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1. Introduction 

In recent years, micro air vehicles (MAVs) have been increasingly applied in rescue, 

surveillance, and aerial observation tasks. These new applications demand more autonomous 

behavior to support human operators, improve capabilities, and generally increase operational 

safety (17). For many of these applications, MAVs are required to navigate complex urban 

environments in potentially turbulent conditions. The signal processing, control system, and 

hardware computation bandwidth constraints are major hurdles in tackling this problem. MAVs 

typically have wingspans less than 6 in and small payload capacities, limiting their size, weight, 

and power usage (18). Visual sensors offer the potential to address the bandwidth issue within 

the overall size, weight, and power (SWaP) constraints. In this report, we focus on vision-based 

algorithms for control, collectively known as visual servoing.  

Visual servoing algorithms in robotics have been extensively developed over the past two 

decades for use in industrial applications, stabilization, and navigation (11, 13–15). Visual 

servoing processes information gathered by an image sensor to generate control signals to steer a 

dynamical system by comparing where a system is, as measured by the visual sensor, to where 

the system should be (20). Most of the available servoing techniques use optical flow, which can 

be generally divided into two classes: those that use the whole image to improve accuracy and 

those that use a portion of the image to improve computational cost. Those that use a portion of 

the image are typically either feature based or model based.  Feature-based servoing tracks two-

dimensional (2-D) features such as points, lines, circles, or other points of interest, which can be 

extracted using computer vision techniques (21). Model-based approaches extract a three-

dimensional (3-D) model representation of the object being tracked and, assuming the model is 

highly correlated to the object, are typically more robust to outliers and occlusions (21).  

Recently, visual servoing approaches that bypass the classic matching and tracking approach, 

such as those by Collewet et al., (14), Deguchi (22), and Kallem et al. (16), have been proposed. 

Kallem et al. (16) for example, consider using a kernel-based method that gives a highly 

decoupled control law. However, this approach cannot be used for six-degrees-of-freedom 

(DOF) control of a robot (20).  

In that manner, the Murray group (3) has developed what they define as a bioplausible approach 

to visual servoing. Bioplausibility refers to a loose collection of engineering principles that seek 

to confine design research to that which could occur in a biological process (such as a neural 

network) (2). Control theory inspired by the principles of biological systems has recently made 

significant advancements due to the work of Dickson et al. (1) and many others. The bioplausible 

approach proposed by Han et al. (2), and implemented in this report, uses the full image and 

removes the normalization matrix to enable it to be featureless and parallelizable, thus reducing 
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the computational cost, but this process is at the expense of global normalization, which 

introduces some approximation error.  

In the constrained MAV environment, algorithms that have both speed and minimal 

approximation error are desirable (19). Toward this end, we present two algorithms within this 

report.  The first, based on the work by Han et al. (2) uses the more accurate full image and then 

relaxes the algorithm to improve the computational cost.  The second approach begins with a 

feature tracking based approach that is initially less accurate but more computationally efficient, 

and then we introduce some iterative windowing.  This improves the accuracy but at some 

additional computational cost.  Our previous research (23) indicated that the bioplausible 

algorithm developed by Han et al. (2) was stable for modest noise and contrast.  However, for 

high noise and low contrast, the bioplausible control algorithm had difficulty settling in a time 

that enable the control loop to be closed fast enough for stable flight. It is anticipated that the 

bioplausible control will converge more quickly but at a reduced accuracy for pose stabilization 

behavior.  To fully evaluate the efficacy of the proposed bioplausible approach, it is essential to 

understand the tradeoffs between the complexity of the visual servoing task in terms of sensor 

noise and image contrast, the bandwidth of the feedback controller, the stability of the closed 

loop, and the performance of the closed loop system (18).  We examine these tradeoffs by 

comparing the newly developed bioplausible control against the Lucas-Kanade (L-K) image-

based feature tracking approach (4) in simulation and experimental platform    

2. Visual Servoing Techniques 

For this report, we implement a proportional-derivative (PD) control using either the bioplausible 

or the L-K approach to accomplish a visual servoing task.  Visual servoing aims to drive the 

orientation and position of the robot to a reference image (26).  Visual servoing was chosen as an 

exemplar task because it is sensitive to both noise and contrast, can be computationally 

intractable, and enables an exact comparison between the goal and current state for all controls 

We assume at each time a collection of sensors with a fixed field of view and orientation relative 

to the vehicle body center outputs a visual field. The assumption of a  discrete visual field is 

equally applicable to standard cameras, catadioptric cameras, or the compound vision of a fruit 

fly. From this assumption, it is possible to map each pixel on the focal plane to a vector on the 

unit sphere      . Thus, as shown in equation 1, each observed luminance can be transformed 

through a function           defined on the unit sphere: 

                (1) 

where m is some known map of the orientation, environment, and time to the visual input  . 

