
Submitted to International Journal of Vehicle Design, November 2003. 
 
 
 
 

ON THE DETERMINATION OF DRIVER REACH AND BARRIERS 
 

 
by 

 
 

Jingzhou Yang*1, Karim Abdel-Malek1 and Kyle Nebel2 

1Virtual Soldier Research Center 
 Center for Computer-Aided Design 

The University of Iowa 
116 Engineering Research Facility 

Iowa City, IA 52242-1000 
Tel No:  (319) 335-6053 
Fax No:  (319) 384-0542 

www.digital-humans.org 
 

2U.S. Army TACOM/RDECOM  
AMSRD-TAR-NAC/157 

6501 East 11 Mile Rd. 
Warren, MI 48397-5000 

Ph (586) 574-8809 
 Fax (586) 574-6280 

 
 

E-mail: jyang@engineering.uiowa.edu 
 

 
 
 

 

 

 

 

Original Submission: November 2003 
 
 

* Author to whom all correspondence should be addressed 

 1



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
01 NOV 2003 

2. REPORT TYPE 
Technical Report 

3. DATES COVERED 
  01-06-2003 to 28-10-2003  

4. TITLE AND SUBTITLE 
ON THE DETERMINATION OF DRIVER REACH AND BARRIERS 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Jingzhou Yang; Karim Abdel-Malek; Kyle Nebel 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Virtual Soldier Research Center,Center for Computer-Aided Design,116
Engineering Research Facility,Iowa City,IA,52242-1000 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
; #13982 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
U.S. Army TARDEC, AMSRD-TAR-NAC/157, 6501 East Eleven Mile
Rd, Warren, Mi, 48397-5000 

10. SPONSOR/MONITOR’S ACRONYM(S) 
TARDEC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 
#13982 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 
For International Journal of Vehicle Design, November 2003 

14. ABSTRACT 
Design and packaging of vehicle interiors and cockpits had become a science on itself, particularly in
recent years where safety is paramount. Significant experimental efforts have been made to study driver
reach and barriers as they have direct effect on performance and safety. This paper presents a rigorous
formulation for addressing the reach envelope and barriers therein of a 3-point restrained driver and
compares with a lap-restrained driver. The formulation is based on a kinematic model of the driver, which
has the upper body and arm characterized as a 7 degree of freedom (DOF) for unrestrained and 4DOF for
3-point restrained. Those kinematic equations are further developed to address crossability analysis.
Visualization of such barriers and their crossability results within the reach envelope provide significant
insight into driver performance and reach zones. 

15. SUBJECT TERMS 
SAE, driver reach, ergonomics, workspace, vehicle interior design 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

Public Release 

18. NUMBER
OF PAGES 

32 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



 
 
 

 Abstract 
 

Design and packaging of vehicle interiors and cockpits had become a science on itself, 

particularly in recent years where safety is paramount.  Significant experimental efforts 

have been made to study driver reach and barriers as they have direct effect on 

performance and safety.  This paper presents a rigorous formulation for addressing the 

reach envelope and barriers therein of a 3-point restrained driver and compares with a 

lap-restrained driver.   The formulation is based on a kinematic model of the driver, 

which has the upper body and arm characterized as a 7 degree of freedom (DOF) for 

unrestrained and 4DOF for 3-point restrained.  Those kinematic equations are further 

developed to address crossability analysis.  Visualization of such barriers and their 

crossability results within the reach envelope provide significant insight into driver 

performance and reach zones.   
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Introduction 

Industrial tasks often involve repeated operator reach to various tools, parts and controls 

placed around a seated workstation.  Examples include aircraft cockpit design, vehicle 

interior design and manufacturing workstations. All controls and other elements in the 

workstation requiring frequent manual operation should be placed in an area that focuses 

on optimizing the human interface for the target population, minimizing occlusion and 

reach, while providing maximum leverage for operation. The driver reach capability is a 

basis for developing a design aid in the form of reach contours that can be used easily by 

designers during the conceptual phase of a new vehicle program. While a database of 

reach barriers can be tabulated into a large database, we envision the implementation of 

the methodology into a digital human and simulation program such that reach barriers are 

calculated and visualized when needed during the design process. 

 

The tool used for representing driver reach capabilities is the model developed in SAE 

Recommended Practice J287 by Hammond and Roe (1972). The SAE surfaces are 

parameterized by a packaging factor that combines vehicle interior dimensions such as 

seat height, fore-aft and vertical steering wheel position, and steering wheel diameter, 

into a single “G” score. This model is based on measurements taken of the actual reach 

capabilities of a representative sample of drivers and accounts for the design variation in 

workspace geometry of a wide range of vehicles in term of seat location, steering wheel 

position, and foot support. The test apparatus is shown in Figure 1 (adopted from 

Hammond and Roe 1972). Drivers were asked to grasp the ends of the measurement rods 

and to push forward as far as possible. The rod rack was moved laterally to span the 
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space in front of the driver. Testing was conducted with lap belt only and with lap and 

fixed-length torso belts. The data were analyzed to produce reach surfaces and Figure 2 

depicts one such surface. Reach surfaces are interpreted with respect to population 

capability instead of the capability of individuals with particular body dimensions. 95 

percent of drivers for a 50/50 male/female American driving population are expected to 

be able to reach to push-button targets that are located aft of the surface in Figure 2 

instead of the reach capability of a male driver who is 95th percentile by stature.  

