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Yonghua Li, R. Dyche Anderson, Yi Ding and Matthew P. Castanier

Abstract—Lithium ion batteries should always be prevented
from overheating and hence thermal monitoring is indispensable.
Since only the surface temperature of the battery can be mea-
sured, a thermal model is needed to estimate the core temperature
of the battery, which can be higher and more critical. In this
paper, an online parameter identification scheme is designed
for a cylindrical lithium ion battery. An adaptive observer
of the core temperature is then designed based on the on-
line parameterization methodology and the surface temperature
measurement. A battery thermal model with constant internal
resistance is explored first. The identification algorithm and
the adaptive observer is validated with experiments on a 2.3Ah
26650 lithium iron phosphate/graphite battery. The methodology
is later extended to address temperature dependent internal
resistance with non-uniform forgetting factors. The capability of
the methodology to track the long term variation of the internal
resistance is beneficial for battery health monitoring.

Index Terms—Lithium ion battery, core temperature, adaptive
estimation, state of health.

I. INTRODUCTION

L ITHIUM ion batteries have been widely considered as
an energy storage device for hybrid electric vehicles

(HEV), plug-in hybrid electric vehicles (PHEV) and battery
electric vehicles (BEV). Thermal management in vehicular
applications is a critical issue for lithium ion batteries because
of their narrow operating temperature range. An accurate
prediction of the battery temperature is the key to maintaining
safety, performance, and longevity of these Li-ion batteries.

Existing high fidelity thermal models can predict the de-
tailed temperature distribution throughout the cell [1], [2],
[3], [4]. However, these models are not suitable for onboard
application due to their high computational intensity. Reduced
order models typically use one single temperature, the bulk (or
average) temperature, to capture the lumped thermal dynamics
of the cell [4], [5], [6], [7]. Even though the single temperature
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approximation is computationally efficient, it might lead to
over-simplification since the temperature in the battery core
can be much higher than in the surface [8].

Lumped thermal models capturing both the surface and
the core temperatures of the cell have also been studied in
[8] and [9]. Such simplified models are efficient for onboard
application due to their limited number of states. The accuracy
of the model parameters is of great importance since it
determines the accuracy of the core temperature estimation.
Model parameters can be approximated based on the geometry
of the battery and the volume averaging physical properties
of its components [9], but such approximation may not be
accurate due to the complicated layered structure of the cell
and the interfaces between the layers. The parameters can
also be determined by fitting the model to the data obtained
from experiments [8], involving designed input excitation and
measurement of the battery core temperature. This laboratory-
oriented parameterization is invaluable for determining the
initial values of parameters. However, some of the parameters,
such as the internal resistance, may change over the battery
lifetime due to degradation. In this case, parameter mismatch
leads to inaccurate temperature estimation, and thus identifi-
cation of present value of the parameters is needed.

A recursive parameter identification scheme is designed
in this paper to automatically identify the thermal model
parameters based on the signals commonly measured in a
vehicle battery management system. The algorithm is simple
enough to run on a typical automotive onboard controller. An
adaptive observer is then designed for the core temperature
estimation. A lumped battery model with constant internal
resistance is investigated first, where the least square algorithm
is sufficient for identification. In reality, the internal resistance
of the battery can be temperature and/or state of charge (SOC)
dependent [5], [10], [11] and hence time-varying. The pure
least square algorithm may cause errors to the identification
if the actual parameters are non-constant. Non-uniform for-
getting factors are augmented to the least square algorithm to
address the issue of time-varying internal resistance.

Apart from the short-term variability due to conditions
such as temperature, the internal resistance of the lithium ion
battery may also increase over lifetime due to degradation.
This is because the solid electrolyte interphase (SEI) may grow
in thickness [12], [13], [14] and reduce the conductivity of
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Fig. 1. Single Cell Radially Lumped Thermal Model

the SEI. Hence, the least square algorithm with non-uniform
forgetting factors is also applied to track the long term growth
of the internal resistance. The growth of the internal resistance
can be viewed as an important indication of the state of health
(SOH) of the battery, and used as a reference for the onboard
battery management system to extend the life of the batteries.
Parameterization of battery model and adaptive monitoring of
the battery voltage and SOH have been explored previously
in various seminal papers [15], [16], [17], but this paper is
among the first ones to adaptively monitor the temperatures
(especially the core temperature) of batteries and SOH from
a thermal perspective.