R        is the body attitude and s spans the visual sphere    (2).  
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Both the bioplausible and L-K approaches were shown to be nominally robust in all three axes in 

simulation with moderate noise and contrast.  For visualization purposes, in this report, we 

constrain the simulation and the experimental controls to one dimension (yaw), and evaluate the 

effects of noise, contrast, computational load, and settling time for both the bioplausible and L-K 

compared to an ideal control. 

2.1 Bioplausible Control 

The bioplausible visual servoing technique aims to be parallelizable and featureless in its 

computations.  The bioplausible approach calculates the raw error between the observed image 

and the goal image, and generates the input control servoing signals from the change in error 

with time.  The full derivation of this approach can be found in Han et al. (2).   

Here, we predefine a goal image        , which is a particular value of   at a certain goal 

orientation   , where y is the vector of luminosities or pixel brightness values. The problem of 

visual attitude stabilization is stated succinctly as choosing the input torque   such that the error 

between the visual input and the goal image approaches zero. Under mild assumptions on the 

environment, this also guarantees that the orientation   approaches    and the angular velocity 

approaches zero.  

The problem of visual attitude stabilization amounts to minimizing an error function that 

represents how “far” away the present visual input is from the goal image. The error function we 

chose to minimize is      
 

 
      

 . From Censi et al. (3), we know the gradient flow that 

minimizes this cost functional is           . In equations 2, we define S to be a linear 

differential operator  

                  

         (2) 

where          refers to the space of continuous functions from    to   and       is the 

tangent vector field to the unit sphere. 

Equation 3 represents the control law as a PD controller with         as the proportional part 

and          as the derivative part. The damping term          is necessary to choose the torque 

such that   is driven to zero near the goal image. 

                       (3) 

This control makes     ,     locally asymptotically stable. We define              , the 

bilinear estimate of the angular velocity. Therefore, the above control simplifies to        

       (3). For the results presented in this report, we further simplify this control for use in one-

dimensional (1-D) yaw stabilization. 



 

4 

2.2 Feature Tracking 

To evaluate the proposed bioplausible control, we have implemented another PD control using 

the Shi and Tomasi corner detector for feature identification and the sparse implementation of 

the L-K algorithm for tracking them (4, 5, 8). Together, these two algorithms are compared 

against the bioplausible control for stabilization.  Using the L-K feature tracking algorithm, we 

can determine the shifts of features between the goal image and the observed to generate an 

error, which is fed to the control loop.  As with the bioplausible control, the aim of feature 

tracking, shown in equation 4, is to minimize an error e(t) and bring the system to the goal image 

and orientation. The error is defined here as 

                  (4) 

where      is the set of measurements in the observed image, e.g., pixel brightness values. 

These image measurements are used to compute a vector of k visual features,        , e.g., 

using the Shi and Tomasi corner detector. The vector    contains the features in the goal image 

(7). This error term should be interpreted as the “distance” between the features of the present 

image and the features of the goal image. 

To identify features, we use the Shi and Tomasi corner detector (8) and track these features from 

image to image using the sparse implementation of the L-K algorithm (4, 5). The tracking 

problem can be explained in the following way. As shown in equation 5, for  two grayscale 

images,   and  , where        is the value of the pixel at       . If we let          
 
be a 

feature in image  , we want to find          
 
 on   such that      is similar to     . 

                    
 
                   . (5) 

  in this case is the optic flow at  . In our case, d is the error between the two points. L-K 

estimates   using a least-squares minimization of the error residual, as shown in equation 6: 

                                  
       

       

     
       

 (6) 

Here,    and    are the integration window size parameters. We use the pyramidal 

implementation of the L-K tracker in our algorithm (6).  

For this study, we perform 1-D visual servoing in the yaw axis and compute the error as the 

average of    for all the features found in the image. To add robustness to the L-K controller, we 

reject mistracked points by computing   from both     and     and removing points that 

differ by more than 50 pixel lengths. Our final control law is shown in equation 7. 

         
 

  
  (7) 
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   is the spatial difference on the x-axis between the observed feature and the goal feature for the 

i-th feature; and n is the number of features. 

