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Chapter 4 

INTERPOLATION OF THE RADIAL VELOCITY DATA 

FROM COASTAL HF RADARS 

Max Yaremchuk,x andAlexeiSentchev2 

1 Naval Research Laboratory, Stennis Space Center, MS, US 
2 Laboratoire d'Ocöanologie et G6osciences, University du Littoral, France 

Abstract 

In recent years, monitoring nearshore surface currents became an important appli- 
cation of the high-frequency radar (HFR) technology. The Doppler shifts of backscat- 
tered radio signals from surface waves provide the surface velocity component in the 
direction of a HFR beam. These radial velocities observed by multiple (usually two) 
radars have to be combined/interpolated to produce the gridded vector held, which can 
be used in applications. In view of a relatively high (5-10 cm/s) HFR measurement 
errors of the radial velocities, interpolation algorithms which take into account addi- 
tional constraints on the velocity held (such as those imposed by the coastlines and 
model dynamics) are of particular value. 

In this chapter, recent developments in the radial velocity processing methods are 
reviewed. The topics include advanced optimal interpolation techniques, kinemati- 
cally constrained Galerkin and the 2d variationul interpolation methods, and the dy- 
namically constrained assimilation of the HFR data using numerical models. 

Accurate monitoring of the velocity field may sutler from occasional malfunction 
of a radar which causes a substantial data loss on a relatively short (3-30 hours) time 
interval. We examine performance of the gap-filling technique based on empirical 
orthogonal function analysis of the radial velocity observations and demonstrate its 
performance in tidally-driven coastal environments. 

1.    Introduction 

The technology of monitoring near-coastal currents by High Frequency Radars (HFRs) has 
been rapidly developing in the past decade. HFR observations are now extensively used 
to study near-shore circulation under a large variety of environmental conditions (e.g., [40, 
16, 17, 9, 43, 45, 11]) helping to solve many applied problems in the coastal regions. At 
present, the HFR surface current mapping technology is capable to provide surface velocity 
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maps in an area up to 200 km offshore, with space-time resolutions of 0.2-1 hour/1-10 km 
depending on the particular system and practical application. 

An important question in dealing with HFR data is the problem of retrieving the 2d 
velocity vector maps from the velocity components measured along the radar beams. The 
most commonly used technique (e.g., [45]) is based upon local interpolation (LI) of the 
radial velocity data. The method is formulated as an unweighted least squares minimization 
problem and takes into account both measurement errors and the effect of geometric dilution 
of precision [10] associated with the angle between the HFR beams intersecting in a given 
grid cell. The LI method, being a particular case of the more general optimal interpolation 
(OI) technique, has been further improved by employing more sophisticated correlation 
functions [21, 22]. 

Another algorithm, which has been under development in recent years [26, 20] is the 
open-boundary modal analysis (OMA). This technique can be viewed as an extension of 
the normal mode analysis [13, 32] which, similarly to the later method of Park et al. [39], 
employs decomposition of a 2d vector field into divergent and rotational components. Apart 
from capability to avoid explicit specification of the poorly known error covariance, the 
OMA technique automatically takes into account the kinematic constraints imposed on the 
velocity field by the coastlines. 

An alternative approach, proposed recently by Yaremchuk and Sentchev [51, 53], em- 
ploys two-dimensional variational (2dVan technique to map HFR radial velocity data on 
the gridded vector field. In contrast to the method of Park et al., [39], this algorithm does 
not require specification of a background velocity field and its covariance structure that may 
be lacking in many applications. Similar to OMA, the 2dVar method is non-local (the re- 
sult of interpolation at a given grid point depends on all the observed radial velocities) and 
kinematically constrained (the interpolated velocity field is subject to constraints imposed 
by the coastlines). In addition, the 2dVar method [51] allows to impose constraints on the 
structure of the divergence and vorticity fields, that are important in practical applications, 
such as search and rescue, oil spill control etc. 

Accuracy in the reconstruction of the surface velocity field measured by HFRs can be 
further improved by synthesis with other observations and with dynamical constraints pro- 
vided by the numerical models. One of the earlier attempts of this kind was made by Lewis 
et al., [28], who employed HFR data to constrain wind stress forcing of a primitive-equation 
model. With subsequent development of the data assimilation (DA) techniques, the HFR 
data were widely used to constrain numerical models in the framework of both sequential 
[35, 36, 9] and 4dVar [19,24] DA schemes. Although being more general, the dynamically 
constrained methods of HFR data interpolation are significantly more computationally ex- 
pensive and often require a lot of preliminary tuning and quality control. For that reason, 
operational centers currently use more simple interpolation methods. 

An obvious advantage of HFR observations is their availability in real time with nearly 
continuous temporal and spatial coverage fully compatible with the resolution of numerical 
models of coastal circulation. However, the back-scattered HFR signals suffer from to 
numerous distortions of artificial and natural origin. As a consequence, estimates of the 
along-beam sea surface velocities extracted from the Doppler shifts of the signals become 
unusable, resulting in numerous gaps in spatial coverage. These gaps may strongly degrade 
performance of the interpolation algorithms (e.g., [20]). 
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A natural way to fill these gaps is to take into account space-time correlations between 
the radial velocities. The aforementioned DA algorithms is the most straightforward and 
general approach. The underlying idea is to combine dynamical constraints of a model with 
the history of dense spatio-temporal coverage by HFRs to produce the "best" estimate of 
the surface velocity at a given time. This approach, however, has a number of drawbacks 
hindering its implementation for real-time HFR data analysis: Beyond a relatively high 
computational cost, the dynamically constrained DA schemes have a large number of free 
parameters whose statistics is poorly known. The most problematic among those are the 
open boundary conditions, which are the major contributors to slow convergence of the 
HFR DA schemes which typically involve lengthy open boundaries. 

Although the 2d 01 methods are computationally cheaper than the variational schemes 
involving dynamical information, they may perform poorly in the presence of large gaps 
in the data because information on the spatial structure of the velocity field within the gap 
is implicitly drawn from the idealized covariance function, which looses accuracy at large 
distances. A certain improvement of the covariance models can be obtained by considering 
their truncated expansions in the empirical orthogonal functions (EOFs), a technique suc- 
cessfully used in Kaiman filtering (e.g., [49]) and variational data assimilation [14], [52]. 
The EOF-based estimates of the covariances rely upon time averaging and, therefore, may 
be successfully applied not only to model output but also to data sets with nearly continu- 
ous space-time coverage such as sea surface temperature (SST) or HFR data. Beckers and 
Rixen [7] proposed an iterative EOF-based technique for filling gaps in the gridded SST 
images, which was successfully applied in the Adriatic [1,2]. Kondrashov and Ghil [23] 
developed the method further by including time correlations under the assumption of statis- 
tical stationarity of the observed fields. Yaremchuk and Sentchev [53] successfully applied 
this gap-filling (GF) technique to the HFR data. 

In this chapter we give an overview of the radial velocity interpolation methods with 
a focus on the kinematically constrained 2d interpolation schemes and the GF techniques, 
that are likely to be introduced operationally in the near future. 

The chapter is organized as follows: In the next section we describe the LI, OMA and 
2dvar algorithms and compare their performance in the framework of numerical experi- 
ments with simulated and real data. In Section 3 we give an overview of the accumulated 
experience in the dynamically constrained interpolation of the HFR data and their synthesis 
with other observations. Section 4 describes applications of the HFR GF algorithm with 
both simulated and real data acquired in tidally-driven coastal environments. 