II. LUMPED THERMAL MODEL OF A CYLINDRICAL
LITHIUM ION BATTERY

The radial thermal dynamics of a cylindrical battery are
modeled based on the classic heat transfer problem by assum-
ing heat generation located at the core and zero heat flux at
the center, as shown in Fig. 1.

The two-state approximation of the radially distributed
thermal model is defined as [9]

CcṪc = I2Re +
Ts −Tc

Rc
(1a)

CsṪs =
Tf −Ts

Ru
− Ts −Tc

Rc
, (1b)

where the two states are the surface temperature Ts and
the core temperature Tc. The temperature variation along
the battery height is neglected here, assuming homogeneous
conditions.

Heat generation is approximated as a concentrated source of
Joule loss in the battery core, computed as the product of the
current, I, squared and the internal resistance, Re. The internal
resistance Re is considered as an unknown parameter to be
identified. This simplification can lead to cycle-dependent val-
ues for lumped resistance Re, or even non-constant resistance
within a single cycle, because Re can vary with conditions
such as temperature, SOC and degradation [5], [10], [11], [13].
In subsequent sections, first, Re will be identified online as
a constant under a drive cycle, and then identification of Re
as a varying parameter will be addressed in Sec. (VII). Heat
generation calculated based on an equivalent circuit model has
also been used for thermal model parameterization in another
ongoing work [18].

Heat exchange between the core and the surface is modeled
by heat conduction over a thermal resistance, Rc, which is

a lumped parameter aggregating the conduction and contact
thermal resistance across the compact and inhomogeneous
materials. A convection resistance Ru is modeled between the
surface and the surrounding coolant to account for convective
cooling. The value of Ru is a function of the coolant flow
rate, and in some vehicle battery systems, the coolant flow
rate is adjustable to control the battery temperature. Here, it
is modeled as a constant as if the coolant flow rate is fixed
to accommodate the maximum required cooling capacity. A
model with the more complicated varying Ru has also been
investigated in [19].

The rates of the temperature change of the surface and the
core depend on their respective lumped heat capacity. The
parameter Cc is the heat capacity of the jelly roll inside the
cell, and Cs is related to the heat capacity of the battery casing.

The complete parameter set for this model includes Cc, Cs,
Re, Rc, and Ru, of which the values cannot be easily calcu-
lated. Consider the conduction resistance Rc as an example.
Theoretically, Rc can be calculated based on the conductivity
and dimensions of the wound cell electrode assembly and
the aluminum casing. However, since the rolled electrodes
are composed by the cathode, anode, current collectors and
separator, it will be difficult to obtain an accurate value
for the overall conductivity. Moreover, Rc also includes the
contact thermal resistance between the rolled electrodes and
the casing, which involves various contact properties adding
to the complexity of the calculation.

Therefore, model identification techniques are developed in
the following section to obtain the lumped phenomenological
values of the model parameters based on measurable inputs
and outputs of the model.

III. PARAMETERIZATION METHODOLOGY

For model identification, a parametric model

z = θ T ϕ (2)

is derived first by applying Laplace transformation to the
model, where z is the observation, θ is the parameter vector
and ϕ is the regressor [20]. Both z and ϕ should be measured
or can be generated from measured signals.

With a parametric model, various algorithms can be chosen
for parameter identification, such as the gradient and the least
squares methods. The method of least squares is preferred for
noise reduction [20].

The recursive least squares algorithm is applied in an on-
line fashion, as parameters are updated continuously [20]

θ̇ = P
εϕ
m2 , (3a)

Ṗ =−P
ϕϕ T

m2 P, (3b)

ε = z−θ T ϕ , (3c)
m2 = 1+ϕ T ϕ , (3d)

where m is a normalization factor that enhances the robustness
of parameter identification.
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In some cases, to make the observation z and the regressors
ϕ proper (or causal), a filter 1

Λ(s) will have to be designed and
applied. The parametric model will then become

z
Λ

= θ T ϕ
Λ
. (4)

The convergence and robustness of the identification are
guaranteed if the regressors, ϕ in Eq. (8), are stationary signals
and satisfy the persistent excitation (PE) conditions [20]. The
PE conditions are satisfied if there exist some time interval T0,
and positive number α1 and α0, such that

α1IM ≥U(t) =
1
T0

∫ t+T0

t
ϕ(τ)ϕ T (τ)dτ ≥ α0IM ∀t ≥ 0, (5)

where IM is the identity matrix with the same dimension as
U(t) [20]. This criteria can be used to test whether a drive
cycle can ensure robust parameter convergence.

