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Abstract- The power electronics inverter can be considered as 
the weakest link in an electric drive system, hence the focus of 
this research work is on the detection of fault conditions of the 
inverter. A machine learning framework is developed to 
systematically select torque-speed domain operation points, 
which in turn are fed to an electric drive model to generate 
signals for training an artificial neural network that has the 
capability of robustly classifying multiple classes of faults in the 
electric drive system. Six faulted models for the inverter and the 
motor, and a normally functioning model were used to generate 
various fault condition data for machine learning. The technique 
is viable for accurate, reliable and fast fault detection in electric 
drives. 
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I. INTRODUCTION 

The automotive industry has been paying significant 
attention for over a decade on electric vehicles (EV) and 
hybrid electric vehicles (HEV) [1,2]. These vehicles help 
reduce harmful emissions and also contribute to fuel economy. 
The main components in these vehicles are the electric drive 
and the power electronics based inverter, together with the 
necessary control system. The trend in the industry is to use 
3-phase induction motor for the electric drive, which is 
considered to be a very robust motor [1,2]. Precise torque 
control of induction motor can be done by power electronics 
inverter based Field Oriented Control or FOC [3-8] 
techniques. An electric drive can malfunction depending on 
whether the inverter or the motor is faulty. The motor, 
however, is a more robust device compared to the inverter. 
Hence, in this work we will focus primarily on the inverter 
problems. 

In a separate paper [9], the authors have described 
techniques to locate the fault in an inverter system. There the 
authors used a model of the power electronics based inverter 
and the 3-phase induction motor (see Figs. 1 and 2) along with 
its control system by using the Matlab-Simulink software to 
generate various simulated signals under normal and 
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faulted conditions of the inverter switches. The signals 
collected at different torque-speed operation points were fed to 
an ANN (artificial neural network) based learning algorithm to 
detect faults and their location. In [9], the choice of torque
speed points was arbitrary. In this work a systematic 
methodology based on machine learning is developed to select 
effective operating points in the torque-speed domain to 
generate training data for training the ANN. We will show 
that the ANN trained on data generated by the operating points 
selected by the proposed algorithm is more robust in fault 
classification for any given torque/speed condition. 

II. PROBLEM SPECIFICATION 

For a 6-switch inverter driven 3-phase induction motor (see 
Figs. I and 2), we use the pulse width modulation technique to 
realize the voltage reference command [8]. Obviously, if the 
switches fail to function in the way it was intended to, the 
voltage synthesis process will be impaired, and hence will fail 
to obtain the requisite torque at the motor shaft. The failure of 
the switches can take place in the form of "open circuit" or 
"short circuit" faults. The reverse diodes in the switches can 
fail too, although we will focus in this work on the forward 
switches, in order to illustrate the methodology without loss of 
generality. 

In this 6-switch inverter system, there are m given current 

sensors {I j I j = 1, · · · , m} in the output inverter lines, and n 

voltage sensors {V, I/ = 1, .. ·, n} across the lines, and the 

torque-speed operating points (Tq, Sp) are control parameters 
in the torque-speed space S, that reflect the system operational 
condition. Different torque-speed operating points (Tq, Sp) 
generate different operating voltages and currents under both 
normal and faulted conditions. Hence, in order to identify a 
fault over a wide range of torque-speed domain, it is necessary 
to make a system learn the fault behavior over an effective 
range of torque-speed conditions. 