2.    Dynamically Unconstrained Interpolation Methods 

The general approach discussed in this section can be classified as the two-dimensional 01, 
or spline interpolation [34]: The corresponding least-squares algorithms differ from each 
other by specifying either the covariance function or its inverse. In application to HFR 
data the 01 algorithms were implemented using empirical error covariances deduced from 
"normal modes" [32], "open-boundary modes" [20] and the data [21], [22]. The spline 
formulation [51 ] defines the inverse covariance by the roughening operator which penalizes 
the grid-scale variability in the 2d velocity, divergence and vorticity fields. 
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2.1.    Description of the Methodologies 

2.1.1. Optimal Interpolation 

In application to interpolation of the radial velocities v, the traditional 01 approach is formu- 
lated as the following minimization problem: find the interpolated velocity field H(JT) such, 
that given a set of n HFR velocity observations v,, i = l,...,n around x, the interpolation 
error variance e2 is minimized: 

(e2) = (J>(v,-»(jft)-u)2) -» min (1) 

Here angular brackets denote statistical average, r, stand for the radar beam directions in 
the observation points and w, are the weights derived from the statistics of n(jt) (e.g., [30]). 
The approach requires a statistical model for the correlation tensor (uur) of the interpolated 
field, which may not be readily available from observations. Therefore, in many practical 
applications, eq. (1) is simplified by selecting the grid which is coarse enough to contain at 
least two observation points from different radars within a given grid cell. By neglecting the 
decay of correlations within the cell, the problem can be reformulated locally (e.g., [45]): 
Find the velocity vector u at a given grid point such that deviations of its projections on 
the beam directions r, at the surrounding observation points are minimized. In the most 
common case with only two radars illuminating a grid point, the solution is 

u = (v|Cosa2-v2cosai)/sin(ai -Ok) (2) 

v= (v2sinot| -V| sin(X2)/sin(ai -02) (3) 

where V|,2 are the observed radial velocities and (11,2 denote angles between the coordinate 
axes and the beam directions r\2 at the grid point. This local interpolation (unweighted 
least squares) method has been widely used in operational centers because of its robustness 
and simplicity. However, due to discontinuous correlation functions it often yields spurious 
values along baselines between HFR stations. Moreover, as it is seen from (2-3), the algo- 
rithm looses accuracy with the reduction of the angle a.\ - 02 between the radar beams in 
the vicinity of the interpolated point, and it would not work at all with only one radar, or in 
the regions of sparse HFR coverage. 

2.1.2. Normal Mode Analysis 

Limitations imposed by the local nature of the LI algorithm can be formally overcome by 
the Galerkin methods which employ global basis functions covering the entire interpolation 
domain. The early technique of this type was proposed by Eremeev et al. [13] for interpo- 
lation of the sparsely sampled velocities. Later, Lipphardt et al [32] applied the technique 
to HFR observations. To perform the interpolation, the 2d velocity field is decomposed into 
divergent and rotational components defined by the velocity potential tp and the stream func- 
tion y. The stream function and velocity potential are then expanded in a predetermined set 
of 2d functions (normal modes) with varying smoothness (eigenfunctions of the Laplacian 
operator A in the interpolation domain Q). Expansion coefficients are then optimized to fit 
the data. 
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The normal mode method was further developed by Lekien and Coulliette [26], Kaplan 
and Lekien [20] who supplemented the Laplacian eigenfunctions by the additional expan- 
sion functions (open boundary modes). These functions were introduced to bring more re- 
alism near the open boundary, and were defined as solutions to the Poisson equation forced 
by the Dirichlet boundary conditions of variable smoothness. The algorithm is controlled 
by two free parameters: the spatial length scale L which defines the number of modes used 
for interpolation, and the regularization parameter K which penalizes the amplitude of the 
modes. 

An advantage of the OMA method is its ability to control spatial roughness by pre- 
scribing a limited number of the smoothest eigenfunctions for interpolation. Additionally, 
the method is capable to constrain the interpolation problem kinematically by taking into 
account the conditions imposed by the coastlines. However, the OMA method lacks flex- 
ibility in representing localized small-scale features as well as flow structures near open 
boundaries, where the rotational component of the velocity field is assumed to be tangent 
to the boundary. Besides, certain difficulties may arise when dealing with gappy data, es- 
pecially when the horizontal size of a gap is larger than the minimal length scale resolved 
[20]. These drawbacks of the OMA technique may impose certain limitations on taking the 
full advantage of the HFR data whose spatial resolution strongly varies across the domain. 

2.1.3.    Variations! Method 

Interpolation of the HFR data with variational technique is more flexible, as it is not con- 
strained by a predetermined set of functions. Instead, the interpolating functions in use 
(eigenvectors of the Hessian matrix) depend both on the shape of the coastline and spatial 
distribution of the data points. The latter feature (lacking in OMA) is especially useful in 
practice, because HFR data often have gaps in spatial coverage, and the issue of filling those 
gaps is important. 

Another useful property of the 2dVar method is that, similar to LI, it operates in the 
velocity space, and thus requires less sophisticated operators for projection of the unknown 
gridded velocities on the radial components of the flow speed. This property provides better 
conditioning of the Hessian matrix, faster convergence of the minimization algorithm and 
improved computational efficiency. 

The basic formulation of the 2dVar scheme [51, 53] is the following: Find the velocity 
field u (x) such, that the cost function 

J = JK £o;M(A«W-v*]2 + ^|[^(AdivB)2 + H'c(Acurlii)2 + »V"(A«)2]dn-min (4) 
**' n 

is minimized with respect to the grid point values u under the constraint u(dft) = 0. Here 
K is the number of HFR observations in £2, A = fd£l and Pk is the local interpolation 
operator which projects the unknown velocity vectors onto the kth observation point from 
the apexes of the grid cell, enveloping that point. Factors a^2,Wd,We and W are the 
inverse error variances of the corresponding squared quantities, so that J could be treated as 
the argument of the Gaussian pdf !P(ii) defined on the 2A/-dimensional space of the gridded 
velocity fields u: !P(«) ~ exp[-/]. 

As it is seen from (4), regularization of the interpolation problem is performed by pe- 
nalizing not only the grid-scale components of u (the last term), but also of its curl and 
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Figure I. Setting of the numerical experiments: Left panel shows the "true" velocity field 
u' which has nine eddy structures superimposed on two jets: one following the coastline 
and another located farther offshore. The right panel shows the vorticity field curl«'. Three 
coastal radars sample the radial velocities along beam directions binned at 2 km radial 
and 5° azimuthal resolution. Sampling points are shown by gray dots. Gray rectangle in 
the upper right panel envelops simulated gap in the HFR data. Radar positions are shown 
by black dots on the coastline. The interpolation domain and the coastline are similar to 
the ones used in [20] for OMA processing of HFR observations in the Bodega Bay. The 
coordinate system is rotated clockwise (north is on the right). Contour interval for vorticity 
is 5 lO-'s"1. 

divergence (terms weighted by Wd and Wc). This is done in an attempt to retrieve the 
larger-scale components of divu and curl« that are important in applications. 

2.2.   Comparison of the Interpolation Techniques 

Performance of the interpolation methods outlined in the previous section are compared 
using two complimentary techniques. First, the HFR data are simulated using a realistic 
geometry of the 3-radar experiment in the Bodega Bay conducted in spring and summer of 
2003 (Fig. 1). In the second series real data acquired on July 30, 2003 in the Bodega Bay 
and offshore the coast of Brittany has been used. 

2.2.1.   Experiments with Simulated Data 

Simulated data experiments are performed by varying the interpolation method (2dVar, LI 
and OMA) and coverage of the domain by observations (with and without the gap shown 
in the right panel of Figure 1). Within each series of experiments the noise level v in the 
simulated observations was also varied: the radial velocities v*k observed at points** were 
defined by adding white noise w to projections of the true currents «' on the beam directions 
r*: 

^ = (#"V''*)+VVH> (5) 

Here V is the typical magnitude of «' and v is the scalar parameter whose reciprocal has 
the meaning of signal/noise ratio. Three values of v (0.1, 0.3 and 0.5) were tested within 
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each series. In correspondence with the equation (4), HFR measurement errors in (5) were 
defined as a(v*k) = vV. 

To assess the impact of gaps in the spatial coverage by HFR observations, two simulated 
data sets were used: One with the full coverage by the radial velocity data and another 
without observations in the rectangular domain (right panel in Fig.l). These data sets had 
AT=2011 and #=1699 observation points respectively. 

