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ABSTRACT 
This study presents a methodology to convert an RBDO 

problem requiring very high reliability to an RBDO problem 
requiring relatively low reliability by increasing input standard 
deviations for efficient computation in sampling-based RBDO. 
First, for linear performance functions with independent 
normal random inputs, an exact probability of failure is 
derived in terms of the ratio of the input standard deviation, 
which is denoted by δ. Then, the probability of failure 
estimation is generalized for any random input and 
performance functions. For the generalization of the 
probability of failure estimation, two coefficients need to be 
determined by equating the probability of failure and its 
sensitivity with respect to the standard deviation at the current 
design point. The sensitivity of the probability of failure with 
respect to the standard deviation is obtained using the first-
order score function for the standard deviation. To apply the 
proposed method to an RBDO problem, a concept of an 
equivalent standard deviation, which is an increased standard 
deviation corresponding to the low reliability model, is also 
introduced. Numerical results indicate that the proposed 
method can estimate the probability of failure accurately as a 
function of the input standard deviation compared to the 
Monte Carlo simulation results. As anticipated, the sampling-
based RBDO using the surrogate models and the equivalent 
standard deviation helps find the optimum design very 

efficiently while yielding relatively accurate optimum design 
which is close to the one obtained using the original standard 
deviation. 

  
KEYWORDS 
Very Small Probability of Failure, Sampling-based RBDO, 
Monte Carlo Simulation, Score Function, Copula, Surrogate 
Model. 
 
1. INTRODUCTION 

Surrogate models or meta-models have been widely used 
for reliability-based design optimization (RBDO) of various 
engineering applications when accurate sensitivities of 
performance functions are not available [1-6]. When surrogate 
models are used for RBDO, sampling-based reliability 
analysis methods to evaluate probabilistic constraints of 
RBDO are often adapted due to their computational simplicity. 
The most straightforward approach among sampling 
techniques is the direct Monte Carlo simulation (MCS) [7]. 
Using the MCS, the probability of failure can be estimated by 
counting the number of samples within the failure region and 
dividing it by the total number of samples. The main concern 
for the MCS is the computational cost because it is well 
known that the total number of samples required to obtain a 
reasonably accurate estimate is proportional to the inverse of 
the probability of failure [8], which implies that a very large 



 
number of samples will be required for the MCS if the target 
probability of failure is very small, for example, 4~6σ design. 

To enhance the computational efficiency of the MCS, 
Latin Hypercube sampling (LHS) and its modification [9-13] 
can be used for the reliability analysis. The LHS is known to 
be more efficient than the MCS since its stratification 
properties allow for the estimation of the probability of failure 
with a relatively small sample size [12], and it is also shown 
that the LHS can save more than 50% of the computational 
cost of the direct MCS [13]. To further enhance the 
computational efficiency of the sampling scheme, variations 
of the MCS, including the importance sampling [13-15], 
subset simulation [16], and directional sampling [17,18], have 
been proposed. All these improvements of the direct MCS 
attempt to reduce the number of samples by either allocating 
samples more effectively on the sampling domain or moving 
the sampling domain near the limit state function where 
performance functions have zero values. However, even if the 
number of samples is reduced by using the efficient sampling 
schemes, a large number of samples are still required for a 
very small target probability of failure. Furthermore, if the 
sampling domain moves to the vicinity of the limit state 
function as in the importance sampling, as many surrogate 
models as the number of RBDO constraints have to be 
generated at a given design when the local window concept is 
used for the sampling-based RBDO to improve its accuracy. 
In addition, it requires additional computations to move the 
sampling domain to the vicinity of the limit state function, 
which makes the sampling-based RBDO further inefficient. 
To avoid this, a global window concept can be used to 
generate the surrogate models; however, it causes accuracy 
problems, especially for high-dimensional problems. 

