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Abstract—This paper focuses on the problem of developing
control laws to solve the Time-Coordinated 3D Path-Following
task for multiple Quadrotor UAVs in the presence of time-varying
communication networks and spatial and temporal constraints.
The objective is to enable n Quadrotors to track predefined
spatial paths (parameterized by virtual time) while coordinating
to achieve synchronization in time. One scenario is a symmetric
exchange of position by four Quadrotors initially positioned in
four corners of a square room. When the mission starts, every
quadrotor is required to execute collision free maneuvers and
arrive at the opposite corner at the same desired instant of time.
In this paper, the path-following control algorithm is derived
using the Special Orthogonal group theory (SO(3)), thus avoiding
singularities that arise when dealing with local parameterizations
of the vehicle’s attitude. The coordination task is solved by
adjusting the second derivative of the virtual time along the
spatial paths.

I. INTRODUCTION

Avoiding harm’s ways requires the employment of intel-
ligent autonomous vehicles. Combined with recent advances
in miniature technology brings a global spotlight on the
development of Unmanned Aerial Vehicles (UAVs). Currently,
the use of UAVs plays a crucial role in preventing exposure of
human beings to uncertain and hostile environments, therefore
avoiding any danger to lives of operators. For instance, after
being struck by the biggest recorded earthquake and a dev-
astating tsunami, Japan has been fighting a potential nuclear
catastrophe deploying UAVs in situations where the presence
of human operators was hazardous.

From a design point of view, and with a slight abuse of
terminology, UAVs can be classified in two main categories:
fixed-wings and rotatory-wings. Compared to the fixed-wings,
that cannot freely move in any direction (rotate) or hold
a constant position, rotorcrafts can be deployed in a much
wider variety of scenarios. Among the rotatory-wings air-
craft, Quadrotors play an important role in research areas as
prototypes for real life missions, including monitoring and
exploration of small area.

A Quadrotor consists of four blades, whose motion control
is achieved by adjusting the rotation rate of one or more
rotor discs. Control of Quadrotors is quite challenging and

Research supported in part by projects USSOCOM, ONR under Contract
N00014-11-WX20047, ONR under Contract N00014-05-1-0828, AFOSR
under Contract No. FA9550-05-1-0157, ARO under Contract No. W911NF-
06-1-0330, and CO3AUVs of the EU (Grant agreement n. 231378)

has been addressed in many recent publications. To mention
a few, in [1] and [2] a stabilization and control algorithm
is developed using Lyapunov stability theory. In [3] and [4]
PD2 and PID architectures are compared with LQR based
control theory. Backstepping control is proposed in [5], while
in [6] and [7] a visual based feedback control law is presented
using camera measurements for pose estimation. Fuzzy logic
control techniques are proposed in [8]. Intelligent control,
based on neural networks, is introduced in [9] to achieve
vertical take off and landing. Finally, integral sliding mode
and reinforcement learning control are presented in [10] as
solutions for accommodating the nonlinear disturbances for
outdoor altitude control. The PF (path following) control law
presented in this paper is motivated by [11], where a Lyapunov
based control is formulated using the Special Orthogonal
group (SO(3)) theory, leading to a simple and singularity free
solution for the trajectory tracking problem. A similar idea has
already been adopted by the authors in [12], where a solution
for the 3D PF problem for fixed-wings UAVs was presented.
Furthermore, motivated by more challenging scenarios, the
same algorithm was employed in [13], where multiple fixed-
wings UAVs were asked to coordinate while following their
desired paths.

Cooperation between multiple unmanned vehicles has re-
ceived significant attention of control community in recent
years. Relevant work includes spacecraft formation flying
[14], UAV control [15], [16], coordinated control of land
robots [17], and control of multiple autonomous underwater
vehicles [18], [19]. However, much work remains to be
done to overcome numerous critical constraints. For example
one of the crucial problems is the presence of time-varying
communication networks that arise due to temporary loss of
communication links and switching communication topologies
[20], [21].

