
IVSS-2003-MAS-7

CAT/RF Simulation Lessons Learned

Christopher Mocnik
Vetronics Technology Area, RDECOM TARDEC

Tim Lee
DCS Corporation

ABSTRACT

The Vetronics Technology Area of The U.S. Army Tank-
Automotive Research Development and Engineering
Center (TARDEC) and DCS Corporation developed a re-
configurable Unmanned Ground Vehicle (UGV)
simulation for the Crew integration and Automation Test
bed (CAT) and Robotics Follower (RF) Advanced
Technology Demonstration (ATD) experiments. This
simulation was developed as a component of the
Embedded Simulation System (ESS) of the CAT
architecture. The CAT/RF was chosen by the Future
Combat System’s (FCS) Lead Systems Integrator (LSI)
as a surrogate to show the functionality of the Control
Vehicle (CV)/Armed Reconnaissance Vehicle (ARV)
concept demonstrated in the Unmanned Combat
Demonstration (UCD) experiments. The UCD design
handled any combination of Javelin-like missile system,
Objective Crew Served Weapon (OCSW), and
Reconnaissance, Surveillance, and Target Acquisition
(RSTA) sensors on the ARVs. The ESS development
team faced numerous challenges in simulating multiple
vehicles with varying sensor and weapons payloads,
controlled by multiple operators. Despite an accelerated
schedule, the ESS team was able to support the UCD
and ATD experiments conducted between December
2002 and April 2003.

INTRODUCTION

This paper describes the effort undertaken by the
Embedded Simulation Team of TARDEC and DCS
Corporation to design, develop, integrate, and test the
ESS software and hardware to support both the CAT/RF
ATDs and the UCD experiments with the LSI. The paper
will present brief background information on prior ESS
activities in the Vetronics Technology Area of TARDEC
and the activities leading up to the current CAT/RF and
UCD experiments. It will then discuss specific technical
and programmatic challenges faced during CAT/RF/UCD
development in key areas, and describe the final
implementation used. Potential future enhancements will
also be considered where feasible.

BACKGROUND

In the early to mid 90s The Vetronics Technology Area
conducted the Crewman’s Associate (CA) ATD. The
goal of CA was to show that all of the tasks currently
performed by the four-crew members of an Abrams main
battle tank could be performed with equal or greater
timeliness and precision by a reduced crew of two or
three. A smaller crew would mean a smaller, lighter,
more transportable and supportable vehicle. An
improved Soldier-Machine-Interface (SMI) was created
and certain levels of automation were assumed.
Experiments were conducted with a two-person and
three-person man-in-the-loop static simulator that
verified this two and three man notion.

The Vetronics Technology Test bed (VTT) was the
follow-on effort to the CA ATD. Developed under the
Inter-Vehicle Electronics Suite (IVES) Science and
Technology Objective (STO), the main goal of the VTT
was to demonstrate the capability of one crewmember to
perform the functions of both the vehicle Commander
and Driver. The advanced crew stations designed under
the CA ATD were reconstructed using rugged, real-time
hardware and software modules and integrated into an
actual ground combat host vehicle. The VTT
demonstration took place while operating over militarily
significant terrain and while performing a militarily
significant mission. In addition, embedded simulation
hardware and software was used to create realistic
operating and training scenarios for the crewmembers.
The ESS provided both the ability to train in-vehicle, and
provided virtual targets, weapons control, and sensors
during operational exercises. It also provided a
battlefield visualization capability enabling the user to
move his eye point into and around the virtual battlefield.

The VTT vehicle itself was based on a modified M2A0
Bradley Fighting Vehicle hull that was refitted with drive
by wire technology and the two-crew stations. The
Bradley turret was removed to give it a lower profile, as
was (and is) the vision for most all future armored
vehicles. The M2A0 also afforded ample interior volume

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
11 JUN 2003

2. REPORT TYPE
Journal Article

3. DATES COVERED
 11-05-2003 to 10-06-2003

4. TITLE AND SUBTITLE
CAT/RF Simulation Lessons Learned

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Christopher Mocnik; Tim Lee

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC,6501 East Eleven Mile Rd,Warren,Mi,48397-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER
#13857

