

Implementation and Validation of Bioplausible Visual

Servoing Control

by Vishnu Ganesan, Alec Koppel, Shuo Han, Joe Conroy, Alma Wickenden,

Richard Murray, and William Nothwang

ARL-TR-6387 March 2013

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position

unless so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or

approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Adelphi, MD 20783-1197

ARL-TR-6387 March 2013

Implementation and Validation of Bioplausible Visual

Servoing Control

Vishnu Ganesan

Sensors and Electron Devices Directorate, ARL

and

Case Western Reserve, Cleveland Clinic

Alec Koppel
Sensors and Electron Devices Directorate, ARL

and

University of Pennsylvania, GRASP Lab

Joe Conroy, Alma Wickenden, and William Nothwang
Sensors and Electron Devices Directorate, ARL

Shuo Han and Richard Murray
California Institute of Technology

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the

data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the

burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.

Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently

valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

March 2013

2. REPORT TYPE

Final

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

Implementation and Validation of Bioplausible Visual Servoing Control

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Vishnu Ganesan, Alec Koppel, Shuo Han, Joe Conroy, Alma Wickenden,

Richard Murray, and William Nothwang

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory

ATTN: RDRL-SER-L

2800 Powder Mill Road

Adelphi, MD 20783-1197

8. PERFORMING ORGANIZATION
 REPORT NUMBER

ARL-TR-6387

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

In this report, we compare the performance of the Lucas-Kanade algorithm with feature tracking with the bioplausible optical

flow algorithm to achieve pose stabilization in the context of one-dimensional (1-D) attitude stabilization. These results have

been benchmarked against an ideal controller in both simulation and robotic experimentation. Within both environments, the

accuracy, stability, and settling time were evaluated as a function of contrast and system noise. Both algorithms achieved

reasonable performance when compared to the ideal controller, but in most cases the Lucas-Kanade algorithm outperformed

the bioplausible algorithm. Within the evaluated serial implementation, the Lucas-Kanade algorithm was also faster. It is

anticipated that both performance and processing speed will improve for the bioplausible algorithm when it is implemented in

a parallel instantiation.

15. SUBJECT TERMS

Optical flow, feature tracking, bioplausible, pose stabilization, computational efficiency, robotic control

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

32

19a. NAME OF RESPONSIBLE PERSON

William Nothwang

a. REPORT

Unclassified

b. ABSTRACT

Unclassified

c. THIS PAGE

Unclassified

19b. TELEPHONE NUMBER (Include area code)

(301) 394-1163

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

iii

Contents

List of Figures v

List of Tables vi

1. Introduction 1

2. Visual Servoing Techniques 2

2.1 Bioplausible Control..3

2.2 Feature Tracking..4

2.3 “Ideal” Control ..5

3. Simulations 5

3.1 Contrast ...6

3.2 Noise ..6

3.3 Controller Gains ..6

3.4 Simulation Setup ...7

4. Experimental Approach 8

5. Simulation Results 9

5.1 Controller Stability ..10

5.2 Steady State Errors ..11

5.3 Settling Time ...12

5.4 Summary ...13

5.5 Computation Time ...13

6. Experimental Results 14

6.1 360° Sweep ..15

7. Conclusions 17

8. References 19

iv

List of Symbols, Abbreviations, and Acronyms 22

Distribution List 24

v

List of Figures

Figure 1. Example simulation of compound fly vision in GUF. This is the rendering of a
forest environment seen through the receptors of a model fly...5

Figure 2. Full contrast (top) and low-contrast (bottom) naturalistic panorama scenes used in
the cylindrical arena for fsee rendering. These scenes are included in the GUF simulator
(25). ..6

Figure 3. Overview of the simulation setup and the number of simulations used.7

Figure 4. Input images to the algorithms under different environments. The images have
been upscaled for visualization purposes only...8

Figure 5. Two scenes representing low (bottom) and high (top) contrast environments used
in testing the TurtleBot on the two algorithms. ...9

Figure 6. Percentage of simulations for each controller and environment where the system
was stable. The graph on the left corresponds to the high-contrast simulation
environment, and the image on the right corresponds to the low-contrast environment.
The three shaded bars for each controller correspond to No Noise (light gray), 10% Noise
(medium gray), and 20% noise (dark gray). ..10

Figure 7. Simulation results looking at the mean steady-state error and variance across the 25
combinations of gains for each controller in each of the six environments varying in noise
and contrast. The bars represent the mean of the 25 trials and the error bars represent ±1
STD. The mean and STD for the ideal controller were approximately 0. The graph on
the left corresponds to the high-contrast simulation environment, and the image on the
right corresponds to the low-contrast environment. The three shaded bars for each
controller correspond to No Noise (light gray), 10% Noise (medium gray), and 20% noise
(dark gray). The “ideal” controller had a steady-state error of 0.0 ±0.0 degrees.11

Figure 8. Average settling time for each controller across 25 combinations of gains. Error
bars represent the standard deviation in settling times across the 25 gains. The graph on
the left corresponds to the high-contrast simulation environment, and the image on the
right corresponds to the low-contrast environment. The three shaded bars for each
controller correspond to No Noise (light gray), 10% Noise (medium gray), and 20% noise
(dark gray). ...12

Figure 9. Percent of cases in the 360° sweep where the TurtleBot accurately stabilized back
to the goal orientation. ...15

Figure 10. Percent of cases in the 360° sweep where the controller kept the TurtleBot stable,
even if the stabilization point was incorrect. ...16

vi

List of Tables

Table 1. The Kp and Kd gain settings examined. ..7

Table 2. Computation time measurements and estimates for serial and parallel
implementations. ..13

Table 3. The accuracy of the controller, when the controller settled to an image for both
high- and low-contrast environments...17

1

1. Introduction

In recent years, micro air vehicles (MAVs) have been increasingly applied in rescue,

surveillance, and aerial observation tasks. These new applications demand more autonomous

behavior to support human operators, improve capabilities, and generally increase operational

safety (17). For many of these applications, MAVs are required to navigate complex urban

environments in potentially turbulent conditions. The signal processing, control system, and

hardware computation bandwidth constraints are major hurdles in tackling this problem. MAVs

typically have wingspans less than 6 in and small payload capacities, limiting their size, weight,

and power usage (18). Visual sensors offer the potential to address the bandwidth issue within

the overall size, weight, and power (SWaP) constraints. In this report, we focus on vision-based

algorithms for control, collectively known as visual servoing.