The main objective of this paper is to propose a 
methodology to convert an RBDO problem with a very small 
target probability of failure to an RBDO problem with a 
relatively high probability of failure by increasing the input 
standard deviations to reduce the computational cost of the 
direct MCS for the sampling-based RBDO. For this, the exact 
relationship between the probability of failure and input 
standard deviations is derived for linear performance functions 
with independent normal random inputs, and then the 
relationship is generalized for any random input and 
performance functions. To derive the general relationship 
between the probability of failure and input standard 
deviation, the first-order score function for the input standard 
deviations is introduced [19-21]. After finding the 
relationship, a concept of an equivalent standard deviation, 
which is an increased standard deviation corresponding to the 
model with high probability of failure, is also proposed to be 
used for sampling-based RBDO problems. Since the proposed 
method is applied to the sampling-based RBDO, accurate 
surrogate models are naturally used for the reliability analysis 
instead of computationally expensive computer simulations. 
For the generation of accurate surrogate models, the Dynamic 
Kriging method [22] can be utilized. Even if it is developed to 
be used with surrogate models, the proposed method is 
applicable to the sampling-based RBDO using actual 
computer simulations if the model is not too computationally 
demanding since the proposed method can reduce the number 
of samples significantly, especially when used in conjunction 
with the efficient sampling schemes. 

The paper is organized as follows. Section 2 briefly 
reviews the formulation of the sampling-based RBDO and the 
stochastic sensitivity analysis since it helps understand the 
proposed method. Section 3 shows how to derive the 
relationship between the probability of failure and input 
standard deviations for general random inputs and 
performance functions. Section 4 explains the concept of the 
equivalent standard deviation for the sampling-based RBDO. 
Section 5 illustrates with numerical examples the efficiency 
and accuracy of the proposed method compared with results 
obtained using the original random input. Finally, this paper is 
concluded in Section 6. 
 
2. SAMPLING-BASED RBDO 

In this section, we briefly review the concept of the 
sampling-based RBDO, which will help us understand the 
proposed method in Section 3. Section 2.1 explains the 
formulation of the sampling-based RBDO and the evaluation 
of probabilistic constraints. Section 2.2 reviews the stochastic 
sensitivity analysis using the score function for mean values. 
Finally, Section 2.3 shows accuracy of sampling techniques 
and justification of the proposed method, which is explained 
in detail in Section 3. 

 
2.1 Formulation 

The mathematical formulation of a general RBDO 
problem is expressed as 
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where T{ }id d μ(X)  is the design vector, which is the 

mean value of the N-dimensional random vector 
T
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measure;
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jFP  is the target probability of failure for the jth 

constraint; and NC, ndv, and nrv are the number of 
probabilistic constraints, design variables, and random 
variables, respectively.   

A reliability analysis involves calculation of the 
probability of failure, denoted by PF and shown in Eq. (1) as

[ ( ) 0]jP G X , which is defined using a multi-dimensional 

integral  
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where ψ  is a vector of distribution parameters, which usually 

includes the mean (µ) and/or standard deviation (σ) of the 
random input X; F  is the failure set; ( ; )fX x ψ  is a joint 

input probability density function (PDF) of X; and  E   

represents the expectation operator. The failure set is defined 
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  x x  for series system and parallel 

system reliability analysis of NC performance functions, 
respectively [20,23].
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function and defined as 
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To carry out RBDO in Eq. (1) using gradient-based 

optimization methods, it is required to know the function 
value and its sensitivities of the probabilistic constraints at a 
given design point. However, in most engineering 
applications, it is difficult to obtain accurate sensitivities. For 
engineering applications where accurate sensitivities are not 
available, surrogate models have been widely used to carry out 
design optimization. Once an accurate surrogate model is 
available for the design optimizations, sampling techniques 
such as the direct MCS or more efficient LHS can be applied 
to estimate the probability of failure with an affordable 
computational cost.  

Denote the surrogate model for a constraint function 

( )jG X  as ˆ ( )jG X . Then, by applying the MCS or LHS to the 

surrogate model, the probabilistic constraints in Eq. (1) can be 
approximated as 
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where K is the sample size, ( )kx  is the kth realization of X, and 

the failure set ˆ
F  for the surrogate model is defined as 

 ˆˆ : ( ) 0F jG  x x .  

 
2.2 Stochastic Sensitivity Analysis 

In addition to the probability of failure shown in Eq. (2), 
its sensitivity with respect to a design variable i  is required 

to carry out RBDO in Eq. (1). Taking the partial derivative of 
Eq. (2) with respect to i  yields 
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In Eq. (5), distribution parameter ψ  become μ  because μ  is 

the design vector and σ is assumed to be independent of μ . 

