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Abstract 

This thesis is a parameter study of the effects of branching fraction uncertainty 

from nuclear decay on isotope quantities at later times.  Development of how to calculate 

and accurately draw random samples of branching fractions is done.  Overall effects as 

well as isotope quantity uncertainty distributions are also explored.  Isotope quantities are 

calculated using exponential moments methods with transmutation matrices.  Uncertainty 

from both half-lives and branching fractions is carried through these calculations by 

Monte Carlo methods.  Results of the study show that uncertainty from branching 

fractions dominates most isotopes present from neutron fission after approximately one 

month.  Another result is that only 20% of isotopes present at any given time have 

uncertainty from both half-lives and branching fractions that are of the same order of 

magnitude.  The final program is both flexible in the number and type of isotopes it can 

input and output, as well as computationally efficient. 
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MODELING RADIOACTIVE DECAY CHAINS WITH BRANCHING 

FRACTION UNCERTAINTIES 

I.  Introduction 

Motivation 

A method of calculating radioactive decays with quantifiable uncertainty is 

desired to ensure the utility of measurements.  It is important to know quantities of 

isotopes after a given time, to more accurately model nuclear fallout or trace what type 

and amount of nuclear material was present originally.  Knowing the uncertainty that 

goes along with measurements taken ensures accurate conclusions are drawn.  A key step 

in determining uncertainty is to identify its driving sources.  The motivation behind this 

work is to identify whether one of these sources is branching fractions. 

Nuclear Decay 

Decay chains of radioactive materials depend on three things, quantity of the 

isotopes initially present, half-lives of those isotopes, and the branching fractions of their 

decay.  Given initial quantities of one or more isotopes, one can calculate what isotopes 

are present and their quantity at a later time.  Knowing this information is valuable to 

understanding the environmental hazards that result from radioactive decay, or being able 

to accurately determine the quantities of isotopes present at earlier times. 

Half-life Uncertainty 

Half-lives of radioactive materials span many orders of magnitude.  Because of 

this, calculating the quantity of each isotope present in a decay chain after some period of 
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time becomes difficult.  Different types of equilibrium may arise due to long lived 

isotopes decaying to short lived isotopes or vice versa.  Because of this large range, half-

life uncertainty can have a major effect on decay chains. 

Branching Fraction Uncertainty 

If an isotope has more than one type of decay that results in multiple daughters, 

then the fraction of decays that result in each daughter are taken to be that isotope’s 

branching fractions.  The resulting daughters may or may not be radioactive, and their 

branching fractions can vary by orders of magnitudes.  Each of these fractions has an 

uncertainty, and again because of the same reasons laid out for half-lives, this can have 

an effect on decay chains. 

Decay Example 

To illustrate the effects of branching fraction uncertainty, consider Figure 1.  It 

shows a notional diagram of two initial isotopes (A and B) and their decay chains.  Under 

the name of each isotope is the time scale of its half-life.  The only branching in these 

decay chains is in the initial decays, which is not always the case, but is illustrated here 

for simplicity.  The percentages on the arrows for the decay represent the average 

branching fraction.  Lastly it is assumed there are 100 moles of isotope A initially present 

and 10 moles of isotope B. 
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Figure 1.  Diagram of notional decay chains from two isotopes. 

 

Notice that all chains lead to either stable isotopes G or J, and all of B ultimately 

lead to J.  With no branching fraction uncertainty, eventually all 10 moles from B and 40 

moles from A would become J.  The remaining 60 moles of A would become G.  

Regardless of half-life uncertainty, this would be the end result.  During the time it takes 

for all these decays to occur, half-life uncertainty would have an effect on which isotopes 

were present at a given time.  Now consider branching fraction uncertainty, and assume 

the 40% that goes from A → D can vary by ±5%.  If 45 moles decayed to D instead of 40 

the end result would be 55 moles of J, and 55 moles of G.  This is a change of 10% in the 
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amount of J compared to when there was no branching fraction uncertainty.  It not only 

has an effect on the end products, but it affects when an isotope may be present just like 

half-life uncertainty.  Now consider the branch from B → D.   If two moles went to D, 

and only one went to E it changes how much and at what times H is present.  This is due 

to the large difference in half-lives between D and E.  Numerous scenarios can be 

explored just with this simple diagram.  Try to imagine the complexity that results from 

having around 800 initial isotopes with thousands of decay chains.  The potential effect 

of branching fraction uncertainty becomes clear.  

Problem 

Model the time-dependent quantities of all known isotopes given an initial 

amount of isotopes present.  Include the uncertainties of those quantities due to the half-

life and branching fraction uncertainties of each individual isotope. 

Goal 

The goal of this work is to understand how branching fraction uncertainties 

contribute to the overall uncertainty in the quantity of isotopes present at a given time.  