Motivated by these challenges, the objective of the paper
is to enable a set of Quadrotor UAVs to converge and follow
a set of desired paths under stringent temporal constraints.
A typical example is captured in Figure 1, where a set of
vehicles, starting from random initial positions, must arrive at
their final positions at the same time tf , and hold a specified
formation. The solution proposed consists of two basic steps:
first, a PF control law is designed to drive each vehicle on
a predefined spatial path xd,i(γ). To achieve the objective,
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Fig. 1: A typical example of a fleet of UAVs coordinating
along predefined paths

the PF algorithm produces angular rates and thrust command,
which are sent to an onboard Autopilot (AP); second, syn-
chronization is achieved by adjusting the accelerations, thus
obtaining, indirectly, vehicle coordination. Figure 2 captures
the key concept described above.

This paper is organized as follows. Section II defines the PF
problem for a single Quadrotor UAV. Section III formulates
the Time-Coordination (TC) problem for a fleet of vehicles. In
Section IV the two problems developed in the previous Sec-
tions are combined, giving a definition of Time-Coordinated
3D Path-Following (TCPF). Section V addresses the stability
and convergence properties of the TCPF problem. Section VI
presents simulation results. Finally, Section VII summarizes
the key results and presents the main conclusions.

II. 3D PATH-FOLLOWING

A. Problem Formulation

The basic idea pursued in this paper is to reparameterize
an existing trajectory tracking controller as a path follow-
ing controller. In this paper we adopt with minor changes
the trajectory tracking controller developed in [11] . Thus,
for completeness of presentation, we follow the notation
introduced in [11] and next briefly summarize the trajectory
tracking controller development reported there and rewrite it
as a path following controller.

Let I = [~e1 , ~e2 , ~e3]> and Bi = [~b1,i , ~b2,i , ~b3,i]
> be two

coordinate frames representing the inertial frame and the body
frame attached to the i-th Quadrotor. Let also xd,i(γi) be a
desired path parameterized by γi. The choice of the parameter
γi is discussed later.

Let the motion of the Quadrotor be governed by
ẋi = vi

mv̇i = fi~b3,i −mg~e3

Ṙi = RiS(ωi) ,

(1)

where xi(t) and vi(t) are the position and velocity of the
i-th Quadrotor, m is its mass (with no loss of generality,

it is assumed that all the Quadrotors have the same mass),
fi(t) is the total thrust of the four propellers, Ri = RIBi

the
rotation matrix from the body frame to the inertial frame, and
ωi = [pi(t), qi(t), ri(t)] the angular velocity of the vehicle
expressed in Bi. Then, we can define the position error vector
ex,i ∈ R3 as

ex,i(t) = xd,i(γi)− xi(t) (2)

and the velocity error vector ev,i ∈ R3 as

ev,i(t) =
∂xd,i(γi)

∂γi
− ẋi(t) . (3)

Assume that the position error and the desired velocity and
acceleration are bounded, that is:

||ex,i|| ≤ ex,imax (4)∣∣∣∣∣∣∣∣∂xd,∂γi

∣∣∣∣∣∣∣∣ ≤ b1,i (5)∣∣∣∣∣∣∣∣∂2xd,i
∂γ2

i

∣∣∣∣∣∣∣∣ ≤ b2,i (6)

for some b1,i, b2,i > 0, and let

exmax =

n∑
i=1

ex,imax ,

b1 =

n∑
i=0

b1,i , b2 =

n∑
i=0

b2,i .

Following [11], we now introduce an auxiliary frame Di,
which is used to shape the approach to the path as a function
of the error components ex,i and ev,i. Let the rotation matrix
from the frame Di to the inertial frame I be

RIDi
= Rc,i = [~b1D,i, ~b3D,i ×~b1D,i, ~b3D,i]

where

~b3D,i =
kxex,i + kvev,i +mg~e3 +m

∂2xd,i

∂γ2
i

||kxex,i + kvev,i +mg~e3 +m
∂2xd,i

∂γ2
i
||

(7)

and ~b1D,i is chosen in order to be orthonormal to ~b3D,i. The
vector ~b3D,i defines the desired orientation of the z-axis of the
Quadrotor i (~b3,i).

Assume

||kxex,i + kvev,i +mg~e3 +m
∂2xd,i
∂γ2

i

|| 6= 0 , (8)

and

||mg~e3 +m
∂2xd,i
∂γ2

i

|| < Bi , (9)

for any Bi ≥ 0.
Let R̃i be the rotation matrix from Bi to Di, that is

R̃i = RD,iBi
= R>c,iRi .