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000

10. SPONSOR/MONITOR’S ACRONYM(S)
TARDEC

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)
#13857

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The Vetronics Technology Area of The U.S. Army Tank-Automotive Research Development and
Engineering Center (TARDEC) and DCS Corporation developed a reconfigurable Unmanned Ground
Vehicle (UGV) simulation for the Crew integration and Automation Test bed (CAT) and Robotics Follower
(RF) Advanced Technology Demonstration (ATD) experiments. This simulation was developed as a
component of the Embedded Simulation System (ESS) of the CAT architecture. The CAT/RF was chosen
by the Future Combat System?s (FCS) Lead Systems Integrator (LSI) as a surrogate to show the
functionality of the Control Vehicle (CV)/Armed Reconnaissance Vehicle (ARV) concept demonstrated in
the Unmanned Combat Demonstration (UCD) experiments. The UCD design handled any combination of
Javelin-like missile system, Objective Crew Served Weapon (OCSW), and Reconnaissance, Surveillance,
and Target Acquisition (RSTA) sensors on the ARVs. The ESS development team faced numerous
challenges in simulating multiple vehicles with varying sensor and weapons payloads, controlled by
multiple operators. Despite an accelerated schedule, the ESS team was able to support the UCD and ATD
experiments conducted between December 2002 and April 2003.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

Public Release

18. NUMBER
OF PAGES

11

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

 2

to accommodate the crew stations, ESS, radios, and
other equipment.

CURRENT PROJECT

The Vetronics Technology Area is currently developing
the CAT and RF ATDs. The CAT extends the VTT crew
station design to include the FCS fight, carrier, and scout
missions. In addition to VTT capabilities, the CAT ATD
also supports control of robotic assets both forward
deployed and follower, and introduces cognitive and task
decision aids as well as an improved ESS. The vehicle
selected for the CAT ATD is a Stryker Infantry Carrier
Vehicle (ICV). Like the Bradley it also has enough
interior space to accommodate crew stations and
equipment. Additionally, it weighs less than 20 tons
which is more in line with FCS goals for dimensions and
weight. The goal of the RF ATD is to advance
autonomous mobility technology in a number of areas
such as obstacle detection, path following, and road/lane
following. The RF ATD also makes use of a Stryker ICV
and an eXperimental Unmanned Vehicle (XUV) from the
Demo III program. Collectively, the combination of CAT
and RF ATDs developed with GDLS is called the
Vetronics Technology Integration (VTI) contract.

As with the VTT, the Embedded Simulation Team’s goal
for the CAT was to provide both a training and
operational virtual capability. In a static Systems
Integration Lab (SIL), the ESS would provide all visual
models, out-the-window views, weapon and sensor
functions, as well as mobility for the CAT vehicle. While
in the field, the vehicle would be operating under it’s own
mobility and using it’s own indirect vision cameras, but
the ESS would still be required to provide virtual
weapons, sensors, and targets.

When Boeing was selected as the LSI for FCS they
performed an analysis of available resources within the
Government that they might be able to leverage. The
two FCS class vehicles and the XUV used by Vetronics
were seen as valuable assets. Using these, the LSI
would be able to demonstrate their evolving unmanned
vehicle concepts. The ES Team supported the LSI UCD
by providing the simulation systems for both a virtual
demonstration that took place in the SIL at TARDEC, and
a live maneuver portion that took place in the field at Ft.
Bliss Texas. The UCD concept included two ARVs and
one CV. One of Vetronics’ Strykers and the XUV acted
as surrogate ARVs while the other Vetronics Stryker
acted as the CV in the LSI’s concept. Operators seated
at the CAT crew stations controlled the ARVs and their
payloads. For the field demos the crew stations were
placed in the back of the CV/Stryker. The operators
would have the ability to control one or more ARVs as
the scenario prescribed. They could manually steer the
ARVs (called Tele-oping) or send them mission plans to
control their mobility. The modeling and control of the

virtual ARVs and their payloads were significant activities
for the ES Team.

ENGINEERING DESIGN PROCESS

Adherence to a design process is an important part of
any engineering project. The Embedded Simulation
team has typically used a modified version of the
waterfall model for software engineering shown in Figure
1. The model is often appropriate for rapid engineering
as it is easy to understand, implement, and in general,
universally understood.

Figure 1: Waterfall Software Engineering Process

The model was used cyclically within a series of software
drops. Five drops were originally planned for software
development activities. Each drop would add more
functionality over the previous drop, until all requirements
for the ESS were met with completion of the last drop.
Divergences from this process in several areas lead to
numerous problems over the course of the project. The
primary problem areas for the ES Team were in
communication of requirements, and integration of
software.