The quality of interpolation was monitored by several parameters. Misfit between the 
interpolated field and the data ntj was defined as mj = |v* - vj|/|vj|, where v* is the projec- 
tion of interpolated velocity on the radar beam at the kih measurement point and overline 
denotes averaging over the data points. Velocity error ev was defined as the mean absolute 
difference between the true u and interpolated u currents normalized by V: 

ev = (\uf-u\)/V, (6) 

where angular brackets denote averaging over the interpolation grid. Similar expressions 
are used to assess the interpolation qualities ej, ec of the divergence and vorticity fields: 

erf(|div(«'-«)|>/(|diva'|>;    ec(|curl(«'-u)|)/(|curlii'|) (7) 

To simplify the analysis, the inverse variance W is set to zero in all the experiments. It 
is also assumed that Wd = Y~2WC, where y = 0.2 has the meaning of the Rossby number 
in most situations, the 2d vorticity field is much stronger than divergence, as the latter is 
driven by relatively weak vertical motions acting against gravity. Finally, since the result of 
interpolation depends only on the relative magnitudes of the terms in the cost function, it 
is convenient to characterize the 2dVar algorithm by the single non-dimensional parameter 
u/c = y^v2WcK/4A&c* = \2KL*/AA&? which has the meaning of the ratio between the 
vorticity regularization and the data misfit terms. Here car = 2 km is the grid step and L = 5.9 
km is the typical horizontal scale of the currents shown in Fig. 1. Since Wd — y~2Wc, 
the value of W,c entirely defines the shape of the cost function for a given field and data 
configuration. More details on the experimental setting can be found in [51]. 

Results of the experiments with three radars are illustrated in Table 1 and Figures 2 and 
3. Table 1 contains errors in approximation of the true field and the data for different noise 
levels. It is seen that the 2dVar algorithm provides better quality of reconstruction than 
LI and OMA methods, although the reconstructed velocity fields look visually similar (left 
panels in Fig. 2). In that sense the capability of HFR measurements to capture the structure 
of the flows in Fig. 1 is quite remarkable. With the increase of observation noise all the 
algorithms loose precision, but still provide a noise-consistent fit to the data in the entire 
range of v (cf. columns 2-3 and 6-7 in Table 1). The only exception is the OMA algorithm 
for v=0.1 (second line in Table 1). 

Reconstruction of the divergence and vorticity fields is less accurate since horizontal 
derivatives amplify grid-scale noise. This is especially visible in the behavior of ed, because 
the divergence field was set to be five times weaker than vorticity by the design of the 
experiments. Nevertheless, in contrast to the OMA and LI methods, the 2dVar algorithm 
captures signs and positions of the major structures in the divergence field at the "practical" 
noise levels of 0.1 and 0.3 (upper right panel in Figures 2). 

Compared to the divergence, the vorticity field is reconstructed with much higher qual- 
ity: Both the amplitudes and locations of most of the structures are well reproduced even 
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Table 1. Dependence of the interpolated field error parameters mj, e„ ec, and ej on the 
reconstructed velocity field and noise level v in the simulated HFR data. The 2dVar, 
OMA and LI results are shown respectively in the upper, middle and lower lines of 
the table cells. The smallest errors are boldfaced. Note that LI errors were computed 
over subdomains which did not include near-coastal regions and the gap (see Fig. 2- 
3). Parameters for the 2dVar and OMA interpolation schemes are shown in the right 
column. The 2dVar experiments with v=0.5 were made under the divergence-free 
approximation (W? = 106) 

V 
no gap gap 

Wan), K ffij «V ec ed mj ev ec «d 

0.1 
(».((7 

0.26 
0.10 

0.13 
0.31 
0.19 

0.19 

0.38 
0.32 

0.76 
1.52 
1.19 

0.07 
0.28 
0.15 

0.15 

0.39 
0.33 

0.23 
0.50 
0.49 

0.82 
1.70 
1.35 

0.2 
6,10~3 

0.3 
0.24 
0.28 
0.22 

0.29 
0.32 
0.30 

0.37 
0.39 
0.42 

1.69 
1.66 
2.07 

0.24 
0.29 
0.23 

0.29 
0.41 
0.41 

0.41 
0.51 
0.58 

1.59 
1.78 
1.79 

1.8 
6,10~3 

0.5 
0.41 
0.31 
0.34 

0J1 
0.34 
0.41 

0.37 
0.42 
0.57 

1.59 
1.69 
2.99 

0.42 
0.32 
0.49 

0.43 
0.44 
0.50 

0.53 
0.56 
0.69 

1.87 
1.93 
2.36 

20* 
6,10"3 

at the noise level of v=0.3 (cf. right panel in Fig.l and left panels in Fig. 3 ). The gap in 
data coverage is also handled well: the overall increase in of the interpolation errors ev, ej 
and ec in Table 1 is consistent with the fraction of the interpolation domain occupied by 
the gap, whereas the saddle-like structure of the vorticity field in the gap is reconstructed 
quantitatively by the 2dVar method. 

The velocity patterns generated by the three methods (left panels in Figure 2) differ 
in terms of the velocity interpolation error ev. The difference becomes more evident after 
taking the divergence of the fields (right panels in Figures 2 and 3): Since OMA does not 
impose any smoothness constraint on divu, the corresponding divergence field, although 
being 3 times weaker than vorticity, looks rather chaotic with the formal error «4=1.52. A 
similar featureless pattern is produced by LI, with the difference that divergence in near- 
coastal areas cannot be estimated at all due to either single-radar measurements or to beam- 
crossing angle limitation (nearly parallel radar beams). 

Introduction of the gap in data coverage enhances the difference between the three meth- 
ods (cf. columns 4-8 and 5-9 in Table 1 keeping in mind that LI errors are computed outside 
the gap). A probable reason for the difference between OMA and 2dVar is emergence of 
the spurious maxima in both vorticity and divergence fields inside the gap in the OMA case 
(cf. upper and middle panels in Fig. 3). In the 2dVar formulation, vorticity and divergence 
fields cannot have local maxima inside data-void regions, because their variation within the 
gap closely approaches the behavior of a harmonic function. 

Comparison of the 2dVar, OMA and LI lines in Table 1 shows that OMA code tends to 
provide less precise fit to the data at 10% noise level without the gap (line 2 in Table 1). 
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Figure 2. Comparison between the three methods of interpolation. The noise level v and 
interpolation errors are shown in the upper right corners of the corresponding panels. 
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Figure 3. Comparison between the interpolations of three radars with a gap in observa- 
tions. The noise level v and interpolation errors are shown in the upper right corners of the 
corresponding panels. 
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This can be partly explained by a relatively low number of degrees of freedom (number of 
modes) involved. In the OMA formulation the number of modes is proportional to (D/L)2 

[20], where D is the horizontal size of the domain and / is the cut-off length scale. For the 
reported experiments, however, the optimal length scale L was close to 6 km (right column 
in Table 1). Such length scale corresponds to 200-230 eigenmodes, whose amplitudes were 
varied to fit the data in 2011 (1699 with the gap) observation points. In an attempt to achieve 
a better fit mj at low noise levels, we tried to increase the number of modes by reducing L to 
2-3 km, but that required an increase of regularization parameter K, otherwise interpolation 
patterns appeared too noisy, possibly because of the ill-conditioning of the system matrix. 

Overall, Table 1 shows that the 2dVar method performs similar to LI and better than 
OMA at v=0.1 and somewhat better at v=0.3-0.5. When the gap is present in the data (lines 
1-2 and 4-5 in Table 1) 2dVar keeps a significant advantage to OMA up to v=0.3. Both 
non-local methods (OMA and 2dVar) are better than LI because of their ability to estimate 
currents within the gap and close to the coastline. 