We use implementations of the Shi and Tomasi corner detector and the LK feature tracker found 

in the open source computer vision library, OpenCV, for our simulations and experiments.  

2.3 “Ideal” Control 

We create an ideal linear controller within the simulation that knows its exact orientation at all 

times. This perfect controller provides a reference to compare the bioplausible and feature 

tracker against. The error for this ideal controller is the signed difference in angle between the 

goal and the current orientation. The ideal PD control law the same as equation 7 with perfect 

knowledge of state and error. 

3. Simulations 

Our simulations are implemented on the Grand Unified Fly (GUF) component fsee, a fly vision 

simulation environment illustrated in figure 1 (25). Given a 3-D virtual world model, fsee 

generates monochromatic luminance readings for a simulated hexagonally sampled 1398 fly 

ommatidia (3). We choose a cylindrical arena as the environment with a panorama of a natural 

scene on the walls of this environment along with a sky and ground.  The contrast and noise 

within the image shown in figure 1 were altered, and the settling time, residual error, and 

stability were measured for the bioplausible, L-K, and ideal PD controllers across a range of 

controller gains. 

Grand Unified Fly 

Goal Image Example Starting Image 

 

 

Figure 1.  Example simulation of compound fly vision in GUF. This is the rendering of a forest environment seen 

through the receptors of a model fly.   

We describe the rotational motion of a fully actuated rigid body through a constrained second-

order system. We constrain the torques that can be applied to this system to those seen in natural 

fly saccades (9), as shown in equation 9. 
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  (8) 

Here           is the body attitude with respect to a fixed world frame;        and 

            are the angular velocity and its associated skew-symmetric matrix, respectively;   

is the     symmetric angular inertia matrix; and   is the input torque. Note that in our 

simulations,   is set to the identity matrix. 

3.1 Contrast 

The performance of many visual servoing algorithms suffer when there is low contrast or texture. 

To investigate the effect of low contrast on the controllers, we took the naturalistic scene that 

was used for the full contrast simulations and reduced the contrast by 50% using the Python 

Imaging Library (PIL). The two scenes are shown in figure 2. 

 

Figure 2.  Full contrast (top) and low-contrast (bottom) naturalistic panorama scenes used in the cylindrical arena for 

fsee rendering. These scenes are included in the GUF simulator (25). 

3.2 Noise 

Real-world sensors at the MAV scale are often very noisy, and image collection and rendering 

can add additional noise to a system. To investigate the effect of noise on the controllers and 

evaluate their robustness, we added Gaussian noise with a range of standard deviations to the 

simulated luminance values of the GUF environment. We tested noise levels of 0%, 10%, and 

20%.  An n-vector of randomly distriburted numbers with a stadard deviation of 0, 0.1, and 0.2 

was created, and then normallized from 0–255 (the max pixel intensity).  This was added to the 

original image to create the 0%, 10%, and 20% noise. 

3.3 Controller Gains 

The bioplausible control law lacks a normalization term, as such the controller is sensitive to 

change in contrast within the observed environment. For optimum control, gains would need to 

be adjusted for different environments. Thus, to have a fair comparison across controllers, we ran 

simulations using a range of 25    and    gains. Across all the simulations and controllers we 
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kept the ratio of the       constant while scaling them individually for each controller to 

account for the differences in magnitude of the error computation.  The matrix of simulations 

conducted is shown in table 1 and figure 3. For these simulations we used the following gain 

ratios: 

Table 1.  The Kp and Kd gain settings examined. 

Kp:Kd ratio  Scaling Factors 

1. 4.5 14. 20.0  Bioplausible 0.1 

2. 5.6 15. 22.0  LK Feature Tracker 4.5 

3. 6.4 16. 25.0  Ideal Controller 1.0 

4. 7.8 17. 35.0    

5. 8.2 18. 45.0   

6. 9.1 19. 50.0   

7. 10.0 20. 50.0   

8. 10.0 21. 55.0   

9. 10.0 22. 70.0   

10. 11.1 23. 90.0   

11. 12.2 24. 100.0   

12. 14.0 25. 110.0   

13. 18.0 

  

  

 

 
Figure 3.  Overview of the simulation setup and the number of simulations used. 