Then,
˙̃Ri = R̃iS(ω̃i)
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where

ω̃i = ωBi

BiDi
=

piqi
ri

− R̃>i ωDi

DiI
, (10)

and
S(ωD,iDiI

) = R>c,iṘc,i .

Note that, if we have R̃i = I , the frame Bi overlaps the
desired frame Di.

Then, the objective of the controller developed is to drive
the position error ex,i and the velocity error ev,i to zero, and
the rotation matrix R̃i to the identity.
Consider the real-valued function on SO(3):

Ψ(R̃i) =
1

2
tr(I − R̃i) , (11)

and its time derivative

Ψ̇(R̃i) = −1

2
tr(R̃iS(ω̃i)).

Finally, let the attitude error vector be

eR̃,i =

√
Ψ(R̃i)(2−Ψ(R̃i)) =

1

2
vec(R̃i − R̃>i ) . (12)

Using properties of the SO(3) group [22], we get:

Ψ̇(R̃i) =
1

2
eR̃,i · ω̃i . (13)

Therefore, the dynamic of the PF errors can be summarized
in the following system of equations:

ėx,i =
∂xd,i

∂γi
γ̇i − ẋi

mėv,i = m
∂2xd,i

∂γ2
i
γ̇i − fi~b3,i +mg~e3

Ψ̇(R̃i) = 1
2eR̃,i · ω̃i .

(14)

Using the above notation, we now define the PF for a single
vehicle.

Definition 1: Path-Following Problem (PF): For a given
i-th Quadrotor UAV, and for a given path xd,i(γ), design
feedback control laws for the total thrust fi(t), the roll
rate pi(t), pitch rate qi(t) and yaw rate ri(t) such that the
generalized PF error vector xPF,i = [ex,i , ev,i , eR̃,i], with the
dynamic described in (14), converges to a neighborhood of the
origin, for any physically feasible temporal speed assignment.

B. Quadrotor with autopilot

A typical Quadrotor is equipped with an onboard AP, that
stabilizes the body and tracks the thrust and angular velocities
reference commands. Therefore, it is necessary to take into
account possible limits on the performance of the AP inner-
loop. Thus, we assume that :

|pc,i(t)− pi(t)| ≤ δp,i (15)

|qc,i(t)− qi(t)| ≤ δq,i (16)

|rc,i(t)− ri(t)| ≤ δr,i (17)

|fc,i(t)− fi(t)| ≤ δf,i (18)

where pc,i(t) , qc,i(t) , rc,i(t) , fc,i(t) are the commanded in-
puts from the controller to the AP, pi(t) , qi(t) , ri(t) , fi(t)
are the actual commanded values from the inner loop architec-
ture to the vehicle, and δp,i, δq,i, δr,i, δf,i are the bounds which
characterize the tracking performance of the AP. Finally, let
be

δp ,
n∑
i=1

δp,i , δq ,
n∑
i=1

δq,i ,

δr ,
n∑
i=1

δr,i , δf ,
n∑
i=1

δf,i .



III. TIME-COORDINATION OF A FLEET OF QUADROTOR
UAVS: PROBLEM FORMULATION

We now address the problem of the TC of a fleet of n
Quadrotor UAVs.

As described in the Section II, the desired path of every
vehicle is parameterized by some variable γi, with i =
1 , ... , n. The choice of the parameter γi is such that, if
γi − γj = 0 ∀i, j, i 6= j and γ̇i = 1 at some final time
tf then all the vehicles arived at their destinations at the same
time.

To achieve time synchronization the parameters γi have to
be exchanged among the Quadrotors over a communication
network. Using tools from graph theory we model the infor-
mation exchanged over the time-varying network as well as
the constraints imposed by the communication topology. We
start by assuming that the i-th UAV communicates only with
a neighboring set of vehicles, denoted by Gi. We also assume
that the communication between two UAVs is bidirectional
with no delays. The reader is referred to [23] for key concepts
and details on algebraic graph theory.

