
IVSS-2003-MAS-7 

CAT/RF Simulation Lessons Learned 

Christopher Mocnik 
Vetronics Technology Area, RDECOM TARDEC 

Tim Lee 
DCS Corporation  

 

 
ABSTRACT 

The Vetronics Technology Area of The U.S. Army Tank-
Automotive Research Development and Engineering 
Center (TARDEC) and DCS Corporation developed a re-
configurable Unmanned Ground Vehicle (UGV) 
simulation for the Crew integration and Automation Test 
bed (CAT) and Robotics Follower (RF) Advanced 
Technology Demonstration (ATD) experiments.  This 
simulation was developed as a component of the 
Embedded Simulation System (ESS) of the CAT 
architecture.  The CAT/RF was chosen by the Future 
Combat System’s (FCS) Lead Systems Integrator (LSI) 
as a surrogate to show the functionality of the Control 
Vehicle (CV)/Armed Reconnaissance Vehicle (ARV) 
concept demonstrated in the Unmanned Combat 
Demonstration (UCD) experiments.  The UCD design 
handled any combination of Javelin-like missile system, 
Objective Crew Served Weapon (OCSW), and 
Reconnaissance, Surveillance, and Target Acquisition 
(RSTA) sensors on the ARVs.   The ESS development 
team faced numerous challenges in simulating multiple 
vehicles with varying sensor and weapons payloads, 
controlled by multiple operators.  Despite an accelerated 
schedule, the ESS team was able to support the UCD 
and ATD experiments conducted between December 
2002 and April 2003.    

INTRODUCTION 

This paper describes the effort undertaken by the 
Embedded Simulation Team of TARDEC and DCS 
Corporation to design, develop, integrate, and test the 
ESS software and hardware to support both the CAT/RF 
ATDs and the UCD experiments with the LSI.  The paper 
will present brief background information on prior ESS 
activities in the Vetronics Technology Area of TARDEC 
and the activities leading up to the current CAT/RF and 
UCD experiments.  It will then discuss specific technical 
and programmatic challenges faced during CAT/RF/UCD 
development in key areas, and describe the final 
implementation used.  Potential future enhancements will 
also be considered where feasible.  

BACKGROUND  

In the early to mid 90s The Vetronics Technology Area 
conducted the Crewman’s Associate (CA) ATD.  The 
goal of CA was to show that all of the tasks currently 
performed by the four-crew members of an Abrams main 
battle tank could be performed with equal or greater 
timeliness and precision by a reduced crew of two or 
three.  A smaller crew would mean a smaller, lighter, 
more transportable and supportable vehicle.  An 
improved Soldier-Machine-Interface (SMI) was created 
and certain levels of automation were assumed.  
Experiments were conducted with a two-person and 
three-person man-in-the-loop static simulator that 
verified this two and three man notion. 

The Vetronics Technology Test bed (VTT) was the 
follow-on effort to the CA ATD.  Developed under the 
Inter-Vehicle Electronics Suite (IVES) Science and 
Technology Objective (STO), the main goal of the VTT 
was to demonstrate the capability of one crewmember to 
perform the functions of both the vehicle Commander 
and Driver.  The advanced crew stations designed under 
the CA ATD were reconstructed using rugged, real-time 
hardware and software modules and integrated into an 
actual ground combat host vehicle.  The VTT 
demonstration took place while operating over militarily 
significant terrain and while performing a militarily 
significant mission.  In addition, embedded simulation 
hardware and software was used to create realistic 
operating and training scenarios for the crewmembers.  
The ESS provided both the ability to train in-vehicle, and 
provided virtual targets, weapons control, and sensors 
during operational exercises.  It also provided a 
battlefield visualization capability enabling the user to 
move his eye point into and around the virtual battlefield.  

The VTT vehicle itself was based on a modified M2A0 
Bradley Fighting Vehicle hull that was refitted with drive 
by wire technology and the two-crew stations.   The 
Bradley turret was removed to give it a lower profile, as 
was (and is) the vision for most all future armored 
vehicles.  The M2A0 also afforded ample interior volume 
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to accommodate the crew stations, ESS, radios, and 
other equipment.   