Since the differential and integral operators can be 
interchanged if the integrand in Eq. (5) is bounded due to the 
Lebesgue dominated convergence theorem [19,20], Eq. (5) 
can be rewritten as 
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The partial derivative of the log function of the joint PDF in 
Eq. (6) with respect to i  is known as the first-order score 

function for i  and is denoted as 
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The first-order score functions for specific marginal and joint 
distribution types are listed in Ref. [21] in detail.  

In a similar manner to Eq. (4) for the probability of failure 
calculation, its sensitivity is obtained using the first-order 
score function in Eq. (7) and applying sampling techniques to 
Eq. (6) as 
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2.3 Accuracy of Simulation for Reliability Analysis 

The percentage error of the MCS to compute the 
probability of failure by Eq. (4) can be measured using the 
95% confidence interval of the estimated probability of failure 
and given by [24] 
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To estimate the percentage error of Eq. (8), Eq. (8) can be 
rewritten as  
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where fK  is the number of failed samples and 

fs  is the 

mean value of the score function values for the failed samples. 
Hence, the percentage error for the MCS to compute Eq. (8) 
can be measured by 

fMCS s  .  

To see the effect of the percentage error in Eq. (9) on the 
target probability of failure, consider an example where the 
MCS sample size K is 500,000 and Tar 2.275%FP  . Then, 

MCS  is 1.85% of the target probability of failure, which 

means that there exists 95% probability that the probability of 
failure estimated using the MCS will be between 2.233% and 
2.317% (i.e., 1.85%  interval of 2.275%) with 500,000 



 
samples. If the target probability of failure is very small, for 
example, Tar 0.003167%FP  , which is called a 4σ design, 

then, 369,024,089 MCS samples are required to satisfy the 
same percentage error of 1.85%. Or, if the MCS sample size K 
is 500,000, then the percentage error becomes 50.26%, which 
is too large to be used for RBDO. Even if the surrogate model 
is not computationally demanding and many model 
evaluations can be performed, too many samples can cause 
computer memory problems and make the sampling-based 
RBDO extremely slow, especially when implicit surrogate 
models such as the Kriging model are used. 

To obtain more accurate results, the LHS can be utilized, 
which is known to be more accurate for the probability of 
failure calculation than the MCS when the same number of 
samples is used [9-13]. However, even with the LHS, the 
sample size should be very large to be accurate for very small 
probability of failure problems. Hence, in this paper, the MCS 
is used for the sampling scheme since it does not change the 
main point of the paper. 

As mentioned above, for a very small target probability of 
failure such as 4~6σ design, the probability of failure and its 
sensitivities computed using Eqs. (4) and (8), respectively, 
could be inaccurate unless a sufficient number of samples are 
used, which may not be possible due to high computational 
cost. Thus, the sampling-based RBDO for a high-reliability 
model could yield a wrong optimum design due to inaccurate 
estimation of the probability of failure. To overcome this, it is 
necessary to convert the high-reliability model to a lower-
reliability model by increasing input standard deviations and 
finding an equivalent probability of failure corresponding to 
the increased standard deviations, which is the main purpose 
of the paper and will be explained in the subsequent section. 

 
3. EQUIVALENT STANDARD DEVIATION FOR 

RELIABILITY ANALYSIS 
3.1 For Independent Normal Random Variables and 

Linear Limit State Function 
Consider a linear performance function as 
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where Xi have a normal distribution as 2~ ( , )i i iX N   . Using 

the Rosenblatt transformation [25] from the X-space to the U-
space, Xi can be expressed as 
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and by inserting Eq. (12) into Eq. (11), the performance 
function can be rewritten in the U-space as [26] 
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where T T
1 { }i iaa  and T

0 0 0
1

( )
N
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
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A 2-D example for linear performance functions in the X-
space and the U-space is illustrated in Fig. 1(a) and (b), 
respectively. 
 