IV. ONLINE PARAMETERIZATION OF THE BATTERY
THERMAL MODEL

In this section, the parameterization scheme described pre-
viously is applied to the cylindrical battery thermal model in
Eq. (1). A parametric model for identification can be derived
by taking the Laplace transformation of Eq. (1) and replacing
the unmeasured Tc with measured signals I, Tf , and Ts,

s2Ts − sTs,0 = Re
CcCsRc

I2 + 1
CcCsRcRu

(Tf −Ts)+
1

CsRu
s(Tf −Ts)

− 1
CcCsRc

(
(Cc +Cs)sTs −CsTs,0 −CcTc,0

)
, (6)

where Ts,0 and Tc,0 are the initial surface and core tempera-
tures. When the initial core temperature, Tc,0, is considered to
be the same as the initial surface temperature, Ts,0, as if the
battery starts from thermal equilibrium, Eq. (6) becomes

s2Ts − sTs,0 =
Re

CcCsRc
I2 +

1
CcCsRcRu

(Tf −Ts)

−Cc +Cs

CcCsRc
(sTs −Ts,0)+

1
CsRu

s(Tf −Ts). (7)

It is assumed here that Tf is regulated as a steady output of
the air-conditioning unit and thus sTf = 0, giving

s2Ts − sTs,0 =
Re

CcCsRc
I2 +

1
CcCsRcRu

(Tf −Ts)

−
(

Cc +Cs

CcCsRc
+

1
CsRu

)
(sTs −Ts,0). (8)

If Tf is a time-varying input to the model, sTf should not
be dropped. In this case, Tf can also be used as an input
excitation in the parametric model. A second order filter should
be applied to the observation and the regressors in Eq. (8) to
make them proper. The filter takes the form

1
Λ(s)

=
1

(s+λ1)(s+λ2)
, (9)

where λ1 and λ2 are the time constants of the filter. The values
of λ1 and λ2 can be chosen to filter the noises with frequencies
higher than the temperature dynamics.

For the parametric model in Eq. (8),

Z(s) =
s2Ts − sTs,0

Λ(s)
(10a)

Φ(s) = [
I2

Λ(s)
Tf −Ts

Λ(s)
sTs −Ts,0

Λ(s)
]T (10b)

θ = [α β γ ]T , (10c)

where

α =
Re

CcCsRc
(11a)

β =
1

CcCsRcRu
(11b)

γ =−
(

Cc +Cs

CcCsRc
+

1
CsRu

)
. (11c)

For implementation in a practical system, the identification
algorithm is formulated along with signals z and ϕ in the time
domain based on Eq. (3), or in the discrete time domain based
on equivalent formula. For example, z(t), whose Laplace
transform is s2Ts−sTs,0

Λ(s) , can be obtained by calculating the
convolution of Ts(t)−Ts,0 and the inverse Laplace transform
of s2

Λ(s) . In this way, calculation of the 2nd order derivative of
Ts, s2Ts, which can be easily corrupted by noises, is avoided.

By using the parametric model in Eq. (8), only three lumped
parameters, α , β and γ , can be identified under the condition
of persistent input excitation[20]. Prior knowledge of two of
the physical parameters must be assumed so as to determine a
set of unique solution for the original five physical parameters,
Cc, Cs, Re, Rc, and Ru from α , β and γ . Of the five physical
parameters, the internal resistance Re may vary due to aging
and should be identified online. The conduction resistance Rc
is difficult to estimate as explained previously. The convection
resistance Ru will be influenced by the coolant flow conditions
around the cell depending on the packaging. Therefore, it is
not easy to obtain prior knowledge of those three parameters.
The heat capacities Cc and Cs, which depend on the thermal
properties and the mass of the rolled electrode assembly and
the casing, are relatively constant over lifetime. In addition, the
heat capacities will only affect the speed of transient response
of the model without having any impact on the steady state
temperatures. Consequently, the heat capacities Cc and Cs are
selected to be the presumed parameters.

With Cc and Cs presumed and α , β and γ identified, Re,
Rc and Ru can be obtained by solving the following set of
equations:

β (Cc +Cs)CsRu
2 + γCsRu +1 = 0 (12a)

Rc =
1

βCsCcRu
(12b)

Re = αCcCsRc. (12c)

The quadratic equation for Ru in Eq. (12) can lead to two
solutions, but the right one can be decided based on the coolant
flow conditions based on [21].