In any engineering design process the creation of a
requirements specification document is probably the
single most important step. It not only documents the
needs of the customer, but the path forward for the
developers during design and programming. Incorrectly
specified requirements can lead to rework, functionality
that doesn’t meet the customer’s needs, or software that
simply doesn’t work. Originally, the CAT program was to
be a two-year design effort. This was reduced to one
year in order to meet the FCS milestone B decision date.
Not only was the development time now cut in half, but a
second set of requirements needed to be specified for
the UCD. Adding to this was the instability in the FCS
Unit of Action (UA) force structure and the LSI’s concept
objectives, and the uncertainty of physical payload
availability to place on the Stryker vehicles and XUV.
Because of the reduced development time and instability
of the experiment configuration, communicated
requirements were largely in flux making requirements

 3

specification very difficult at best. This lead to problems
later on as code changes were constantly being made to
accommodate evolving requirements.

The ES Team also experienced difficulty during software
integration. Typically, ESS software modules were
designed and tested in the ES Lab at TARDEC. This
code was then taken to General Dynamics Robotic
Systems (GDRS) for integration and test on the target
hardware. Because of inadequately specified
requirements, it was often the case that code developed
by GDRS and that developed by the ES Team would not
interact cleanly at integration time. This would lead to
down time, and functionality intended for that drop being
pushed to a later drop. Because progress at integration
time was reduced thorough regression testing was not
always possible, leaving bugs in the system during demo
time. In the future it is recommended that both system
requirements and individual drop requirements be base-
lined or better defined in advance.

SIMULATION SOFTWARE ARCHITECTURE AND
CODE REUSE

If it’s feasible to do so, reuse of existing software is of
great benefit. Code reuse saves both time and money
as it can take significantly less time to port and modify
well-understood existing code instead of developing new
code from scratch. It increases reliability and reduces
risk as previously used components should have already
been tested and debugged. If the code is very modular
in design, and non-system specific, the task of porting
code will be made easier.

Because of the extremely tight schedule and creeping
requirements, the Embedded Simulation Team decided
to reuse as much of the code from the ESS on the VTT
as was possible. Developing all new code from scratch
with the resources and time available would have only
increased risks. The ES Team successfully re-used the
source code from the VTT adding new processes to
capture new functionality where needed. The general
configuration of the CAT software processes is shown in
Figure 2.

Figure 2: Software Processes Overview

The VTT and CAT (to a lesser extent) utilized a process-
oriented design. Specific vehicle functions were isolated
and similarly named processes created to implement that
functionality. CAT Functionality included own ship
vehicle mobility, graphics generation, simulation control,
after action review and playback, network interfacing,
sight and weapon control, and an interface to the vehicle.
All new for UCD was UGV and RSTA control. Data
sharing between the processes occurred via PIU Comm
object described in a later section of this paper. The
CAT/UCD code was the beginning of a departure from
the process oriented code of the VTT to an Object
Oriented (OO) architecture that used domain named
classes.

Although this was a good approach, much of the existing
VTT code had to be modified. The Own ship mobility
process had to be completely changed as a new vehicle
model was being used. This is described in a later
section of this document. The A-Kit interface had to be
drastically changed as well to account for all the new
communication required for the RSTA and UGV
processes. Sight/Weapons had to be significantly
changed to handle new weapon types and new sensors
not previously used in VTT. Some changes were
necessary to the visualization manager (World), Network
Interface Unit (NIU) and the After Action Review (AAR)
data logger. In total the amount of new code developed,
and change to existing VTT code ended up being as
much as an entirely new development effort.

Another significant challenge was in producing multi-
vehicle/crew station software. Though somewhat
modular in design, the VTT code was largely system
specific. The ESS was tightly coupled to the VTT
functional design. CAT implementation was to be free
from this constraint. Any function from any station for
any vehicle was the desired functionality. See Figure 3.

 4

Given the reuse of the VTT software and the amount of
time available to make coding changes for the two
programs CAT and UCD, this goal was only partially
achieved. The VTT code was expanded upon to allow
more functionality than before, but it was not a truly open
ended design. Part of the 04 and beyond effort will be to
re-architect the ESS code to truly allow a full set of
services anywhere anytime.

Figure 3: Multi-Vehicle/Crew Station Simulation

UGV SIMULATION

A new ES Team development effort for the CAT and
specifically geared for support of UCD was the UGV
Process. A high level overview of the UGV process is
shown in Figure 4. The main function of the UGV
process is to instantiate a UGV object for each UGV
present in the simulation, and to pass through data
to/from the vehicle via PIU Comm object. The UGV
object is the “brains” of the UGV process. The UGV
object interprets the mission plan and controls what data
is sent to the Platform object and when, essentially
controlling the UGV simulation. The Plan object is
essentially a mission plan parser that sends mission
related data and commands to the UGV object. The
UGV Platform object starts a thread that instantiates
multiple objects that handle payload and physical
features of each UGV such as mobility, RSTA, weapons,
etc.