The fault diagnostic problem for the 6-switch inverter 
driven 3-phase induction motor is to identify the faulty 

inverter switch among the six switches (WI' w2' .. . 'w6 ). At 

this stage, we assume that only one out of six switches can fail 
at a time. 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
08 SEP 2004 

2. REPORT TYPE 
Journal Article 

3. DATES COVERED 
  08-09-2004 to 08-09-2004  

4. TITLE AND SUBTITLE 
Robust Fault Diagnosis in Electric Drives Using Machine Learning 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Abul Masrur; ZhiHang Chen; Yi Lu Murphey 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
U.S. Army TARDEC ,6501 E.11 Mile Rd,Warren,MI,48397-5000 

8. PERFORMING ORGANIZATION
REPORT NUMBER 
#14314 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
U.S. Army TARDEC, 6501 E.11 Mile Rd, Warren, MI, 48397-5000 

10. SPONSOR/MONITOR’S ACRONYM(S) 
TARDEC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 
#14314 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 
The power electronics inverter can be considered as the weakest link in an electric drive system, hence the
focus of this research work is on the detection of fault conditions of the inverter. A machine learning
framework is developed to systematically select torque-speed domain operation points which in turn are
fed to an electric drive model to generate signals for training an artificial neural network that has the
capability of robustly classifying multiple classes of faults in the electric drive system. Six faulted models
for the inverter and the motor, and a normally functioning model were used to generate various fault
condition data for machine learning. The technique is viable for accurate, reliable and fast fault detection
in electric drives. 

15. SUBJECT TERMS 
model-based diagnostics; power electronics; inverter; motor; electric drives; neural network; electric
vehicle; hybrid vehicle; field oriented control. 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 
ABSTRACT 

Public Release 

18. NUMBER
OF PAGES 

4 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



Tq,Sp EV motor 
system 

I, V FDNN: 
Fault Diagnostic k 
Neural Networks 

Figure 4. Fault diagnostics ofEV motor system using a well-trained neural network 

Fig. 3 illustrates the proposed machine learning framework 

for a robust EV diagnostic system. An algorithm, CP-Select 

(£ontrol £_oint-Select), has been developed for systematically 

selecting representative control points in a given parameter 

space. The selection is based on the performance of the neural 

network which is trained using the data generated by a set of 

control parameters. The performance of the neural network is 

evaluated using a validation data set, which is randomly 

selected from the parameter space. The selected control 

parameters are used by a simulation model that simulated the 

functions of the EV motor system and outputs the current and 

voltages. These signal data are sent to feature extraction and 

neural network training. The system finishes the learning 

process when the evaluation of the trained neural network 

satisfies a chosen criterion. The result of this machine 

learning process is FDNN (Fault Diagnostic Neural Network), 

a neural network that has the capability of detecting faults of 

the component EV motor system as illustrated in Fig. 4, where 

k indicates either normal condition or a type of fault. We 

usually take multi-class MLP networks as FDNN, and the 

activation function of every node in FDNN is assumed to be 

sigmoid function [10]. 
The core algorithm in the machine learning framework is 

implemented through the CP-Select algorithm, which goes 

through a coarse-to-fine subspace division. For each 

parameter space, the CP-Select algorithm goes through the 

four step operations: (a) parameter selection, (b) training data 

generation, (c) neural network training, and (d) performance 

evaluation steps. The algorithm continues these four steps for 

finer subspaces until the performance of the newly trained 

neural network, FDNN, satisfies the performance criterion. 

Generally, CP-Select algorithms just select those typical 

points like corner or centers points (parameters) in the control 

parameter space. New training data are generated based on 

those selected points and are added into training data set for 

neural networks training. After that, the performance on 

validation points determines which subspace will be chosen 

for next step parameter selection. 
The detailed description of CP-Select algorithm is as 

follows. 
First we define the control parameter space, S, by the 

ranges of valid values of these parameters. Note, the CP space 

S can be higher than 2-dimensional, although in the EV motor 

diagnostics application, we deal with two dimensions, torque 

and speed. We will use Fig. 5 to assist in the description of 

the CP-Select algorithm. The CP-Select algorithm uses the 

following variables: 
Para-list: a list containing all the control parameters used 

to generate the current training data. Initially, Para-list is 

set to nil. 
Tv: a validation set that contains parameters randomly 

chosen from the CP space S for evaluating the performance 

of the newly trained neural network. 
Perf_th: this is the performance threshold used as the 

stopping criterion of the algorithm. 