 
Figure 1 SAE control reach measuring fixture (Hammond and Roe 1972) 

 
Figure 2 Control reach envelop in the vehicle workspace (Hammond and Roe 1972) 
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Digital human figure models have been used for the driver workstation assessments 

(Porter et al. 1993, 1995, and 1998; Chaffin 2001). Commercial digital human modeling 

and simulation programs are commonly used to simulate reach to controls with the 

outcomes of the digital human based studies used to assess control locations.  

 

An experimental method was developed by Reed et al. (2003), which is based on a 

unified model of reach difficulty and capability. While experimented methods provide 

insight into the problem, extrapolating results to populations that have been used as 

subjects remains problematic. Furthermore, extracting mathematical models based on 

statistical data (typically non-linear regression) is particularly difficult. Parkinson et al. 

(2003) compared the reach envelope determined entirely by the segment lengths, joint 

degrees of freedom, and joint ranges of motion to those obtained in a laboratory study of 

men and women. Accurate prediction of maximum seated reach requires consideration of 

balance and pelvis mobility, neither of which is closely linked to joint range of motion. 

Sufficient ranges of motion in the shoulder and torso are also needed to represent 

postures near maximum reach. 

 

In our previous work (Abdel-Malek et al. 2001a) we developed a method for 

understanding the workspace of upper extremities and Abdel-Malek et al. (2001b) 

developed a formulation for realistic posture prediction. For computation vehicle design 

systems, it is necessary to have analytical models to verify driver reach. Our ultimate goal 

is to enable the evaluation of driver discomfort for different positions of the controls 

within our analytical description of the reach envelope. 
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The understanding of trajectory formations inside the driver reach is, to a great extent, 

dependent upon the identification of control barriers that exist as impediments to motion 

and that may hinder the execution of a task.  A rigorous mathematical formulation based 

on a kinematic model of the upper extremity will first be introduced. Because of this 

formulation, we will show that barriers inside the workspace are identified. More 

importantly, closed form equations of the workspace will be established.  Furthermore, it 

will be shown that visualization of the internal of the workspace provides a powerful tool 

for barrier analysis. The analysis includes restrained reach of drivers, that is, drivers who 

are restrained by a non-extending shoulder belt and the unrestrained reach of drivers or 

drivers restrained by a lap belt only. 

 

Modeling and Formulation 

Whereas the anatomy of limbs and their joints are indeed very complex (as evidenced by 

the debate in the literature on the correct method for modeling joint motion), we will 

employ a kinematic pair (or combination thereof) as used in the field of robotics (which 

indicates a constrained kinematics joint).  For example, if the resultant motion is 

rotational, the joint will be modeled as a revolute joint. The effect of a spherical joint is 

modeled as three revolute joints whose axes intersect at the center of the sphere.  Indeed, 

all anatomical joints can be modeled using basic kinematic pairs.  

 

Using only four parameters to describe one coordinate system with respect to another, the 

position and orientation of each axis determine the four parameters θ αi i i id a, , , , and 
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hence, determine the resulting (4 4)×  transformation matrix.  To establish this matrix, it 

is possible to observe that a vector i v  resolved in the ith coordinate system may be 

expressed in the (i-1)th coordinate system ( i ) by performing four successive 

transformations as follows. 

−1 v

(a) A rotation about the  axis by an angle of zi−1 θ i  to align the  axis with the  axis  

(as shown in Figure 3, x  and pointing in the same direction). 

xi−1 xi

xi

)

i−1 / /

(b) A translation along the  by a distance of  d  units to make  and  aligned. zi−1 i xi−1 xi

(c) A translation along the  axis by a distance of  units to make the two origins of the 

 and (  systems coincide (the  and the  will also be aligned). 

xi ai

i i −1 xi xi−1

(d) A rotation about the x  axis by an angle i α i  to coincide the two coordinate systems. 

Joint i

Joint i + 1

di

ai

αi

Link i

zi-1

xi-1

θi

xi

zi

qi

qi+1

 

Figure 3 Establishing coordinate systems and the four D-H parameters 

In order to obtain a systematic representation of any serial kinematic chain, we define 

 as the vector of n-generalized coordinates defining the motion of 

a limb with respect to another, where q  is the individual DOF variable. The position 

1[ ... ]T
nq q=q n∈R

i
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vector function (shown in Figure 4) generated by a point of interest (typically on one of 

the fingers) is written as a multiplication of rotation matrices and position vectors as 

  (1) 
1

1 1

1 1

( )
( ) ( ) [ ] ( )

( )

j ii n
j i

j i
i j

x
y
z

= −=
− −

= =

⎡ ⎤
⎢ ⎥= = =⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∏
q

x q q R p Φ q
q

where both i  and i  are defined using the Denavit-Hartenberg (D-H) representation 

method (Denavit and Hartenberg 1955, Paul 1981, and Fu et al. 1987) such that 

jp jR

                       (2a) 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−
=−

ii

iiiii

iiiii

i
i qqq

qqq

αα
αα
αα

cossin0
cossincoscossin

sinsinsincoscos
1 R

                                and  ( ) cos sini
i i i i i i

Ta q a q d1 p  (2b) 

where  is the joint angle from x  axis to the  axis,  is the shortest distance 

between x  and x  axes,  is the offset distance  between  and  axes, and 

iq i−1 xi di

i−1 i ai zi zi−1 α i  is 

the offset angle from   and  axes. zi−1 zi

q1

q2
qn

...