3.4 Simulation Setup 

We initialize each simulation with a random goal orientation. We rotate the system 40° 

clockwise (CW) or counterclockwise (CCW) from this goal orientation—this is the initial 

orientation where the simulation begins. The pose stabilization control law tries to bring the 

system back to the goal orientation. We simulated 25 sets of gains, 3 types of controllers, 2 types 

of environments, and 3 noise levels, for a total of 450 simulations. For each simulation, we 

tracked the geodesic distance* between the goal orientation and the system’s orientation across 

time. 

While the bioplausible controller is able to directly use the luminosity readings of the full image 

of 1398 simulated fly ommatidia, the L-K feature tracking implementation in OpenCV was not 

designed to process the hexagonally sampled luminositie. To establish a reasonible basis for 

                                                 
*Geodesic distance can be thought of as arc length across along the surface of a sphere; the geodesic degree follows naturally. 

When geodesic distance approach zero, it implies the current has reached the goal orientation. 
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comparison, we used the fsee program to render a mercator representation of the luminosities 

(figure 1) and used the resulting 273 x 143 pixel image as the input for the L-K feature tracker an 

the Shi and Tomasi feature detector.  

4. Experimental Approach 

In order to validate the simulation results, experiments were performed using the mobile robot 

TurtleBot developed by WillowGarage (27). We conducted stability analysis of the two control 

algorithms in a real-world environment using the TurtleBot.  

Method. At a fixed position, we rotate the TurtleBot a full 360° in approximately 20° intervals. 

At each 20° interval, we set the observed image as the goal. We then rotate the TurtleBot 

clockwise by 20° and activate either the bioplausible or the feature tracker control law. Ideally, 

either  control law should rotate the robot 20°
 
 CCW to return it back to the goal image and 

orientation. In the experiment, we note whether the controller was (1) able to return the system 

back to the goal orientation and stabilize, (2) whether the system stabilized but to an incorrect 

goal orientation, or (3) whether the system was unstable.  To create a high and low-contrast 

environment, we modified the lighting in the room.  Figure 4 shows examples of the images 

under different conditions that the control algorithms operated on. A series of 25 tests at each 

environmental condition were performed. 

 

Figure 4.  Input images to the algorithms under different environments. The images have  

been upscaled for visualization purposes only. 

Low 
Contrast 

High 
Contrast 

Blurred Normal 
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The robot uses a differential drive for motion and is equipped with a Kinect sensor (28). The 

Kinect provided RGB image data for the bioplausible and feature tracker control algorithms 

tests. The input image of 640x480 was resized down to 40x32 (1280 pixels) for use in the control 

algorithms.  For the bioplausible controller, we first blurred the image using a 64x64 Gaussian 

kernel before resizing, as we found it decreased noise and inaccuracy in the residual error 

measurement. For the feature tracker, we examined both a blurred and unblurred input image. 

We repeated the experiments in both a high-contrast and low-contrast environment, as shown in 

figure 4.  Figure 5 shows a panorama of the testing environment in what we called the low and 

high-contrast states. 

 

Figure 5.  Two scenes representing low (bottom) and high (top) contrast environments used in testing the TurtleBot 

on the two algorithms. 

We did not use the depth data from the Kinect. The proportional gain for the bioplausible 

controller used to perform the following experiments was         for the low-contrast case 

and        in the high-contrast case. The proportional gain for the feature tracker was set to 

      in both the high- and low-contrast cases. We found the inherent damping of the 

TurtleBot to be sufficient for stable control and did not require a derivative term for the PD 

controller.  

5. Simulation Results 

In order to study the performance of the three visual servoing algorithms (bioplausible, feature 

tracker, and “ideal”), a set of simulations were carried out across 25 different combinations of 

proportional and derivative gains. We explored two levels of contrast (high and low) and three 

levels of sensor noise (none, 10%, and 20%).  For each algorithm, under each condition, we 

evaluated the stability of the controller, the residual steady state error, and the settling time.  

Additionally, we calculated the computation required to execute each algorithm. 
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5.1 Controller Stability 

In the high-contrast environment, shown on the left of figure 6, all three visual servoing 

algorithms were stable across all combinations of gains and image noise tested.  Simulations 

where the geodesic distance between the goal orientation and the rigid body’s orientation 

exceeded 180° were marked as unstable.  Noise is plotted for each controller type and for both 

contrast environments, where light gray corresponds to no noise; medium gray corresponds to 

10% noise; and, dark gray corresponds to 20% noise.  However, in the low-contrast environment, 

the bioplausible controller remained stable for only 60%–72% of the simulations depending on 

noise level, while both the feature tracker and ideal controller were stable for 100% of those 

identical simulations (figure 5).  It is interesting to note that for the bioplausible control in the 

low-contrast environment, the 20% noise performs better than the 10% noise.  Increasing the 

noise level adds additional energy to the system allowing the controller to avoid some local 

minima. As the magnitude of proportional term is generated by the magnitude of the error term, 

without a global normalization term, changes in contrast have a greater impact on the stability of 

the bioplausible controller than do increases in sensor noise.  