Visual servoing algorithms in robotics have been extensively developed over the past two

decades for use in industrial applications, stabilization, and navigation (11, 13–15). Visual

servoing processes information gathered by an image sensor to generate control signals to steer a

dynamical system by comparing where a system is, as measured by the visual sensor, to where

the system should be (20). Most of the available servoing techniques use optical flow, which can

be generally divided into two classes: those that use the whole image to improve accuracy and

those that use a portion of the image to improve computational cost. Those that use a portion of

the image are typically either feature based or model based. Feature-based servoing tracks two-

dimensional (2-D) features such as points, lines, circles, or other points of interest, which can be

extracted using computer vision techniques (21). Model-based approaches extract a three-

dimensional (3-D) model representation of the object being tracked and, assuming the model is

highly correlated to the object, are typically more robust to outliers and occlusions (21).

Recently, visual servoing approaches that bypass the classic matching and tracking approach,

such as those by Collewet et al., (14), Deguchi (22), and Kallem et al. (16), have been proposed.

Kallem et al. (16) for example, consider using a kernel-based method that gives a highly

decoupled control law. However, this approach cannot be used for six-degrees-of-freedom

(DOF) control of a robot (20).

In that manner, the Murray group (3) has developed what they define as a bioplausible approach

to visual servoing. Bioplausibility refers to a loose collection of engineering principles that seek

to confine design research to that which could occur in a biological process (such as a neural

network) (2). Control theory inspired by the principles of biological systems has recently made

significant advancements due to the work of Dickson et al. (1) and many others. The bioplausible

approach proposed by Han et al. (2), and implemented in this report, uses the full image and

removes the normalization matrix to enable it to be featureless and parallelizable, thus reducing

2

the computational cost, but this process is at the expense of global normalization, which

introduces some approximation error.

In the constrained MAV environment, algorithms that have both speed and minimal

approximation error are desirable (19). Toward this end, we present two algorithms within this

report. The first, based on the work by Han et al. (2) uses the more accurate full image and then

relaxes the algorithm to improve the computational cost. The second approach begins with a

feature tracking based approach that is initially less accurate but more computationally efficient,

and then we introduce some iterative windowing. This improves the accuracy but at some

additional computational cost. Our previous research (23) indicated that the bioplausible

algorithm developed by Han et al. (2) was stable for modest noise and contrast. However, for

high noise and low contrast, the bioplausible control algorithm had difficulty settling in a time

that enable the control loop to be closed fast enough for stable flight. It is anticipated that the

bioplausible control will converge more quickly but at a reduced accuracy for pose stabilization

behavior. To fully evaluate the efficacy of the proposed bioplausible approach, it is essential to

understand the tradeoffs between the complexity of the visual servoing task in terms of sensor

noise and image contrast, the bandwidth of the feedback controller, the stability of the closed

loop, and the performance of the closed loop system (18). We examine these tradeoffs by

comparing the newly developed bioplausible control against the Lucas-Kanade (L-K) image-

based feature tracking approach (4) in simulation and experimental platform

2. Visual Servoing Techniques

For this report, we implement a proportional-derivative (PD) control using either the bioplausible

or the L-K approach to accomplish a visual servoing task. Visual servoing aims to drive the

orientation and position of the robot to a reference image (26). Visual servoing was chosen as an

exemplar task because it is sensitive to both noise and contrast, can be computationally

intractable, and enables an exact comparison between the goal and current state for all controls

We assume at each time a collection of sensors with a fixed field of view and orientation relative

to the vehicle body center outputs a visual field. The assumption of a discrete visual field is

equally applicable to standard cameras, catadioptric cameras, or the compound vision of a fruit

fly. From this assumption, it is possible to map each pixel on the focal plane to a vector on the

unit sphere . Thus, as shown in equation 1, each observed luminance can be transformed

through a function defined on the unit sphere:

 (1)

where m is some known map of the orientation, environment, and time to the visual input .

R is the body attitude and s spans the visual sphere (2).

3

Both the bioplausible and L-K approaches were shown to be nominally robust in all three axes in

simulation with moderate noise and contrast. For visualization purposes, in this report, we

constrain the simulation and the experimental controls to one dimension (yaw), and evaluate the

effects of noise, contrast, computational load, and settling time for both the bioplausible and L-K

compared to an ideal control.

2.1 Bioplausible Control

The bioplausible visual servoing technique aims to be parallelizable and featureless in its

computations. The bioplausible approach calculates the raw error between the observed image

and the goal image, and generates the input control servoing signals from the change in error

with time. The full derivation of this approach can be found in Han et al. (2).

Here, we predefine a goal image , which is a particular value of at a certain goal

orientation , where y is the vector of luminosities or pixel brightness values. The problem of

visual attitude stabilization is stated succinctly as choosing the input torque such that the error

between the visual input and the goal image approaches zero. Under mild assumptions on the

environment, this also guarantees that the orientation approaches and the angular velocity

approaches zero.

The problem of visual attitude stabilization amounts to minimizing an error function that

represents how “far” away the present visual input is from the goal image. The error function we

chose to minimize is

 . From Censi et al. (3), we know the gradient flow that

minimizes this cost functional is . In equations 2, we define S to be a linear

differential operator

 (2)

where refers to the space of continuous functions from to and is the

tangent vector field to the unit sphere.

Equation 3 represents the control law as a PD controller with as the proportional part

and as the derivative part. The damping term is necessary to choose the torque

such that is driven to zero near the goal image.