Figure 4: UGV Process Implementation

Successful implementation of the UGV process was a
challenge in several ways: communicating with the
vehicle software; and executing a live virtual ARV mix.
Control of an ARV ultimately is performed from the SMI
at the CAT crew station. From here the soldier
composes his mission plan for the ARV, performs RSTA
scans, or tele-operates the ARV. In any case, button
presses and other control input from the SMI are
composed into a message set that is sent to the ESS via
the A-Kit. Much of this message content was described
under the Demo III program from which it was being
reused; however, new functionality was being added that
didn’t exist in Demo III such as missile weapons
payloads. Also contributing to the problem was
requirement creep. Often times, messages were being
defined at software integration drops. An early effort to
define message content in advance was made but
ultimately rejected as flexibility was preferred given the
flux in requirements and potential for quick on the fly
changes. In retrospect this was a mistake. Because
message content and format was not fixed, both ESS
code and GDRS code was developed based on a set of
assumptions. At integration time this became an issue
as neither party had code fully compatible with the
other’s assumptions. A possible solution to this problem
is to define a common robotics interface in advance, and
to design simulation application code around the
message content. Future exercises will certainly add
control of Unmanned Air Vehicles (UAVs) to the mix
forcing a common design philosophy up front.

Another difficulty to overcome during the project was the
implementation of a live and virtual UGV mixture. In the
SIL environment everything was virtual, both vehicle and
payload. UGV position was known as it was being
calculated within the ESS UGV process. Every time a
RSTA or TA sensor service was requested, the ESS
knew exactly where to place the eye point for the
requested service. In the field this was not the case.
UGV mobility was not engaged as the real vehicle asset
was in use and running under it’s own mobility. But, the

 5

RSTA and sensor payloads were still virtual. Actual
vehicle location data was sent back to the ESS in
position updates that occurred roughly every two
seconds at the fastest, or on vehicle events such as
RSTA scans, tele-op commands etc. As a result, the
position from which to perform a RSTA or TA operation
had the potential to be lagged by several seconds
depending on the service being requested. This was
solved by placing certain constraints on the user such as
not moving while using a TA sensor, or performing any
sensor functions, to account for the potential lag. A
possible solution is to use dead reckoning algorithms for
determining position when actual position is not
available. This would entail calculating the current eye
point given the vehicles last reported heading and speed.

OWN SHIP VEHICLE PHILOSOPHY

Another issue in developing the ESS own ship vehicle
behavior was the notion of the CV or CAT own ship
vehicle being considered an ARV. The ES Team did not
consider the CAT vehicle to be an ARV, and did not
expect it to be controlled as such. The GDRS team on
the other hand, considered the own ship vehicle to be
controlled just as any other robot. It made sense for
each development team to take this approach, but did
cause more integration issues. GDRS did not want to
make the status message it sent to the CAT a unique
message, and wanted to keep the format and content
currently used in the UGV message. It was a difficult
task for them to be able to capture all the data needed
for the CAT and format it differently. The ES team on the
other hand did not view the CAT as just another UGV.
The CAT vehicle had functionality that would never exist
natively in a UGV such as battlefield visualization, or
lethality/sensor visualization control, or data for
interfacing with a SAF, etc. Control data for these types
of features could not be included in a UGV message.
Ultimately, compromises had to be made by both parties
to accommodate program needs. In retrospect, a
common understanding of what an own ship vehicle is
and how it’s controlled should have been developed up
front. For future efforts, a common design will need to be
agreed upon.

RSTA SIMULATION

The VTT vehicle simulation involved a low fidelity
simulation of an advanced Automated Target
Recognition (ATR) system. As such, the interfaces and
operational performance of the simulated ATR was
limited from the perspective of the current technology.
However, in the CAT ATD, a current state of technology
RSTA sensor suite needed to be modeled with as much
fidelity as could be implemented. Further, the ESS
needed to accommodate multiple instances of the RSTA
simulation due to the multiple vehicle experiment
configuration.

Since the RSTA being modeled was normally not used
as a live video feed sensor, but rather as a static imaging
sensor, ESS design allocated a single video channel to
serve all instances of RSTA simulation. As depicted in
Figure 5, a client-server distributed architecture was
employed to enable a single RSTA simulation server to
provide the RSTA interface data for multiple RSTA
simulation clients.