 
(a) X-space                           (b) U-space 
Figure 1. Linear Performance Function  

 
The reliability index β is defined as the minimum distance 

from the origin in the U-space to the limit state function [27], 
which is defined as ( ) 0g U , as shown in Fig. 1(b) and 

expressed as 
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Since failure is defined if ( ) 0G X  and 0 ( )b G μ , the 

reliability index β is positive when a function value at the 
design point is negative, which implies the design point is 
located in the feasible region. Accordingly, the reliability 
index becomes negative if the design point is located in the 
infeasible domain.  

For a linear limit state function in the U-space, the 
probability of failure is analytically given using the reliability 
index by 
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and since T T

1 { }i iaa , the probability of failure in Eq. (15) 

can be expressed in terms of input standard deviations as 
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The input standard deviation ( i ) of the ith random variable 

can be expressed as o
i i i    using the ratio ( i ) where o

i  

is the current standard deviation for the ith random variable. 
Then, the probability of failure at a given design d μ(X)  for 

a linear limit state function in the U-space is expressed as a 
function of the ratio δ as 
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Hence, for a linear limit state function in the U-space, the 
probability of failure is exactly computed according to the 
ratio of the input standard deviation (δ). Inversely, we can find 
an exact δ value corresponding to the target probability of 
failure at the current design, which will be explained in detail 
in Section 4.1. 

 
3.2 For General Random Inputs and Performance 

Functions 
Even if it is exact for linear performance functions with 

independent normal random inputs, Eq. (17) cannot be directly 
used for general cases where random inputs could be non-
normal and/or correlated, or performance functions are 
nonlinear. Therefore, to generalize Eq. (17) so that it can be 
used for any random inputs, either correlated or independent, 
and nonlinear performance functions, Eq. (17) is modified as  
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where c0 and ci need to be determined using the current 
probability of failure where δ = 1 
 

  cur
0 0 02

1

1

( )
N

F o
i i

i

P c c d
c



      
 
 


            (19) 

 
and its sensitivity with respect to δj  
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Thus, summing up Eq. (20) from j=1 to j=N yields 
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from Eq. (19). Once the left-hand side of Eq. (21) is known, 
Eq. (21) can be easily solved for d0 using numerical root 
finding methods such as “fzero” in Matlab, which does not 
require extra function calls of the original performance 
functions and thus is computationally trivial. After obtaining 
d0, cj can be obtained using Eq. (20). Then, the probability of 
failure in Eq. (18) can be expressed using d0 and cj as 
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The sensitivity of the probability of failure with respect to 

δi in Eq. (21) is given using the chain rule as 
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and the sensitivity of the probability of failure with respect to 

i  is expressed in a similar manner to Eq. (6) as 
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The partial derivative of the log function of the joint PDF with 
respect to i  is known as the first-order score function for i  

and is denoted as [19,20] 
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To further derive the first-order score function for i , 

first consider statistically independent N−dimensional random 
input X. Then, the joint PDF of X is expressed as 
multiplication of its marginal PDFs as 
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where ( ; )

iX i if x   is the marginal PDF corresponding to the ith 

random variable Xi. Therefore, for statistically independent 
random variables, the first-order score function for i  is 

expressed as 
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Since the marginal PDF is analytically available as listed in 
Ref. 21, the derivation of Eq. (27) for any distribution type is 
very straightforward. The first-order score functions for i  for 

the normal, lognormal, and Gumbel distributions are listed in 
Table 1 where distribution parameters for each PDF are also 
explained in Ref. 21. 
 



 
 
 
 

Table 1. First-Order Score Function for i  for Independent 

Random Variables 
Marginal 

PDF 
First-Order Score Function, (1) ( ; )

i
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For a bivariate correlated random input  T
,i jX XX , 

the joint PDF of X is expressed as [27-29] 
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where c is called a copula function and defined as 
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and ( ; ) and ( ; )

i jX i i X j ju F x v F x  
 
are CDFs for Xi and 

Xj, respectively; θ is the correlation coefficient between Xi and 
Xj; and C is a copula function [28,30]. Commonly used copula 
functions and their density functions are listed in Refs. 21 and 
30.  

