Award Number: W81XWH-09-2-0122

TITLE: Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage

PRINCIPAL INVESTIGATOR: Phillip Bowman

CONTRACTING ORGANIZATION: The Geneva Foundation
Tacoma, WA 98402

REPORT DATE: October 4234

TYPE OF REPORT: Final

PREPARED FOR: U.S. Army Medical Research and Materiel Command
Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release;
Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.
Amelioration of Ischemia/Reperfusion Injury During Resuscitation from Hemorrhage by Induction of Heme Oxygenase-1 (HO-1) in a Conscious Mouse Model of Uncontrolled Hemorrhage

Ischemia occurs whenever there is interruption of the flow of blood to tissues or organs. It is the most common cause of death in heart disease and stroke as well as traumatic injury. Survival of the initial insult is followed by further injury that occurs during the reintroduction of oxygen with the restoration of blood flow. This injury occurs following hemorrhage because some tissues are deprived of blood to protect others as part of the fight or flight response. Heme oxygenase-1 (HO-1) induction is correlated with a significant reduction in ischemic injury and 1-[2cyano-3, 12-dioxaoleana-1, 9(11)-dien 28-oy]limidazole (CDDO-im) a new synthetic triterpenoid that has been shown to possess potent anti-inflammatory and antioxidant properties, and is a potent inducer of HO-1. The hypothesis to be tested is that a significant reduction in indices of I/R injury will be obtained by induction of HO-1 during resuscitation with CDDO-IM following hemorrhage.
INTRODUCTION:

Ischemia occurs whenever there is interruption of the flow of blood to tissues or organs. It is the most common cause of death in heart disease and stroke as well as traumatic injury. Survival of the initial insult is followed by further injury that occurs during the reintroduction of oxygen with the restoration of blood flow. This injury occurs following hemorrhage because some tissues are deprived of blood to protect others as part of the fight or flight response. One of the few treatments thus far reported to reduce ischemia/reperfusion (I/R) injury following hemorrhage is introduction of the steroid hormone 17β estradiol (17βE) during resuscitation. Recent investigations into the mechanism of action of 17βE suggests that it’s effect is mediated via induction of heme oxygenase-1 (HO-1). However, 17βE is a weak HO-1 inducer and much more potent inducers have been discovered. One of these, 1[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) a new synthetic triterpenoid that has been shown to possess potent anti-inflammatory and antioxidant properties, and is a potent inducer of HO-1. The hypothesis to be tested is that a significant reduction in indices of I/R injury will be obtained by induction of HO-1 during resuscitation with CDDO-Im.

BODY:

Heme oxgenase-1 is highly inducible and its induction is correlated with significant protection from the deleterious effects of ischemia. 1[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole (CDDO-Im) a new synthetic triterpenoid has been shown to possess potent anti-inflammatory and antioxidant properties, and is a potent inducer of HO-1 and is being investigated as an additive to a new resuscitation fluid that might being counteracting the deleterious effects of the ischemia of hemorrhage shortly after injury during the initial resuscitation. One of the most critical components of developing a new drug of treatment of a specific disease state is determination of an appropriate dose of the drug with maximum benefit and minimum off-target effects. We are employing a new technique 1) termed snapshot pharmacokinetics to hone in on an appropriate dose of CDDO-Im for use in the mouse model of hemorrhage. Following determination of an appropriate dose we will determine the timing of resuscitation for maximum benefit of the drug.
KEY RESEARCH ACCOMPLISHMENTS:

Task 1 & 2 has been substantially completed. This work was performed at the animal facility at Brook City Base, San Antonio, TX due to closure of the US Army Institute of Surgical Research facility due to Base Realignment and Closing (BRAC) remodeling. However, in vivo imaging was still performed at the USAISR where the Xenogen in vivo imaging system resided. This required transporting the animals from Brooks City Base to USAISR (about 15 miles away). Under BRAC, all small animal work was to be transferred to the new research building in March of 2010 when it was scheduled for completion. By 1 July 2011 we have been able use the new small animal vivarium and work has been initiated. Due to almost 1.5 years of unavailability of the vivarium we need to get core funding research completed. We have requested and been granted an one year extension in order to complete Task 3 of this project which will be done by August 30 2011.

1. Jan-Mar 2010: Established role for hypoxia in some organs of the mouse following hemorrhage of the FVB.1 29S6-Gt(ROSA)26Sortml (HIF1aluc)Kael/J (HIF1αLuc) inbred strain. The intestine spleen and liver were effected organ while brain, lung, skeletal muscle and heart are not much effected.

2. Jan-June 2010: Determined that 100 nm CDDO was optimal in vitro for induction of HO-1 in the skin fibroblasts of the HIF1αLuc strain of mouse.

3. Mar-Aug 2010: Determined that 100 nM CDDO was also effective in inducing HO-1 in human umbilical vein endothelial cells indicating a cross species benefit.


REPORTABLE OUTCOMES:

CONCLUSION:

No drug is currently used to treat hemorrhagic shock and while hemorrhagic shock is complex, in principal, treatable component is the subsequent ischemia produced by shunting of blood away from certain organs. The Defense Advanced Research Projects Agency (DARPA) through their persistence in combat program, has funded research into use of 17β estradiol for ameliorating hemorrhagic shock but this therapy has not proven beneficial. CDDO-Im is proving to be protective of a variety of injuries (2-7) and is the best candidate drug for protecting the injured from the ischemia/reperfusion injury of hemorrhage.
REFERENCES
2. L. M. Aleksunes et al., J Pharmacol Exp Ther 335, 2 (2010).

APPENDICES: N/A