Tr: training data generated by the simulation model using 

the control parameters in Para-list. It is initially set to nil. 

NN: a neural network that detects multiple classes of faults. 

CP-Select Algorithm: 
Step 1: Initialization. 
1.1 Randomly select m parameters from S and store them 

in Tv. 
1.2 <I> = {S}, para_list = {}, 

Step 2: Remove the first parameter space from <I> and set 

it to C_CP. Initially, C_CP =S. 
Step 3: Choose the 4 comer points of C CP, Xh X2, X3 

and~ and the center point X5 (see Fig. 5-for illustration.) 

Let Po be= {X~> X2, X3, ~' X5}, and num_select = 1 

Step 4: PI =Po- Po n para _list . 

4.1 IfP1 is empty and num_select =1 go to step 7. 

4.2 IfP1 is empty and num_select =2 go to step 9. 

4.3 IfP1 is empty and num_select =3 go to step 11. 
Step 5: Send every parameter in P 1 as input to the 

simulation model of the EV Motor system shown in Fig. 3 

to generate a training data set Tr0, which consists of various 

voltage and current signals. 

Set Tr = Tr U Tr0 • Now the training data consists of all 

the voltages and current signals generated by the simulation 

model by using all the parameters on the para_list. 

para_list =para _list u Pl. 



neural network is used as FDNN, and the neural networks 
architecture is 42-20-7 (42 input dimensions, 20 hidden nodes 
and 7 output dimensions). The experiment went through 3 

Tlme(s) 

iterations describecl i'1 the CP-Select algorithm and generated 
three training d?~ sets i>'·arked out in Fig. 11. 

Figure 6. Torque signal in the normal condition in a sine-PWM-closed-loop model 
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Figure 7. Ia (green), lb (red) and lc (blue) signals generated by a sine-PWM-close-loop 
model in a normal operation condition. 



Algorithm Based Selection of Training Points Set 

2000 

~ 1500 

~ 1000 
Cl) 

& 
"' 500 

50 100 
Torque(Nm) 

150 

• Validation Points 

200 

Figure 10. Validation Points used in experiment. 

Algorithm Based Selection of Training Points Set 
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Figure II. Train points generated by the CP _Select algorithm during the first three iterations. 

The performance of the neural network FDNN trained 
on the data generated by Tr0 on Tv is presented in Table I. 
The overall performance is 94.62% < Perf_th=99%. 

At the second iteration, the performance of the neural 
network FDNN trained on the data generated by 

Tr0 U T~ on Tv is presented in Table II. The overall 

performance is 96.06% < Perf_th=99%. 
At the third iteration, the performance of the neural 

network FDNN trained on the data generated by 

Tr0 U T~ U Tr2 on Tv is presented in Table III. The 

overall performance is 100% > Perf_th=99%, therefore the 
algorithm stops here. 

TABLE I. THE PERFORMANCE OF FDNN TRAINED 
ON DATA GENERATED BY PARAMETERS IN Tr o. 

Correct Rate(%) 

Normal 83.86 
Fault I 95.82 
Fault 2 98.34 
Fault 3 100 
Fault4 95.89 
Fault 5 93.40 
Fault6 95.13 
Total 94.62 

TABLE II. THE PERFORMANCE OF FDNN TRAINED ON 
DATA GENERATED BY PARAMETERS IN Tr=TrO U Trl -

Correct Rate(%) 

Normal 85.55 
Fault I 92.18 
Fault2 98.90 
Fault 3 98.61 
Fault 4 99.49 
Fault 5 97.50 
Fault6 100 
Total 96.06 

TABLE III. THE PERFORMANCE OF FDNN TRAINED ON DATA 

GENERATED BY PARAMETERS IN Tr0 u T~ u Tr2 

Correct Rate (%) 

Normal 100 

Fault I 100 

Fault2 100 

Fault3 100 

Fault4 100 

Fault 5 100 

Fault6 100 

Total 100 


