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ABSTRACT

The mean search time of observers looking for targets in visual scenes with clutter is computed using the Fuzzy
Logic Approach (FLA). The FLA is presented by the authors as a robust method for the computation of search times and or
probabilities of detection for signature management decisions. The Mamdani/Assilian and Sugeno models have been
investigated and are compared. A 44 image data set from TNO is used to build and validate the fuzzy logic model for
detection. The input parameters are the: local luminance, range, aspect, width, wavelet edge points and the single output is
search time. The Mamdani/Assilian model gave predicted mean search times from data not used in the training set that had a

0.957 correlation to the field search times. The data set is reduced using a clustering method then modeled using the FLA
and results are compared to experiment.

1. INTRODUCTION

It has been three decades since Prof. L. A. Zadeh first proposed fuzzy set theory (logic) [1]. Following Mamdani
and Assilian's pioneering work in applying the fuzzy logic approach to a steam plant in 1974 (2], the FLA has been finding a
rapidly growing number of applications. These applications include, transportation (subways, helicopters, elevators, traffic
control, and air control for highway tunnels), automobiles (engines, brakes, transmission and cruise control systems),
washing machines, dryers, refrigerators, vacuum cleaners, TVs, VCRs, video cameras, and other industries including steel,
chemical, power generation, aerospace, medical diagnosis systems, information technology, decision support and data
analysis (3, 4, 5, 6, 7].

Although fuzzy logic can encode expert knowledge directly and easily using rules with linguistic labels, it usually
takes some time to design and adjust the membership functions, which quantitatively define these linguistic labels. Neural
network learning techniques can, in some cases, automate this process and substantially reduce development time. To enable
a system to deal with cognitive uncertainties in a manner more like humans, researchers have incorporated the concept of
fuzzy logic into the neural network modeling approach. The integration of these two techniques yields the Neuro-Fuzzy
Approach (NFA) [8]. The NFA has potential to capture the benefits of both the fuzzy and the neural network methods into a
single model. Target acquisition models, based on the theory of signal detection or the emulation of human early vision, are
not mature enough to robustly model, from a first principal approach without any laboratory calibration, the human detection
of targets in cluttered scenes. This is because our awareness of the visual world is a result of the perception, not merely
detection, of the spatio-temporal, spectra-photometric stimuli that is transmitted onto the photoreceptors on the retina [8].
The computational processes involved with perceptual vision can be considered as the process of linking generalized ideas,
such as clutter or edge metrics [10], to retinal early vision data [9]. From a system theoretic point of view, perceptual vision

are typically modeled by defense department scientists, The fuzzy logic approaches have been used to calculate the search
time of vehicles in different visual scenes within the commercially available MATLAB Fuzzy Logic Toolbox. '
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2. FUZZY MODELS AND WAVELETS

Fuzzy modeling of systems is an approach, which describes complex system behavior, based on fuzzy logic with fuzzy
predicates using a descriptive language. Fuzzy logic models basically fall into two fundamentally different categories, which
differ in their ability to represent different types of information. The first category includes linguistic models that are based
on a collection of If-Then rules with vague predicates and use fuzzy reasoning. One of these reasoning mechanisms is based
on the Mamdani and Assilian fuzzy inference method. Within this method, a scientist can design the membership functions
manually and the output membership functions are continuous. The second method of fuzzy inference is based on the
Takagi-Sugeno-Kang , or simply Sugeno's method. In the Sugeno method the membership functions are linear or constant,
For a review of these methods as applied to target acquisition modeling see [11,12].

The method of using wavelets to compute edge points, which are then used with fuzzy logic to compute the search time
or the probability of detection, is derived from the elegant technique of Mallat and Zhong [15]. In [15] a derivation is made
of 1- and 2-D wavelet transforms using a smoothing function, 6(x), that is a Gaussian. The integral of the function equals
unity and the integral also converges o zero at infinity. We define the first- and second-order derivative of 8(x),

dB(x) dze(x)
dx*

wi(x)= and y®(x)= (1)
By definition the functions w'(x) and y'(x) can be considered as wavelets because their integral is equal to zero. The
following subscript *s* will be denoted as the scale factor,

8 A

£ (x)= le(—‘-] (2)

Following standard methods, the wavelet transform is calculated by convolving a dilated wavelet with the original signal,

The wavelet transform of a function f(x) at the scale s and position x, calculated with respect to the wavelet yw'(x), is defined
in [15] as,

WEf(x) = fry ix). (3)
Similarly, the transform with respect to Wi(x) is,
W f(x)=f*y (x). 4)

The above wavelet transforms are the first and second derivative of the signal smoothed at the scale or resolution level s.

Substituting into (3) and (4) equation (2) for the 1-D case, Mallat then derives a 2-D expression for the wavelet transform of a
function or image,

W,lf(-t,y)]_
W? f(x,y)
d
—(f*6 )(x,
P (f*6,)(x,y) 5
5 (3)
d
—(f*0,Xx.y)
dy !
=sV(f*6,)(x, y).

The above wavelet transform definitions in (5) are important for a wavelet based clutter metric because they
essentially define edge detectors that are used in the vision science community. For more discussion on this topic see ref,
[16]. An implementation of eq. (5) in the program XWAVE was used to compute edge points.