CURRENT PROJECT 

The Vetronics Technology Area is currently developing 
the CAT and RF ATDs.  The CAT extends the VTT crew 
station design to include the FCS fight, carrier, and scout 
missions.  In addition to VTT capabilities, the CAT ATD 
also supports control of robotic assets both forward 
deployed and follower, and introduces cognitive and task 
decision aids as well as an improved ESS.  The vehicle 
selected for the CAT ATD is a Stryker Infantry Carrier 
Vehicle (ICV).  Like the Bradley it also has enough 
interior space to accommodate crew stations and 
equipment.  Additionally, it weighs less than 20 tons 
which is more in line with FCS goals for dimensions and 
weight.  The goal of the RF ATD is to advance 
autonomous mobility technology in a number of areas 
such as obstacle detection, path following, and road/lane 
following.  The RF ATD also makes use of a Stryker ICV 
and an eXperimental Unmanned Vehicle (XUV) from the 
Demo III program.  Collectively, the combination of CAT 
and RF ATDs developed with GDLS is called the 
Vetronics Technology Integration (VTI) contract. 

As with the VTT, the Embedded Simulation Team’s goal 
for the CAT was to provide both a training and 
operational virtual capability.   In a static Systems 
Integration Lab (SIL), the ESS would provide all visual 
models, out-the-window views, weapon and sensor 
functions, as well as mobility for the CAT vehicle.  While 
in the field, the vehicle would be operating under it’s own 
mobility and using it’s own indirect vision cameras, but 
the ESS would still be required to provide virtual 
weapons, sensors, and targets.   

When Boeing was selected as the LSI for FCS they 
performed an analysis of available resources within the 
Government that they might be able to leverage.  The 
two FCS class vehicles and the XUV used by Vetronics 
were seen as valuable assets.  Using these, the LSI 
would be able to demonstrate their evolving unmanned 
vehicle concepts.  The ES Team supported the LSI UCD 
by providing the simulation systems for both a virtual 
demonstration that took place in the SIL at TARDEC, and 
a live maneuver portion that took place in the field at Ft. 
Bliss Texas.   The UCD concept included two ARVs and 
one CV.  One of Vetronics’ Strykers and the XUV acted 
as surrogate ARVs while the other Vetronics Stryker 
acted as the CV in the LSI’s concept.  Operators seated 
at the CAT crew stations controlled the ARVs and their 
payloads.  For the field demos the crew stations were 
placed in the back of the CV/Stryker.  The operators 
would have the ability to control one or more ARVs as 
the scenario prescribed.  They could manually steer the 
ARVs (called Tele-oping) or send them mission plans to 
control their mobility.  The modeling and control of the 

virtual ARVs and their payloads were significant activities 
for the ES Team. 

ENGINEERING DESIGN PROCESS 

Adherence to a design process is an important part of 
any engineering project.  The Embedded Simulation 
team has typically used a modified version of the 
waterfall model for software engineering shown in Figure 
1.  The model is often appropriate for rapid engineering 
as it is easy to understand, implement, and in general, 
universally understood.   

 

Figure 1:  Waterfall Software Engineering Process 

 

The model was used cyclically within a series of software 
drops.  Five drops were originally planned for software 
development activities.  Each drop would add more 
functionality over the previous drop, until all requirements 
for the ESS were met with completion of the last drop.  
Divergences from this process in several areas lead to 
numerous problems over the course of the project.   The 
primary problem areas for the ES Team were in 
communication of requirements, and integration of 
software.   

In any engineering design process the creation of a 
requirements specification document is probably the 
single most important step.  It not only documents the 
needs of the customer, but the path forward for the 
developers during design and programming.  Incorrectly 
specified requirements can lead to rework, functionality 
that doesn’t meet the customer’s needs, or software that 
simply doesn’t work.  Originally, the CAT program was to 
be a two-year design effort.  This was reduced to one 
year in order to meet the FCS milestone B decision date.  
Not only was the development time now cut in half, but a 
second set of requirements needed to be specified for 
the UCD.  Adding to this was the instability in the FCS 
Unit of Action (UA) force structure and the LSI’s concept 
objectives, and the uncertainty of physical payload 
availability to place on the Stryker vehicles and XUV.   
Because of the reduced development time and instability 
of the experiment configuration, communicated 
requirements were largely in flux making requirements 
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specification very difficult at best.  This lead to problems 
later on as code changes were constantly being made to 
accommodate evolving requirements. 