Point of interest

Origin

Φ(q) q1

q2
qn

...

Point of interest

Origin

Φ(q)

 

Figure 4 Definition of the position vector function  ( )x q
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The vector function  characterizes the set of all points touched by the point of 

interest. The aim is to determine the envelope of this set.  At a specified position in space 

given by ( ,

( )x q

, )x y zp p p , Eq. 1 can be written as a constraint function as 

 
( )
( )
( )

p

p

p

x x
y y
z z

⎡ ⎤−
⎢ ⎥− =⎢ ⎥
⎢ ⎥−⎣ ⎦

q
q 0
q

 (3) 

In mathematical terms, the expression defined by Eq. (3) is indeed a Manifold with 

boundary and cannot readily be visualized, because of the relatively large number of 

DOFs used to model the upper extremity. 

 

Joint limits (ranges of motion) are imposed in terms of inequality constraints in the form 

of 

  q q  (4) qi
L

i i
U≤ ≤

where q  and q  are the lower and upper limits, respectively, and where i n , 

where n is the number of DOFs. Note that one joint could have more than one degrees of 

freedom (e.g., shoulder joint is modeled as three DOF).  In order to include the range of 

motion in the formulation, we transform the inequalities above into equalities by 

introducing a new set of generalized coordinates 

i
L

i
U = 1,  ...  

1[ ... ]T
nλ λ=λ  such a joint variable 

is parameterized as  

 q q q q qi i
L

i
U

i
U

i
L

i= + + −( ) ( ) sin2 2c hc h λ          i  (5) n= 1,...,

where if sinλ i 1, then q   and when sinqi i
U λ i 1, then q .  In order to include 

the effect of joint limits, it is proposed to augment the constraint equation with the 

parameterized inequality constraints of Eq. (5) such that   

qi
L
i
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( )
( )

( )
( )

( ) 2 ( ) 2sin

p

p

p
U L U L

i i i i i i

x x
y y
z z

q q q q q λ

−⎡ ⎤
⎢ ⎥−⎢ ⎥= =
⎢ ⎥−
⎢ ⎥− + − −⎢ ⎥⎣ ⎦

q
q

G q 0
q

, i n= 1,  ...       (6) 

where   is the vector of all generalized coordinates.  Note that although 

new variables (

* TT T⎡= ⎣q q λ ⎤⎦

n − λ i ) have been added, n − equations have also been added to the 

constraint vector function without loosing the dimensionality of the problem. 

 

The Jacobian (named after the German Mathematician Carl G. Jacobi) of the constraint 

function *( )G q  at a specific point q  is the 0 ( )3 2+ ×n n  matrix 

  *
*∂ ∂=

q
G G q  (7) 

where the subscript denotes a derivative.  Note that the Jacobian is defined in 

mathematical terms as the derivative of the transformation (Taylor and Mann 1972) 

between x and q.  With the modified formulation including joint limits, the Jacobian is 

expanded as 

  *

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

q

q
λ

x 0
G I q  (8) 

where = ∂ ∂λq q λ , = ∂ ∂qx x q , 0  is a (3 )× n  zero matrix, I is the identity matrix, and  

 
1 2

1 2

1 2

...

...

...

n

n

n

q q q

q q q

q q q

x x x

y y y

z z z

⎡ ⎤
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

qx  (9) 

1 1 1

2 2 2

(( ) 2)cos 0 ... 0
0 (( ) 2)cos ... 0
0 0 ... 0
0 0 ... (( ) 2) cos

U L

U L

U L
n n n

q q
q q

q q

λ
λ

λ

⎡ ⎤− −
⎢ ⎥− −⎢ ⎥=
⎢ ⎥
⎢ ⎥

− −⎢ ⎥⎣ ⎦

λq  (10) 
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Because the Jacobian is not square (more than three DOFs), rank deficiency criteria were 

developed for surfaces that are swept in space (Abdel-Malek and Yeh 1997). These 

surfaces are called “barriers” provide significant insight towards better understanding 

reach and comfort within the workspace. Before addressing these criteria, however, it is 

important to show why the singularity of the Jacobian has a direct effect on identifying 

barriers and human reach. A singularity (in the pure mathematical sense) is when the 

Jacobian has no inverse, i.e., a solution cannot be found.  To further explain, consider the 

differentiation of Eq. (1) with respect to time as 

  = qx x q&&  (11) 

where q  is the vector of joint velocities.  Given the hand velocity (i.e., given ), the 

calculation of  requires computing an inverse of the Jacobian x .  For a singular 

Jacobian, it is not possible to compute the required velocities for such a path. It will be 

observed that such behavior is associated with barriers within the reach envelope (e.g., 

when the arm is fully extended and cannot extend any further, or when some joints in the 

arm have reached their limits). 