Accordingly, using Eq. (28), the first-order score function 
in Eq. (25) for the correlated bivariate input is expressed as 

 

(1)
ln ( ; )ln ( , ; )

( ; ) i

i

X i i

i i

f xc u v
s


 


 

 
x μ .              (30) 

 
The derivation of the first term of the right-hand side of Eq. 
(30) is also straightforward from analytic forms of copula 
density functions and listed in Table 2 for the Clayton, Frank, 
Gaussian, and independent copula where ( )   and ( )   are 

the standard normal CDF and PDF, respectively, given by   
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and the second term of the right-hand side of Eq. (30) is 
identical to Eq. (27), so it can be obtained from Table 1. One 
can see from Table 2 that the log-derivative of copula density 
function with respect to i  is identical to the log-derivative of 

copula density function with respect to i  shown in Table 5 

of Ref. 21 except the term 
i

u





, which is a partial derivative 

of a marginal CDF with respect to i  and listed in Table 3. 

One can also see from Table 2 that Eq. (30) is identical to Eq. 
(27) if the independent copula is used, which means that the 
independent random input is a special case of the correlated 
random input where the independent copula is used. 
  

Table 2. Log-derivative of Copula Density Function 

Copula Type
ln ( , ; )

i

c u v 





 

Clayton 
(1 )1 (2 1)

1 i

u u

u u v



 

 


 

 

   
     

 

Frank 
 (1 ) ( )

(1 ) (1 ) ( )

2
1

u u v

u v u v
i

e e u

e e e e

 

   


 

  

   
    

 

Gaussian 
1 1 1

1 1 2

( ) ( ) ( )

( ( )) ( ( ))(1 ) i

u v u u

u u


  

  

 

    
     

 

Independent 0 
 
 

Table 3. Partial Derivative of Marginal Distribution  
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4. EQUIVALENT STANDARD DEVIATION FOR 

SAMPLING-BASED RBDO 
To apply Eq. (22) to the sampling- based RBDO, the new 

target probability of failure which is denoted as Tar

newFP  needs to 

be set up. Then, the objective of this section is to find the 
equivalent standard deviation which is defined as the 
increased standard deviation to satisfy the new target 
probability of failure at the optimum design. However, Eq. 
(22) cannot be directly applied to the sampling-based RBDO 
since the current probability of failure changes during the 
design iteration. Furthermore, if the sampling scheme is 
utilized to estimate the current probability of failure and find 
the equivalent standard deviation at a given design, it is a 
significant computational effort. Thus, it is necessary to 
develop a way to find the equivalent standard deviation 
without using the sampling. 

 
4.1 Shift of Probability of Failure 

Equation (22) can be used at the optimum design obtained 
using the original random input and the original target 
probability of failure denoted by Tar

oFP  as 
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since the current probability of failure at the optimum design 
should be the same as the target probability of failure. Then, 
the equivalent standard deviation can be found by setting 

Tar( )
newF FP Pδ . However, this approach apparently cannot be 

applied to the sampling-based RBDO since the objective of 
the proposed method is to efficiently find the same optimum 
design using the new target probability of failure and the 
equivalent standard deviation. Hence, Eq. (32) needs to be 
modified to find the equivalent standard deviation from the 
beginning of the design iterations. 

If the new target probability of failure and equivalent 
standard deviation are used for the sampling-based RBDO, the 
probability of failure at the optimum design will be Tar

newFP  and 

since  Tar Tar

new oF FP P , we need a decreasing function of δ. Hence, 

using the inverse form of Eq. (22), the probability of failure at 
the optimum can be expressed as  
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                     (33) 

 
and by letting ( )FP δ  in Eq. (33) to be Tar

oFP , δ is obtained as 
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The solution of Eq. (34) cannot be uniquely obtained since 
there are N unknowns but only one equation. The easiest way 
of solving Eq. (34) is to assume all δi are the same as δ. 
However, there could be some cases where we cannot increase 
input standard deviations, for example, when input random 
variables cannot have negative values. In such cases, we can 
set up the ratio for those random variables as one and assume 
that the rest of the ratios are the same. After solving Eq. (34), 
the equivalent standard deviation for the ith random variable is 
given by  
 

E o
i i i   .                                   (35) 

 
However, as mentioned before, the current probability of 

failure at a design is not always Tar

newFP
 
during the design 

optimization. Hence, the performance function needs to be 
shifted by α as 

 
( ) ( )sG G  X X                           (36) 

 

such that the probability of failure at a current design is always 
Tar

newFP . α can be easily obtained from function values at MCS 

samples. Using the shifted probability of failure, Eq. (34) can 
be used from the beginning and the coefficient d0 is obtained 
by taking the partial derivative of Eq. (33) with respect to δj 
and using Eqs. (23) and (24) where the failure set F  is 

defined as 
 

 : ( ) 0F G    x x .                         (37) 

 
As the design approaches the optimum design, the current 
probability of failure approaches the new target probability of 
failure and thus α converges to zero. 
 