 (3)

This control makes , locally asymptotically stable. We define , the

bilinear estimate of the angular velocity. Therefore, the above control simplifies to

 (3). For the results presented in this report, we further simplify this control for use in one-

dimensional (1-D) yaw stabilization.

4

2.2 Feature Tracking

To evaluate the proposed bioplausible control, we have implemented another PD control using

the Shi and Tomasi corner detector for feature identification and the sparse implementation of

the L-K algorithm for tracking them (4, 5, 8). Together, these two algorithms are compared

against the bioplausible control for stabilization. Using the L-K feature tracking algorithm, we

can determine the shifts of features between the goal image and the observed to generate an

error, which is fed to the control loop. As with the bioplausible control, the aim of feature

tracking, shown in equation 4, is to minimize an error e(t) and bring the system to the goal image

and orientation. The error is defined here as

 (4)

where is the set of measurements in the observed image, e.g., pixel brightness values.

These image measurements are used to compute a vector of k visual features, , e.g.,

using the Shi and Tomasi corner detector. The vector contains the features in the goal image

(7). This error term should be interpreted as the “distance” between the features of the present

image and the features of the goal image.

To identify features, we use the Shi and Tomasi corner detector (8) and track these features from

image to image using the sparse implementation of the L-K algorithm (4, 5). The tracking

problem can be explained in the following way. As shown in equation 5, for two grayscale

images, and , where is the value of the pixel at . If we let

be a

feature in image , we want to find

 on such that is similar to .

 . (5)

 in this case is the optic flow at . In our case, d is the error between the two points. L-K

estimates using a least-squares minimization of the error residual, as shown in equation 6:

 (6)

Here, and are the integration window size parameters. We use the pyramidal

implementation of the L-K tracker in our algorithm (6).

For this study, we perform 1-D visual servoing in the yaw axis and compute the error as the

average of for all the features found in the image. To add robustness to the L-K controller, we

reject mistracked points by computing from both and and removing points that

differ by more than 50 pixel lengths. Our final control law is shown in equation 7.

 (7)

5

 is the spatial difference on the x-axis between the observed feature and the goal feature for the

i-th feature; and n is the number of features.

We use implementations of the Shi and Tomasi corner detector and the LK feature tracker found

in the open source computer vision library, OpenCV, for our simulations and experiments.

2.3 “Ideal” Control

We create an ideal linear controller within the simulation that knows its exact orientation at all

times. This perfect controller provides a reference to compare the bioplausible and feature

tracker against. The error for this ideal controller is the signed difference in angle between the

goal and the current orientation. The ideal PD control law the same as equation 7 with perfect

knowledge of state and error.

3. Simulations

Our simulations are implemented on the Grand Unified Fly (GUF) component fsee, a fly vision

simulation environment illustrated in figure 1 (25). Given a 3-D virtual world model, fsee

generates monochromatic luminance readings for a simulated hexagonally sampled 1398 fly

ommatidia (3). We choose a cylindrical arena as the environment with a panorama of a natural

scene on the walls of this environment along with a sky and ground. The contrast and noise

within the image shown in figure 1 were altered, and the settling time, residual error, and

stability were measured for the bioplausible, L-K, and ideal PD controllers across a range of

controller gains.

Grand Unified Fly

Goal Image Example Starting Image

Figure 1. Example simulation of compound fly vision in GUF. This is the rendering of a forest environment seen

through the receptors of a model fly.

We describe the rotational motion of a fully actuated rigid body through a constrained second-

order system. We constrain the torques that can be applied to this system to those seen in natural

fly saccades (9), as shown in equation 9.

6

 (8)

Here is the body attitude with respect to a fixed world frame; and

 are the angular velocity and its associated skew-symmetric matrix, respectively;

is the symmetric angular inertia matrix; and is the input torque. Note that in our

simulations, is set to the identity matrix.

3.1 Contrast

The performance of many visual servoing algorithms suffer when there is low contrast or texture.

To investigate the effect of low contrast on the controllers, we took the naturalistic scene that

was used for the full contrast simulations and reduced the contrast by 50% using the Python

Imaging Library (PIL). The two scenes are shown in figure 2.

Figure 2. Full contrast (top) and low-contrast (bottom) naturalistic panorama scenes used in the cylindrical arena for

fsee rendering. These scenes are included in the GUF simulator (25).

3.2 Noise

Real-world sensors at the MAV scale are often very noisy, and image collection and rendering

can add additional noise to a system. To investigate the effect of noise on the controllers and

evaluate their robustness, we added Gaussian noise with a range of standard deviations to the

simulated luminance values of the GUF environment. We tested noise levels of 0%, 10%, and

20%. An n-vector of randomly distriburted numbers with a stadard deviation of 0, 0.1, and 0.2

was created, and then normallized from 0–255 (the max pixel intensity). This was added to the

original image to create the 0%, 10%, and 20% noise.

3.3 Controller Gains

The bioplausible control law lacks a normalization term, as such the controller is sensitive to

change in contrast within the observed environment. For optimum control, gains would need to

be adjusted for different environments. Thus, to have a fair comparison across controllers, we ran

simulations using a range of 25 and gains. Across all the simulations and controllers we

7

kept the ratio of the constant while scaling them individually for each controller to

account for the differences in magnitude of the error computation. The matrix of simulations

conducted is shown in table 1 and figure 3. For these simulations we used the following gain

ratios:

Table 1. The Kp and Kd gain settings examined.

Kp:Kd ratio Scaling Factors

1. 4.5 14. 20.0 Bioplausible 0.1

2. 5.6 15. 22.0 LK Feature Tracker 4.5

3. 6.4 16. 25.0 Ideal Controller 1.0

4. 7.8 17. 35.0

5. 8.2 18. 45.0

6. 9.1 19. 50.0

7. 10.0 20. 50.0

8. 10.0 21. 55.0

9. 10.0 22. 70.0

10. 11.1 23. 90.0

11. 12.2 24. 100.0

12. 14.0 25. 110.0

13. 18.0

Figure 3. Overview of the simulation setup and the number of simulations used.