Figure 5: RSTA Simulation Approach

Also, an algorithm was devised to mimic the target
discrimination confidence levels of current ATRs. This
algorithm was not based on any scientific validation.
However it was an educated guess at the target
discrimination probabilities as a function of measurable
parameters in the simulated world. Using methods
described by Shumaker, et al [7], and the venerated
observations by Johnson [4], the probability curves as
functions of pixels on target were devised as shown in
Figure 6. The implementation plan for this approach was
to determine the number of pixels on target (with
obscuration) via a number of costly Image Generator
(IG) manipulations. This was certainly a simplistic view
of ATR performance since the orientations, range , and
other factors were not considered. However, given the
difficulty in attempting to predict ATR performance as
discussed by Ratches et al [6], the approach taken for
ESS was a reasonable compromise.

 6

Figure 6: ATR Modeling

Despite the effort expended in designing a higher fidelity
RSTA simulation, actual implementation and execution
suffered from limitations unforeseen. First, the sheer
size of the synthetic environment database used in the
CAT experiments caused the IG to spend large amount
of time loading terrain and textures every time the view
point changed from one vehicle to another. Since the
RSTA simulation was required to build representations of
sensor scan "mosaic" images, multiple view angle screen
shots from each vehicle location was needed. This
operation meant frequent replacement of terrain and
textures from cache, or even from disk, which translated
to large delays. These delays were acceptable when
simulating the scan operation of a single RSTA, since the
real RSTA also took comparable amount of time to
complete a scan. However, when multiple RSTA scan
operations were requested simultaneously, the ensuing
delays were unrealistically large. In addition, the
complexity and overhead of the RSTA simulation server
increased exponentially due to the management of
mutual exclusion between the dynamic server threads for
each concurrent instance of RSTA scan. Thus, the
resources of the RSTA simulation server were fully taxed
and unable to provide the basic RSTA functionality in a
timely manner when multiple RSTA operations were
requested. This in turn, prevented the implementation of
the ATR performance modeling that was planned, since
that would have added even more demands on the
already busy RSTA simulation server IG.

The RSTA simulation for the next generation ESS may
attempt to incorporate multiple video channels for the
RSTA simulation server. Ideally a simulation video
channel would be dedicated to each instance of a
simulated RSTA. However, that could make the ESS
footprint unacceptably large for the "embedded"
environment. Therefore, some mechanism to share
existing channels for RSTA simulation may warrant

some investigation. Adding more RSTA simulation
channels is also an option, but it is the less desirable
one. Further, a different approach to the RSTA ATR
performance modeling may be needed. One possible
option is to utilize multiple Line-Of-Sight (LOS) checks on
the target rather than counting pixels on the target to
derive some measurement of level of "visibility." Since
the LOS checks and range checks in simulation world
does not require reloading of the scenery, this may be
more feasible.

WHEELED VEHICLE SIMULATION

For the UCD virtual experiments it was necessary to
model the mobility characteristics of both the Stryker ICV
and the LSI’s ARV concept. Previously under the VTT
program, the ES Team built a simple tracked vehicle
model for the Bradley fighting vehicle. The mobility
characteristics of a wheeled vehicle are significantly
different than that of a tracked vehicle. Though a high
fidelity model wasn’t needed, a reasonable facsimile of
the Stryker mobility was desired in order to give the
soldier a reasonable level of consistency moving from
the SIL to the physical vehicle. Additionally, an
ARV/UGV mobility model was needed as well. Because
the ES team doesn’t have particular expertise in mobility,
and given the short schedule, it was decided to approach
the TARDEC Ground Vehicle Simulation Lab (GVSL) on
availability of models. A Stryker 8x8 for the own ship
and a suitable simple dynamics model for the UGV
application were available and obtained from the GVSL.
Each model type utilized the GVSL API for exchanging
the parametric data with the ES Team application code.
This data was used by the World process to update the
vehicle’s position and orientation on the virtual terrain.
See Figure 7: CV & UGV Mobility Models. However,
problems were encountered in the usage of the UGV
mobility model.

 7

Figure 7: CV & UGV Mobility Models

Periodically during an exercise, the UGV visual model
would “warp” to a distant location on the terrain
database. The World process would occasionally
receive faulty x/y UGV position data from the UGV
process and place the visual model at this faulty location
during it’s next draw cycle. Checks were put in place to
catch the occurrences by comparing current reported x/y
location to previous x/y location and looking for large
deviations. However, faulty location data was still
occasionally being sent.

The cause of the problem may be in the conversion of
data types being passed to the GVSL mobility model.
Data types were converted from double to float and
passed to the model. In the conversion process, decimal
places are truncated. These missing decimal places
would in time culminate in an illegal division operation
within the model, causing the erroneous data.