The least squares algorithm in Eq. (3) can then be applied
for parameter identification. In [19] and [22], the methodology
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has been applied and verified by simulation with a battery ther-
mal model with assumed parameters. In the following section,
the parameterization is further validated by experiments.

V. EXPERIMENT VALIDATION

A. Experiment Set-Up and Measurements

Experiments have been conducted to validate the de-
signed parameterization scheme. A 2.3Ah A123TM 26650
LiFePO4/graphite battery is cycled with a BitrodeTM cycler
under the control of a customized testing system by A&D
TechnologyTM. A Cincinnati Sub-ZeroTM environmental sim-
ulation chamber is used to regulate the temperature of the
coolant air flow around the battery.

T-type thermocouples are installed both on the battery
casing to measure its surface temperature, and also inside
the battery core to measure the core temperature. During the
fabrication process of the 26650 cylindrical cell, the electrode
assembly is wound up to form a roll, leaving a cavity in the
center. To measure the core temperature, the battery was drilled
inside an argon-filled glove box through to its central cavity,
where the thermocouple was inserted, as shown in Fig. 2. The
battery was then sealed and taken out of the glove box for
experiments.

Fig. 2. Instrumentation of the Battery Core Temperature (left: drill press
setup of the battery; right: installation of the thermocouples)

Inside the thermal chamber, the battery was placed in a
designed flow chamber as shown in Fig. 3, where a fan was
mounted at one end to regulate the air flow around the cell.
The speed of the fan is controlled by Pulse Width Modulation
(PWM) signals to change the air flow rate. The flow chamber
is used to emulate the pack air cooling conditions where the
coolant flow rate is adjustable (like in [19]). A T-type thermo-
couple is placed near the battery inside the flow chamber to
measure the air flow temperature Tf .

B. Persistent Excitation of Input Signals

A driving cycle, the Urban Assault Cycle (UAC) [23], is
applied as the current excitation to the battery in galvanostatic
mode. The UAC is originally a velocity cycle for military
vehicles. The current profile for a battery pack of a hybrid
military vehicle under UAC is derived in [23] by applying a
certain power management strategy. The type of battery used
in the experiment (LiFePO4 26650) is different from the one in

Fig. 3. Schematics of the Flow Chamber

[23], hence the UAC current cycle taken from [23] is rescaled
for the experiments. The original 20-minute cycle is repeated
4 times to let the battery temperature reach periodic steady
state. The resulting scaled drive cycle current is plotted in
Fig. 4. The normalized unit of C-rate is commonly used to
describe the load applied to the battery and 1 C corresponds
to the magnitude of the current that depletes the battery in
one hour (in this case 2.3 A). The negative current indicates
the discharge of the battery as the energy is drawn from the
battery to drive the vehicle, and the positive current represents
the regenerative braking during which the battery is charged.
The discharge load is fairly evenly distributed between 1 C and
7 C, except at around -8 C which indicates rapid acceleration.
The charge load is mostly below 7C and occasionally reaches
above 10 C during drastic braking. The SOC evolution under
this cycle is also plotted in Fig. 4, showing a decrease from
about 50% to roughly 35%.
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Fig. 4. Scaled UAC Current Excitation (top: currents in time series; middle:
histogram of the currents; bottom: SOC variation under the cycle)

The temperature of the thermal chamber is controlled at
26 oC. The resulting battery surface temperature Ts and air
flow temperature Tf are measured and recorded by the data
acquisition system. The measured Ts and Tf under the scaled
UAC cycles are plotted in Fig. 5, which along with I are then
used for parameter identification.
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Fig. 5. Measured Ts and Tf under Scaled UAC Cycle (top: surface
temperature Ts; bottom: flow temperature Tf )

The criteria in Eq. (5) is then applied to check if the
UAC cycle satisfies the PE condition, which requires the
regressors to be stationary signals first. As can be seen in
Fig. 5, the surface temperature Ts will vary periodically after
the battery finishes the warm-up phase at about 1000 second.
Consequently, the regressors, which include I2, Tf −Ts, and
sTs, will become stationary signals, as shown in Fig. 6. The
U(t) matrix can then be calculated to check the persistent
excitation conditions. It is noted that the measurements taken
during the warm-up period can also be used for identification,
even though they are not stationary signals [19].
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Fig. 6. Evolution of Regressors ϕ in Periodic Steady State