The ES Team also experienced difficulty during software 
integration.  Typically, ESS software modules were 
designed and tested in the ES Lab at TARDEC.  This 
code was then taken to General Dynamics Robotic 
Systems (GDRS) for integration and test on the target 
hardware.  Because of inadequately specified 
requirements, it was often the case that code developed 
by GDRS and that developed by the ES Team would not 
interact cleanly at integration time.  This would lead to 
down time, and functionality intended for that drop being 
pushed to a later drop.  Because progress at integration 
time was reduced thorough regression testing was not 
always possible, leaving bugs in the system during demo 
time.  In the future it is recommended that both system 
requirements and individual drop requirements be base-
lined or better defined in advance.  

SIMULATION SOFTWARE ARCHITECTURE AND 
CODE REUSE 

If it’s feasible to do so, reuse of existing software is of 
great benefit.  Code reuse saves both time and money 
as it can take significantly less time to port and modify 
well-understood existing code instead of developing new 
code from scratch.  It increases reliability and reduces 
risk as previously used components should have already 
been tested and debugged.  If the code is very modular 
in design, and non-system specific, the task of porting 
code will be made easier.   

Because of the extremely tight schedule and creeping 
requirements, the Embedded Simulation Team decided 
to reuse as much of the code from the ESS on the VTT 
as was possible.  Developing all new code from scratch 
with the resources and time available would have only 
increased risks.  The ES Team successfully re-used the 
source code from the VTT adding new processes to 
capture new functionality where needed.  The general 
configuration of the CAT software processes is shown in 
Figure 2.   

 

 

Figure 2:  Software Processes Overview 

 

The VTT and CAT (to a lesser extent) utilized a process-
oriented design.  Specific vehicle functions were isolated 
and similarly named processes created to implement that 
functionality.  CAT Functionality included own ship 
vehicle mobility, graphics generation, simulation control, 
after action review and playback, network interfacing, 
sight and weapon control, and an interface to the vehicle.  
All new for UCD was UGV and RSTA control.  Data 
sharing between the processes occurred via PIU Comm 
object described in a later section of this paper.  The 
CAT/UCD code was the beginning of a departure from 
the process oriented code of the VTT to an Object 
Oriented (OO) architecture that used domain named 
classes.  

Although this was a good approach, much of the existing 
VTT code had to be modified.  The Own ship mobility 
process had to be completely changed as a new vehicle 
model was being used.  This is described in a later 
section of this document.  The A-Kit interface had to be 
drastically changed as well to account for all the new 
communication required for the RSTA and UGV 
processes.  Sight/Weapons had to be significantly 
changed to handle new weapon types and new sensors 
not previously used in VTT.  Some changes were 
necessary to the visualization manager (World), Network 
Interface Unit (NIU) and the After Action Review (AAR) 
data logger.  In total the amount of new code developed, 
and change to existing VTT code ended up being as 
much as an entirely new development effort.   

Another significant challenge was in producing multi-
vehicle/crew station software.  Though somewhat 
modular in design, the VTT code was largely system 
specific. The ESS was tightly coupled to the VTT 
functional design.  CAT implementation was to be free 
from this constraint.  Any function from any station for 
any vehicle was the desired functionality.  See Figure 3.  
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Given the reuse of the VTT software and the amount of 
time available to make coding changes for the two 
programs CAT and UCD, this goal was only partially 
achieved.  The VTT code was expanded upon to allow 
more functionality than before, but it was not a truly open 
ended design.  Part of the 04 and beyond effort will be to 
re-architect the ESS code to truly allow a full set of 
services anywhere anytime.  

 

 

Figure 3:  Multi-Vehicle/Crew Station Simulation 

 

UGV SIMULATION 

A new ES Team development effort for the CAT and 
specifically geared for support of UCD was the UGV 
Process.  A high level overview of the UGV process is 
shown in Figure 4.  The main function of the UGV 
process is to instantiate a UGV object for each UGV 
present in the simulation, and to pass through data 
to/from the vehicle via PIU Comm object.     The UGV 
object is the “brains” of the UGV process.  The UGV 
object interprets the mission plan and controls what data 
is sent to the Platform object and when, essentially 
controlling the UGV simulation. The Plan object is 
essentially a mission plan parser that sends mission 
related data and commands to the UGV object.  The 
UGV Platform object starts a thread that instantiates 
multiple objects that handle payload and physical 
features of each UGV such as mobility, RSTA, weapons, 
etc.   