3.4 Simulation Setup

We initialize each simulation with a random goal orientation. We rotate the system 40°

clockwise (CW) or counterclockwise (CCW) from this goal orientation—this is the initial

orientation where the simulation begins. The pose stabilization control law tries to bring the

system back to the goal orientation. We simulated 25 sets of gains, 3 types of controllers, 2 types

of environments, and 3 noise levels, for a total of 450 simulations. For each simulation, we

tracked the geodesic distance* between the goal orientation and the system’s orientation across

time.

While the bioplausible controller is able to directly use the luminosity readings of the full image

of 1398 simulated fly ommatidia, the L-K feature tracking implementation in OpenCV was not

designed to process the hexagonally sampled luminositie. To establish a reasonible basis for

*Geodesic distance can be thought of as arc length across along the surface of a sphere; the geodesic degree follows naturally.

When geodesic distance approach zero, it implies the current has reached the goal orientation.

8

comparison, we used the fsee program to render a mercator representation of the luminosities

(figure 1) and used the resulting 273 x 143 pixel image as the input for the L-K feature tracker an

the Shi and Tomasi feature detector.

4. Experimental Approach

In order to validate the simulation results, experiments were performed using the mobile robot

TurtleBot developed by WillowGarage (27). We conducted stability analysis of the two control

algorithms in a real-world environment using the TurtleBot.

Method. At a fixed position, we rotate the TurtleBot a full 360° in approximately 20° intervals.

At each 20° interval, we set the observed image as the goal. We then rotate the TurtleBot

clockwise by 20° and activate either the bioplausible or the feature tracker control law. Ideally,

either control law should rotate the robot 20°

 CCW to return it back to the goal image and

orientation. In the experiment, we note whether the controller was (1) able to return the system

back to the goal orientation and stabilize, (2) whether the system stabilized but to an incorrect

goal orientation, or (3) whether the system was unstable. To create a high and low-contrast

environment, we modified the lighting in the room. Figure 4 shows examples of the images

under different conditions that the control algorithms operated on. A series of 25 tests at each

environmental condition were performed.

Figure 4. Input images to the algorithms under different environments. The images have

been upscaled for visualization purposes only.

Low
Contrast

High
Contrast

Blurred Normal

9

The robot uses a differential drive for motion and is equipped with a Kinect sensor (28). The

Kinect provided RGB image data for the bioplausible and feature tracker control algorithms

tests. The input image of 640x480 was resized down to 40x32 (1280 pixels) for use in the control

algorithms. For the bioplausible controller, we first blurred the image using a 64x64 Gaussian

kernel before resizing, as we found it decreased noise and inaccuracy in the residual error

measurement. For the feature tracker, we examined both a blurred and unblurred input image.

We repeated the experiments in both a high-contrast and low-contrast environment, as shown in

figure 4. Figure 5 shows a panorama of the testing environment in what we called the low and

high-contrast states.

Figure 5. Two scenes representing low (bottom) and high (top) contrast environments used in testing the TurtleBot

on the two algorithms.

We did not use the depth data from the Kinect. The proportional gain for the bioplausible

controller used to perform the following experiments was for the low-contrast case

and in the high-contrast case. The proportional gain for the feature tracker was set to

 in both the high- and low-contrast cases. We found the inherent damping of the

TurtleBot to be sufficient for stable control and did not require a derivative term for the PD

controller.

5. Simulation Results

In order to study the performance of the three visual servoing algorithms (bioplausible, feature

tracker, and “ideal”), a set of simulations were carried out across 25 different combinations of

proportional and derivative gains. We explored two levels of contrast (high and low) and three

levels of sensor noise (none, 10%, and 20%). For each algorithm, under each condition, we

evaluated the stability of the controller, the residual steady state error, and the settling time.

Additionally, we calculated the computation required to execute each algorithm.

10

5.1 Controller Stability

In the high-contrast environment, shown on the left of figure 6, all three visual servoing

algorithms were stable across all combinations of gains and image noise tested. Simulations

where the geodesic distance between the goal orientation and the rigid body’s orientation

exceeded 180° were marked as unstable. Noise is plotted for each controller type and for both

contrast environments, where light gray corresponds to no noise; medium gray corresponds to

10% noise; and, dark gray corresponds to 20% noise. However, in the low-contrast environment,

the bioplausible controller remained stable for only 60%–72% of the simulations depending on

noise level, while both the feature tracker and ideal controller were stable for 100% of those

identical simulations (figure 5). It is interesting to note that for the bioplausible control in the

low-contrast environment, the 20% noise performs better than the 10% noise. Increasing the

noise level adds additional energy to the system allowing the controller to avoid some local

minima. As the magnitude of proportional term is generated by the magnitude of the error term,

without a global normalization term, changes in contrast have a greater impact on the stability of

the bioplausible controller than do increases in sensor noise.

Controller Stability in Simulation

Figure 6. Percentage of simulations for each controller and environment where the system was stable. The

graph on the left corresponds to the high-contrast simulation environment, and the image on the

right corresponds to the low-contrast environment. The three shaded bars for each controller

correspond to No Noise (light gray), 10% Noise (medium gray), and 20% noise (dark gray).

The graphs in figure 6 indicate 100% stability for all cases, except those for the bioplausible

control under low-contrast environments. This performance is expected, as the bioplausible

control algorithm discards the normalization matrix that would account for changes in the

environment, such as contrast, to accelerate the computation.