This situation could have been avoided through better
system testing and interface control. The models were
tested in the lab prior to integration but no problems were
found. It wasn’t until extended operations were being
conducted with the target scenarios that this issue was
noted. Since mission scenarios were not available until
near demo time, the issue was not discovered until
soldier runs were being conducted as objective
scenarios typically took hours to conduct, allowing more
time for bugs to surface. For future efforts, it is desirable
to test at length on the target scenarios as far in advance
as possible. Also, greater care should be taken in

defining or adhering to the interfaces for externally
supplied software components.

VISUALIZATION APPROACH

The CAT ESS visualization approach was largely based
on the architecture utilized in the VTT. The CAT ESS
utilized the Carmel Applied Technology, Inc. (CATI) X-
IGTM synthetic environment visualizer that was also used
in the VTT. This IG provides the scalability and the
diversity of functionality the program required. Although
there were limitations, particularly in the maximum size of
the terrain database it could handle, this IG was chosen
to be the IG for CAT because of the familiarity with the
product given the rapid development schedule.

In the CAT ESS, the synthetic environment view
channels were synchronized to a single "world
awareness" via a "master" channel that was updated by
a visualization manager application in ESS as shown in
the top picture of Figure 8. This channel arrangement
was adequate in VTT since the VTT crew stations
shared a single visualization "mode." When the VTT
system switched from normal operation to battlefield
visualization, both crew stations switched from the "real
world state" data to the "perceived state" data
(Situational Awareness (SA) knowledge acquired via C2
communications). However, the CAT crew stations
required the ability to visualize either SA data or real
world data independent of each other. Implementation
of this capability in the ESS required a decentralized IG
channel management as depicted in the lower half of
Figure 8. This IG channel management approach was a
radical departure from the existing ESS architecture; and
it would have required an extensive overhaul of the ESS
software architecture to implement. Due to schedule
limitations, the decentralized IG management was not
implemented for the CAT 2002 – 2003 experiments. Re-
architecting of the software is being planned for the next
phase in the CAT program.

 8

Figure 8: Image Generation Architecture

The redesign of IG management will be key to the
success of the next generation of ESS. The network
centric paradigm of FCS will demand more and more
flexibility from the ESS to support the multiplexed
controller to vehicle connectivity depicted in Figure 3.
The centralized architecture of the single vehicle
simulations has been patched and hacked to work thus
far for the multi-vehicle system. However, the ESS
needs to be redesigned with a decentralized
architecture, including a distributed IG management, to
continue stable integration with the evolving FCS vehicle
programs. Otherwise, the relevance and utility of an
ESS as a tool for Simulation Based Acquisition (SBA),
and as an operational tool for FCS will be difficult to
maintain.

SCENARIO DEVELOPMENT

For both the CAT and UCD experiments militarily
significant scenarios were needed. Using scenarios that
resemble a true-to-life battlefield situation gives
experiments a higher degree of validity.

Scenario development for the CAT was a several step
procedure. First, CAT employed a Subject Matter Expert
(SME) to develop the scenarios (or vignettes) on paper.
An SME can generate scenarios with the look and feel of
something likely to be encountered in the real world as

they have experience in that environment. Initially, the
GDLS SMEs produced 11 scenarios for the CAT
program, developed with and approved by The Unit of
Action Maneuver Battle Lab (UAMBL). This was later
reduced to one master scenario that could be tailored to
the needs of the individual CAT or UCD experiment. A
scenario can also be constrained by the size of the
digital terrain database employed. Ultimately, the
amount of space available to maneuver on will affect the
mission as this limits the number of entities that can be
used. The SME can also take this into consideration
when developing the vignettes.

The next step was to construct the scenarios in a Semi
Automated Forces (SAF) program on a Correlated
Terrain Data Base (CTDB). For the CAT this was the
OneSAF Testbed (OTB). OTB controlled the actions of
the entities not under direct control of the ESS
application code, telling them when to move or shoot for
example. OTB communicates with the vehicle and ESS
application code via a Distributed Interactive Simulation
(DIS) protocol.

Lastly, an iterative process of running through the
scenario on the visual terrain database was conducted to
make sure the scenario played out as intended.
Typically the CTDB is a lower resolution than the terrain
database, so entities may behave slightly different than
intended as they have visibility on the flatter CTDB that
they wouldn’t have in the visual terrain database. This
enhanced visibility may make the SAF controlled entities
react differently, such as moving to attack.