& &x

q& q

 

We will use the idea of a singular Jacobian to identify all barriers inside and on the 

boundary of the workspace.  Because the Jacobian is nonsquare, we define such barriers 

as a subset of the workspace at which the Jacobian of the constraint function of Eq. (7) is 

row rank deficient; i.e., barriers defined by a subset of the reach envelope W  and 

characterized by 

   { }*
* *Rank ( ) ( 2),  for some  with nW∂ < −⊂

q
G q q G q 0*( ) =  (12) 
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where k is at least . Because of the form of the Jacobian characterized by Eq. (12), 

three distinct conditions arise: 

)3( n+

(1) Type I singularity sets: If no joints have reached their limits, the diagonal sub-matrix 

 is full row rank.  Therefore, the only possibility for  to be row-rank deficient is 

when the block matrix  is row rank deficient.  Type I singularity set is defined as 

λq *q
G

qx

   { }(1) :  Rank[ ] 3,  for some constant subset of S ≡ ∈ <qp q x q  (13) 

where p is within the specified joint limit constraints and may contain joints that are 

functions of others or constant values. 

(2) Type II singularity sets: When certain joints reach their limits, e.g., 

, the corresponding diagonal elements in the matrix  will be 

equal to zero. Therefore, the corresponding matrix is subjected to the rank-deficiency 

criterion, where  will take on the following form  

T
kji qqq ],,[ limitlimitlimitlim =∂q λq

*q
G

    (14) 

1

*

... ...

0 ... 1 0 0 ... 0~
0 ... 0 1 0 ... 0
0 ... 0 0 1 ... 0

i j k nq q q q⎡ ⎤
⎢ ⎥
⎢
⎢
⎢ ⎥
⎢ ⎥⎣ ⎦

q

x x x x x

G

q

⎥
⎥

and where the three columns pertaining to x , x , and x  are removed such that the 

rank deficiency criteria are applied again. From the foregoing observation, the second 

type of singular sets are formulated.  Define a new vector 

qi q j qk

∂qlimit limit limit limit= q q qi j k

T
, , , 

which is a sub-vector of q  where 1 3≤ ≤dim ( )∂qlimitc −h n .  

The type II singularity set is defined as 

 { }(2) limit limit limitˆ ˆ[ ] :  Rank[ ( , )] 3, for some ,  ( ) ( 3)S n∂ ∂ ∂≡ = ∪ < ∈ ≤ −qp p q x w q p q dim q   
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   (15) 

where  is the singular set as a result of applying the rank deficiency criteria to Eq. (14).  $p

(3) Type III singularity sets: are all sets that are composed of the combination of joints 

at their limits and is defined by:  

 S n
i j

( ) ( ): [ ,3 2p R p q limit limit limit∂ q q ,...]n s; where i j  (16) 

 

Barriers are identified by substituting the sets p  characterized by Eqs. (13, 15, and 16) 

into the accessible set , which yields the equation of a surface that can be readily 

shown.  This surface is indeed a barrier associated with a generalized variable that has 

reached its limit.  Determining joint angles of the upper extremity given a specific 

position and orientation is usually defined as the inverse kinematics problem in the 

robotics literature (Fu, et al. 1987). Motion from one configuration to another along a 

trajectory sometimes requires halting the motion and changing the inverse kinematics in 

order to proceed with the motion.  An example of this occurs when attempting to reach a 

point located behind one’s shoulder.  Starting with one trajectory may become very 

uncomfortable because of joint limits, while trying another trajectory becomes simpler 

and uninterrupted. Similarly, reaching a doorknob and turning sometimes is difficult to 

complete and requires orienting the initial hand configuration in a different posture.  

These barriers due to singular sets identified by Eqs. (13, 15, 16) may admit motion only 

in one normal direction, and hence are called impediments to motion. 

i

( )x q

 

Motion on a Barrier 

To better understand when the hand may or may not cross barriers under given 

conditions, we explore the barrier’s kinematic properties. We propose a criterion that is 
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based on normal acceleration at a point on a barrier, such that crossability is achieved if 

the barrier admits a normal acceleration in one direction or another.   A point on a barrier 

admits motion normal to the surface in either direction depending on the difference in 

acceleration components (defined by the indicatorη ), such that 

 η
ρ

= −a v
n

t

o

2

 (17) 

where v  is the tangential velocity,  is normal acceleration, and t an 1 ρo  is the normal 

curvature of the barrier with respect to the tangent direction of  (vt ρo  is the radius of 

curvature).  The need for formulating the problem in terms of velocities and accelerations 

will become apparent, as the resulting expression for the indicator η  will be independent 

of acceleration values, but will be a quadratic form that has definiteness properties.  A 

point on a singular surface will have no acceleration if the quantity η  computes to null.   

 

For a singular parametric entity  (where u is a vector representing the 

remaining joint variables—those not constant), and in the field of differential geometry, 

the First Fundamental Form (Farin 1993) is denoted by , where 

, and is defined as 

( ) ( ) 3( )i i ∈f u R

I p

[ ]( ) TTi
i ju v q q⎡= = ⎣u ⎤⎦

uδ  (18) I u f fu up
T T≡ δ

where f fu = u∂ ∂ .  The Second Fundamental Form is defined as 

 II u N f u
uup

T T≡ δ δ

2

 (19) 

or expanded to 

  (20) II N f N f N fp
T

uu
T

uv
T

vvdu du dv dv= + +2 2  
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where N is the vector normal to the singular surface and f fuv u v= ∂ ∂ ∂2 .  The Normal 

Curvature  of a parametric surface at a configuration q , in the direction of Ko o du dv , 

can then be defined as the ratio (Farin 1993) 

 Ko
o

p

p

= =
1
ρ

II
I

 (21) 

In order to determine the kinematics quantities, we define the Time-Modified First and 

Second Fundamental Forms as 

  (22) ′ ≡I u f fu up
T T& u&

 II u N f u
uu

′ ≡p
T T& &  (23) 

such that the normal curvature can still be defined as 

 Ko
o

p

p

p

p

= = =
′

′
1
ρ

II
I

II
I

 (24) 

For a singular surface , the derivative using the chain rule is f .  Similarly, for 

the general singularity , the derivative is .  Therefore, at an instant of time, the 

tangential velocity in terms of f or  at any point on the barrier is 

( ) ( )(i if u ) uu &

( )Φ q qΦ q&

Φ

 t = =uv f u Φ q&& q  (25) 

If joint limits are considered, then the derivatives can be written as  and .  

