseudospectral Methods for Solving Infinite-
Horizon Optimal Control Problems," Automatica, vol. 47, no. 4, pp. 829-837,
2011.

[25] A. V. Rao and M. A. Patterson, GPOPS-II Version 1.0: A General-Purpose
MATLAB Toolbox for Solving Optimal Control Problems Using the Radau
Pseudospectral Method, 2013.

[26] T. J. Masternak, GPOPS-II Data Structure, 2013, unpublished.

[27] Analytical Graphics Inc, STK 10.0.1 Programming Interface, 2013.

[28] J. R. Wright, Orbit Determination Tool Kit Theory & Algorithms, 2009.

[29] W. E. Wiesel, Modern Methods of Orbit Determination, 2nd ed, Beavercreek:
Aphelion Press, 2010.

[30] Analytical Graphics, Inc, ODTK A Technical Summary, 2009.

122

Vita

 Lieutenant James W Sales, Jr graduated from Turpin High School in Cincinnati,

Ohio in 2001. He entered undergraduate studies at the Virginia Polytechnic Institute and

State University where he graduated with a Bachelor of Science in Aerospace

Engineering in December 2005. LT Sales received his commission upon graduation into

the United States Navy and was accepted into flight school at Naval Air Station

Pensacola. He completed advanced helicopter flight training at Naval Air Station

Whiting Field in December 2007.

In May 2008 he was assigned to Helicopter Sea Combat Squadron Two-Two.

While assigned to HSC-22, he deployed for six months as part of the Search and Rescue

detachment on the USS Bataan (LHD-5) as well as deploying on the USS Kearsarge

(LHD-3) and USS Iwo Jima (LHD-7). In July 2011, he entered the Graduate School of

Engineering and Management, Air Force Institute of Technology. Upon graduation in

2013, he will report to Tactical Air Control Squadron Two-One at Naval Amphibious

Base Little Creek in Norfolk, VA.

Standard Form 298 (Rev. 8/98)

REPORT DOCUMENTATION PAGE

Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Symbols
	I. Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.2.1 Case 1: Impulsive In-Plane Thrusting
	1.2.2 Case 2: Impulsive Out-Of-Plane Thrusting
	1.2.3 Case 3: Continuous Thrusting

	1.3 Method of Investigation
	1.4 Thesis Overview

	II. Background
	2.1 Chapter Overview
	2.2 Related Work
	2.3 Equations of Motion
	2.3.1 The Two-Body Problem
	2.3.2 Classical Orbital Elements
	2.3.3 Equinoctial Orbital Elements

	2.4 Optimal Control Theory
	2.4.1 The General Indirect Method
	2.4.2 Primer Vector Theory
	2.4.3 Pseudospectral Methods

	2.5 Chapter Summary

	III. Methodology
	3.1 Chapter Overview
	3.2 Optimal Control Problem Formulation
	3.2.1 Equations of Motion
	3.2.2 State and Control Constraints
	3.2.3 Cost Function
	3.2.4 Multiple vs Single Phase Problem

	3.3 General Pseudospectral Optimal Control Software-II
	3.3.1 Overview
	3.3.2 Input Structure
	3.3.3 Additional Required Functions
	3.3.4 Output Structure
	3.3.5 Limitations

	3.4 Systems Tool Kit® v 10
	3.4.1 Component Object Model Interface Library
	3.4.2 Scenario Input
	3.4.3 Maneuver Development
	3.4.4 Optimizer Result Validation

	3.5 Chapter Summary

	IV. Analysis and Results
	4.1 Chapter Overview
	4.2 Optimal Control Results
	4.2.1 Case 1 Single Orbit
	4.2.2 Case 1 Multiple Orbit
	4.2.3 Case 2 Single Orbit
	4.2.4 Case 2 Multiple Orbit
	4.2.5 Case 3 Single Orbit
	4.2.6 Case 3 Multiple Orbit
	4.2.7 Summary of Optimal Control Results

	4.3 Systems Tool Kit® Simulation and Validation
	4.3.1 Case 1
	4.3.2 Case 2
	4.3.3 Case 3
	4.3.4 Summary of STK Results

	4.4 Chapter Summary

	V. Conclusions and Recommendations
	5.1 Chapter Overview
	5.2 Conclusions
	5.3 Research Limitations
	5.4 Recommendations for Future Work

	Appendix A. MATLAB® Code
	Appendix B. GPOPS-II Structure Architecture
	Bibliography
	Vita

	1_REPORT_DATE_DDMMYYYY: 12-09-2013
	2_REPORT_TYPE: Master's Thesis
	3_DATES_COVERED_From__To: Aug-2011 to Sep-2013
	4_TITLE_AND_SUBTITLE: Trajectory Optimization for Spacecraft Collision Avoidance
	5a_CONTRACT_NUMBER:
	5b_GRANT_NUMBER:
	5c_PROGRAM_ELEMENT_NUMBER:
	5d_PROJECT_NUMBER:
	5e_TASK_NUMBER:
	5f_WORK_UNIT_NUMBER:
	6_AUTHORS: Sales, James W. Jr, Lieutenant, USN
	7_PERFORMING_ORGANIZATION: Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
Wright-Patterson AFB OH 45433-7765
	8_PERFORMING_ORGANIZATION: AFIT-ENY-13-S-01
	9_SPONSORINGMONITORING_AG: Intentionally Left Blank
	10_SPONSORMONITORS_ACRONY:
	1_1_SPONSORMONITORS_REPOR:
	12_DISTRIBUTIONAVAILABILI: DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
	13_SUPPLEMENTARY_NOTES: This material is declared a work of the U.S. Government and is not subject to copyright protection in the United States.
	15_SUBJECT_TERMS: Orbital Mechanics; Optimal Control; Optimization; Orbit Determination
	a_REPORT: U
	bABSTRACT: U
	c_THIS_PAGE: U
	17_limitation_of_abstract: UU
	number_of_pages: 137
	19a_NAME_OF_RESPONSIBLE_P: Dr. Jonathan Black, AFIT/ENY
	19b_TELEPHONE_NUMBER_Incl: (937) 255-6565 x 4578 jonathan.black@afit.edu
	14ABSTRACT: The last several decades have resulted in an unfortunate byproduct of space exploration and development: orbital debris. Satellites in Low Earth Orbit have been required to make an ever increasing number of course corrections in order to avoid collisions. Despite efforts to the contrary, collisions continue to occur, each time creating additional debris and increasing the requirement for the remaining satellites to maneuver. Every required maneuver decreases a satellite’s service life. The purpose of this study is to develop a minimum thrust profile to maneuver an orbiting satellite out of its projected error ellipse before a collision occurs. For comparison, both the impulsive and continuous thrust cases were considered as well as in-plane versus out-of plane maneuvering. This study made use of the Radau Pseudospectral Method to develop this minimum thrust profile. This method was run in MATLAB® using General Pseudospectral Optimal Control Software (GPOPS-II). Once the optimal solution was obtained, Systems Tool Kit® was used to simulate the resulting calculated trajectories and confirm avoidance of the error ellipse.