Following the notation used in [13], we now let L(t) ∈
Rn×n be the Laplacian of the graph Γ(t). Let Q ∈ R(n−1)×n

be a matrix such that Q1n = 0, QQ> = In−1 and L̄(t) =
QL(t)Q>, where L̄ ∈ R(n−1)×(n−1) with the spectrum equal
to the spectrum of L(t) without the eigenvalue λ1 = 0.
Finally, we let L̄(t) satisfy the persistency of excitation (PE)
assumption:

t+T∫
t

L̄(τ)dτ ≥ µIn−1 . (19)

Given the above notation, we now let

ξ(t) = Qγ(t) (20)

where ξ(t) = [ξ1(t), ξ2(t), ..., ξn−1(t)] ∈ Rn−1 and γ(t) =
[γ1(t), γ2(t), ..., γn(t)] ∈ Rn. From the definition of Q, if
ξ(t) = 0n, then γi − γj = 0 ∀ i, j = 1 , ... , n.

Let also
z(t) = γ̇(t)− 1 , (21)

where z(t) = [z1(t), z2(t), ..., zn(t)] ∈ Rn. Note that if zi = 0
then γi = t.

With the above notation, the coordination problem can now
be defined.

Definition 2: Time Coordination Problem (TC): Given
a set of n 3D desired trajectories xd,i(γi), design feedback
control law for γ̈i such that the vectors ξ and z defined in
(20) and (21), converge exponentially to a neighborhood of
the origin ∀ i = 1 , ... , n.

IV. TIME-COORDINATED 3D PATH-FOLLOWING:
PROBLEM FORMULATION

In the previous sections we formulated the PF problem for a
single vehicle, and the TC problem for a fleet of n Quadrotor
UAVs. In this section we combine these two by defining the

TCPF problem. Consider the dynamic of the PF error variables
in (14). Using the variable z defined in (21), we get

ėx,i =
∂xd,i

∂γi
zi + ev,i

mėv,i = m
∂2xd,i

∂γ2
i
zi +m

∂2xd,i

∂γ2
i
− f~b3,i +mg~e3

Ψ̇(R̃i) = 1
2eR̃,i · ω̃i .

(22)

∀ i = 1 , ... , n.
Let ex , ev , eR̃ and Ψ(R̃) be

ex = [e>x,1 , e
>
x,2 , ... , e

>
x,n]> ∈ R3n×1 , (23)

ev = [e>v,1 , e
>
v,2 , ... , e

>
v,n]> ∈ R3n×1 , (24)

eR̃ = [e>
R̃,1

, e>
R̃,2

, ... , e>
R̃,n

]> ∈ R3n×1 , (25)

and

Ψ(R̃) =

n∑
i=1

Ψ(R̃i) ∈ R , (26)

and let xPF = [e>x , e
>
v , e

>
R̃

]>. Recall also the TC error
variables defined in (20) and (21). Then, the main objective
of this paper can be stated as follows:

Definition 3: Time Coordinated 3D Path Following
Problem (TCPF): Given a fleet of n UAVs, a communication
network satisfying (19) and a set of n 3D desired trajectories
xd,i(γi), design feedback control laws for the total thrust fi(t)
and for roll rate pi(t), pitch rate qi(t) and yaw rate ri(t)
such that the PF errors, with the dynamic described in (22)
, converge to a neighborhood of the origin ∀ i = 1 , ... , n.
Also, design a feedback control law for γ̈i such that the TC
errors defined in (20) and (21) converge to zero.

V. TIME-COORDINATED 3D PATH-FOLLOWING: MAIN
RESULT

First, let the total thrust of the i-th vehicle be governed by

fi =

(
kxex,i + kvev,i +mge3 +m

∂2xd,i
∂γ2

i

)>
~b3,i . (27)

In addition, let the angular rates of the i-th quadrotor bepiqi
ri

 = R̃>i ω
Di

DiI
− 2kR̃eR̃,i. (28)

Finally, let

γ̈ = ż = −bz − aLγ−


α>1,1ex,1
α>1,2ex,2
...

α>1,nex,n

−

α>2,1ev,1
α>2,2ev,2
...