The squared norm of the velocity is  

= λu u λ&& = λq q λ&&

 v v v u f fu ut t
T

t
T T2 = = & u&  (26) 

which is equal to the Time-Modified First Fundamental Form ′I p  of Eq. (22).  Therefore, 

 can be written as  ′Ip

 ′ =I p tv
2

 (27)  

Substituting 1 ρo  into η  yields  

 2 p
n t n

p

a v aη p

′
′= − = −

′
II

II
I

 (28) 
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When we consider Jacobian singular surfaces . Since  is in 

terms of  and to express  in terms of q , it was shown that the velocity vector on 

singular surface can be written as 

T T T
na ⎡ ⎤= = ⎣ ⎦qq

N x q N Φ q&&& & na

q& p′II &

 [ ] 1−= uu Ef EΦ q&& q

⎥

 (29) 

where  if the first and second rows of  are independent;  

if the first and third rows of  are independent; 

1 0 0
0 1 0

E ⎡ ⎤
= ⎢
⎣ ⎦

uf
1 0 0
0 0 1

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

uf
0 1 0
0 0 1

E ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 if the second and third 

rows of  are independent. Therefore the crossability criteria can be expanded into a 

quadratic form by 

uf

   (30) T
n paη ′= − =II q Qq& &

where  

   (31) T T T⎡ ⎤ ⎡ ⎤= −⎣ ⎦ ⎣ ⎦q qqq uu
Q N Φ Φ B N f BΦ

and B  is the generalized inverse of  defined by uf

 [ ] 1−= uB Ef E  (32) 

The matrix  is calculated by substituting Q 0q  into Eq.(31). The criteria is that if Q  is 

indefinite, the interest point of the driver can admit normal movements along either 

direction of .  The surface is crossable. If  is semi-definite the surface is non-

crossable. 

N Q

 

When we consider the joint limits the component of the normal acceleration is then 
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  (33) *T T
na = =N x λ H λ&&& &

where 

 [ ]*

1

( )Tn
T T

i
i i

d q
dq=

⎡ ⎤= +⎣ ⎦ ∑λ λ λλqq

N ΦH q N Φ q& & ⋅   (34) 

and the quadratic form is written in terms of the  matrix as *Q

                                        * * T T T T⎡ ⎤= − ⎣ ⎦λ λ q λλλ
Q H q Φ B N f BΦ q  (35) 

If  is indefinite the surface will definitely be crossable. However when  is either 

positive semi-definite or negative semi-definite, the singular surface/curve may still be 

crossable. To address this case, we propose the projection of a variational movement 

*Q *Q

iq qiδ δ=x x  due to iqδ  onto the normal direction N  such that the normal component 

                                                             
i

T
q qiσ δ= N x  (36) 

determines admissible normal movement, where  

                                               
1
1

i
i

i

if q is at lower bound
q

f q is at upper bound
δ

⎧+
= ⎨

−⎩
 (37) 

Positive value of σ  in Eq. (37) indicate the tip of the middle finger can admit movement 

in the positive direction of . N

 

Another situation arises when the normal vector  is perpendicular to . In this case, N
iqx

σ  evaluates to zero. Therefore we define the curvature difference 

                                        2 1
i i

i i

T T T
i iq q

T T
i q q i

q q
K K

q q

δ δ δ δ

δ δ δ δ

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦− = − uu

u u

N x u N f u

x x uf f u
  (38) 

We have  
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iq qiδ δ=u Bx   (39) 

Plugging Eq.(39) into Eq.(38) yields 

                                    2 1
ii i

i i

T T T T
i i i qq q

T
i q q i

q q q
K K

q q
iq iqδ δ δ δ

δ δ

⎡ ⎤ ⎡ ⎤−⎣ ⎦ ⎣ ⎦
− = uu

N x x B N f Bx

x x
  (40) 

The denominator of the right-hand side of Eq.(40) is always positive, the sign is 

dependent on the numerator. The numerator can be reduced to 

                                                        2
iK qμ δ=   (41) 

where  

                                              
i i i i

T T T T
q quu q q

K ⎡ ⎤ ⎡= − ⎤⎣ ⎦ ⎣x B N x Bx N x⎦  (42) 

If , the tip of the middle finger can admit movement into the positive direction of 

. If , the tip of the middle finger can admit movement into the negative direction 

of . When  is either positive semi-definite or negative semi-definite, The final 

criteria will be: 

0K >

N 0K <

N *Q

(1). If N  is not perpendicular to , then 
iqx σ  in Eq.(36) must be evaluated. 

(2). If N  is perpendicular to , then  in Eq.(42) must be evaluated. 
iqx K

If any of σ  or  has a different sign than the nonzero eigenvalues of , the singular 

surface/curve is crossable; If 

K *Q

σ  and  have the same sign as nonzero eigenvalues of 

, the singular surface/curve is non-crossable. 