Table 2. Same as in Table 1, but for the experiments with 2-radar configurations 

radars V 

no gap gap 
L(km), K mj ev ec e<t mj ev ec *d 

0.10 0.09 0.21 0.26 1.31 0.09 0.25 0.35 1.21 0.4 
0.31 0.38 0.48 1.68 0.29 0.48 0.59 2.09 6,10-3 

1.3 0.12 0.25 0.42 1.43 0.i7 0.39 0.56 1.42 
0.30 0.24 0.31 0.37 1.60 0.22 0.38 0.48 1.54 1 

0.33 0.42 0.51 2.07 0.31 0.51 0.65 2.37 6,10~3 

0.19 0.39 0.55 2.35 0.24 0.61 0.69 1.82 

0.10 0.10 0.29 0.34 1.82 0.09 0.32 0.44 1.84 0.6 
0.29 0.36 0.45 1.59 0.30 0.43 0.52 1.88 6,10-3 

1,2 0.11 0.32 0.39 1.22 0.15 0.46 0.56 J.27 
0.30 0.24 0.39 0.45 2.04 0.25 0.44 0.52 2.19 0.8 

0.31 0.41 0.49 2.01 0.30 0.45 0.53 2.03 6,10-3 

0.17 0.42 0.50 2.17 0.25 0.54 0.68 1.26 

In practice, there are often situations when a radar stops operating due to hardware 
failure or some other reasons. In such case local interpolation methods often fail in a large 
number of gridpoints, because they require at least two velocity components for retrieving 
the velocity vector in a grid cell. The OMA and 2dVar algorithms are essentially non-local 
and therefore have an ability to interpolate the velocity field over distances exceeding the 
grid cell size 8x. 

To investigate the performance of the schemes in such situations, we switched off the 
rightmost (northern) and/or middle radars and examined the interpolation patterns both with 
and without the gap in the data. These experiments also allowed us to assess the accuracy 
of interpolation in the regions where data density was less or close to one observation per 
grid cell: After removing the northern radar such regions emerge in the upper (western) and 
right (northern) parts of the domain. 
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Figure 4. Comparison between the interpolations with two radars. The noise level v and 
interpolation errors are shown in the upper right corners of the corresponding panels. 

Figure 4 gives an indication that OMA algorithm is less accurate than 2dVar in such 
regions: A visual comparison of the vorticity distributions with those in Figure 1 shows that 
OMA errors tend to be larger when y > 40 km or x >60 km. The LI algorithm performs 
much worse: derivatives of the velocity held cannot be estimated not only in the region of 
single-radar coverage (x >60 km) but also near the coastline. Quantitative assessment of 
<•, for the three interpolation patterns in Figure 4 also shows that the regions of low data 
density are the major contributors to the larger value of ec for the OMA pattern (0.45 vs 
0.34 in Figure 4). The value of ec for LI (0.39) cannot be objectively compared with these 
numbers because it was computed by averaging over much smaller area. 

Figure 5 shows an example of interpolation with two radars and the gap in the data. The 
difference between 2dVar and OMA is already evident from the velocity patterns: OMA 
produces a spurious jet within the gap which destroys two eddies at the upper and right 
edges of the data-void region. 2dVar preserves these eddies and the saddle-like structure 
of the currents within the gap. Comparison of the vorticity fields (right panels in Figure 5) 
shows that OMA again produces a maximum inside the gap. The 2dVar pattern appears to 
be unrealistic inside the gap as well, but compared to OMA has more reasonable structure 
near the gap's boundary. 

The overall results (Table 2) indicate that in the case of two-radar configurations non- 
local methods (OMA and 2dVar) have a considerable advantage over LI with 2dVar showing 
somewhat better performance than OMA. 

2.2.2.   Real Data Examples 

To assess the performance of the interpolation with real data, velocity field from real HFR 
observations in the Bodega Bay have been reconstructed (Fig. 6). The interpolation pa- 
rameters for OMA were L=5 km and K=10-4 as in [20]. The 2dVar algorithm was used in 
divergence-free approximation (W? = 106), because at the estimated noise level of v=0.35, 
velocity scale of L=4.4 km and sampling discretization of 2 km, it is hard to obtain statisti- 
cally confident estimates of the divergence. With 1401 observation points in use, W„c=0.5. 

The 2dVar and OMA- generated patterns are qualitatively similar, although OMA ve- 
locity is more smooth and characterized by somewhat larger misfit with the data. The ma- 
jor difference between the 2dVar- and OMA-generated patterns is observed in two regions 
shown in Fig. 6 by gray rectangles. In the bay between the southern (left) and middle radars 
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Figure 5. Comparison between the interpolations of two radars with a gap. The noise level 
v and interpolation errors are shown in the upper right corners of the corresponding panels. 
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Figure 6. Velocity field in the Bodega Bay on July, 30, 2003 obtained by two interpolation 
methods. Misfit m</ with the radial velocity data is shown in the upper right corners. 

the 2d Var pattern shows an indication of anticyclonic circulation, whereas OMA produces 
a broad offshore current there. The values of ev computed by averaging over 26S observa- 
tion points in that region are 0.26 for 2dVar and 0.27 for OMA respectively. The region on 
the right should be considered as a gap, since it contains only 4 data points near its right 
boundary. 

The LI interpolation (not shown) appeared to have much lower quality compared to the 
results of non-local interpolation. This was evident not only in terms of the larger m«/=0.29, 
but also visually: velocity estimates do not exist in the sparsely covered right corner of the 
domain and are too noisy near the coast where radar beams are close to parallel. 
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Figure 7. Surface currents in the Iroise Sea (Northern Bay of Biscay) on September 5, 2005 
(02:48GMT) obtained by the 2dVar (left) and OMA methods. 50 and 100m isobaths are 
shown by gray contours. HFR location at Point Garchine is shown by the black dot. 

Figure 7 shows a comparison of the surface current velocities obtained by the OMA 
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and 2dVar methods on September 5, 2005 in the Iroise Sea (northern Bay of Biscay). This 
area is continuously monitored by two high-frequency Wellen Radars (WERA) operating 
at 12.4 MHz since July 2006. The radar sites are located at the Point Garchine (Fig. 7) 
and Brezellec (not shown, 5 km east of the SE corner of the domain). The Beam forming 
(BF) method, actually used for processing the radar data in near real-time, provides radial 
velocities of surface current along beams with 3dB width of 9°. The along-beam resolution 
is 1.5 km and the maximum range is of the order of 140 km [33]. Radial velocities from 
two radars are interpolated routinely with LI algorithm to provide surface current maps at 
20-min acquisition rate (http://www.previmer.org/observations/courants/radarJifJroise). 

Regional currents are quite strong (up to 4 m/s), making it difficult to observe them by 
bottom-mounted currents meters. The flow structure is characterized by the strong horizon- 
tal shear (up to 10~3 s"1) in the vicinity of the Ushant Islands and significant divergence 
induced by small-scale topographic features, controlling the velocity field. 

Comparison of the velocity patterns in Fig. 7 shows better flexibility of the 2dVar al- 
gorithm in fitting the data when the local scales of variability abruptly change within the 
interpolation domain as it is seen on the transition from the southwestern part of the re- 
gion to the region of Ushant and Molene Islands in the northeast. The 2dVar algorithm 
provides a significantly better resolution in that area, generating a strongly sheared flow 
around the Ushant Island and significantly smaller interpolation errors in this region: the 
root-mean-square deviations of the interpolated velocities from the observed radial veloci- 
ties are respectively 0.24 and 0.39 m/s for the 2dVar and OMA-generated patterns. Specific 
features of regional circulation, such as the control of the flow by bathymetry, current in- 
tensification and deflection of the currents north of Ushant Island, are better reproduced by 
the 2dVar algorithm [44]. 