 

Figure 4:  UGV Process Implementation 

 

Successful implementation of the UGV process was a 
challenge in several ways: communicating with the 
vehicle software; and executing a live virtual ARV mix.  
Control of an ARV ultimately is performed from the SMI 
at the CAT crew station.  From here the soldier 
composes his mission plan for the ARV, performs RSTA 
scans, or tele-operates the ARV.  In any case, button 
presses and other control input from the SMI are 
composed into a message set that is sent to the ESS via 
the A-Kit.  Much of this message content was described 
under the Demo III program from which it was being 
reused; however, new functionality was being added that 
didn’t exist in Demo III such as missile weapons 
payloads.  Also contributing to the problem was 
requirement creep.  Often times, messages were being 
defined at software integration drops.  An early effort to 
define message content in advance was made but 
ultimately rejected as flexibility was preferred given the 
flux in requirements and potential for quick on the fly 
changes.  In retrospect this was a mistake.  Because 
message content and format was not fixed, both ESS 
code and GDRS code was developed based on a set of 
assumptions.  At integration time this became an issue 
as neither party had code fully compatible with the 
other’s assumptions.  A possible solution to this problem 
is to define a common robotics interface in advance, and 
to design simulation application code around the 
message content. Future exercises will certainly add 
control of Unmanned Air Vehicles (UAVs) to the mix 
forcing a common design philosophy up front. 

Another difficulty to overcome during the project was the 
implementation of a live and virtual UGV mixture.  In the 
SIL environment everything was virtual, both vehicle and 
payload. UGV position was known as it was being 
calculated within the ESS UGV process.   Every time a 
RSTA or TA sensor service was requested, the ESS 
knew exactly where to place the eye point for the 
requested service.  In the field this was not the case.  
UGV mobility was not engaged as the real vehicle asset 
was in use and running under it’s own mobility.  But, the 
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RSTA and sensor payloads were still virtual.  Actual 
vehicle location data was sent back to the ESS in 
position updates that occurred roughly every two 
seconds at the fastest, or on vehicle events such as 
RSTA scans, tele-op commands etc.  As a result, the 
position from which to perform a RSTA or TA operation 
had the potential to be lagged by several seconds 
depending on the service being requested.  This was 
solved by placing certain constraints on the user such as 
not moving while using a TA sensor, or performing any 
sensor functions, to account for the potential lag.  A 
possible solution is to use dead reckoning algorithms for 
determining position when actual position is not 
available.  This would entail calculating the current eye 
point given the vehicles last reported heading and speed.   

OWN SHIP VEHICLE PHILOSOPHY 

Another issue in developing the ESS own ship vehicle 
behavior was the notion of the CV or CAT own ship 
vehicle being considered an ARV.   The ES Team did not 
consider the CAT vehicle to be an ARV, and did not 
expect it to be controlled as such.  The GDRS team on 
the other hand, considered the own ship vehicle to be 
controlled just as any other robot.  It made sense for 
each development team to take this approach, but did 
cause more integration issues.  GDRS did not want to 
make the status message it sent to the CAT a unique 
message, and wanted to keep the format and content 
currently used in the UGV message.  It was a difficult 
task for them to be able to capture all the data needed 
for the CAT and format it differently.  The ES team on the 
other hand did not view the CAT as just another UGV.  
The CAT vehicle had functionality that would never exist 
natively in a UGV such as battlefield visualization, or 
lethality/sensor visualization control, or data for 
interfacing with a SAF, etc.  Control data for these types 
of features could not be included in a UGV message.  
Ultimately, compromises had to be made by both parties 
to accommodate program needs.  In retrospect, a 
common understanding of what an own ship vehicle is 
and how it’s controlled should have been developed up 
front.  For future efforts, a common design will need to be 
agreed upon.   

RSTA SIMULATION 

The VTT vehicle simulation involved a low fidelity 
simulation of an advanced Automated Target 
Recognition (ATR) system.   As such, the interfaces and 
operational performance of the simulated ATR was 
limited from the perspective of the current technology.   
However, in the CAT ATD, a current state of technology 
RSTA sensor suite needed to be modeled with as much 
fidelity as could be implemented.  Further, the ESS 
needed to accommodate multiple instances of the RSTA 
simulation due to the multiple vehicle experiment 
configuration.   

Since the RSTA being modeled was normally not used 
as a live video feed sensor, but rather as a static imaging 
sensor, ESS design allocated a single video channel to 
serve all instances of RSTA simulation.  As depicted in 
Figure 5, a client-server distributed architecture was 
employed to enable a single RSTA simulation server to 
provide the RSTA interface data for multiple RSTA 
simulation clients.    