Since the current input consists of repeated UAC cycles
(each lasting for 1200s), the values of U(t) only need to be
calculated over a time interval T0 = 1200s for 1000s ≤ t ≤
2200s. It is noted that in this case, U(t) is not a diagonal matrix,
and thus its eigenvalues are calculated to check the persistent
excitation conditions. The smallest and the largest eigenvalues
of U(t), λmax and λmin, are plotted in Fig. 7. It can be concluded
from Fig. 7 that α1 in Eq. (5) can be found as 0.086 s−1, which
is the maximum of λmax(t), and α0 as 2.4×10−4 s−1, which is
the minimum of λmin(t). Consequently, under the UAC cycle,
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Fig. 7. Evolution of the Eigenvalues of U(t) in Steady State (Top: smallest
eigenvalue; bottom: largest eigenvalue. )

TABLE I
INITIAL GUESS AND IDENTIFICATION RESULTS OF

PARAMETERS

Parameters Ru(KW−1) Re(mΩ) Rc(KW−1)
Initial Guess 1.5 30 0.5
ID Results 3.03 11.4 1.83

the regressors satisfy the conditions of persistent excitation.
Furthermore, α0 are related to the speed of the convergence
for parameter identification. Specifically, when the gradient
method is used, 2α−1

0 is the upper limits of the time constant
of the parameter convergence [20], which would be

τ ≤ 8333s (13)

in this case. Based on Eq. (13), the 90% settling time for the
convergence under the gradient search algorithm is expected
to be less than 19186s. It is noted that 19186s is a rather
conservative estimation of the convergence time, in real ap-
plication, the convergence is usually accelerated by increasing
the adaptive gain [20], [24].

C. Results and Discussion

The measured signals I, Ts and Tf in Fig. 4 and Fig. 5 are
used for recursive least squares parameterization. The three
parameters to be identified, Ru, Re and Rc, are initialized with
the initial guess values in Table I. For the heat capacity, the
single Cp in [8] is split into Cc and Cs here representing
the battery core and surface heat capacities respectively. The
heat capacity of the battery core, Cc, is assumed to be 67
JK−1, slightly smaller than Cp in [8]. The heat capacity of the
battery surface, Cs, is assumed to be 4.5 JK−1 based on the
dimensions of the aluminum casing of the 26650 battery and
the specific heat capacity of aluminum.

The results of the recursive identification are plotted in
Fig. 8. It is noted that the identification procedures are started
after the first 1000 seconds when the temperature enters peri-
odic steady state. It can be seen that starting at some random
initial values, the 3 parameters converge to the values listed in
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Table I. The upper plot in Fig. 8 shows the convergence of the
lumped parameters α , β and γ in Eq. (8), and the lower plot
shows the convergence of the physical parameters Ru, Rc and
Re, which are obtained by solving Eq. (12). It is noted that
the convergence time is within the range (less than 19186 s)
discussed in Sec. (V-B), which is strictly speaking only valid
for the gradient method. The convergence rate is accelerated
here by increasing the initial adaptive gain P0 [24], [25], which
is the initial value of P(t) in Eq. (3).
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Fig. 8. On-line Parameter Identification Results (top: convergence of the
lumped parameters; convergence of the original parameters)

For validation purpose, the identified parameters are applied
to Eq. (1) to estimate both the battery surface temperature Ts
and the core temperature Tc. The estimation is then compared
with the measurement, as plotted in Fig. 9. The estimated sur-
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Fig. 9. Experimental Validation (top: estimated surface temperature Ts vs.
measured; bottom: estimated core temperature Tc vs. measured)

face temperatures Ts match the measurement exactly, since Ts
is directly used for identification. It is noted that the measured
core temperature Tc also agrees closely with the measured
Tc (which was not used for parameterization), showing the
capability of the parameterized model to predict the correct
battery core temperatures. Once the parameterization scheme
is validated, it can be run in onboard BMS to estimate the

TABLE II
COMPARISON OF THE IDENTIFIED PARAMTERS TO [8]

Parameters Value Equivalence in [8] Value
Rc(KW−1) 1.83 Rin(KW−1) 3.2 ∼ 3.4
Ru(KW−1) 3.03 Rout(KW−1) 8.4 ∼ 9.1
Cc(JK−1) 67 Cp(JK−1) 73 ∼ 78
Cs(JK−1) 4.5 - -

core temperatures in real time without actually measuring it
(as in the lab set-up).