11

5.2 Steady State Errors

We examined the steady-state error for each controller across the different noise and contrast

environments. We define steady-state error as the maximum deviation from the goal orientation

reached when starting the simulation at the goal orientation. In figure 7, we see that for both the

bioplausible controller and the feature tracker the steady-state error increases with increasing

noise and decreasing contrast. Noise is plotted for each controller type and both contrast

environments, where light gray corresponds to no noise, medium gray corresponds to 10% noise,

and dark gray corresponds to 20% noise. The bars in the graphs represent the range of values for

each of the different gains tested. Across all the simulations, the feature tracker has lower

variance in the steady-state error as a function of the gains tested. Yet there is no evidence to

support the feature tracker has significantly lower steady-state errors. Both the feature tracking

algorithm and the bioplausible algorithm had statistically significant differences from perfect

control under all conditions.

Controller Steady State Error – Simulation

Figure 7. Simulation results looking at the mean steady-state error and variance across the 25 combinations

of gains for each controller in each of the six environments varying in noise and contrast. The

bars represent the mean of the 25 trials and the error bars represent ±1 STD. The mean and STD

for the ideal controller were approximately 0. The graph on the left corresponds to the high-

contrast simulation environment, and the image on the right corresponds to the low-contrast

environment. The three shaded bars for each controller correspond to No Noise (light gray), 10%

Noise (medium gray), and 20% noise (dark gray). The “ideal” controller had a steady-state error

of 0.0 ±0.0 degrees.

Bioplausible Feature Tracker Ideal Bioplausible Feature Tracker Ideal
0

5

10

15

20

25

30

35

40

45

50

S
te

a
d

y
 S

ta
te

 E
rr

o
r

(D
e
g

re
e
s
)

Controller Type

No Noise

10% Noise

20% Noise

High Contrast Environment Low Contrast Environment

12

5.3 Settling Time

For each simulation, we measure a settling time, as defined as the time the system took to

stabilize to within 10% of the initial displacement from the goal image. Because settling time is

determined to a large extent by the proportional and derivative gains, for each controller in each

environment, we measure a mean settling time and a standard deviation across 25 sets of gains.

As shown in figure 8, there is a large standard deviation in the settling times, which is expected

because we tested a wide range of gains for each setup. We found that in the ideal case of no-

noise, both the bioplausible and the feature tracker settled at approximately the same time.

Interestingly, in this case, both the bioplausible and the feature tracker outperformed the ideal

control.

Settling Time – Simulation

Figure 8. Average settling time for each controller across 25 combinations of gains. Error bars represent the

standard deviation in settling times across the 25 gains. The graph on the left corresponds to the high-

contrast simulation environment, and the image on the right corresponds to the low-contrast environment.

The three shaded bars for each controller correspond to No Noise (light gray), 10% Noise (medium

gray), and 20% noise (dark gray).

Adding 10% and 20% noise to the system caused the settling times to increase for both the

bioplausible and feature tracker algorithms. The increase in variance within the settling times is

more pronounced for the bioplausible control over the feature tracker due to the lack of a

normalization matrix within the bioplausible control algorithm. In the low-contrast, 20% noise

scenario, the settling time for the bioplausible control simulations exceeded the time limits of the

simulation. In the high-contrast environment, while the mean settling time for the bioplausible

controller is larger than for the feature tracking algorithm, this difference is not statistically

significant (figure 7).

Bioplausible Feature Tracker Ideal Bioplausible Feature Tracker Ideal
0

0.5

1

1.5

2

2.5

3

Controller Type

M
e
a
n

 S
e
tt

li
n

g
 T

im
e
 (

s
)

20% Noise

10% Noise

No Noise

High Contrast Environment Low Contrast Environment

*No Data

*Limited data

13

5.4 Summary

In simulation, we found that in the ideal case without noise, both the feature tracker and

bioplausible controller were comparable in performance in all three criteria, stability, steady-

state error, and settling time. Contrast appeared to have a greater impact on stability than noise

for the bioplausible control. In steady-state error, the bioplausible control performed comparably

to the feature tracker. While the feature tracker algorithm generally had a smaller variance and a

lower error across all the gains tested under the different environments, it was not significantly

better than the bioplausible control. For each condition, with the exception of the low-contrast

with 20% noise, there were particular combinations of gains for which the bioplausible control

outperformed the L-K feature tracker.

In settling time measurements, both the feature tracking and bioplausible algorithms

outperformed the linear controller with perfect sensors for the particular sets of gains used. It is

possible the nonlinearity in the bioplausible and feature tracker controls work better for the

proportional and derivative gain ratios used in this study. Otherwise, in the high-contrast case

the bioplausible control performed comparably to the feature tracker across the different noise

levels. Contrast appeared to have a greater impact on the bioplausible controller. In the low-noise

case for the bioplausible control, many simulations did not settle within the fixed time.

5.5 Computation Time

We approximated the computation time (table 2) of each algorithm by timing the crucial steps

across 1000 iterations of the simulation. For the bioplausible control, the important steps were

the two matrix multiplications to estimate and where and .

We use Python’s NumPy library for the matrix multiplication.

grad_r[i] = -dot(dot(S[:,:,i],y_lum), g_lum)

omega_est[i] = dot(dot(S[:,:,i],y_lum), y_dot)

For the feature tracker, the crucial steps are identifying good features and tracking them using

L-K pyramidal implementation in OpenCV 2.3. In Python code:

pp = cv2.goodFeaturesToTrack(im_array, mask = mask, **self.feature_params)

p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None,**self.lk_params)

p2, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None,**self.lk_params)

Table 2. Computation time measurements and estimates for serial

and parallel implementations.

Measured Serial Implementation of Bioplausible Control 8.17 s

Measured Serial Implementation of L-K Feature Tracker 1.22 s

The measurements were done on a Dell Latitude with Intel Pentium M 1.86 GHz processor and

1 GB of RAM. Both timings were done using Python’s time.time() function. It is important to

note that these timings may not exactly reflect computational complexity due to underlying

14

optimizations done within the NumPy and OpenCV libraries. Furthermore, the timings do not

take into account the benefits of parallelization the bioplausible control offers. However, they

provide a rough approximation of computational workload.