Controller Stability in Simulation 

 

Figure 6.  Percentage of simulations for each controller and environment where the system was stable. The 

graph on the left corresponds to the high-contrast simulation environment, and the image on the 

right corresponds to the low-contrast environment.  The three shaded bars for each controller 

correspond to No Noise (light gray), 10% Noise (medium gray), and 20% noise (dark gray).   

The graphs in figure 6 indicate 100% stability for all cases, except those for the bioplausible 

control under low-contrast environments.  This performance is expected, as the bioplausible 

control algorithm discards the normalization matrix that would account for changes in the 

environment, such as contrast, to accelerate the computation.  
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5.2 Steady State Errors 

We examined the steady-state error for each controller across the different noise and contrast 

environments. We define steady-state error as the maximum deviation from the goal orientation 

reached when starting the simulation at the goal orientation.  In figure 7, we see that for both the 

bioplausible controller and the feature tracker the steady-state error increases with increasing 

noise and decreasing contrast.  Noise is plotted for each controller type and both contrast 

environments, where light gray corresponds to no noise, medium gray corresponds to 10% noise, 

and dark gray corresponds to 20% noise.  The bars in the graphs represent the range of values for 

each of the different gains tested.  Across all the simulations, the feature tracker has lower 

variance in the steady-state error as a function of the gains tested.  Yet there is no evidence to 

support the feature tracker has significantly lower steady-state errors.  Both the feature tracking 

algorithm and the bioplausible algorithm had statistically significant differences from perfect 

control under all conditions. 

Controller Steady State Error – Simulation 

 

Figure 7.  Simulation results looking at the mean steady-state error and variance across the 25 combinations 

of gains for each controller in each of the six environments varying in noise and contrast.  The 

bars represent the mean of the 25 trials and the error bars represent ±1 STD.  The mean and STD 

for the ideal controller were approximately 0.  The graph on the left corresponds to the high-

contrast simulation environment, and the image on the right corresponds to the low-contrast 

environment.  The three shaded bars for each controller correspond to No Noise (light gray), 10% 

Noise (medium gray), and 20% noise (dark gray).  The “ideal” controller had a steady-state error 

of 0.0 ±0.0 degrees. 
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5.3 Settling Time 

For each simulation, we measure a settling time, as defined as the time the system took to 

stabilize to within 10% of the initial displacement from the goal image. Because settling time is 

determined to a large extent by the proportional and derivative gains, for each controller in each 

environment, we measure a mean settling time and a standard deviation across 25 sets of gains. 

As shown in figure 8, there is a large standard deviation in the settling times, which is expected 

because we tested a wide range of  gains for each setup. We found that in the ideal case of no-

noise, both the bioplausible and the feature tracker settled at approximately the same time. 

Interestingly, in this case, both the bioplausible and the feature tracker outperformed the ideal 

control.  

Settling Time – Simulation  

 

Figure 8.  Average settling time for each controller across 25 combinations of gains. Error bars represent the 

standard deviation in settling times across the 25 gains.  The graph on the left corresponds to the high-

contrast simulation environment, and the image on the right corresponds to the low-contrast environment.  

The three shaded bars for each controller correspond to No Noise (light gray), 10% Noise (medium 

gray), and 20% noise (dark gray).   

Adding 10% and 20% noise to the system caused the settling times to increase for both the 

bioplausible and feature tracker algorithms. The increase in variance within the settling times is 

more pronounced for the bioplausible control over the feature tracker due to the lack of a 

normalization matrix within the bioplausible control algorithm. In the low-contrast, 20% noise 

scenario, the settling time for the bioplausible control simulations exceeded the time limits of the 

simulation. In the high-contrast environment, while the mean settling time for the bioplausible 

controller is larger than for the feature tracking algorithm, this difference is not statistically 

significant (figure 7).    
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5.4 Summary 

In simulation, we found that in the ideal case without noise, both the feature tracker and 

bioplausible controller were comparable in performance in all three criteria, stability, steady-

state error, and settling time.  Contrast appeared to have a greater impact on stability than noise 

for the bioplausible control.  In steady-state error, the bioplausible control performed comparably 

to the feature tracker. While the feature tracker algorithm generally had a smaller variance and a 

lower error across all the gains tested under the different environments, it was not significantly 

better than the bioplausible control. For each condition, with the exception of the low-contrast 

with 20% noise, there were particular combinations of gains for which the bioplausible control 

outperformed the L-K feature tracker.  