Also, the SME will be able to see how the scenario plays
out from the point of view of the soldier at the crew
station. The higher the resolution of the terrain
database, the more terrain features will be captured.
Given a very hilly terrain, a low-resolution database will
miss many of the sloping terrain features and yield a line
of sight to an entity that wouldn’t normally exist on the
real terrain. With a high-resolution terrain database, the
terrain features will be captured, but the probability of
performance degradation increases. The result of this
trade-off may result in a lower resolution database
providing more visibility than on the real terrain. This can
affect the way the scenario plays out as an enemy entity
might be seen by the soldier when it wouldn’t be
normally, changing the way he performs the mission.

The primary challenged faced during CAT scenario
development was determining the way a UA will fight.
No one really knew exactly how a UA equipped with
semi-autonomous ARVs would fight. The doctrine that
describes combat using these assets is still in
development. For the CAT, the best educated guess
was made (with the involvement of the user community)
given current tactics as derived from the FCS ORD and
O&O. This made vignette development more time
consuming than originally thought.

 9

THE DIGITAL TERRAIN DATABASE

Developing the terrain database was a significant activity
during CAT development that required adequate lead-
time to perform. A plane with the appropriate stereo
imaging camera equipment had to be scheduled and Ft.
Bliss fly-over time approved. Then the raw data obtained
from the fly-overs had to be converted into an OpenFlight
format for use by the IG. This process itself can take
several months to complete. Complicating matters, the
plane scheduled to perform the fly-over sustained
damage just prior to its flight, requiring the fly-time to be
rescheduled. This added several more weeks to the
schedule.

After the initial database was built, the optimum size had
to be determined. The processing power just doesn’t
exist to render a DTED level 5 database for the entire
McGregor Range area in real-time without diminishing
frame rates. There are effectively two choices: to
decrease the size of the database and maintain the high
resolution; or increase the size but sacrifice the
resolution. The right mix of terrain database size and
resolution had to be found so as not to hurt performance.
For CAT this ended up being a 13Km x 9Km area at 10m
resolution. This was achieved by a trial and error
method of adjusting database size and polygon size until
an optimum combination was found. This trial and error
method consumed a large amount of time.

An important lesson learned for future efforts is to not
underestimate the amount of time developing the
optimum terrain database can take. Not only do the fly-
overs and initial database generation take a long time to
complete, but the optimization process can take nearly
as long. Also, other tasks such as scenario generation
depend on use of the terrain database. It is suggested
that this be one of the first tasks undertaken in
construction of the future ESS.

INTER-PROCESS COMMUNICATIONS

The ESS made good use of a custom distributed
communication service called, the Process Interface Unit
(PIU) Comm object to pass data between the various
ESS internal processes. The PIU Comm object utilizes
inter-process communication (IPC) APIs for System V
shared memory and message queues to pass
continuous and event data between internal processes.

Currently, data transmission between the vehicle and
ESS occurs via the “A-Kit/B-Kit” centralized interface in
the format specified by the A-Kit/B-Kit Interface Control
Document (ICD). This practice is highly effective but
does add one more layer of communications
management at the A-Kit/B-Kit interface level. ESS
processes exchange data via the PIU Comm. The A-Kit
interface process must then take this data and format it

IAW the ICD then transmit it to the A-kit. Currently this is
done utilizing the TARDEC implementation of the
Weapon Systems Technical Architecture Working Group
(WSTAWG) Operating Environment (OE) open systems
distributed communications API. The reverse is
performed on the A-Kit side sending data to the B-kit.
See the top picture of Figure 9.

Figure 9: ESS Communications Interface

In the future it is envisioned that the centralized
communication mechanism of A-Kit/B-Kit concept will be
replaced with the more seamless direct coupling of ESS
with vehicle systems as seen in the bottom half of Figure
9. This could happen through the use of the WSTAWG
OE, or by some third party middleware. Since each
process already has to send and receive messages
using the PIU, a layer of management can be saved if
they write directly to the shared memory that the A-Kit
can access, thereby negating the need for an A-Kit
interface process to do the same. This alternative will be
explored more in the future.

HARDWARE CONSIDERATIONS

Typically the ES Team has used Commercial-Off-The-
Shelf (COTS) material for B-Kit construction. This gives
the team flexibility to change hardware or software with
little to no down time, and is much lower in cost. Two
versions of hardware were produced for the CAT
program, one completely unmodified COTS solution for
use in a static SIL environment, and a modified version
for dynamic use in the CAT Stryker vehicle. The ESS for

 10

the CAT vehicle was modified in form and added
stiffeners, standoffs, and heat sinks to each output
channel to increase their resistance to shock, vibration
and high temperatures. The boxes were then placed in
a shock mounted transit case for further protection. See
Figure 10 for an example. Each ESS channel is a
RacksaverTM 1U box containing a TyanTM dual processor
(1.6 GHz) motherboard and a TI 4600 graphics card.
The ESS hardware performed very well over the course
of the experiments. However, some considerations
should be noted for follow on efforts.