Timing measurements suggest that the L-K feature tracker implementation is faster than the

bioplausible control algorithm. To further examine this, we followed up the timing

measurements with a computational complexity analysis. the OpenCV implementation of the L-

K feature tracker scales with O(N*Q), where N is the number of pixels within a window and Q is

the number of features tracked (30, 31). From the work by Baker and Matthews (28), the

complexity of the L-K approach O(n
2
*N+n

3
), we fix the warp factor (n) at 2, so it’s O(N) for one

optic flow estimate. Thus O(n
2
*N+n

3
) reduces to O(N*Q). This is preceded by the one-time call

to the Shi and Tomasi corner detector (31), which can be quite complex depending on

implementation. The serial implementation of the bioplausible controller used and evaluated in

this report scales with , where N is the number of pixels. However, the bioplausible

algorithm was designed to operate in parallel. Parallelizing the bioplausible control algorithm

across N number of processors, where N is the number of pixels should bring the computation

complexity down to O(N log N), but this does not account for inline delays needed. The actual

implementation of a parallelized bioplausible control will be O(N*log(N)) in the best case and

O(N
3
) in the worst case. The L-K algorithm is not as readily parallelized, but it too would

benefit from parallelization, such that the computational cost would become O(N*log(Q)) in the

worst case and O(Q) if a version of the L-K algorithm that was more amenable to parallelization

was implemented. It is estimated that the parallel implementation of the bioplausible control

would require substantially less computational time than the L-K implemented either serially or

in parallel or the serial bioplausible implemented algorithm.

This analysis explains the results seen in the timing analysis. After the one-time step of

identifying features, the LK tracker scales linearly with window size and number of features,

where as the bioplausible controller scales with the fourth power of the number of pixels. In our

simulations, the window size used for the L-K algorithm was 15x15 (N=225) and the number of

features tracked was roughly 10. The image size for the bioplausible controller was N=1398.

Thus, the bioplausible algorithm operating in serial requires a much greater number of

computations.

6. Experimental Results

A series of experiments were performed to validate the simulation results with the TurtleBot.

The results are shown for the TurtleBot rotating a full 360° in approximately 20° intervals,

setting a new goal image each time. The L-K and bioplausible algorithm were assessed on

whether each was (1) able to return the system back to the goal orientation and stabilize,

(2) whether the system stabilized but to an incorrect goal orientation, or (3) whether the system

15

was unstable. The aggregate results from 25 experiments are shown as a function of contrast and

blurring of the L-K algorithm.

In addition to resizing the input image from the Kinect down to 40x32, we also attempted to

resize it to a 640x12 image and select the two center rows of pixels as the input to the control

algorithms. While the bioplausible controller was able to use this input data successfully, the L-K

feature tracker algorithm failed at finding features when given a 640x2 input image. Therefore,

the experimental results presented here are only those from the 40x32 images.

6.1 360° Sweep

The experimental stabilization and accuracy results for the full 360° sweep of the room in 20°

intervals, are shown here. For each orientation, we noted whether the TurtleBot was able to

accurately stabilize back to the goal, whether it stabilized to an incorrect goal orientation, or

whether it was unstable. These tests were repeated 25 times, and the aggregate results are shown

in figures 9 and 10.

When we examined the accuracy of the two algorithms, in the high-contrast environment, we

found that the feature tracker using the unblurred image performed the best with 69% of cases

stabilizing accurately. The difference between the unblurred L-K algorithm and the bioplausible

control (at 59% accurate stability) was statistically insignificant. The feature tracker using the

blurred image performed the worst (41%). In the low-contrast environment, there were no

statistically significant difference between the three controllers; each achieved accurate 45% of

the time (figure 9). The reduced contrast environment significantly reduced the ability of both of

the algorithms to achieve accurate stability.

Figure 9. Percent of cases in the 360° sweep where the TurtleBot accurately stabilized back

to the goal orientation.

16

Next, we looked at the percent of cases in the 360° sweep where the controller went unstable

(i.e., did not settle within 30 s). For this stability analysis, stabilization of any sort, to either an

accurate goal orientation or an incorrect goal orientation, were equivalent. In the high-contrast

environment, the unblurred L-K algorithm achieved the best results (94%), and it was

significantly different than the bioplausible algorithm (81% accuracy). In the low-contrast

environment, the blurred and unblurred L-K algorithm were not statistically significantly

different, and both stabilized significantly more often than the bioplausible algorithm. In each

environment, both variations of the feature tracker remain more stable than the bioplausible

controller. These results are shown in figure 10.

Figure 10. Percent of cases in the 360° sweep where the controller kept the TurtleBot stable, even if the

stabilization point was incorrect.

In general, it appears that the bioplausible controller is more likely to become unstable. We

hypothesize that this is a result of the lack of the normalization vector. When switching from the

high-contrast to the low-contrast image, we found that the TurtleBot did not initially respond

using the bioplausible control algorithm. The gain needed to be increased from to

 for the controller to provide enough torque for the TurtleBot to rotate. The output of

the bioplausible algorithm is directly proportional to the brightness of the environment, as the

normalization matrix has been discarded (3). Therefore, a decrease in environment brightness,

when switching from the high contrast to the low-contrast environment, needed to be

compensated for with higher gains.

Similar to the simulations, the experiments on the TurtleBot showed the L-K feature tracker

using a sharp input image performing best in both accurate stabilization as well as stability in

high-contrast situations. In the low-contrast situation, the bioplausible controller appears more

17

likely to go unstable, but it performs comparably to the feature tracker on accuracy to goal image

when it remains stable. Additionally, it is noteworthy that while the bioplausible controller is

more likely to not settle, when it does settle, it is much more likely to settle to the correct image.

Thus, the bioplausible was much more likely to be accurate, when it did settle. As shown in

table 3, the bioplausible controller performed as well as the unblurred L-K algorithm in the high-

contrast environment, and is significantly better than the blurred L-K algorithm. In the low-

contrast environment, the bioplausible algorithm significantly outperformed both the blurred and

unblurred L-K algorithm.