3. IMPLEMENTATION

The Fuzzy Inference System (FIS) that models the relationships between the various input variables that affect (he
determination of the search time is done specifically for this dataset. The predicted search time for target detection can be
determined with the FLA using input target metrics for the images shown below in Fig.'s | through 6. The input variables
were; distance from the target to the observer (km), the aspect angle of the vehicle relative to the observer (deg), the target
height (pixels) and the target area (pixclsz). target and the local background luminance (cd/m 2)l, and the wavelet determined
edge points of the scene as a measure of clutter. The one Oulput parameter is the search time (secs). There were a total of 44
digitized color images along with the associated target and background metrics for the targets in each picture. 22 images are
used for training and 22 are used for testing. Both the Mamdani and Sugeno type FIS methods are used and compared. The
authors constructed the FIS’s to predict search times using the MATLAB Fuzzy Logic Toolbox [13].

For convenience the algorithm for computing the wavelet edge points is summarized as follows;

*  Read the input 256 X 256 element matrix which supports a discrete 2-D image f(x,y)
*  Determine the number of pixels on the target length and height
*  The cell size then equals twice the length of the maximum target dimension
* Divide the image matrix into the maximum number of cells allowed
. *  Take the wavelet transform of each cell using (5) at a certain resolution level
*  Setthe threshold, here chosen as zero
*  Determine the number of edge points in each cell along with the number of pixels
¢  Find the edge density from the number of edge points divided by the total number of pixels
e lterate s, the level of wavelet in the analysis
*  Find the edge density of the image as before and compute the WPOE clutter metric
¢ Apply a calibration scale factor based on experiment

*  Find the probability of detection (Pd) for the target in the scene.



Sample Visual Images
Courtesy of Dr. Alex Toet of TNO




Table I below lists the metrics used in the trials. The table entrics, all except "Edge points’
of TNO. The entries are: target type number, distance from target (o sensor, the absolute
of the vehicle relative to the observer, the height of the target in pixels, the area of the target in pixels, the target luminance,
the darkest part of the target luminance, the surrounding arca average luminance, edge points and the mean search time in
seconds. The edge points were found using a wavelet program to compute the number of wavelet edge points over the whole
image to give a measure of the clutter in the image.

» were provided by Dr. Alex Toet
value of the sin of the aspect angle

TABLE I Metrics for FIS construction
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Below in Fig. 7 is the Mamdani type FIS with the input parameters mentioned above and the search time as

the single output.
Fig. 8 is the firing array for the various membership functions using the Mandani approach,

Binputditfedge

(mamdani)

Fig. 7. Mandami Fuzzy Logic Identification System for computing visual search times
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Fig. 8 Firing diagrams for the Mamdani FIS to predict search times




Fig. 9 shows the correlation of laborato
membership functions we designed and ach

4. RESULTS

ry search times to FLA predicted search times using the Mamdani approach with
ieved a 0.957 correlation of model predicted search times to experimental search

umes. Fig. 10 is the output of the ANFIS model of the data, which gave a 0.60 correlation to the data. We also tried using

the Mamdani FIS | with the 0.957 correlation t

0 experiment, on ano

data set can be used to model another data set, if and only if, the me

These results are indicative of the
many interrelated equations if one tried to

ther data set of visual imagery [14]. The FIS from one
trics used to describe the various data sets are similar,

power of using the FLA to model highly complex data,
wodel the detection problem in the conventional standard

for which there would be
algorithm based method.
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Fig. 9 Graph of search times from Mamdani FLA model and the laboratory
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Fig. 10 Chart showing the comparison of experimental search times to ANFIS FLA predicted search times



Clustering was also used to model the visual metrics and responses. For a large dataset, it will be desirable to reduce
the number of input vectors to a small number to reduce the number of rules and membership functions that need to be
constructed. Clustering was used to obtain the means of the 7 input vectors. The center of the clusters was used in the
construction of the membership functions. The correlation results are shown below in Table 2. Clusters were made of 15, 18
and 20 data points. The FLA with clustering was used to predict search time for the 22 points not used in obtaining the
clusters and for the entire data set of 44 images.

TABLE 2 System Evaluation Using Cluster Centers

Cluster Correlation for 22 points which are not used for Correlation for
clustering. 44 points
femls 0.83 0.85
f18 0.75 0.82
fc20 0.82 0.88

It is expected that increasing the number of cluster centers and the number of rules will improve the correlation. This is not
the case when the number of clusters was increased from 15 to 18. The reason for this is due to the random operations used
in clusters” center calculations. In other words, if we started from another clusters’ center we may get better correlation. We
used the cluster centers as the centers of membership functions, but chose initial values for the width. We can then tune the
width manually to increase the correlation. Itis clear that there needs to be an objective algorithm or technique to tune the
width of the membership functions as ANFIS does. Below in Fig. 11 is a snapshot of the result of clustering the input

Fig. 11 Clustering results using 15 clusters



5. CONCLUSION

In conclusion, the FLA yields very satisfactorily results, 0.97 correlation of laboratory or field data 1o model
predicted data, and requires a fraction of the effort that goes into traditional algorithm based techniques of modeling larget
acquisition probabilities and search times. We expect that the fuzzy modeling approach could be used in the existing
statistical decision theory modules of target acquisition models for any spectral regime,

Two fuzzy models have been used: namely the Mamdani and Sugeno models. This application of the FLA involved

Clustering of the input data was explored as a means to reduce the number of input vectors and membership functions. For
large data sets, a saving of computational time and effort should be realized using this approach. The membership functions
can be designed using experimental Pd’s or search times collected in the TARDEC Visual Perception Laboratory (VPL)
The TARDEC VPL is being used in a collaborative R&D project with auto companies on vehicle conspicuity,
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