 

Figure 5:  RSTA Simulation Approach 

 

Also, an algorithm was devised to mimic the target 
discrimination confidence levels of current ATRs.  This 
algorithm was not based on any scientific validation.  
However it was an educated guess at the target 
discrimination probabilities as a function of measurable 
parameters in the simulated world.  Using methods 
described by Shumaker, et al [7], and the venerated 
observations by Johnson [4], the probability curves as 
functions of pixels on target were devised as shown in 
Figure 6.  The implementation plan for this approach was 
to determine the number of pixels on target (with 
obscuration) via a number of costly Image Generator 
(IG) manipulations.  This was certainly a simplistic view 
of ATR performance since the orientations, range , and 
other factors were not considered.  However, given the 
difficulty in attempting to predict ATR performance as 
discussed by Ratches et al [6], the approach taken for 
ESS was a reasonable compromise. 
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Figure 6:  ATR Modeling 

 

Despite the effort expended in designing a higher fidelity 
RSTA simulation, actual implementation and execution 
suffered from limitations unforeseen.   First, the sheer 
size of the synthetic environment database used in the 
CAT experiments caused the IG to spend large amount 
of time loading terrain and textures every time the view 
point changed from one vehicle to another.   Since the 
RSTA simulation was required to build representations of 
sensor scan "mosaic" images, multiple view angle screen 
shots from each vehicle location was needed.   This 
operation meant frequent replacement of terrain and 
textures from cache, or even from disk, which translated 
to large delays.  These delays were acceptable when 
simulating the scan operation of a single RSTA, since the 
real RSTA also took comparable amount of time to 
complete a scan.   However, when multiple RSTA scan 
operations were requested simultaneously, the ensuing 
delays were unrealistically large.  In addition, the 
complexity and overhead of the RSTA simulation server 
increased exponentially due to the management of 
mutual exclusion between the dynamic server threads for 
each concurrent instance of RSTA scan.  Thus, the 
resources of the RSTA simulation server were fully taxed 
and unable to provide the basic RSTA functionality in a 
timely manner when multiple RSTA operations were 
requested.  This in turn, prevented the implementation of 
the ATR performance modeling that was planned, since 
that would have added even more demands on the 
already busy RSTA simulation server IG. 

The RSTA simulation for the next generation ESS may 
attempt to incorporate multiple video channels for the 
RSTA simulation server.   Ideally a simulation video 
channel would be dedicated to each instance of a 
simulated RSTA.   However, that could make the ESS 
footprint unacceptably large for the "embedded" 
environment.   Therefore, some mechanism to share 
existing channels for RSTA simulation may warrant 

some investigation.   Adding more RSTA simulation 
channels is also an option, but it is the less desirable 
one.   Further, a different approach to the RSTA ATR 
performance modeling may be needed.   One possible 
option is to utilize multiple Line-Of-Sight (LOS) checks on 
the target rather than counting pixels on the target to 
derive some measurement of level of "visibility."   Since 
the LOS checks and range checks in simulation world 
does not require reloading of the scenery, this may be 
more feasible. 

WHEELED VEHICLE SIMULATION 

For the UCD virtual experiments it was necessary to 
model the mobility characteristics of both the Stryker ICV 
and the LSI’s ARV concept.  Previously under the VTT 
program, the ES Team built a simple tracked vehicle 
model for the Bradley fighting vehicle.  The mobility 
characteristics of a wheeled vehicle are significantly 
different than that of a tracked vehicle.  Though a high 
fidelity model wasn’t needed, a reasonable facsimile of 
the Stryker mobility was desired in order to give the 
soldier a reasonable level of consistency moving from 
the SIL to the physical vehicle.  Additionally, an 
ARV/UGV mobility model was needed as well.  Because 
the ES team doesn’t have particular expertise in mobility, 
and given the short schedule, it was decided to approach 
the TARDEC Ground Vehicle Simulation Lab (GVSL) on 
availability of models.  A Stryker 8x8 for the own ship  
and a suitable simple dynamics model for the UGV 
application were available and obtained from the GVSL.  
Each model type utilized the GVSL API for exchanging 
the parametric data with the ES Team application code. 
This data was used by the World process to update the 
vehicle’s position and orientation on the virtual terrain.  
See Figure 7:  CV & UGV Mobility Models.  However, 
problems were encountered in the usage of the UGV 
mobility model.   
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Figure 7:  CV & UGV Mobility Models 

 
Periodically during an exercise, the UGV visual model 
would “warp” to a distant location on the terrain 
database.  The World process would occasionally 
receive faulty x/y UGV position data from the UGV 
process and place the visual model at this faulty location 
during it’s next draw cycle.    Checks were put in place to 
catch the occurrences by comparing current reported x/y 
location to previous x/y location and looking for large 
deviations.  However, faulty location data was still 
occasionally being sent.   