4.2 Algorithm 

The sampling-based RBDO launches at the deterministic 
optimum design since it is usually closer to the RBDO 
optimum design than the initial design and accordingly the 
computational effort can be reduced. At the deterministic 
optimum design, the ratio δ is first set up as 1 and the 
sampling is carried out for the reliability analysis. Using the 
reliability analysis result and Eq. (34), δ is updated and the 
updated standard deviation is used as the input at the next 
design. For an RBDO problem with multiple constraints, even 
if δ is fixed as one parameter for multiple random variables, it 
could be different for different active constraints. In this case, 
the maximum δ is selected to assure a reliable and safe 
optimum design. This could be another error source of the 
proposed method in addition to the probability of failure 
approximation shown in Eq. (18). This error will be studied in 
detail in Section 5.3 using a numerical example. 

By using the sampling-based RBDO with the equivalent 
standard deviation, the new target probability of failure which 
is much larger than the original target probability of failure 
can be utilized resulting in the reduction of the number of 
samples used. Figure 2 shows the overall flowchart of the 
sampling-based RBDO with the equivalent standard deviation. 

 



 

 
Figure 2. Flowchart of Sampling-based RBDO with 

Equivalent Standard Deviation 
 

5. NUMERICAL EXAMPLES 
Numerical studies are carried out in this section to verify 

the probability of failure estimation in terms of δ proposed in 
Section 3 and the equivalent standard deviation for the 
sampling-based RBDO proposed in Section 4. Sections 5.1 
and 5.2 show comparison studies between the MCS and 
proposed method for the probability of failure estimation 
using 2-D and 9-D mathematical examples, respectively. For 
the 2-D example, both independent and correlated random 
inputs are considered. Section 5.3 illustrates how the proposed 
equivalent standard deviation can be applied to solve a high-
reliability RBDO model. For all tests, to concentrate on the 
proposed method and eliminate errors from surrogate models, 
true analytic functions are used instead of surrogate models, 
and the ratios (δi) in Eqs. (22) and (34) are assumed to be the 
same as δ for the simplicity of calculation. 
 
5.1 Probability of Failure Estimation Using 2-D 

Mathematical Example 
To verify how accurately the proposed probability of 

failure in terms of the input standard deviation can 
approximate the true one obtained by the MCS with 2 million 
samples, consider a 2-D highly nonlinear performance 
function [31] shown in Fig. 3 and expressed as 
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, X1 and X2 have

 
2(4.5,0.3 )N  and 

2(2,0.3 )N , respectively, and they are 

statistically independent. 
 

 
Figure 3. Shape of Highly Nonlinear Performance Function 

 
Table 4 compares the probability of failure obtained using 

the MCS and the probability of failure estimated by the 
proposed method shown in Eq. (21), respectively, which is 
shown in Fig. 4, too. From the table and figure, we can see 
that the proposed probability of failure estimation works very 
well for a highly nonlinear performance function. Table 4 also 
shows that if the input standard deviation increases from 0.3 to 
0.54, that is 1.8  , the probability of failure increases more 
than 50 times. Inversely, if we want the current probability of 
failure to increase by 50 times, then we can find the 
corresponding standard deviation, which is used to find the 
equivalent standard deviation. If the increased probability of 
failure and equivalent standard deviation are used for the 
sampling-based RBDO, the total number of MCS samples will 
reduce to less than 2% of the number of MCS samples 
required to obtain the same accuracy using the original 
standard deviation. 