Table 3. The accuracy of the controller, when the controller settled to an image for

both high- and low-contrast environments.

 High Contrast Low Contrast

Bioplausible 71.4% 63.2%

Feature Tracker 45.5% 40.0%

Feature Tracker-Unblurred 70.8% 45.8%

It is important to note the L-K feature tracker is limited by the rectangular image requirement

and fails when using images of unusual sizes such as 640x2. The bioplausible controller is

agnostic to the actual shape of the image and works under a 640x2, and will work under any

arrangement of pixels as long as their orientations are known.

7. Conclusions

We have compared the performance of two visual servoing algorithms with an ideal linear

control, the bioplausible controller and the feature tracking controller, in simulation and robotic

experimentation.

Given that the bioplausible control disregards a normalization term in the algorithm, the greater

losses in performance observed in different environments is understandable. However, in high-

contrast environments, the bioplausible controller generally performed on par with the feature

tracker. The variance in errors, stability, and settling time are larger; however, this was because

we were testing over a range of gains while in reality an optimal set of gains would be chosen.

In this study comparing the bioplausible control against feature tracking in 1-D yaw stabilization,

there are two important outcomes. First, the bioplausible controller is particularly sensitive to

contrast. Gains that are dynamically adjusted to scene contrast and brightness may overcome this

sensitivity. Second, in good conditions, high contrast and low noise, the bioplausible controller

performs comparably to the feature tracker, and given its potential to be parallelized, it could

perform faster as well. For non-optimal gains, the bioplausible controller is much more likely to

become unstable compared to the feature tracker.

18

Computationally, the serial implementation of the L-K feature tracker ran faster than the

bioplausible controller. The true benefit of the bioplausible controller stems from its

parallelization capability. Theoretically running the computation across many hundreds or

thousands of processing elements should increase speed by orders of magnitude. The same scale

of improvements with parallelization simply is not possible with the L-K feature tracker. The

validity of this assertion is the subject of future research.

The bioplausible controller is more sensitive to the values of the proportional and derivative

gains relative to its counterpart the feature tracker. The optimal set of gains to use will change

with environment brightness and contrast. A system that is able to dynamically adjust its gains as

it traverses through new environments will be required for the bioplausible controller. The gains

could be calibrated at predetermined time intervals using. It may be possible to use other sensors

such as an inertial measurement unit or a brightness detector to aid in this calibration and gain

modification approach.

19

8. References

1. Dickson, W. B.; Straw, A. D.; Poelma, C.; Dickinson, M. An Integrative Model of Insect

Flight Control. in 44th AIAA Aerospace Sciences Meeting and Exhibit, 2006.

2. Han, S.; Censi, A.; Straw, A. D.; Murray, R. M. A Bio-plausible Design for Visual Pose

Stabilization. in IEEE Conference on Intelligent Robots and Systems, 5679–5686, 2010.

3. Censi, A.; Han, S. A Bio-plausible Design for Visual Attitude Stabilization. in 48th IEEE

Conference on Decision and Control, 2009.

4. Lucas, B. D.; Kanade, T. An Iterative Image Registration Technique with an Application to

Stereo Vision. in Proc. of the 7th IJCAI, Vancouver, Canada, 674–679, 1981.

5. Tomasi, C.; Kanade, T. Shape and Motion from Image Streams - Afactorization Method.

Proc. of the National Academy of Sciences of the United States of America November 1993,

90 (21), 9795–9802.

6. Bouguet, Jean-Yves. Pyramidal Implementation of the Lucas Kanade Feature Tracker. Intel

Corporation, Microprocessor Research Labs.

7. Chaumette, F; Hutchinson, S. Visual Servo Control Part I: Basic Approaches. in IEEE

Robotics and Automation Magazine 2006, 13 (4), 82–90.

8. Shi; Tomasi, C. Good Features to Track. Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 593–600, June 1994.

9. Bender, J. A.; Dickinson M. H. Visual Stimulation of Saccades in Magnetically Tethered

Flies. Journal of Exp. Biol. 2006.

10. Hamel, T; Mahony R. Visual Servoing of an Under-Actuated Dynamic Rigid-Body System:

An Image-Based Approach. IEEE Transactions On Robotics And Automation April 2002,

18 (2), 187.

11. Corke, P. Visual Control of Robotic Manipulators. CSIRO Division of Manufacturing

Technology, 1994.

12. Hafez, A.H.A.; Achar, S.; Jawahar, C. V. Visual Servoing Based on Gaussian Mixture

Models. in Proc. IEEE Int. Conf. Robot. Autom., Pasadena, CA, 3225–3230, May 2008.

13. Chesi, G.; Hashimoto, K. Eds. Visual Servoing via Advanced Numerical Methods; New

York: Springer-Verlag, 2010.

20

14. Marchand, E.; Chaumette, F. Feature Tracking for Visual Servoing Purposes. Robot. Auton.

Syst. Jun. 2005, 52 (1), 53–70, (Special Issue on “Advances in Robot Vision,” D. Kragic, H.

Christensen, Eds.).

15. Collewet, C.; Marchand, E. Photometric Visual Servoing. IEEE Trans. Robot. 2011, to be

published.

16. Kallem, V.; Dewan, M.; Swensen, J. P.; Hager, G. D.; Cowan, N. J. Kernel-based Visual

Servoing. in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Diego, CA, 1975–1980, Oct.

2007.

17. Brockers, R.; Bouffard, P.; Ma, J.; Matthies, L.; Tomlin, C. 2011 SPIE Conference on

Micro- and Nanotechnology Sensors, Systems and Applications III, Orlando, FL, USA.

18. Webb, T; Prazencia, R. Vision-based State Estimation for Autonomous Micro Air Vehicles.

Journal of Guidance, Control, and Dynamics May–June 2007, 30 (3).