The cause of the problem may be in the conversion of 
data types being passed to the GVSL mobility model.  
Data types were converted from double to float and 
passed to the model.  In the conversion process, decimal 
places are truncated.  These missing decimal places 
would in time culminate in an illegal division operation 
within the model, causing the erroneous data.  

This situation could have been avoided through better 
system testing and interface control.  The models were 
tested in the lab prior to integration but no problems were 
found.  It wasn’t until extended operations were being 
conducted with the target scenarios that this issue was 
noted.  Since mission scenarios were not available until 
near demo time, the issue was not discovered until 
soldier runs were being conducted as objective 
scenarios typically took hours to conduct, allowing more 
time for bugs to surface.  For future efforts, it is desirable 
to test at length on the target scenarios as far in advance 
as possible.  Also, greater care should be taken in 

defining or adhering to the interfaces for externally 
supplied software components. 

VISUALIZATION APPROACH 

The CAT ESS visualization approach was largely based 
on the architecture utilized in the VTT.   The CAT ESS 
utilized the Carmel Applied Technology, Inc. (CATI) X-
IGTM synthetic environment visualizer that was also used 
in the VTT.   This IG provides the scalability and the 
diversity of functionality the program required.  Although 
there were limitations, particularly in the maximum size of 
the terrain database it could handle, this IG was chosen 
to be the IG for CAT because of the familiarity with the 
product given the rapid development schedule.   

In the CAT ESS, the synthetic environment view 
channels were synchronized to a single "world 
awareness" via a "master" channel that was updated by 
a visualization manager application in ESS as shown in 
the top picture of Figure 8.   This channel arrangement 
was adequate in VTT since the VTT crew stations 
shared a single visualization "mode."   When the VTT 
system switched from normal operation to battlefield 
visualization, both crew stations switched from the "real 
world state" data to the "perceived state" data 
(Situational Awareness (SA) knowledge acquired via C2 
communications).  However, the CAT crew stations 
required the ability to visualize either SA data or real 
world data independent of each other.   Implementation 
of this capability in the ESS required a decentralized IG 
channel management as depicted in the lower half of 
Figure 8.   This IG channel management approach was a 
radical departure from the existing ESS architecture; and 
it would have required an extensive overhaul of the ESS 
software architecture to implement.  Due to schedule 
limitations, the decentralized IG management was not 
implemented for the CAT 2002 – 2003 experiments.  Re-
architecting of the software is being planned for the next 
phase in the CAT program.  
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Figure 8:  Image Generation Architecture 

 

The redesign of IG management will be key to the 
success of the next generation of ESS.   The network 
centric paradigm of FCS will demand more and more 
flexibility from the ESS to support the multiplexed 
controller to vehicle connectivity depicted in Figure 3.   
The centralized architecture of the single vehicle 
simulations has been patched and hacked to work thus 
far for the multi-vehicle system.  However, the ESS 
needs to be redesigned with a decentralized 
architecture, including a distributed IG management, to 
continue stable integration with the evolving FCS vehicle 
programs.   Otherwise, the relevance and utility of an 
ESS as a tool for Simulation Based Acquisition (SBA), 
and as an operational tool for FCS will be difficult to 
maintain.   

SCENARIO DEVELOPMENT  

For both the CAT and UCD experiments militarily 
significant scenarios were needed.  Using scenarios that 
resemble a true-to-life battlefield situation gives 
experiments a higher degree of validity.    

Scenario development for the CAT was a several step 
procedure.  First, CAT employed a Subject Matter Expert 
(SME) to develop the scenarios (or vignettes) on paper.  
An SME can generate scenarios with the look and feel of 
something likely to be encountered in the real world as 

they have experience in that environment.  Initially, the 
GDLS SMEs produced 11 scenarios for the CAT 
program, developed with and approved by The Unit of 
Action Maneuver Battle Lab (UAMBL).  This was later 
reduced to one master scenario that could be tailored to 
the needs of the individual CAT or UCD experiment.  A 
scenario can also be constrained by the size of the 
digital terrain database employed.  Ultimately, the 
amount of space available to maneuver on will affect the 
mission as this limits the number of entities that can be 
used.  The SME can also take this into consideration 
when developing the vignettes. 