 
Table 4. Comparison of Probability of Failure 
 1.0   1.2   1.4  1.6  1.8 

FP , %
Estimated 0.0299 0.1663 0.4821 0.9833 1.6284

MCS 0.0299 0.1678 0.4881 0.9912 1.6483
Error, % 0.00 0.89 1.25 0.80 1.21 

 



 

 

Figure 4. Comparison of MCS and Estimated Probability of 
Failure for Independent Case 

 

To test the probability of failure estimation for correlated 
random input, suppose that X1 and X2 have

 

2(4.5,0.45 )N  and 
2(2,0.45 )N , and they are correlated with the Clayton copula 

(τ=0.5). The same performance function in Eq. (38) is still 
used for the test. Table 5 and Fig. 5 show the result of the 
comparison test. In this case, due to the correlation effect, 
error between the MCS and the estimated probability of failure 
becomes relatively larger than the independent case. However, 
it is still accurate enough up to 1.4  , which means the 
probability of failure can be increased by about 20 times and 
5% of the number of MCS samples will be required for the 
same accuracy for the sampling-based RBDO. 

 
Table 5. Comparison of Probability of Failure 

 1.0   1.2   1.4   1.6  1.8 

FP , % 
Estimated 0.0298 0.1823 0.5609 1.1891 2.0229 

MCS 0.0298 0.1894 0.5792 1.3124 2.3720 
Error, % 0.00 3.75 3.16 9.39 14.72 

 

 

 
Figure 5. Comparison of MCS and Estimated Probability of 

Failure for Correlated Case 
 
5.2 Probability of Failure Estimation Using 9-D 

Mathematical Example 
To verify whether the proposed method works for high-

dimensional problems, consider a 9-D polynomial function, 
which is known as the extended Rosenbrock function [32] and 
modified for the purpose of the probability of failure 
calculation, 
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where the properties of nine random variables are shown in 
Table 6. For this problem, all random variables are assumed to 
be statistically independent.  
 

Table 6. Properties of Random Variables 
Random 
Variables  

Distribution  Mean 
Standard 
Deviation 

X1~X9 Normal 1.0 0.2 
 

Table 7 and Fig. 6 show the result of the comparison test. 
For high-dimensional problems, the probability of failure is 
very sensitive to the change of the input standard deviations as 
shown in Table 7. Hence, in this test, the increment of 
standard deviation is tested only up to 1.4  . Table 7 shows 
that by increasing the input standard deviation by 1.4 times the 
probability of failure increases almost 100 times with 11% 
error. This implies that if the increased standard deviation is 
used for the sampling-based RBDO, the total number of MCS 
samples reduces to less than 1% of the number of MCS 
samples required to obtain the same accuracy using the 
original standard deviation. This significant reduction of the 
number of MCS samples used will be shown in the next 
section. 
 

Table 7. Comparison of Probability of Failure 
 1.0   1.1   1.2  1.3  1.4 

FP , % Estimated 0.0088 0.0422 0.1408 0.3630 0.7759



 
MCS 0.0088 0.0402 0.1488 0.3992 0.8718

Error, % 0.00 4.97 5.37 9.07 11.00 
 

 
Figure 6. Comparison of MCS and Estimated Probability of 

Failure for High Dimensional Case 
 
5.3 Sampling-Based RBDO with Equivalent Standard 

Deviation 
To see how the proposed equivalent standard deviation 

can reduce the computational effort of the sampling-based 
RBDO, consider a 2-D mathematical RBDO problem, which 
is formulated to 
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where three constraints are given by 
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where 1

2
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, and are drawn in Fig. 

7. The properties of two random variables are shown in Table 
8, and they are assumed to be independent. In Eq. (40), the 
original target probability of failure ( Tar

oFP ) is set up as 

0.003167% for all three constraints, which is a 4σ design. 
 

Table 8. Properties of Random Variables 
Random  
Variables  

Distribution  dL dO dU 
Standard 
Deviation 

X1 Normal 0.0 5.0 10.0 0.2 

X2 Normal 0.0 5.0 10.0 0.2 
 

 
Figure 7. Shape of Constraint and Cost Functions 

 
Using Eq. (9), the number of the MCS samples to 

accurately estimate the target probability of failure is 50 
million assuming 5%MCS  , which will make the sampling-

based RBDO slow and even slower when combined with 
implicit surrogate models such as the Kriging model. To carry 
out the sampling-based RBDO, the deterministic optimum is 
first found at ddopt=(5.1956, 0.7407) where the sampling-based 
RBDO with the original random input and target probability of 
failure is launched and the RBDO optimum is found at 
dropt=(4.6184, 1.8247). To find the RBDO optimum, 25 
million MCS samples are used when constraints are not active 
and 50 million MCS samples are used when active. Detailed 
information on how to carry out the sampling-based RBDO is 
shown in Ref. 22. 