The identification results are also compared to those in [8],
where thermal parameters of the same battery are identified
based on the measurement of both surface and the core
temperatures under designed current inputs. In [8], the battery
is modeled with a single dynamic state (the core temperature),
and the surface temperature is related to the core temperature
with an algebraic equation by assuming the surface heat
capacity to be zero. In [8], the heat generation is pre-calculated
by resistive heat dissipation (due to ohmic voltage drop) plus
entropic heat, and in this work, the entropic heat is ignored
and the heat generation is accounted for by multiplying the
current square with an identified parameter Re. It is noted that
the entropic heat is generally small comparing to the resistive
heat, especially in the middle SOC range here as shown in
Fig. 4.

Table II summarizes the comparison between the thermal
parameters identified in [8] and in this paper. It can be seen that
the identified value of the conduction resistance (Rc) between
the core and the surface is smaller than that in [8]. This
is probably because the surface temperature in this work is
measured at the aluminum casing instead of at the outside
paper cover (as in [8]), which indicates better heat conduction.
The identified convection resistance between the surface and
the coolant Ru is significantly smaller than that in [8], which
can be explained by the fact that during the experiment, the
air flow is constantly blown into the flow chamber by the fan
which enhances the convective cooling through the coolant air.

VI. ADAPTIVE BATTERY CORE TEMPERATURE
ESTIMATION

In control application, an observer is often designed based
on a plant model to estimate the states of a plant, especially
ones that are not measured, e.g. the core temperature Tc of
the battery in this case. Such model based observers can be
categorized as either an open loop observer or a closed loop
observer. For a linear system

ẋ = Ax+Bu (14)

where x are the states and u are the inputs, an open loop
observer is simply

˙̂x = Ax̂+Bu, (15)

as the estimated states x̂ are calculated by the model solely
based on the inputs u. For the battery thermal model specifi-
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cally, we have

x = [Tc Ts]
T (16a)

u = [I2 Tf ]
T (16b)

A =

[
− 1

RcCc
1

RcCc
1

RcCs
− 1

Cs
( 1

Rc
+ 1

Ru
)

]
(16c)

B =

[
ReRc
Cc

0
0 1

RuCs

]
(16d)

However, the estimation by such open loop observer can often
be corrupted by unknown initial conditions, and noises in the
measurement of the inputs. To address such issues, a closed
loop observer, such as a Luenberger observer or a Kalman
filter, is often designed to estimate the states based on the
model and the feedback of some measurable outputs [26],

˙̂x = Ax̂+Bu+L(y− ŷ) (17a)
y =Cx+Du (17b)
ŷ =Cx̂+Du (17c)

where y are the measured system outputs, x̂ and ŷ are estimated
states and output, L is the observer gain, and A, B, C and D
are model parameters. For the battery thermal model, since
the surface temperature Ts is measurable, we have

C =[0 1] (18a)
D = 0. (18b)

It is noted that the difference between the measured and
the estimated output is used as the feedback to correct the
estimated states. Comparing with an open loop observer, the
closed loop observer can accelerate the convergence of the
estimated states to those of the real plant under unknown
initial conditions, e.g. a Luenberger observer [26], or optimize
the estimation by balancing the effect of unknown initial
conditions and noises, e.g. a Kalman filter [27].

By taking the structure of a closed loop observer, an adap-
tive observer is then designed based on certainty equivalence
principle [20],

Cc
˙̂Tc = I2R̂e +

T̂s − T̂c

R̂c
+ l1(Ts − T̂s) (19a)

Cs
˙̂Ts =

Tf − T̂s

R̂u
− T̂s − T̂c

R̂c
+ l2(Ts − T̂s), (19b)

where T̂s and T̂c are the estimated surface and core temper-
atures, and the observer parameters R̂e, R̂c and R̂u are taken
from the online identification results in Sec. (V). The block
diagram of the adaptive observer is shown in Fig. 10. The
input current I, coolant temperature Tf , and the measured
surface cell temperature Ts are fed into the parameter identifier
to estimate model parameters Ru, Re and Rc. The adaptive
observer uses the estimated parameters to estimate the core
and the surface temperatures. The estimated Ts is compared
to the measurement and the error is fed back to correct
the core temperature and surface temperature estimation. The
estimations for both parameters and temperatures are updated
at each time step.