In settling time measurements, both the feature tracking and bioplausible algorithms 

outperformed the linear controller with perfect sensors for the particular sets of gains used. It is 

possible the nonlinearity in the bioplausible and feature tracker controls work better for the 

proportional and derivative gain ratios used in this study.  Otherwise, in the high-contrast case 

the bioplausible control performed comparably to the feature tracker across the different noise 

levels. Contrast appeared to have a greater impact on the bioplausible controller. In the low-noise 

case for the bioplausible control, many simulations did not settle within the fixed time. 

5.5 Computation Time 

We approximated the computation time (table 2) of each algorithm by timing the crucial steps 

across 1000 iterations of the simulation. For the bioplausible control, the important steps were 

the two matrix multiplications to estimate    and      where               and           . 

We use Python’s NumPy library for the matrix multiplication. 

grad_r[i] = -dot(dot(S[:,:,i],y_lum), g_lum) 

omega_est[i] = dot(dot(S[:,:,i],y_lum), y_dot) 

For the feature tracker, the crucial steps are identifying good features and tracking them using  

L-K pyramidal implementation in OpenCV 2.3. In Python code: 

pp = cv2.goodFeaturesToTrack(im_array, mask = mask, **self.feature_params) 

p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None,**self.lk_params) 

p2, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None,**self.lk_params) 

Table 2.  Computation time measurements and estimates for serial  

and parallel implementations. 

Measured Serial Implementation of Bioplausible Control 8.17 s 

Measured Serial Implementation of L-K Feature Tracker 1.22 s 

 

The measurements were done on a Dell Latitude with Intel Pentium M 1.86 GHz processor and  

1 GB of RAM. Both timings were done using Python’s time.time() function. It is important to 

note that these timings may not exactly reflect computational complexity due to underlying 
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optimizations done within the NumPy and OpenCV libraries. Furthermore, the timings do not 

take into account the benefits of parallelization the bioplausible control offers. However, they 

provide a rough approximation of computational workload. 

Timing measurements suggest that the L-K feature tracker implementation is faster than the 

bioplausible control algorithm. To further examine this, we followed up the timing 

measurements with a computational complexity analysis. the OpenCV implementation of the L-

K feature tracker scales with O(N*Q), where N is the number of pixels within a window and Q is 

the number of features tracked (30, 31). From the work by Baker and Matthews (28), the 

complexity of the L-K approach O(n
2
*N+n

3
), we fix the warp factor (n) at 2, so it’s O(N) for one 

optic flow estimate.  Thus O(n
2
*N+n

3
) reduces to O(N*Q). This is preceded by the one-time call 

to the Shi and Tomasi corner detector (31), which can be quite complex depending on 

implementation.  The serial implementation of the bioplausible controller used and evaluated in 

this report scales with       , where N is the number of pixels.  However, the bioplausible 

algorithm was designed to operate in parallel.  Parallelizing the bioplausible control algorithm 

across N number of processors, where N is the number of pixels should bring the computation 

complexity down to O(N log N), but this does not account for inline delays needed.  The actual 

implementation of a parallelized bioplausible control will be O(N*log(N)) in the best case and 

O(N
3
) in the worst case.  The L-K algorithm is not as readily parallelized, but it too would 

benefit from parallelization, such that the computational cost would become O(N*log(Q)) in the 

worst case and O(Q) if a version of the L-K algorithm that was more amenable to parallelization 

was implemented.  It is estimated that the parallel implementation of the bioplausible control 

would require substantially less computational time than the L-K implemented either serially or 

in parallel or the serial bioplausible implemented algorithm.     

This analysis explains the results seen in the timing analysis. After the one-time step of 

identifying features, the LK tracker scales linearly with window size and number of features, 

where as the bioplausible controller scales with the fourth power of the number of pixels. In our 

simulations, the window size used for the L-K algorithm was 15x15 (N=225) and the number of 

features tracked was roughly 10. The image size for the bioplausible controller was N=1398. 