For the test of the equivalent standard deviation, 5 
different new target probabilities of failure which are obtained 
by multiplying the original target probability of failure by 
10,20,30,40, and 50, respectively, are considered as listed in 
Table 9. The third column of Table 9 shows the number of the 
MCS samples required to obtain the probability of failure with 
the same accuracy ( 5%MCS  ) as the original random input. 

From the third column of Table 9, it can be easily shown how 
drastically the number of the MCS samples is reduced from 50 
million. With 5 different new target probabilities of failure, 5 
different sampling-based RBDOs are carried out with the 
MCS samples shown in Table 9. 

 
Table 9. New Target Probability of Failure  

Case 
Tar

newFP ,% No. of MCS Samples 

Case 1 0.03167 5.05 M  
Case 2 0.06334 2.52 M  
Case 3 0.09501 1.68 M 
Case 4 0.12668 1.26 M 
Case 5 0.15835 1.01 M 

 



 
Table 10 compares the sampling-based RBDO results of 

each case with the one obtained from the original input and 
target probability of failure. At each optimum design, the 
MCS with 50 million samples is carried out to check the 
accuracy of the sampling-based RBDO with the equivalent 
standard deviation. Table 10 shows that the maximum error in 
terms of the probability of failure estimation becomes larger as 
the new target probability of failure become larger. This is 
mainly because the difference between two δs for two active 
constraints is larger as the new target probability of failure 
become larger, and only one δ is used for the design 
optimization. Another error source is the high nonlinearity of 
the second constraint function as shown in Fig. 7. Even with 
relatively large error of the probability of failure calculation, 
the optimum designs are very close to the original result.  

 
Table 10. Comparison of Five RBDO Cases 

Case 
Optimum 
Design 

MCS Max 
Error,%

1FP ,% 
2FP ,% 

Case 1 4.6206, 1.8258 0.002964   0.003256 6.4 
Case 2 4.6215, 1.8242 0.003120   0.003468 9.5 
Case 3 4.6235, 1.8263 0.002850   0.003396 10.0 
Case 4 4.6259, 1.8271 0.002768   0.003564 12.5 
Case 5 4.6286, 1.8280 0.002660   0.003730 17.8 

Original 4.6184, 1.8247 0.003132   0.003218 1.6 
 

The proposed sampling-based RBDO with the equivalent 
standard deviation is originally developed to be combined 
with surrogate models to enhance the computational 
efficiency. However, it can be applicable to the sampling-
based RBDO using actual computer simulations if the model 
is not computationally demanding since the proposed method 
can reduce the number of samples significantly, especially 
when used in conjunction with more efficient sampling 
schemes than the MCS. In that case, error from surrogate 
models is eliminated, which makes the proposed sampling-
based RBDO more accurate. 

 
6. CONCLUSIONS 

To enhance the computational efficiency of the sampling-
based RBDO, a methodology to convert an RBDO problem 
with very small probability of failure to an RBDO problem 
with relatively large probability of failure by increasing input 
standard deviations is proposed, which can be used in 
conjunction with surrogate models and improved sampling 
schemes. The first-order score function for the input standard 
deviation is used to derive the probability of failure in terms of 
the input standard deviation for both independent and 
correlated random inputs. The derived probability of failure is 
then used to update the target probability of failure and find 
the equivalent standard deviation to be used for the sampling-
based RBDO. Numerical examples show the accuracy of the 
proposed probability of failure in terms of input standard 
deviations and demonstrate that the sampling-based RBDO 
with the equivalent standard deviation yields a similar 
optimum design obtained using the original random input with 
significantly enhanced computational efforts. To further 
improve the accuracy of the proposed method, a new 
equivalent standard deviation concept is being investigated 

and the new concept will be tested using large-scale real 
engineering applications in future study. 
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