3.    Dynamically Constrained Interpolation Techniques 

Interpolation techniques discussed in the previous section are essentially two-dimensional, 
i.e. interpolated velocity patterns at different times are not connected neither statistically nor 
dynamically. In the last decades advanced interpolation methods have been developed that 
produce dynamically and statistically consistent estimates of the entire ocean state. These 
methods combine dynamical constraints from numerical models of the oceanic circulation 
with statistical information from observations. By using such approach it becomes possible 
not only to interpolate the observed data in space and time, but also infer information on 
unobserved variables, such as wind stress, bottom friction coefficient, vertical velocity etc. 
Another advantage of this approach is its ability of natural blending HFR data with other 
types of observations. Combining numerical models and data to make an optimal analysis is 
referred to as data assimilation (DA) which is now widely used in oceanography. The data 
assimilation methods are divided into two categories: sequential and fully four-dimensional 
in space-time. In this section, we give a brief overview of the existing applications of the 
DA techniques to HFR data. 
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3.1.   Sequential Methods 

The most widely used DA schemes optimize model solutions sequentially in time: After 
a model forecast is adjusted to observations, the analysis (adjusted state) is propagated 
forward in time by the model until new data are available. The adjustment (interpolation) is 
usually formulated as a weighted least squares problem with the weights defined by the error 
covariance matrix of the observations. In the simplest DA scheme, the error covariance does 
not change in time, and the problem is reduced to a sequence of OIs and model integrations 
of the interpolated states. The approach when both the state and its error covariance are 
propagated by the model is referred to as Kaiman filtering (KF). 

Although HFR measurements represent a very valuable data set for coastal ocean state 
estimation, DA of the HFR observations is only at the very beginning of the massive oper- 
ational use. Comparatively simple techniques, mainly based on nudging (e.g. [SO], [28]) 
allowed Lewis et al. [28] to optimize poorly known atmospheric forcing in the Monterey 
Bay, California. An approach is taken in which the HFR data act as if there were an ad- 
ditional layer of water overlying the ocean surface. A pseudo-shearing stress resulting 
from the difference between the model-predicted velocity and the Doppler radar velocity is 
added to that of the wind in order to force a model. However, the method had not used any 
knowledge of the error covariances that could improve blending of the model-predicted and 
observed surface currents. Furthermore, wind-forcing was corrected only at model loca- 
tions that were within the HFR footprint, thus introducing a risk of unrealistic irregularities 
at the edges of the footprints. 

Using a similar approach, Wilkin et al. [50] performed a vertical extrapolation of the 
HFR surface velocities. In the experiments, a statistical projection scheme based on corre- 
lations between the HFR and the moored Acoustic Doppler Current Profiler data was used. 
The experiments showed that HDR data provides an invaluable source of information for 
coastal ocean DA forecast systems and that even a simple statistically based vertical extrap- 
olation significantly improves the skill in estimating subsurface velocities in New Jerseys 
shelf region. 

In a number of recent studies [9,36,37,5] sequential DA schemes were used assimilate 
the surface currents with covariance estimates based on the ensembles. Oke et al. [36] 
performed an assimilation of low-pass filtered surface velocity observations from coastal 
HFR arrays into a primitive equation coastal ocean model. The error covariance model was 
obtained from the ensemble of model simulations and involved correlations between the 
surface velocity and the subsurface fields of temperature, salinity and velocity. Using these 
inhomogeneous error covariances among the model variables, the 3d model corrections 
based on the surface-only HFR data were derived and successfully used in the DA scheme. 
The correlation between subsurface current measurements and subsurface currents obtained 
from model was improved two times (from 0.42 to 0.78), when radar data were assimilated, 
thus demonstrating the effectiveness of such DA approach. 

In a similar manner, a 3d covariance matrix for the Princeton Ocean model model has 
been constructed by Breivik and Saetra [9] who used a statistically representative reference 
model run. The matrix has been kept fixed throughout the assimilation period. The ensem- 
ble KF based optimal interpolation of HFR velocities recorded off the Norway coast, has 
been used to provide dynamically balanced current fields generated by a system of nested 
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ocean models in near-real time. The system was found to yield good analyses, whereas the 
short range forecasts were significantly improved by assimilating HFR data. 

Another sequential DA scheme based on 3dVar approach was recently developed by Li 
et al. [29] for operational assimilation of multiple data sets collected in Southern California 
into the Regional Ocean Modeling System (ROMS). The model is able to assimilate surface 
current observations from HF radar network. Inhomogeneous and anisotropic error covari- 
ances have been constructed by blending ensemble runs with heuristic covariance functions, 
and a variety of observational data collected during the Autonomous Ocean Sampling Net- 
work (AOSN) experiment (Monterey Bay, August 2003) was assimilated. The model ve- 
locities were compared with HFR and mooring observations, demonstrating a reasonable 
accuracy and indicating that the system is capable of reproducing complex flows associated 
with upwelling and relaxation, as well as the rapid transitions between them. 

The approach of Lewis et al. [28] was recently revisited by Barth et al [4,5,6] who as- 
sumed that the larger part of the model error in surface currents might be attributed to errors 
in surface winds. Using the model error covariance estimated from an ensemble of model 
runs driven by different wind-forcing, Barthe et al. [5] assimilated radial velocities recorded 
by the HFRs on Florida shelf. The assimilation skill was assessed by comparing the model 
results with independent ADCP measurements. As expected, the largest improvement was 
observed at the surface but the model skill relative to the free model run was significantly 
improved also at depth. Later on, sequential assimilation of HFR data performed by Barth 
et al., [6] improved the wind forcing instead of directly modifying the model state vector. 
The authors used an ensemble-based assimilation scheme and 3d coastal circulation model 
applied this time to the German Bight region. 

Sequential methods described above use a prior estimate of the forecast error covari- 
ance matrix that can be difficult to obtain in practice. Although these methods produce 
dynamically and statistically consistent estimates of the ocean state and they are capable of 
improving the model forecast skills, they do not produce a completely dynamically consis- 
tent interpolation of the data in both space and time. This task can be accomplished by the 
4dVar analysis and Kaiman smoothing. 

3.2.   4-Dimensional Analyses 

Devenon [12] was among the first who attempted to perform the dynamically constrained 
interpolation of HFR data using a variation.il approach and an adjoint-based assimilation 
scheme. A simple numerical model (two-dimensional linearized spectral tidal model) was 
used to smooth and interpolate HFR observations in a limited size coastal area (the Seine 
river Bay). The method constrains circulation to simultaneously agree with observations 
and with the hydrodynamic laws governing tidal circulation in the Bay. Moreover, the HFR 
data have been used to identify boundary conditions for the principal M2 tidal constituent, 
and the bottom friction coefficient. 

Similar approach was used by Sentchev and Yaremchuk in the Strait of Dover [41] 
and English Channel [43]. The open boundary conditions of the finite-element spectral 
tidal model [27] were optimized to fit the HFR surface velocities and coastal tidal gauge 
data. The result of interpolation was used for mapping of the residual transport through the 
Channel, tidal dissipation, and for estimation of the energy flux. Analysis of the residual 
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flow stream function revealed a number of permanent eddies associated with peculiarities of 
the coastline shape and inhomogeneities of the bottom topography. Extensive error analysis 
of the results was conducted via an explicit inversion of the Hessian matrix, associated with 
the DA scheme. Error charts for the sea surface elevation demonstrated the model's ability 
to fit the data within the error bars and exposed coastal areas requiring better coverage by 
observations. 

Another study of tidal currents was made by Kurapov et al. [24, 25] who retrieved har- 
monic tidal constituents from the HFR observations off the Oregon coast. The 3d baroclinic 
spectral tidal model was coupled with the representer-based 4dVar method [8]. Computa- 
tions with synthetic data (tidal velocity ellipses) showed that HFR observations at the sur- 
face can also be used to map tidal flow at depth. For the M2 tidal constituent, information 
from the surface was projected in space-time along the wave characteristics, thus providing 
a uniquely detailed picture of the temporal and spatial variability of internal tide on the 
central Oregon shelf. 