Thus, the bioplausible algorithm operating in serial requires a much greater number of 

computations.   

6. Experimental Results 

A series of experiments were performed to validate the simulation results with the TurtleBot. 

The results are shown for the TurtleBot rotating a full 360° in approximately 20° intervals, 

setting a new goal image each time. The L-K and bioplausible algorithm were assessed on 

whether each was (1) able to return the system back to the goal orientation and stabilize,  

(2) whether the system stabilized but to an incorrect goal orientation, or (3) whether the system 
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was unstable.  The aggregate results from 25 experiments are shown as a function of contrast and 

blurring of the L-K algorithm.   

In addition to resizing the input image from the Kinect down to 40x32, we also attempted to 

resize it to a 640x12 image and select the two center rows of pixels as the input to the control 

algorithms. While the bioplausible controller was able to use this input data successfully, the L-K 

feature tracker algorithm failed at finding features when given a 640x2 input image. Therefore, 

the experimental results presented here are only those from the 40x32 images. 

6.1 360° Sweep 

The experimental stabilization and accuracy results for the full 360° sweep of the room in 20° 

intervals, are shown here. For each orientation, we noted whether the TurtleBot was able to 

accurately stabilize back to the goal, whether it stabilized to an incorrect goal orientation, or 

whether it was unstable.  These tests were repeated 25 times, and the aggregate results are shown 

in figures 9 and 10.  

When we examined the accuracy of the two algorithms, in the high-contrast environment, we 

found that the feature tracker using the unblurred image performed the best with 69% of cases 

stabilizing accurately. The difference between the unblurred L-K algorithm and the bioplausible 

control (at 59% accurate stability) was statistically insignificant.  The feature tracker using the 

blurred image performed the worst (41%). In the low-contrast environment, there were no 

statistically significant difference between the three controllers; each achieved accurate 45% of 

the time (figure 9).  The reduced contrast environment significantly reduced the ability of both of 

the algorithms to achieve accurate stability. 

 

Figure 9.  Percent of cases in the 360° sweep where the TurtleBot accurately stabilized back  

to the goal orientation. 
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Next, we looked at the percent of cases in the 360° sweep where the controller went unstable 

(i.e., did not settle within 30 s).  For this stability analysis, stabilization of any sort, to either an 

accurate goal orientation or an incorrect goal orientation, were equivalent. In the high-contrast 

environment, the unblurred L-K algorithm achieved the best results (94%), and it was 

significantly different than the bioplausible algorithm (81% accuracy).  In the low-contrast 

environment, the blurred and unblurred L-K algorithm were not statistically significantly 

different, and both stabilized significantly more often than the bioplausible algorithm.  In each 

environment, both variations of the feature tracker remain more stable than the bioplausible 

controller.  These results are shown in figure 10.   

 

Figure 10.  Percent of cases in the 360° sweep where the controller kept the TurtleBot stable, even if the 

stabilization point was incorrect. 

In general, it appears that the bioplausible controller is more likely to become unstable.  We 

hypothesize that this is a result of the lack of the normalization vector.  When switching from the 

high-contrast to the low-contrast image, we found that the TurtleBot did not initially respond 

using the bioplausible control algorithm. The gain needed to be increased from         to 

        for the controller to provide enough torque for the TurtleBot to rotate. The output of 

the bioplausible algorithm is directly proportional to the brightness of the environment, as the 

normalization matrix has been discarded (3). Therefore, a decrease in environment brightness, 

when switching from the high contrast to the low-contrast environment, needed to be 

compensated for with higher gains.  

Similar to the simulations, the experiments on the TurtleBot showed the L-K feature tracker 

using a sharp input image performing best in both accurate stabilization as well as stability in 

high-contrast situations. In the low-contrast situation, the bioplausible controller appears more 
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likely to go unstable, but it performs comparably to the feature tracker on accuracy to goal image 

when it remains stable.  Additionally, it is noteworthy that while the bioplausible controller is 

more likely to not settle, when it does settle, it is much more likely to settle to the correct image. 

Thus, the bioplausible was much more likely to be accurate, when it did settle.  As shown in 

table 3, the bioplausible controller performed as well as the unblurred L-K algorithm in the high-

contrast environment, and is significantly better than the blurred L-K algorithm.  In the low-

contrast environment, the bioplausible algorithm significantly outperformed both the blurred and 

unblurred L-K algorithm. 

Table 3.  The accuracy of the controller, when the controller settled to an image for  

both high- and low-contrast environments. 