K

*Q
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The Analysis of Restrained Drivers 

Finding the Reach of Drivers 
 
Consider the shoulder and forearm modeled as a 4-DOF system, where the spherical joint 

at the shoulder is modeled as three intersecting revolute joints and the elbow as a revolute 

joint.  This is consistent with published results except that we have not considered the 

wrist joint (which is an additional 3 revolute joints) and we have limited the motion of the 

glenohumeral joint to spherical. It should be noted that this model does not include the 

scapulothoraic motion of the shoulder joint (i.e., the additional two translational DOFs of 

the scapulothoraic are not taken into consideration). Furthermore, we have modeled the 

spherical joint as three revolute joints intersecting at one point, a practice commonly 

made in modeling to represent spherical joints. It should be noted that the most difficult 

and the least successful modeling of a major articulating human joint has been the 

shoulder because of the difficulty in modeling the complex kinematic connectivities as 

well as the anatomical complexity of the region. Figure 5 depicts the joint motions to be 

modeled where each joint is given an independent coordinate q  where the equivalent 

kinematic skeleton of the system is depicted with the z-axis located per the D-H 

representation method. 

i
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Figure 5 Shoulder and arm and the corresponding DOF  

 

In the following analysis, a point on the tip of the middle finger as shown in Figure 6 will 

be tracked.  The dimensions of the arm are different for different percentile humans. For 

95th percentile men the dimensions are 1 40.64L cm= , 2 30.48L cm= , 3 20.32L cm= , 

nevertheless, our method allows for any anthropometric data to be used in the 

formulation and is not percentile dependent. In the field of kinematics, the motion of a 

spherical joint with three DOFs can be modeled as three independent revolute joints 

having their axes intersecting at a single point as shown in Figure 6.  Note that the point 

on the middle finger is shown located at the position  as resolved in 

the fourth coordinate frame. 

4 [0 0 50.8]T=v
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Figure 6 Kinematic modeling of the restrained driver 
 
 
Consider the following joint limits imposed on the model of Fig. 6 for a 95th percentile 

male: , , , and 90 1 90o q 110 2 120o oq 90 3 90o oq 150 4 0o oq− ≤ ≤ . Using 

the Denavit-Hartenberg representation method, the position of the point of interest is 

given by Eq. (1) as 

4 1 3 1 3 4 2 2 4

3 4 1 2 1 4 3 2 1 4

2 3 4

(40.64 50.8cos )sin sin cos (cos ( 40.64 50.8cos )sin 50.8cos sin )
( ) cos ( 40.64 50.8cos )sin sin cos ( 40.64 50.8cos )sin 50.8cos sin sin

cos cos (40.64 50.8cos ) 50.8sin

q q q q q q q q q
q q q q q q q q q q

q q q

+ + − − −
= − − + − − −

+ −
x q

2 4sinq q

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 (29) 
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Inequality constraints are parameterized as 1 1/ 2sinq π λ= , 2 2/ 36 23 / 36sinq π π λ= + , 

3 3/ 2sinq π λ= , 4 5 /12 5 /12sinq 4π π= − + λ

)

. The rank deficiency criteria applied to the 

resulting (3 4  Jacobian matrix yields 44 singular sets that are listed in Appendix A. 

Those singular sets are now substituted into Eq. (29), whereby parametric surface 

equations are readily plotted and visualized. For example several cross sections of the 

final driver reach envelope are shown in Figure 7. 

 
 

   
 

Figure 7. The cross sections of the restrained driver reach  
 

 22



 
Crossability Analysis of Singular Surfaces 
 
A planer  cross section view of the reach envelope at (0 0y oz 0 0x = ) is shown in Figure 8, 

where the intersection of the singular surfaces with plane traces curves that are called the 

singular curves and are denoted by iΨ , 1,..., 44i = . 

 
Figure 8 Cross Section of Singular surfaces 

To demonstrate the crossability analysis, consider a point 1p  on surface 11ψ , which has 

[ ]0 2 / 3 / 2 / 2 Tπ π π= −q  and [ ]0 / 2 / 2 arcsin(1/ 5) Tπ π= −λ . Evaluating the 

normal  from the basis of the null space of N

63.8372 39.8982 0
0 0
0 0
0 65.1535 0

T

−
0
0

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤ =⎣ ⎦ ⎢ ⎥
⎢ ⎥−⎣ ⎦

q λΦ q  

at 1p  yields the normal vector [ ]0 0 1 T=N . Evaluating the matrix  of Eq. (34) 

yields 

*H
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*

0 0 0 0
0 50.9811 0 0
0 0 31.9186 0
0 0 0 72.3674

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥−⎣ ⎦

H  

The singular surface is  

[ ]4 1 1 4 1 4 1 4 4( ) (40.64 50.8cos )sin 25.4cos sin cos ( 40.64 50.8cos ) 25.4sin sin 43.9941sin Tq q q q q q q q q= + + − − + −f u  

and its Jacobian matrix can be defined by 

40.64 0
(0, / 2) 25.4 50.8

0 0
π

⎡ ⎤
⎢ ⎥− = − −⎢ ⎥
⎢ ⎥⎣ ⎦

uf  

Therefore the matrix E  is  

1 0 0
0 1 0
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

E  

and  

[ ] 1 0.0246063 0 0
0.0123031 0.019685 0

− ⎡ ⎤
= = ⎢ ⎥− −⎣ ⎦

uB Ef E  

The matrix  of the quadratic form is evaluated as *Q

*

0 0 0 0
0 50.9811 0 0
0 0 31.9186 0
0 0 0 0

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥−
⎢ ⎥
⎣ ⎦

Q  

The eigenvalues of  are evaluated as *Q { }50.9811 31.9186 0 0− , which indicates an 

indefinite quadratic form. Therefore it is a crossable surface at point 1p . Crossability at 

this point means that a driver with a posture characterized by the singular set , would 

allow the hand to cross that surface (represented by a singular curve). This is the first step 

towards better understanding comfort, dexterity, effort, and energy zones associated with 

driver reach. 