In a more general study, Hoteit et al. [19] combined a high resolution configuration 
of the Massachusetts Institute of Technology general circulation model and its adjoint to 
obtain a dynamically consistent interpolation pattern that matches HFR data collected off 
the San Diego coast in California. The DA scheme adjusted initial conditions, boundary 
conditions, and atmospheric forcing fields to match a model solution to observations. The 
dynamically constrained interpolation experiments have shown that the model solutions can 
be tuned to match HFR observations within the error bars over the period of 10 days, largely 
through the adjustment of the wind stress controls. Similar results were obtained in [38, 6] 
who identified wind uncertainties as the major source of errors in coastal models. Thus, 
continuous assimilation of HFR data provides an efficient and dynamically consistent tool 
to correct these errors and significantly increases the 24-hour forecast skill in the modeling 
of sea surface currents. 

4.    Reconstruction of the Missing Data 

As it has been already mentioned, the unique feature of HFR observations is their nearly 
continuous temporal and spatial coverage. However, the back-scattered HFR signals are 
subject to distortions of artificial and natural origin which cause numerous gaps in spatial 
coverage. These gaps may strongly degrade performance of the interpolation algorithms. 

The impact of the missing radial velocity data can be diminished by taking into account 
temporal statistics of the HFR observations which allow to obtain spatial covariances with a 
reasonable degree of accuracy. Therefore, an interpolation algorithm in the space of radial 
velocities can be thought out which fills the gaps using a truncated EOF decomposition of 
the data covariance matrix. This technique is widely used in processing the SST imagery, 
and can also be readily applied to HFR observations [53]. In addition, spatial correlations 
between the radial velocities can be used to estimate observational noise, assess its variance, 
and, therefore quantify the cost function weights of the 2dVar interpolation algorithm (4). 
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4.1.    The Method 

The spectral decomposition provides the following representation of the covariance matrix: 

C = UAUT, (8) 

where V is a rectangular matrix whose columns are the eigenvectors ek (empirical orthog- 
onal functions, EOFs) of C corresponding to the eigenvalues X*, and A = diag{ A.*}. The 
eigenvalues quantify time variation of the spatial patterns in the radial velocity distributions 
described by the corresponding EOFs. 

Representation (8) can be employed to estimate the noise level using the cross- 
validation (CV) technique (e.g., [7]). The technique provides a certain number of EOFs 
(modes) Kr that are well-resolved by the HFR observations. The rest of the modes ek,k> Kr 

are attributed to noise, whose spatial variability cannot be determined with statistical confi- 
dence from the data. Technically, Kr is computed as the number of modes which minimize 
the interpolation error at the randomly chosen set (uc of CV points. These points are tem- 
porarily removed from observations and constitute a small portion of the data set in order 
to minimize their impact on the result of covariance estimate. 

To till a gap containing points .v, in a subdomain w c ft, the radial velocities V(JC,-) 

observed outside the gap (or, G ft \ (o) are expanded in K, "resolved" eigenfunctions e* of C: 
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and the expansion coefficients cjt are used to obtain radial velocities within the gap: 

K, 
V(JC,GCO) = £^*(XIGü)) (10) 

t=l 

After this, the EOF expansion is iteratively improved: a set of EOFs Mm)} on the 
/'/ih iteration is computed using the covariance estimate C(m) emerging from the data set 
whose gaps are already filled with the help of the previous EOFs {«k

m_l\}< then these new 
EOFs Mm)} are employed to fill the gaps again. The process terminates when the relative 
reduction of the mean interpolation error 

K, 
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computed over the CV set 0)c becomes smaller than the machine precision. Computations 
described by (9-11) are conducted for several values of Kr to find the optimal one that 
minimizes e2. 

With the optimal cutoff number of modes Kr, the covariance matrix C can be decom- 
posed into the well-resolved Cr and unresolved (noisy) C„ constituents: 

C = Cr 4- C = UrArUj + U„AnU
J

n (12) 
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where Ur is the K, x K matrix, whose columns are the first (well-resolved) eigenvectors, 
Ar = diag {Xk}, * = 1,..., Kr; the eigenvectors in the columns of the (K - Kr) x K matrix U„ 
are attributed to noise, and A„ = diag{X*}, k = Kr + \,...,K. 

The noise level v is estimated as 

- i K K 
v = 

Tr/V, 
TrA 

I- I 

(13) 

whereas observation error variances oj, k = 1, ...,K (Eq. (4)) are represented by the diago- 
nal elements of the matrix C„ = U„A„Uj. The diagonal elements of C can also be utilized 
to estimate the variances oj, o? and 6j of the respective fields Av, Acurlv and Adiw which 
enter the equation (4) in the form of the inverse variances W",WC and Wd. 

In the next section, the benefits of the GF technique are assessed in a series of experi- 
ments with simulated and real data. 
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Figure 8. Setting of the gap simulation experiments: Gray shading shows data acquisition 
areas of the radars in the presence of a simulated ship (case b) moving across the Monter- 
rey Bay. Area within the rectangle shows the boundary of the data-free region in case c. 
Numbers enumerate radars switched off in case d. 

4.2.   Testing 

4.2.1.    Experiments with Simulated Data 

Experiments with simulated data were configured to mimic real observations conducted 
in the Monterrey Bay in summer of 2003 [48]: The "true" currents u' were extracted 
from the 12.5-day run of the NCOM model [3] forced by COAMPS [18] winds. Sur- 
face currents were sampled every hour along the beams of three radars which probed the 
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radial components v*k of the model surface velocity at 386, 407 and 349 points respec- 
tively. Therefore the dimension of the data space was K=l 142. The total number of the 
grid points where velocity vectors were reconstructed was Af=560, so the number of un- 
knowns 2A/=1120 was approximately equal to the number of observations. Overall there 
are N — Kn = 1142 • 301 = 343,742 observation points, where n is the number of hourly 
time steps in the 12.5 day time window. Observations were modeled by eq. (5) 

Three noise level values v (0,0.1, and 0.3) were tested within each of six major series 
of experiments. Each series was characterized by specific structure of the artificial gaps 
introduced into the simulated data set to assess the benefits of the GF technique. These 
simulated data sets were the following: 

0) without the gaps 
a) with 1 -point gaps randomly distributed along the beams (data loss v = 13.5%) 
b) with gaps, generated by obstacles, moving across the domain (Fig. 8): Each obstacle 

(ship) spoils data along three beams, whose intersection point coincides with the ship's 
position. Back-and -forth motion of three ships, which effectively removed 6.9% of the 
data points from observations was simulated. 

c) with the gap created by discarding all observation points in the rectangular region 
(Fig. 8) for 1 day. This gap removed 28% of the data on August 10-11 and approximately 
7 =2% of the data overall. 

d) with gaps generated by switching off for 12 hours radars 2,3 on August 4, radar 1 on 
August 8 and radars 1,3 on August 12 (Figure 8, y=6.3%). 

e) with all the above mentioned gaps superimposed (Y=28.2%) 
The quality of interpolation was monitored by the same three parameters eu,ec and ej 

as described by eq. (6-7), The CV set u)c was specified by randomly removing 10-13 points 
on each time layer with the total number of CV points Wcv=3,490 (approximately 1 %). 
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Figure 9. Interpolation error e as a function of the number of modes m. 

The cutoff number K, was determined for the noise levels (v=0,0.1 and 0.3) by mini- 
mizing the interpolation error (11), and was found to be independent on random variations 
in the space-time structure of the CV set. Figure 9 shows calculations of KT for the experi- 
ments with v=0.1 and 0.3: for observations specified by eq. (5) the S/N separation number 
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is 38 for v=0.1 and 20 for v=0.3. The corresponding estimates of the noise level (Eq. (13)) 
are 0.093 and 0.29 in very good agreement with the true values. For the case of perfect 
observations (v = 0) Kr appeared to be close to A" as the dependence (11) t{Kr) flattened 
out at large K, and did not show any distinct minimum. 

Table 3 shows the improvement in performance of the 2dVar algorithm when the pre- 
liminary GF is applied. 