Fig. 10. On-line Identification Scheme and Adaptive Observer Structure

The data in Sec. (V) are used to test the response of the
adaptive observer, as plotted in Fig. 11. The initial estimated
temperatures of the adaptive observer are set at 30 oC for both
the surface and the core, whereas the correct value is 26 oC,
and the parameters are initialized with the initial guess values
in Table I. It can be seen from Fig. 11 that the estimated
surface temperature Ts converges to the actual values much
faster than the core temperature Tc. The reason is that the sur-
face temperature Ts is accessible by the adaptive observer both
via parameter identification and closed loop error feedback,
and thus the observer can adjust its estimation of Ts quickly
based on direct reference of the measurement. But for the core
temperature Tc, which is not measured, its estimation accuracy
depends on the accuracy of the model parameters. Therefore,
the convergence of Tc to the actual values will only happen
after the identified parameters converge to the correct model
parameters (at approximately 3000 seconds).
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Fig. 11. Response of the Closed loop Adaptive Observer (top: adaptive
estimation of the surface temperature vs. measurement; bottom: adaptive
estimation of the core temperature vs. measurement)

VII. PARAMETERIZATION OF THE BATTERY THERMAL
MODEL WITH TEMPERATURE DEPENDENT Re

For most lithium ion batteries, their internal resistance Re
depends on temperature and SOC, [5], [6], [11]. In general
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cases, Re is high when the temperatures are low and when the
SOC is close to 0% or 100%. An Arrhenius function is often
used to describe the relationship between Re and the battery
(core) temperature Tc, as

Re = Re,re f exp
(

Tre f

Tc

)
, (20)

where Re,re f is the reference resistance value at a certain
reference temperature Tre f , and Tre f and Tc are in K. It is
noted that the change in resistance with respect to SOC
is negligible in the normal vehicle battery operating range
(20% − 80% SOC) and thus is not considered here. The
relationship between Re and Ts described by Eq. (20) is plotted
in Fig. 12, by taking Re,re f = 0.091 mΩ and Tre f = 1543 K.
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Fig. 12. Dependence of Re on Tc

As a result, in real application, Re will be varying as the
temperature fluctuates. Such variation can not be neglected
when the power demands are high and dramatically varying.
Simulation is used in this section for illustration. Simulated
variation of Re due to Tc fluctuation under a drastic current
cycle is shown in Fig. 13. It can be seen that the drastic current
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Fig. 13. Errors in Re Estimation when the Temperature Varies Significantly
(top: drive cycle current; middle: fluctuation of the battery core temperature;
bottom: errors in Re identification)

variation creates a 10 oC of fluctuation in the battery core
temperature Tc. The resulting variation of Re is about 20% as
shown by the blue line in the bottom plot of Fig. 13.

Since the least squares identification algorithm in Eq. (3)
identifies each parameter as a constant, when Re is varying,
errors will be observed in Re identification as shown in Fig. 13.
This will not only introduce errors in Re estimation but might
also affect the estimation of other parameters, and eventually
corrupt the estimation of the core temperature Tc. To address
such issue, a least squares algorithm with forgetting factors is
then designed to identify Re as a time-varying parameter.

A. Identification Design with Forgetting Factor

When forgetting factors are adopted, most parts of the least
square algorithm will be the same as Eq. (3), except that

Ṗ(t) = ηT P(t)η −P(t)
ϕ(t)ϕ T (t)

m2(t)
P(t), (21)

where η is the forgetting factor matrix [20].
The least square identification algorithm tries to find the

optimal parameters that best fit the inputs and outputs over
the whole data set. A pure least square algorithm treats
each data point as equal, no matter if it is acquired most
recently, or obtained much earlier. However, when a forgetting
factor is applied, the data points will be weighted differently.
Specifically, the newly acquired data are favored over the older
ones. In the form shown in Eq. (21), the weight of the data will
decay exponentially with the time elapsed, and the larger the
forgetting factor is, the faster the decay will be. Consequently,
the least square algorithm can track the parameters when they
are time-varying.

The least square algorithm with forgetting factors can be
applied to the original linear parametric model in Eq. (7). Of
the three lumped parameters, namely α , β , and γ in Eq. (7),
only α is related to time varying Re, and all the others are
constant. Therefore, non-uniform forgetting factors should be
adopted with the η matrix designed as

η =

η1 0 0
0 0 0
0 0 0

 , (22)

where η1 is the forgetting factor associated with α (and hence
Re).