α>2,nev,n


︸ ︷︷ ︸

,−ᾱ(ex,ev)

, (29)

where
α1,i =

(
kx
∂xdi
∂γi

+ c1
∂2xdi
∂γ2

i

)
and

α2,i =

(
c1
∂xdi
∂γi

+mi
∂2xdi
∂γ2

i

)



Remark 1: Note, we modified the controller used in [11]
in two important ways. First, we reparametrized it as path
following controller and second we modified it to use angular
rates and thrust as control inputs to be followed by an existing
inner-loop autopilot. In turn, this compels us to consider the
underlying performance limitations due to the constrains of
the inner-loop controller.

Then, the Lemma below states one of the main results of
this paper:

Lemma 1: TCPF with ideal inner-loop tracking perfor-
mance: Let the total thrust and the angular velocities of each
quadrotor be governed by (27) and (28). Let also γ̈i be driven
by (29). Then, there exist kx , kv , kR̃ , c1 , a and b such that
the error vector

x = [e>x , e
>
v , e

>
R̃
, ξ> , z>]> (30)

converges exponentially to zero with rate of convergence

λ , min(λPF , λTC) , (31)

for any
λPF > 0 (32)

and with
λTC <

µ

T (1 + n2T )2
(33)

and corresponding domain of attraction

Ωc ,
{

(ex , eR̃) | Ψ(R̃) ≤ c2 < 1 , ||ex|| ≤ exmax

}
. (34)

A proof of this result is omitted due to the page limitation;
however its brief outline is given in Appendix A.

As our last step, we consider the case of non perfect inner-
loop discussed in Section II-B. The main result of our paper
follows.

Lemma 2: TCPF with non perfect inner-loop tracking
performance: Let the total thrust and the angular velocities
of each quadrotor be governed by (27) and (28). Let also γ̈be
driven by (29). Let θ be a positive constant such that

0 < θ < λ , (35)

where λ was defined in (31). Let also the performance bounds
defined in Section II-B, satisfy

γf <
exmaxkxmθ

2c1
, (36)

and
γω ,

√
γ2
p + γ2

q + γ2
r <

cθ

2− c2
. (37)

Then, there exist kx , kv , kR̃ , c1 , a and b such that, for any
initial state x(0) ∈ Ωc there is a time Tb ≥ 0 such that the
bound in (38) holds ∀ 0 ≤ t < Tb, and the bound in (39)
holds ∀ t ≥ Tb.

The outline of the proof is given in Appendix B.
Remark 2: Note, as γp , γq, γr and γf go to zero, we

recover ideal performance shown in Lemma 1

VI. SIMULATION RESULTS

In this Section, simulation results are presented. The sce-
nario involves four vehicles. The UAVs are asked to follow
four intersecting paths. The geometry of the paths, and the
constant desired speed profiles, are chosen to ensure collision
avoidance. Figure 3 illustrates the above scenario. UAVA starts
its mission far away from the desired initial position. This
initial PF error implies an initial divergence of γ̇A from the
desired value. However, as shown in Figure 4 and 5, despite
this initial error, the control algorithm ensures the convergence
to the origin of the coordination states and collision free
exchange of positions.

Finally, Figure 6 illustrates the performance of the PF
control algorithm.

VII. CONCLUSION

This paper considered the problem of steering a fleet of
Quadrotor UAVs along the predefined spatial paths, while
coordinating with each other, according to the mission require-
ments. Cooperative control is achieved in the presence of time-
varying communication networks, and stringent temporal con-
straints. The constraints include collision-free maneuver and
simultaneous arrival at the desired locations. The PF problem
is solved using the SO(3) theory, which avoids the singularities
that arise when using local parametrization of the vehicle’s
attitude. Angular velocities and total thrust are used to drive
the Quadrotors to the desired positions. Non-ideal inner-loop
tracking performance is also considered. Coordination between
the UAVs is achieved by adjusting the acceleration along the
desired trajectories. The exponential convergence of the TCPF
errors is guaranteed and demonstrated using Lyapunov theory.
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APPENDIX

A. Outline of the proof of Lemma 1
To prove the exponential convergence of the TCPF error vector

defined in (30), first note that the following system

φ̇(t) = −L̄φ(t)

is GUES [24], with L̄ satisfying the PE assumption in (19).