11s
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To further demonstrate this, consider a point 2p  on surface 15ψ , which has a 

configuration of [ ]/ 2 0 0 0 Tπ= −q and [ ]/ 2 arcsin( 1/ 23) 0 / 2 Tπ π= − −λ . The 

normal vector at this point is calculated as [ ]0 0 1 T=N . The matrix Q  is computed 

and its nonzero eigenvalue is . Since  is negative semi-definite, the singular 

surface 

22.5778− Q

15ψ  is non-crossable. 

 

Consider a point 3p  on surface 4ψ , which is a Jacobian singular surface and has a 

configuration [ ]/ 2 2 / 3 0 / 2 Tπ π π= −q  and [ ]/ 2 / 2 0 arcsin(1/ 5) Tπ π= −λ . 

The normal vector is [ ]0 0.5 0.866025 T= −N . The nonzero eigenvalue of  is 

obtained as 81.5697. Since the matrix is positive semi-definite, the supplementary criteria 

must be computed to ascertain crossability. For this surface, the joint variables  and  

are at their limits. The variational normal movement of 

*Q

1q 2q

nσ  for 1qδ  and 2qδ  are also 

calculated as 0 and –40.64 respectively. For 1qδ  the value of nσ  is 0 and we can 

calculate the Eq.(42) and . The signs of  30.2976K = − nσ  for 2qδ  and  for  K 1qδ  are 

different from the sign of nonzero eigenvalue. Therefore, the surface 4ψ  at this point is 

crossable. Use the same procedure to check the points on other surfaces and the final 

admissible normal movement directions are shown in Figure 9. 
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: Crossable Surfaces: Crossable Surfaces  : Movable Directions: Movable Directions  
Figure 9 Crossable and non-crossable singular curves 

 

The Unrestrained Reach of Drivers 

Consider the upper body modeled as a 7-DOF system, where the upper extremity is the 

same as the restrained model in Figure 6. In order to account for the upper torso motion 

for an unrestrained driver, we propose the addition of 3 degrees of freedom representing 

motion at the waist. The torso part has three DOFs (spherical joints) and they are 

intersected into one point characterizing a seated driver with spherical articulation at the 

waist.  Consider the following joint limits imposed on the model of Figure 10 for a 95th 

percentile male model: , , , , 

, , and 

145 45o oq− ≤ ≤ 20 30o oq≤ ≤ 330 30o oq− ≤ ≤ 490 90o oq− ≤ ≤

5110 120o oq− ≤ ≤ 690 90o oq− ≤ ≤ 7150 0o oq− ≤ ≤ . 
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Figure 10. Kinematic modeling of the unrestrained driver 
 

According to the D-H method, the tracked point of interest is 

1 3 2 1 3 3 1 1 2 3 6 5 3 1 1 2 3 4 1 3 2 1 3 1 2 4 5

1 2 4 1 3 2 1 3 4 6 7 6 5 3 1 1 2 3 4 1 3 2 1 3 1 2 4 5

1 2 4 1 3 2 1 3 4 6

( )[1] 25 25 10 10 16 ( ( ) ( ( ) ) )

16( ( ) 20( ( ( ( ) ( ( ) ) )

( ( ) ) ) (

c c s s s c s c s s c c c s c s s c c c s s s c c s s

c c c c c s s s s s c c c c s c s s c c c s s s c c s s

c c c c c s s s s s

= + + − + − − + − +

+ + + + − − + −

+ + +

x q

5 4 1 3 2 1 3 1 2 4 3 1 1 2 3 5 7( ( ) ) ( ) ) )c c c c s s s c c s c s c s s s s− + − − −

+  

3 1 2 1 3 1 3 1 3 1 2 3 6 5 1 3 1 2 3 4 3 1 2 1 3

2 1 4 5 2 4 1 3 1 2 1 3 4 6 7 6 5 1 3 1 2 3 4 3 1 2

1 3 2 1 4 5 2 4 1 3 1 2 1 3 4

( )[2] 25 25 10( ) 16 ( ( ) ( ( )

) ) 16( ( ) 20( ( ( ( ) ( (

) ) ) ( (

c s s s s c s c c s s s c c c c s s s c c s s c s

c s s s c c s c s s c s s s c c c c c s s s c c s s

c s c s s s c c s c s s c s s

= + − + − − + − − − −

− + + − + − − −

− − + + −

x q

6 5 4 3 1 2 1 3 2 1 4

1 3 1 2 3 5 7

) ) ( ( ( ) )

( ) ) )

s c c c s s c s c s s

c c s s s s s

+ − − − −

− −
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2 3 2 3 6 2 5 3 2 3 4 2 4 5 4 2 2 3 4 6 7 6 2 5 3

2 3 4 2 4 5 4 2 2 3 4 6 5 2 3 4 2 4 2 3 5 7

( )[3] 25 10 16 ( ( ) 16( ) 20( ( (

( ) ( ) ) ( ( ) ) )

c c c s c c c s c c c s s s c s c c s s c c c c s

c c c s s s c s c c s s c c c c s s c s s s

= − + − − + + − + + −

− + + − + + − + +

x q

 

Figure 11 shows the cross section of the unrestrained driver reach in the car. A 0 0x z cross 

sectional plane showing the intersections of the singular surfaces with the plane as 

singular curves is shown in Figure 12.  