  High Contrast Low Contrast 

Bioplausible 71.4% 63.2% 

Feature Tracker 45.5% 40.0% 

Feature Tracker-Unblurred 70.8% 45.8% 

 

It is important to note the L-K feature tracker is limited by the rectangular image requirement 

and fails when using images of unusual sizes such as 640x2. The bioplausible controller is 

agnostic to the actual shape of the image and works under a 640x2, and will work under any 

arrangement of pixels as long as their orientations are known. 

7. Conclusions 

We have compared the performance of two visual servoing algorithms with an ideal linear 

control, the bioplausible controller and the feature tracking controller, in simulation and robotic 

experimentation.  

Given that the bioplausible control disregards a normalization term in the algorithm, the greater 

losses in performance observed in different environments is understandable. However, in high-

contrast environments, the bioplausible controller generally performed on par with the feature 

tracker. The variance in errors, stability, and settling time are larger; however, this was because 

we were testing over a range of gains while in reality an optimal set of gains would be chosen.  

In this study comparing the bioplausible control against feature tracking in 1-D yaw stabilization, 

there are two important outcomes. First, the bioplausible controller is particularly sensitive to 

contrast. Gains that are dynamically adjusted to scene contrast and brightness may overcome this 

sensitivity. Second, in good conditions, high contrast and low noise, the bioplausible controller 

performs comparably to the feature tracker, and given its potential to be parallelized, it could 

perform faster as well. For non-optimal gains, the bioplausible controller is much more likely to 

become unstable compared to the feature tracker. 
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Computationally, the serial implementation of the L-K  feature tracker ran faster than the 

bioplausible controller.  The true benefit of the bioplausible controller stems from its 

parallelization capability. Theoretically running the computation across many hundreds or 

thousands of processing elements should increase speed by orders of magnitude. The same scale 

of improvements with parallelization simply is not possible with the L-K feature tracker.   The 

validity of this assertion is the subject of future research. 

The bioplausible controller is more sensitive to the values of the proportional and derivative 

gains relative to its counterpart the feature tracker. The optimal set of gains to use will change 

with environment brightness and contrast. A system that is able to dynamically adjust its gains as 

it traverses through new environments will be required for the bioplausible controller. The gains 

could be calibrated at predetermined time intervals using. It may be possible to use other sensors 

such as an inertial measurement unit or a brightness detector to aid in this calibration and gain 

modification approach. 
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List of Symbols, Abbreviations, and Acronyms 

Bioplausibility  a loose collection of engineering principles that seek to confine design 

research to that which could occur in a biological process 

CCW counterclockwise 

CW clockwise 

fsee  the optical engine of the GUF flight simulator 

GUF Grand Unified Fly flight simulator for the drosophila 

L-K Lucas-Kanade optical flow algorithms 

MAV micro air vehicle  

MOSFETs metal oxide semiconductor field effect transistors 

PD proportional-derivative/damping (controller) 

PIL Python Image Library 

RGB red, green, blue 

STD standard deviation (normal) 

SWaP size, weight, and power  

          the space of continuous functions from    to    

   the L-K estimate using a least-squares minimization of the error residual; e.g., 

the optic flow at  .  

    the spatial difference on the x axis between the observed feature and the goal 

feature for the i-th feature  

e(t)  error as a function of time 

    vector containing the features in the goal image 

         as the proportional part of the PD controller  

k visual features for the Shi and Tomasi corner detector 

kd gain for the derivative controller 

kp gain for the proportional controller 
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        Image with grayscale values at location x,y 

   the     symmetric angular inertia matrix 

J(R) error function 

m  known map of the orientation, environment, and time to the visual input  .  

      the set of measurements in the observed image, e.g. pixel brightness values  

N The number of pixels in an image 

n  the number of features being tracked  

Q the number of features to be tracked 

R orientation 

   goal orientation 

R         is the body attitude with respect to a fixed world frame 

S differential operator 

s  spans the visual sphere    

  input torque 

            
 
 a feature in image   

         
 
  a feature in image   such that      is similar to      

  angular velocity 

        the angular velocity matrix  

             ,  bilinear estimate of angular velocity 

             associated skew-symmetric matrix for the angular velocity 

   and     the integration window size parameters in the x and y direction for the 

pyramidal implementation of the L-K feature tracker  

       the tangent vector field to the unit sphere         the goal image 

y the visual input 

          as the derivative/damping part of the PD controller  
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