Furthermore, choosing the following transformation operator

χ(t) = bξ(t) +Qz(t)

the dynamic of the TC error can be written as{
χ̇ = −a

b
L̄χ+ a

b
QLz −Qᾱ(ex, ev)

ż = −(bI − a
b
L)z − a

b
LQ>χ− ᾱ(ex, ev) .

Therefore, leveraging the approach in [11] for VPF by adding two
extra terms representing the TC problem (VTC ), the function

V =
kx
2
||ex||2 +

m

2
||ev||2 + Ψ(R̃) + c1(e>v ex)︸ ︷︷ ︸

VPF

+

+ χ>Pcχ+
1

2
||z||2︸ ︷︷ ︸

VTC

,
(40)

where kx, m, c1 were introduced in Section II and Lemma 1, and Pc
is discussed in details in [25, Theorem 4.12], can be chosen as a new



0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time, [s]

P
F

 e
rr

o
rs

 

 

||e
x
||

||e
v
||

||e
R

||

Fig. 6: UAVA: PF errors ||ex|| , ||ev|| and ||eR̃|| converge to zero

Lyapunov candidate function. Then, following the same arguments
used in [24, Lemma 2] and [11], the following bound holds:

V̇ =V̇PF + V̇TC

≤− c1kx
m

(1− c2)||ex||2 − (kv(1− c2)− c1)||ev||2+

− kR̃||eR̃||
2 +

c1kv
m

(1 + c2)||ex||||ev||+

+ (kxexmax i +B)||eR̃||||ev||+
Bic1
m
||eR̃||||ex||+

+ (kxb1 + c1b2)||z||||ex||+ (c1b1 +mb2)||z||||ev||+

− c̄3||χ||2 − (b− n)||z||2 + n

(
c̄4
γλ

+ 1

)
||χ||||z|| .

(41)

Finally, it can be proven that there exist kx, kv, kR̃, c1, a and b such
that

V̇ ≤ −λV (42)

with domain of attraction defined in (34), and rate of convergence λ
defined in (31). therefore leading to the following:

V (t) ≤ V (0)e−λt .

Thus, the result of Lemma 1 immediately follows.

B. Outline of the proof of Lemma 2
Start by considering the Lyapunov function in (40). Following

the same outline described in Appendix A, and after some algebraic
manipulations (the reader is referred to [13, Appendix C]) we get:

V̇ =V̇PF + V̇TC

≤− c1kx
m

(1− c2)||ex||2 − (kv(1− c2)− c1)||ev||2+

− kR̃||eR̃||
2 +

c1kv
m

(1 + c2)||ex||||ev||+

+ (kxexmax i +B)||eR̃||||ev||+
Bic1
m
||eR̃||||ex||+

+ (kxb1 + c1b2)||z||||ex||+ (c1b1 +mb2)||z||||ev||+

− c̄3||χ||2 − (b− n)||z||2 + n

(
c̄4
γλ

+ 1

)
||χ||||z||

+
c1
m
δf ||ex||+ δf ||ev||+

1

2
δω||eR̃|| .

(43)

Recalling the result in (42), and following a proof in [25, Lemma
9.2], leads to

V̇ ≤− (λ− θ)V − θ
(
kx
2
||ex||2 +

m

2
||ev||2 +

1

2− c2 ||eR̃||
2+

+c1(e>v ex) + χ>Pcχ+
1

2
||z||2

)
+

+
c1
m
δf ||ex||+ δf ||ev||+

1

2
δω||eR̃|| ,

where 0 < θ < λ.
Therefore, after straightforward computations, we can show that

outside the bounded set

Ωd ,
{
x = [e>x , e

>
v , e

>
R̃ , χ

> , z>]> s.t.

||ex|| ≤
2c1δf

kxmθ(1− εx)
, ||ev|| ≤

2δf
mθ(1− εv)

,

||eR̃|| ≤
2− c2

2

δω
θ

}
,

the following bound holds:

V̇ ≤ −(λ− θ)V .

Finally, letting γp, γq, γr and γf satisfy the bounds in (36) and (37)
implies that Ωd ⊂ Ωc, thus proving Lemma 2.