 

Figure 11. The cross section of the unrestrained driver reach ( ) 0 10y = −
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Figure 12. The cross section at 0 0x =  

We follow the procedure for determining the crossability of singular surfaces and obtain 

the crossabilities of the boundary surfaces of the unrestrained driver reach in Figure 13.  

 

 
 
 

Figure 13. Boundary surfaces and their non-crossabilities ( ) 0 0x =
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Obviously, unrestrained driver reach gives rise to significantly more redundancy as there 

are significantly more singular curves. It is also observed that far more crossable surfaces 

in both directions are observed in the unrestrained case, as expected, because of the 

redundant 7 DOF model. 

 

Conclusions 

A formulation for visualizing restrained and unrestrained driver reach envelope has been 

presented, particularly the identification of singular surfaces within upon which Jacobian 

singularities occur. The work is aimed better understanding human-machine interaction 

from a human perspective, where the ultimate goal is to delineate regions and zones of 

common and quantifiable characteristics such as comfort, effort, energy, etc. This initial 

stage has focused on the understanding of barriers within the envelope upon which 

specific postures may or may not allow for crossability from kinematic point of view. It 

was shown that restrained drivers whose upper extremity is modeled as a 4DOF 

kinematic linkage has far more non-crossable (i.e. crossable surfaces in one direction at a 

particular singular configuration) than unrestrained drivers modeled as a 7DOF kinematic 

linkage. It was also shown that crossability at a singular curve within the reach envelope 

can now be determined in closed form and based as a first but necessary step towards 

delineating zones and regions within the envelope associated with driver quantifiable 

properties. 
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Appendix A 
{ }1 1 22, 11 /18s q qπ π= = − = − , { }2 1 22, 11 /18s q qπ π= = = − ,  

{ }3 1 22, 2 / 3s q qπ π= = − = , { }4 1 22, 2 / 3s q qπ π= = = ,  

{ }5 1 32, / 2s q qπ π= = − = − , { }6 1 32, / 2s q qπ π= = − = , 
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{ }7 1 32, / 2s q qπ π= = = − , { }8 1 32, / 2s q qπ π= = = , 

{ }9 2 311 /18, / 2s q qπ π= = − = , { }10 2 311 /18, / 2s q qπ π= = − = − , 

{ }11 2 32 / 3, / 2s q qπ π= = = , { }12 2 32 / 3, / 2s q qπ π= = = −  

{ }13 1 42 , 5 / 6s q qπ π= = − = − , { }14 1 42 , 5 / 6s q qπ π= = = − ,  

{ }15 1 42, 0s q qπ= = − = , { }16 1 42, 0s q qπ= = = ,  

{ }17 2 411 /18, 5 / 6s q qπ π= = − = − , { }18 2 411 /18, 0s q qπ= = − = , 

{ }19 2 42 / 3, 5 / 6s q qπ π= = = − , { }20 2 42 / 3, 0s q qπ= = = , 

{ }21 3 42, 5 / 6s q qπ π= = − = − , { }22 3 22, 5 / 6s q qπ π= = = − ,  

{ }23 3 42, 0s q qπ= = − = , { }24 3 42, 0s q qπ= = = ,  

25 1 4
42, cos( )
5

s q q Arcπ⎧ ⎫= = − = − −⎨ ⎬
⎩ ⎭

, 26 1 4
42, cos( )
5

s q q Arcπ⎧ ⎫= = = − −⎨ ⎬
⎩ ⎭

,  

{ }27 2 311 /18, 0s q qπ= = − = , { }28 2 32 / 3, 0s q qπ= = = , 

29 2 4
42 / 3, cos( )
5

s q q Arcπ⎧ ⎫= = = − −⎨ ⎬
⎩ ⎭

, 30 2 4
411 /18, cos( )
5

s q q Arcπ⎧ ⎫= = − = − −⎨ ⎬
⎩ ⎭

, 

{ }31 3 2/ 2, / 2s q qπ π= = − = − , { }32 3 2/ 2, / 2s q qπ π= = − = , 

{ }33 3 2/ 2, / 2s q qπ π= = = − , { }34 3 2/ 2, / 2s q qπ π= = = , 

{ }35 2 40, 5 / 6s q q π= = = − , { }36 2 40, 5 / 6s q q π= = = − , 

{ }37 2 42, 5 / 6s q qπ π= = = − , { }38 2 42 , 5 / 6s q qπ π= = − = − , 

{ }39 2 42, 0s q qπ= = = , { }40 2 40, 0s q q= = = , 

{ }41 2 42, 0s q qπ= = = , { }42 3 42, 0s q qπ= = − = , 

{ }43 3 42, 0s q qπ= = = , { }44 3 40, 0s q q= = =  
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