Table 3. Dependence of the interpolated field parameters evy ec, and e,i on the structure 
of the gaps in HFR observations for v = 0.3. The results of standard 2dVar (without 
GF) and 2dVar with the gaps filled are shown respectively in the left and right columns 
of the table cells 

case Y ev *rf «c 
0 
a 
b 
c 
d 

abed 

0.0% 
13.5% 
6.9% 
2.0% 
6.3% 

27.9% 

0.251 
0.260 0.252 
0.256 0.251 
0.254 0.251 
0.280 0.258 
0.311  0.274 

    0.652 
0.665 0.659 
0.662 0.654 
0.660 0.655 
0.677 0.661 
0.703 0.679 

    0.537 
0.551 0.542 
0.545 0.540 
0.545 0.539 
0.564 0.542 
0.589 0.558 

In the case a (randomly distributed 1 -point gaps) the improvement is significantly lower 
than the percentage of data loss (13.5%), primarily because filling random 1-point gaps 
affects information content on the grid scale which is poorly resolved anyway. Besides, 
data absence is largely compensated by observations in the points located in the immediate 
vicinity of the 1 -point gaps at distances often smaller than the grid step. These neighboring 
points compensate missing data and provide the 2dVar interpolation with enough informa- 
tion on the larger-scale variability. Also note that the surface velocity field is recovered in 
most cases with a better accuracy ev than the noise level v = 0.3. 

Moving ships (case b) spoil 6.9% of the entire set of 343,742 data points. Relative 
improvement of the 2dVar interpolation (line 3 in Table 3) is somewhat smaller than for 
the case of completely random gaps: Velocity field is better by 1.1% whereas vorticity 
and divergence fields show 0.9 and 1.0% improvements respectively. Nevertheless, the 
improvement appears to be pretty robust with respect to this type of gaps as well. 

Much more difficulties emerge when a gap occupies a significant portion of the interpo- 
lation domain, as in case (c) (Fig. 8). To better illustrate the benefits of the GF technique, 
we placed the gap at the location of an eddy-like structure seen in the mouth of the Monter- 
rey Bay around the 10th of August, 2003 (Fig. 10, left panel). This eddy is not reproduced 
by the 2dVar technique alone (Fig. 10, right panel), simply because there is no information 
on the eddy in the velocity field, surrounding the gap. On the contrary, if GF is used prior 
to 2dVar, a certain portion of this eddy emerges from the EOF statistics, increasing the skill 
of the 2dVar algorithm (Fig. 10, middle panel). 

Table 3 does not give full impression of the improvement, because error data are aver- 
aged over the whole observation period (12.5 days), whereas the data sets in case (c) differ 
only on the 10-11 th of August. If averaging is performed over the time period containing 
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Figure 10. The "true" velocity field (left panel) and velocity fields reconstructed by 2dVar 
with preliminary filling the rectangular gap (middle panel) and without (right panel). 

the gap (from 12PST 10.08.2003 to 12PST 11.08.2003) then the advantage is obvious: ev is 
reduced from 0.49 to 0.32 (33% reduction). Similar error reductions are also observed for 
the vorticity and divergence fields (28 and 37% respectively). 

A common reason for low data return of a II IK system is malfunction of one or more 
radars. This kind of situation was simulated by switching off both northern radars for 
half a day on the 4th of August, southern radar on the 8th and two southern radars on the 
12th. The strongest reduction of the interpolation errors occurred on the 12th of August, 
when the reconstructed (true) currents were generally perpendicular to the beams of the 
only operating radar. In that case the velocity error ev reduced 64% (from 0.84 to 0.34) 
with 66% of the missing data being filled. Interpolated velocity distributions show that 
2dVar tends to align velocities along the beams of the only working radar, producing rather 
unrealistic patterns. After filling of the missing data from the southern radars, the skill of 
the 2dVar algorithm was significantly improved. 

Finally, all the gaps were combined together to obtain a "realistic" HFR record, char- 
acterized by 72% of the data return. Figure 11 gives an overall comparison between the 
methods in terms of ev, ej and ec. It is obvious that EOF-based GF of the radial data is 
particularly advantageous during the severe data loss events caused by either malfunction 
of a radar (8.8) or two (4.8, 12.8); or by data loss in a region, whose size is considerably 
larger than the grid step (11.8). 

Beyond these periods, when only 1-point and ship-generated gaps are present, prelimi- 
nary GF still has some (1-3%) advantage over the stand-alone 2dVar in terms of ev, ej and 
ec (see Table 3 and Fig. 11). 

It is also noteworthy that the GF technique allows to retrieve the sea surface state with 
the accuracy of ev=0.27, that is better than the noise level v=0.3 (Fig. 11) even in the case of 
28% loss of observations. The conventional 2dVar technique (ev=0.31, blue line in Fig. 11) 
demonstrates somewhat lower skill, primarily because of much poorer performance during 
the heavy data loss periods. 
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Figure 11. Velocity interpolation error ev for the "perfect" data set (without gaps, red line), 
for the gappy data with (black) and without (blue) preliminary GF. Shaded area denotes the 
part of data occupied by the gaps. Particularly severe losses of data are observed during sim- 
ulated radar malfunctions (4,8 and 12 of August) and on August 11th, when "observations" 
were removed from a large region shown in Fig. 8. 

4.2.2.    HFR Observations in the Eastern English Channel and Iroise Sea 

To test the algorithm with real data, the GF algorithm was applied to HFR observations 
obtained off the Opal coast of France [42] and in the Iroise Sea (northern Bay of Biscay). 

The Opal coast experiment was conducted in May-June 2003 with two HFRs deployed 
on the Cape Gris Nez (CGN) and Wimereux (WMX, Figure 12). The entire 35-day record 
from 0.00 GMT 01.05.2003 to 23.40 GMT 04.06.2003 was used for testing. Surface cur- 
rents were sampled every 20 minutes at 10° azimuthal resolution defined by the beam width. 
The radial velocity data were available along the beams at 1.8 km resolution. Grid cells with 
less than 75% data returns were excluded from consideration, constraining the interpolation 
domain to the ranges less than 20 km [43] and the total number of quality data points to 
K=203. Overall, the analyzed records were characterized by 87% of data return. Approx- 
imately 10% of the missing radial velocities were due to data acquisition problems at the 
Wimereux radar on May 3 (3 hour gap) and May 21-22 (21 hours). The instrumental ac- 
curacy of the measurements was 5 cm/s and the typical magnitude of the observed radial 
velocities was Vr =0.35 m/s. 

A set of CV points ioc was generated by randomly removing 8-12 radial velocities from 
the data every 20 minutes. In total, 24,097 (4.7%) observations were removed. 

The quality of interpolation was estimated as the mean absolute difference between the 
values of the interpolated velocity at the CV points and the radial velocities measured at 
these points: 

*; = <|v*-Av-r*|> 

Here index k enumerates the CV points and angular brackets denote averaging over a>f. The 
total number of gaps in observations (including the CV points) was 92,156 (18%). 

Similar to twin-data experiments, the noise level was determined by minimizing the GF 
error (11). Dependencies of the normalized interpolation errors e and e\ on the number of 
modes were similar to those shown in Fig. 9 and demonstrated distinct minima at Kr = 
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Figure 12. Surface velocity at 14.20GMT on May 21 2003 in the ERMANO study area. 
Contours show the bathymetry in meters. Gray dots indicate locations of the surface veloc- 
ity measurements by two radars (shown by circles). 

33 - 35. The value Kr = 33 was selected as the noise cutoff number. The corresponding 
observational noise level computed through eq. (13) was close to 0.15, or 5.1 cm/s, in a 
good correspondence with the above estimate of the instrumental errors. 

Overall, the GF technique enabled to reduce the time averaged relative interpolation 
error e*v/Vr to 0.16 (5.5 cm/s), a value very close to the observational noise level. On the 
contrary, the mean value of e*v without preliminary gap filling appeared to be more than two 
times higher (0.35) indicating a significant benefit of combining 2dVar interpolation with 
the GF analysis. 