19. Kurdila, A.; Nechyba, M.; Prazenica, R.; Dahmen, W.; Binev, P.; Devore, R.; Sharpley, R.

Vision-based Control of Micro-Air-Vehicles: Progress and Problems in Estimation. 43rd

IEEE Conference on Decision and Control, Paradise Island, Bahamas, December 2004.

20. Dame, A.; Marchand, E. Mutual Information-based Visual Servoing. IEEE Trans. on

Robotics October 2011, 27 (5), 958–969.

21. Marchand, E.; Chaumette, F. Feature Tracking for Visual Servoing Purposes. Robotics and

Autonomous Systems June 2005, 52 (1), 53–70.

22. Deguchi, K. A Direct Interpretation of Dynamic Images with Camera and Object Motions

for Vision Guided Robot Control. Int. J. Comput. Vis. Jun. 2000, 37 (1), 7–20.

23. Koppel, A.; Ganesan, V.; Wickenden, A.; Nothwang, W.; Proie, R.; Sadler, B. Slow

Computing Simulation of Bioplausible Control; ARL-TR-5959; U.S. Army Research

Laboratory: Adelphi, MD, March 2012.

24. Fry, S. N.; Rohrseitz, N.; Straw, A.; Dickinson, M. H. Visual Control of Flight Speed in

Drosophila Melangoster. J Exp Biol 2009, (212), 1120–1130.

25. Epstien, M.; Waydo, S.; Fuller, S. B.; Dickson, W.; Straw, A.; Dickinson, M. H.; Murray, R.

M. Biologically Inspired Feedback Design for Drosophila Flight. in American Control

Conference, New York, NY, 3395–3401, 2007.

26. Deguchi, K. Optimal Motion Control for Image-Based Visual Servoing by Decoupling

Translation and Rotation. Proceedings of the IEEE Intl. Conf on Intelligent Robots and

Systems, 1998.

27. TurtleBot. http://www.willowgarage.com/turtlebot (accessed May 2012).

21

28. Microsoft Corp. Redmond WA. Kinect for Xbox 360.

29. Rojas, Raúl, Lucas-Kanade in a Nutshell, class tutorial, Freie Universität Berlin.

http://www.inf.fu-berlin.de/inst/ag-ki/rojas_home/pmwiki/pmwiki.php?n=Main.Tutorials,

(accessed January 8, 2013).

30. Baker,S.; Matthews, I. Lucas-Kanade 20 Years On: A Unifying Framework. International

Journal of Computer Vision 2004, 56 (3), 221–255.

31. http://opencv.willowgarage.com/documentation/cpp/imgproc_feature_detection.htm

(accessed January 9, 2013).

22

List of Symbols, Abbreviations, and Acronyms

Bioplausibility a loose collection of engineering principles that seek to confine design

research to that which could occur in a biological process

CCW counterclockwise

CW clockwise

fsee the optical engine of the GUF flight simulator

GUF Grand Unified Fly flight simulator for the drosophila

L-K Lucas-Kanade optical flow algorithms

MAV micro air vehicle

MOSFETs metal oxide semiconductor field effect transistors

PD proportional-derivative/damping (controller)

PIL Python Image Library

RGB red, green, blue

STD standard deviation (normal)

SWaP size, weight, and power

 the space of continuous functions from to

 the L-K estimate using a least-squares minimization of the error residual; e.g.,

the optic flow at .

 the spatial difference on the x axis between the observed feature and the goal

feature for the i-th feature

e(t) error as a function of time

 vector containing the features in the goal image

 as the proportional part of the PD controller

k visual features for the Shi and Tomasi corner detector

kd gain for the derivative controller

kp gain for the proportional controller

23

 Image with grayscale values at location x,y

 the symmetric angular inertia matrix

J(R) error function

m known map of the orientation, environment, and time to the visual input .

 the set of measurements in the observed image, e.g. pixel brightness values

N The number of pixels in an image

n the number of features being tracked

Q the number of features to be tracked

R orientation

 goal orientation

R is the body attitude with respect to a fixed world frame

S differential operator

s spans the visual sphere

 input torque

 a feature in image

 a feature in image such that is similar to

  angular velocity

 the angular velocity matrix

 , bilinear estimate of angular velocity

 associated skew-symmetric matrix for the angular velocity

 and the integration window size parameters in the x and y direction for the

pyramidal implementation of the L-K feature tracker

 the tangent vector field to the unit sphere the goal image

y the visual input

 as the derivative/damping part of the PD controller

24

NO. OF

COPIES ORAGANIZATION

 1 DEFENSE TECHNICAL

 (PDF INFORMATION CTR

 only) DTIC OCA

 8725 JOHN J KINGMAN RD

 STE 0944

 FORT BELVOIR VA 22060-6218

 1 DIRECTOR

 US ARMY RESEARCH LAB

 IMAL HRA

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 1 DIRECTOR

 US ARMY RESEARCH LAB

 RDRL CIO LL

 2800 POWDER MILL RD

 ADELPHI MD 20783-1197

 1 US ARMY RSRCH LAB

 ATTN RDRL VTU V

 10 US ARMY RSRCH LAB

 ATTN RDRL CII A E STUMP

 ATTN RDRL CII A S YOUNG

 ATTN RDRL CIN B SADLER

 ATTN RDRL SER L A WICKENDEN

 ATTN RDRL SED E B MORGAN

 ATTN RDRL SER L B PIEKARSKI

 ATTN RDRL SER L W NOTHWANG

 ATTN RDRL SER L J CONROY

 ATTN RDRL SER P AMIRTHARAJ

 ATTN RDRL SE SEDD DIRECTOR

 3 CALIFORNIA INSTITUTE OF

 TECHNOLOGY

 ATTN E WOLFF

 ATTN S HAN

 ATTN R MURRAY

1 UNIVERSITY OF PENNSYLVANIA

ATTN A KOPPEL

1 VISHNU GANESAN

TOTAL:19 (19 ELEC)