Figure 10: CAT Rugged ESS

Each complete ESS system was equipped with a
National Instruments Field PointTM unit that could shut
down the ESS if temperatures inside any of the boxes
reach a programmable threshold level. The Field PointTM
hardware was tested and verified in the lab. However,
the software was not able to be tested prior to field
exercises and was falsely shutting the unit down due to
an extra byte in the data field. The problem was later
corrected. More upfront SIL test time should have been
built into the schedule for hardware/software stress
testing and evaluation.

Also, one lot of the SIL RacksaverTM TyanTM
motherboards came with a factory defect in the AGP port
enable control signal, causing a loss of video. Each
motherboard had to be replaced as time permitted.
Additionally, lack of airflow through the SIL boxes caused
occasional machine lockups. This was corrected by
providing additional airflow. These problems lead to
some down time both in trying to trouble shoot what was
happening, and in sending the boxes back to the shop

for motherboard replacement. Unfortunately, these
problems were not discovered until extensive use of the
boxes had begun. As above, more thorough testing in a
complete hardware and software environment should be
built into the schedule to identify these problems as early
as possible.

For the future, efforts will be made to reduce the general
size of the dynamic ESS. The overall size of the
complete transit case unit was fairly large and consumed
some amount of interior vehicle space. A smaller box
will yield more flexibility in vehicle mounting in and
around crew stations and other components. A single
processor motherboard will be explored. Moving to a
single processor system will not only reduce the size of
the motherboard, but significantly reduce heat inside the
box as well.

Finally, a method of wirelessly logging into the
embedded ESS boxes may be considered. Inside the
vehicle, access to the boxes can be limited. An exterior
port on the vehicle would only allow access when the
CAT vehicle is stationary. The ability to gain access to
the ESS from outside a moving vehicle would be a
benefit, such as making SAF changes on the fly.

CONCLUSION

Several broad lessons learned can be derived from the
CAT and UCD ESS development effort. First and
foremost is to establish a common understanding with
the primary contractor. Assumptions, designs,
interfaces, and objectives should be agreed upon as far
in advance as is possible. Defining and locking in
requirements as far ahead of time increases coding
productivity and reduces risk. Identifying and initiating
procurements of long lead items such as crew station
hardware or databases also reduces risk and adds
valuable integration and test time.

REFERENCES

1. Virginia Tech Computer Science web site:
http://courses.cs.vt.edu/csonline/SE/Lessons/Waterf
all/Lesson.html

2. Old Dominion University Computer Sciences Web

site:
http://www.cs.odu.edu/~zeil/cs451/Lectures/01overvi
ew/process2/process2_htsu2.html

3. Software Engineering, Ian Sommerville, Addison-

Wesley Publishers Ltd., 1996

4. J. Johnson, “Analysis of Image Forming Systems”,

Proceedings of Image Intensifier Symposium,
October 1958.

 11

5. J. Johnson, W. Lawson, “Performance Modeling
Methods and Problems”, Proc IRIS, January 1974.

6. J. Ratches, et.al., “Aided and Automatic Target

Recognition Based Upon Sensory Inputs from Image
Forming Systems”, IEEE Transactions of Pattern
Analysis and Machine Intelligence, Vol 19, No 9,
Sept. 1997.

7. 1997D. Shumaker, J. Wood, C. Thacker, Infrared

Imaging Systems, DCS Corporation, 1988.

CONTACTS

Chris Mocnik is a Project Engineer at the U.S. Army’s
Tank-Automotive Research Development & Engineering
Center, where he has been employed since 1991. He is
currently the Associate Team Leader of the Embedded
Simulation Team. Mr. Mocnik worked as a Product
Engineer for DaimlerChrysler from 2000-2002 releasing
engine control modules for truck platforms. Mr. Mocnik
holds a BS degree in Electrical Engineering from
Lawrence Technological University Southfield, MI, and a
MS degree in Computer Science and Engineering from
Oakland University Rochester, MI.
Email: mocnikc@tacom.army.mil
Phone: (586) 574-5491
Fax: (586) 574-5008

Tim Lee is a computer engineer at DCS Corporation
where he has worked since 1990. He is currently the
head of the Support Systems Branch which is involved
with the TARDEC Embedded Simulation projects. Mr.
Lee holds a BS and a MS degree in Electrical
Engineering from University of Virginia and Virginia Tech,
respectively.
Email: tlee@dcscorp.com
Phone: (703)683-8430
Fax: (703)684-7229