Figure 13. Tidal ellipses computed from the PCA of the surface velocities obtained by the 
standard 2dVar method (a); and by the 2dVar method with GF technique (b,c). The 24-hour 
PCA averaging is performed over the period of one operating radar (starting 12.40GMT 
21.05) for (a) and (b) and over two 24-hour intervals preceding the gap (starting 12.40 
20.05) and following immediately after (starting 12.00 22.05) for (c). Every second ellipse 
is shown. 

The advantage of the GF technique is most vividly seen during the periods when the 
WMX radar was not working. As an example, Fig. 12 demonstrates a velocity snapshot 
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within the second (21-hour) gap. As it was proved by comparison with the velocity pat- 
terns obtained for the identical tidal phase on May 20 and 23, the reconstructed velocities 
represent well the realistic current field. Fig. 13 shows tidal ellipses from Principal Com- 
ponent Analysis (PCA) of the interpolated currents over the 24-hour period from 12:00 
GMT 05.21.2003 to 12:00 GMT 05.22.2003. In this time interval, the WMX radar was not 
operating for nearly 21 hours (from 12:40 GMT 21.05 to 8:20 GMT 22.05). The pattern 
in Figure 13a (obtained without preliminary GF) appears to be completely unrealistic as 
the major axes of the ellipses tend to align along the beam directions of the only operating 
radar at Cape Gris Nez. Figure 13b is apparently more close to reality since the spatial 
distribution of the ellipses is much more similar to the ones obtained from PCA analyses 
of two 24-hour periods: one immediately before and another one immediately after the gap 
(Fig. 13c). During these two periods both radars were in full operation with the average 
data return of approximately 92 
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Figure 14. Right: surface currents in the Iroise Sea (West Brittany) obtained from radial 
velocities measured by single radar (not shown, located 5 km east of SE corner of the 
domain) on July, 23, 2008; velocities of the northern radar were interpolated using the GF 
technique. Left: surface currents in the same area measured by both radars two tidal periods 
earlier (July 22, 2008). 50 and 100 m isobaths are shown by gray contours. Northern radar 
at Point Garchine is shown by black dot. 

In a similar way, the GF technique was applied for processing of the HFR data in the 
Iroise Sea (section 2.2.2) acquired July 21 to September 15, 2008. During that period, the 
radial velocity records had two major gaps. The first 4-hour gap was caused by emission 
interruption of the northern radar on July 23 between 18:00 and 22:OOGMT. The second, 
19-hour long, was caused by interruption of the southern (Point Brezellec) radar on July 
28-29. Tidal currents were substantially stronger on July 23 than on July 28 thus inducing 
a rotational character of local circulation around the Ushant Island and Sein Archipelago. 

Figure 14 shows snapshots of surface currents separated by exactly two tidal cycles 
(on July 23 and July 22, 2008). The circulation pattern in Fig. 14a has been obtained 
from one-radar data using the GF algorithm in conjunction with 2dVar interpolation. This 
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allowed reconstruction of the surface currents at a level of details that was not previously 
available. An anti-cyclonic eddy north of the Ushant Island, generated at the end of flood, is 
fully resolved, general pattern of circulation during the current reversal is well reproduced, 
as well as the current intensification in the Fromveur Strait. All these features of local 
circulation can be also found on the map derived from radial velocities recorded by both 
radars one day before (Fig. 14b). Discrepancy between the radial velocities observed by 
the southern radar and the interpolated velocities projected on radar beams remains below 
30%. Further assessment of the GF algorithm is currently underway in the regions with low 
tides, (Gulf of Lyons in the Mediterranean Sea [15]). 

5.    Summary 

Monitoring surface currents in coastal areas with HFRs is a rapidly developing application 
of the radar technology. Of particular importance is the HFRs' capability to observe circula- 
tion up to 150-200 km offshore with spatial and temporal resolutions sufficient for accurate 
tracking and prediction of floating particle trajectories, be it oil spills or rafts with people 
waiting to be rescued. 

In this chapter we have reviewed the latest developments in the algorithms for retriev- 
ing the surface velocity field from the radial velocities. The radials are derived by process- 
ing backscattered HFR signals, a technique equally important for increasing spatial resolu- 
tion and overall quality of the surface velocity field (see, for example, [31] and references 
therein). 

In Section 2, a numerical algorithm based on minimization of a quadratic cost function 
in the space of all possible configurations of the velocity field was presented. Performance 
of the method is compared with the LI and OMA algorithms. It is shown that the 2dVar 
approach is robust and capable to provide a statistically consistent fit to the data in the 
wide range of signal/noise ratios. The comparison demonstrated similar (to LI) or better 
(than OMA) performance of the 2dVar technique under relatively high signal/noise ratios, 
especially when a 80%-90% fit to the velocity field containing strong localized features 
is required. At more realistic (less than 3-4) signal/noise ratios the OMA and 2dVar have 
similar skill and outperform LI because of their better treatment of the coastal regions where 
beam directions are close to parallel. 

Comparison of the algorithms has also shown that the variational approach gives more 
flexibility in fitting the data, since the number of modes in use is close to the number of 
points on the interpolation grid. 2dVar method is also flexible in the choice of regularization, 
because the desired smoothness and its spatial variation can be directly controlled by a 
simple modification of the cost function weights. The method also appears to be more 
accurate than LI and OMA in the regions with sparse data coverage, and within the large 
gaps in observations. 

The 2dVar algorithm is regularized by enforcing smoothness in the interpolated patterns 
of divergence and vorticity. This formulation attempts to retrieve spatial distribution of 
these quantities because they are extremely important for successful tracking of surface 
contaminants and other applications (search and rescue, route optimization). 

Section 3 provides an overview of more sophisticated interpolation techniques, which 
synthesize HFR data with other observations and dynamical information provided by the 
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numerical models of oceanic circulation. This type of interpolation has been under exten- 
sive development in the last decade, but HFR data were rarely considered even in regional 
applications possibly because of their limited availability compared, for example, to satel- 
lite observations. Nevertheless, it has been shown that using HFR data greatly improves 
the forecast skill of the DA systems, especially when increased predictability of the surface 
currents is required. 

An open question in HFR data assimilation is whether the radial velocities require pre- 
processing or should be assimilated directly into the numerical models. We assume that 
in many cases preliminary preprocessing could be beneficial. In particular, kinematically 
constrained interpolation of the HFR radials on the model velocity grid may inhibit spuri- 
ous fast waves arising in the case of strongly intermittent data availability which is often 
observed in the practice of HFR measurements. 

In Section 4 we demonstrated the benefits of more sophisticated preprocessing, which 
combines the EOF analysis with the 2dVar interpolation technique. This approach is able 
to successfully process occasional single-radar coverage events and improve the overall 
quality of monitoring of sea surface currents by the HF radars. The EOF analysis of the 
radial velocities provides a) statistically rigorous estimation of the weights for the 2dVar 
algorithm, and b) a set of spatial patterns (EOFs) capable to fill large gaps in the data caused 
by radar malfunctions. The approach takes the advantage of the frequent time sampling by 
the HFRs and employs observation history to estimate the leading modes of variability of 
the radial velocities. Numerical experiments with simulated and real data have shown that 
preliminary gap-filling is extremely beneficial during occasional periods of heavy data loss 
associated with radar malfunctioning: With the proposed technique, the 2dVar interpolation 
errors during these periods are typically reduced 1.5 - 2 times providing much more realistic 
velocity distributions (Fig. 11, 14). 

Overall, an advanced interpolation method can be summarized as a four-step procedure: 
EOF analysis of the radial velocities; estimation of the noise and the 2dVar cost function 
weights; filling large gaps in observations, and finally, retrieving of the velocity vectors from 
the filled data set. This type of interpolation eliminates disruptions in HFR observations of 
surface currents caused by environmental factors and by discontinuities in HFR operation. 

Further development of the preprocessing/interpolation techniques for the HFR radial 
velocities and their assimilation into the numerical models is a necessary prerequisite of 
continuous improvement in monitoring near-coastal circulation which is extremely impor- 
tant in practical applications and may help to solve many environmental problems caused 
by human activity. 
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