The next step was to construct the scenarios in a Semi 
Automated Forces (SAF) program on a Correlated 
Terrain Data Base (CTDB).  For the CAT this was the 
OneSAF Testbed (OTB).  OTB controlled the actions of 
the entities not under direct control of the ESS 
application code, telling them when to move or shoot for 
example.  OTB communicates with the vehicle and ESS 
application code via a Distributed Interactive Simulation 
(DIS) protocol.   

Lastly, an iterative process of running through the 
scenario on the visual terrain database was conducted to 
make sure the scenario played out as intended.   
Typically the CTDB is a lower resolution than the terrain 
database, so entities may behave slightly different than 
intended as they have visibility on the flatter CTDB that 
they wouldn’t have in the visual terrain database.  This 
enhanced visibility may make the SAF controlled entities 
react differently, such as moving to attack.    

Also, the SME will be able to see how the scenario plays 
out from the point of view of the soldier at the crew 
station.  The higher the resolution of the terrain 
database, the more terrain features will be captured.  
Given a very hilly terrain, a low-resolution database will 
miss many of the sloping terrain features and yield a line 
of sight to an entity that wouldn’t normally exist on the 
real terrain.  With a high-resolution terrain database, the 
terrain features will be captured, but the probability of 
performance degradation increases.  The result of this 
trade-off may result in a lower resolution database 
providing more visibility than on the real terrain.  This can 
affect the way the scenario plays out as an enemy entity 
might be seen by the soldier when it wouldn’t be 
normally, changing the way he performs the mission.    

The primary challenged faced during CAT scenario 
development was determining the way a UA will fight.  
No one really knew exactly how a UA equipped with 
semi-autonomous ARVs would fight.  The doctrine that 
describes combat using these assets is still in 
development.  For the CAT, the best educated guess 
was made (with the involvement of the user community) 
given current tactics as derived from the FCS ORD and 
O&O.  This made vignette development more time 
consuming than originally thought.   
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THE DIGITAL TERRAIN DATABASE 

Developing the terrain database was a significant activity 
during CAT development that required adequate lead-
time to perform.  A plane with the appropriate stereo 
imaging camera equipment had to be scheduled and Ft. 
Bliss fly-over time approved.  Then the raw data obtained 
from the fly-overs had to be converted into an OpenFlight 
format for use by the IG.  This process itself can take 
several months to complete.  Complicating matters, the 
plane scheduled to perform the fly-over sustained 
damage just prior to its flight, requiring the fly-time to be 
rescheduled.   This added several more weeks to the 
schedule.     

After the initial database was built, the optimum size had 
to be determined.  The processing power just doesn’t 
exist to render a DTED level 5 database for the entire 
McGregor Range area in real-time without diminishing 
frame rates.  There are effectively two choices:  to 
decrease the size of the database and maintain the high 
resolution; or increase the size but sacrifice the 
resolution.  The right mix of terrain database size and 
resolution had to be found so as not to hurt performance.  
For CAT this ended up being a 13Km x 9Km area at 10m 
resolution.  This was achieved by a trial and error 
method of adjusting database size and polygon size until 
an optimum combination was found.  This trial and error 
method consumed a large amount of time.    

An important lesson learned for future efforts is to not 
underestimate the amount of time developing the 
optimum terrain database can take.  Not only do the fly-
overs and initial database generation take a long time to 
complete, but the optimization process can take nearly 
as long.   Also, other tasks such as scenario generation 
depend on use of the terrain database.  It is suggested 
that this be one of the first tasks undertaken in 
construction of the future ESS.   

INTER-PROCESS COMMUNICATIONS 

The ESS made good use of a custom distributed 
communication service called, the Process Interface Unit  
(PIU) Comm object to pass data between the various 
ESS internal processes.  The PIU Comm object utilizes 
inter-process communication (IPC) APIs for System V 
shared memory and message queues to pass 
continuous and event data between internal processes.    

Currently, data transmission between the vehicle and 
ESS occurs via the “A-Kit/B-Kit” centralized interface in 
the format specified by the A-Kit/B-Kit Interface Control 
Document (ICD).  This practice is highly effective but 
does add one more layer of communications 
management at the A-Kit/B-Kit interface level.  ESS 
processes exchange data via the PIU Comm.  The A-Kit 
interface process must then take this data and format it 

IAW the ICD then transmit it to the A-kit.  Currently this is 
done utilizing the TARDEC implementation of the 
Weapon Systems Technical Architecture Working Group 
(WSTAWG) Operating Environment (OE) open systems 
distributed communications API.  The reverse is 
performed on the A-Kit side sending data to the B-kit.   
See the top picture of Figure 9.   