Simulation is conducted with η1 = 0.25, and the results of
identification are shown in Fig. 14. It can be seen that that
the identified Re can follow the simulated varying Re after
the recursive least squares online identification with forgetting
factors is activated at 1500s. As shown in Fig. 15, the adaptive
observer, taking the structure in Eq. (19) and parameters
identified online (now Re varying as shown in the bottom
plot of Fig. 14), can estimate the battery core temperature Tc
accurately after the identified Re converges to the simulated
Re at around 3700s.

VIII. DEGRADATION DETECTION BY MONITORING
GROWTH IN INTERNAL RESISTANCE

The recursive least square algorithm with forgetting factors
can also track the long term growth of the internal resistance,
which can be used as an indication for the state of health
(SOH) of the battery.
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The growth of the internal resistance due to degradation
is a process that occurs slowly over the battery lifetime. The
internal resistance might increase substantially over hundreds
of cycles or days according to [12], [13] and [14].

In this paper, the growth in internal resistance due to
degradation is simulated and used to test the capability of
the identification algorithm to detect the slow increase of the
resistance. The internal resistance Re, originally a function
of the core temperature Tc, is now augmented with a term
which is linearly increasing over time. The drive cycle used for
simulation is the same as shown in the upper plot of Fig. 13,
but is repeated for 350 times and the rate of growth in internal
resistance is set at 0.14%/cycle. Although not modeled here,
the rate of degradation may also increase with the temperature
according to [12], [13] and [14].

The results of the online identification are shown in Fig. 16.
It can been seen from Fig. 16 that the simulated internal
resistance gradually increases over time while still subject to
short-term variation due to the fluctuation of the battery core

temperature. The identified Re follows both the long-term and
short-term variation of the simulated one with a small delay
as shown in the inset of Fig. 16. In real vehicle application,
since Re is varying all the time, it is difficult to evaluate SOH
by the instantaneous value of Re and the averaged Re might be
a better choice instead. The mean value of Re for each UAC
cycle is plotted in the lower half of Fig. 16. It is noted that the
averaged Re can capture the long-term increase of the internal
resistance and the identified value is a good estimation of the
real one.

Fig. 16. (Simulated) Identification of Internal Resistance Subject to Degra-
dation (top: identification of Re with both short-term and long-term variation;
bottom: simulated and identified cycle-average Re)

The adaptive monitoring of the temperatures is also shown
in Fig. 17. It is noted that as the internal resistance of the
battery grows, the temperatures will also be elevated due to the
increase of the heat generated. Since the observer is updated
with the identified Re in real time, it estimates both the core
and the surface temperatures with high accuracy.

Fig. 17. Adaptive Estimation of Battery Subject to Degradation

IX. CONCLUSION

The core temperature of a lithium ion battery, which is
usually not measurable, is of great importance to the onboard
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battery management system, especially when the batteries are
subject to drive cycles with high C-rate. The core temperature
can be estimated by a two states thermal model, and the
parameters of the models are critical for the accuracy of the
estimation. In this paper, an online parameter identification
scheme based on least square algorithm is designed for a
cylindrical lithium ion battery thermal model. The online
identification scheme can automatically identify model param-
eters based on the commonly available onboard signals. The
updated parameters are then used to predict the unmeasured
core temperature using a model based observer as shown with
an A123 26650 lithium iron phosphate battery.

When the internal resistance of the battery is temperature
dependent, which is a more realistic situation, the least square
algorithm is augmented with non-uniform forgetting factors.
The algorithm with forgetting factors can not only track the
time-varying internal resistance, but also guarantee unbiased
identification of the remaining constant parameters. The online
parameterization also shows the capability to track the long-
term variation of the internal resistance due to aging or degra-
dation/abuse. The growth in internal resistance can be used
for the SOH monitoring of the batteries. The methodology
developed has been verified with simulations and is to be
validated with experiments in the immediate future.

Applications, such as HEV, BEV and PHEV, usually have
hundreds, or even thousands, of battery cells in series to
meet their high power and energy requirements. Hence the
vehicle level battery thermal management will be performed
on a module basis, instead of on a cell basis. The single
cell thermal model used in this paper can be scaled up to a
pack model by considering cell to cell thermal interaction, and
the parameterization methodology and the adaptive observer
design will be investigated for the pack level model. Initial
results of this work can be found in [22].
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