 

Figure 9:  ESS Communications Interface 

 

In the future it is envisioned that the centralized 
communication mechanism of A-Kit/B-Kit concept will be 
replaced with the more seamless direct coupling of ESS 
with vehicle systems as seen in the bottom half of Figure 
9.  This could happen through the use of the WSTAWG 
OE, or by some third party middleware.  Since each 
process already has to send and receive messages 
using the PIU, a layer of management can be saved if 
they write directly to the shared memory that the A-Kit 
can access, thereby negating the need for an A-Kit 
interface process to do the same.  This alternative will be 
explored more in the future.   

HARDWARE CONSIDERATIONS 

Typically the ES Team has used Commercial-Off-The-
Shelf (COTS) material for B-Kit construction.  This gives 
the team flexibility to change hardware or software with 
little to no down time, and is much lower in cost.  Two 
versions of hardware were produced for the CAT 
program, one completely unmodified COTS solution for 
use in a static SIL environment, and a modified version 
for dynamic use in the CAT Stryker vehicle.  The ESS for 
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the CAT vehicle was modified in form and added 
stiffeners, standoffs, and heat sinks to each output 
channel to increase their resistance to shock, vibration 
and high temperatures.   The boxes were then placed in 
a shock mounted transit case for further protection.  See 
Figure 10 for an example.  Each ESS channel is a 
RacksaverTM 1U box containing a TyanTM dual processor 
(1.6 GHz) motherboard and a TI 4600 graphics card.   
The ESS hardware performed very well over the course 
of the experiments.  However, some considerations 
should be noted for follow on efforts.   

 

Figure 10:  CAT Rugged ESS 

 

Each complete ESS system was equipped with a 
National Instruments Field PointTM unit that could shut 
down the ESS if temperatures inside any of the boxes 
reach a programmable threshold level.  The Field PointTM 
hardware was tested and verified in the lab.  However, 
the software was not able to be tested prior to field 
exercises and was falsely shutting the unit down due to 
an extra byte in the data field.  The problem was later 
corrected.  More upfront SIL test time should have been 
built into the schedule for hardware/software stress 
testing and evaluation.   

Also, one lot of the SIL RacksaverTM TyanTM 
motherboards came with a factory defect in the AGP port 
enable control signal, causing a loss of video.  Each 
motherboard had to be replaced as time permitted.  
Additionally, lack of airflow through the SIL boxes caused 
occasional machine lockups.  This was corrected by 
providing additional airflow.  These problems lead to 
some down time both in trying to trouble shoot what was 
happening, and in sending the boxes back to the shop 

for motherboard replacement.  Unfortunately, these 
problems were not discovered until extensive use of the 
boxes had begun.  As above, more thorough testing in a 
complete hardware and software environment should be 
built into the schedule to identify these problems as early 
as possible.   

For the future, efforts will be made to reduce the general 
size of the dynamic ESS.  The overall size of the 
complete transit case unit was fairly large and consumed 
some amount of interior vehicle space.   A smaller box 
will yield more flexibility in vehicle mounting in and 
around crew stations and other components.  A single 
processor motherboard will be explored.  Moving to a 
single processor system will not only reduce the size of 
the motherboard, but significantly reduce heat inside the 
box as well.     

Finally, a method of wirelessly logging into the 
embedded ESS boxes may be considered.  Inside the 
vehicle, access to the boxes can be limited.  An exterior 
port on the vehicle would only allow access when the 
CAT vehicle is stationary.  The ability to gain access to 
the ESS from outside a moving vehicle would be a 
benefit, such as making SAF changes on the fly.    

CONCLUSION 

Several broad lessons learned can be derived from the 
CAT and UCD ESS development effort.  First and 
foremost is to establish a common understanding with 
the primary contractor.  Assumptions, designs, 
interfaces, and objectives should be agreed upon as far 
in advance as is possible.   Defining and locking in 
requirements as far ahead of time increases coding 
productivity and reduces risk.  Identifying and initiating 
procurements of long lead items such as crew station 
hardware or databases also reduces risk and adds 
valuable integration and test time.   
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