This is done by comparing or combining branching fraction uncertainties with the 

uncertainty from half-lives to get a sense of if and when it becomes a major source in 

quantity uncertainty.  Quantification of these uncertainties will help interested 

organizations determine if experiments designed to measure branching fraction 

uncertainty are warranted and set priorities for said experiments. 
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Scope 

Because few of the branching fraction uncertainties are known, the scope of the 

project was to develop a tool to complete a parameter study.  Incorporating existing 

branching fraction uncertainties was initially explored but was determined to be beyond 

the scope of this study.  This was due to issues in weighting and incorporating these 

datasets and the fact that their distributions were probably quoted as normal when they 

are not.  The program can read in isotope data including metastable states, half-life, 

branching fraction, and decay information.  It will also take in any number of initial 

isotope quantity datasets.  The output is quantity and basic statistics to evaluate 

uncertainty of any isotope including metastable states at any positive time. 

Assumptions 

A consistent method of applying uncertainty is used, because a majority of the 

branching fraction uncertainties are unknown.  For each isotope that has more than one 

type of decay associated with it, the branching fraction with the smallest mean is chosen.  

Its relative standard deviation (standard deviation divided by the mean or σ/µ) is assumed 

to be equal to a percentage.  This same percentage is applied to the smallest fraction for 

all isotopes in a given run of the program, making the relative standard deviation of the 

smallest branching fraction a primary independent variable in the parameter study.  

Because the standard deviation of each branch of a given isotope is dependent on the 

others, knowing one allows you to calculate the others. 

Another assumption is that there is no uncertainty in the initial amounts of the 

isotopes present.  Eliminating this variable allowed the study to focus on branching 
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fraction uncertainty and how its effects compare with the effects from half-life 

uncertainty.  This feature could be incorporated into the program for fission fragment 

yield uncertainties in the future because the same method used to draw random samples 

for branching fraction uncertainties applies. 
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II.  Random Sampling of Branching Fractions 

The overall approach uses Monte Carlo methods to develop quantity 

uncertainties.  For each Monte Carlo trial, a random sample from the uncertainty 

distributions for half-lives and branching fractions is drawn.  This method was chosen 

over trying to carry these individual uncertainties through the differential equations that 

define their decay for its relative mathematical simplicity and computational efficiency. 

The model used builds upon the work of Harr [1], who focused on half-life 

uncertainties, and their effect on the uncertainty of gamma activity.  His use of the 

exponential moment methods, method for sampling from normal distributions for half-

life uncertainty, and use of transmutation matrices were leveraged.  This chapter 

discusses several distributions that will lead to an understanding of what is necessary to 

randomly sample branching fractions.  It then develops a method for sampling these 

branching fractions, while avoiding biasing or catastrophic cancellation that can occur 

from normalizing. 

Bernoulli Distribution 

The Bernoulli distribution is a discrete probability function with only two possible 

outcomes.  Discrete meaning there is only success or failure for each trial.  The best 

example of this is the flipping of a coin. The two possible outcomes are heads or tails.  

The probability for each outcome must be in (0, 1), and the sum of the two probabilities 

must equal one.  If we assume the probability is equal for both outcomes, then the 

probability for each trial and for both heads and tails is 0.5.  If the coin has a probability 
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of 0.7 for heads then the probability for tails would be 1 – 0.7 = 0.3.  A Bernoulli 

distribution only considers one trial (n = 1). 

Binomial Distribution 

If more than one trial is done with the same parameters as the Bernoulli 

distribution, then it is a binomial distribution.  If the probability for an outcome is known, 

then for a given number of trials the probability of getting any number of successes or 

failures can be calculated from the probability mass function (pmf).  The pmf for a 

binomial is given as: 

              
  

  (   ) 
  (   )    

(1) 

where n is the number of trials x is the number of successes and p is the probability of 

success.  Consider the coin example again where the probability of success was 0.5 and 

now the number of trials is set at 100.  There would be a 7.96% chance of getting exactly 

50 successes, and a 1.08% chance of getting exactly 40 successes. 

Beta Distribution 

Now assume the probability of success is unknown, and there are still only two 

possible outcomes.  An experiment is done with n trials to determine the probability of 

success.  It would make sense that the more trials that are done the more confidence there 

would be in this probability.  This is known as a conjugate prior distribution, or taking the 

information that is known and building a distribution from it.  The beta distribution is the 

conjugate prior of the binomial distribution, and whose probability density function (pdf) 

is: 
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     (     )  
    (   )   

∫     (   )     
 

 

 
    (   )   

 (   )
 

(2) 

where α and β are the concentration parameters of the distribution, 0 < x < 1, and the 

denominator is the beta function B(α, β).  As an example if no prior knowledge of the 

probability of success were known, and 100 trials were performed with 50 successes as 

the result.  The beta pdf would have parameters α = 51 and β = 51, where α is equal to 

one plus the number of successes and β is equal to the one plus the number of failures.  

The resulting pdf is shown in Figure 2 along with another beta pdf with parameters α = 

101 and β = 101.  While they make look Gaussian, they are not.  What does make sense is 

that the highest probability of success is right at 0.5, because 1/2 of the trials performed 

turned out successful.  What should also be noted is that when the number of trials was 

doubled to 200 the standard deviation decreased, and the probability at 0.5 increased.  

This too makes sense because you have twice as much information as in the first 

experiment, that supports that the probability is most likely 0.5.  
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Figure 2.  pdf of beta distributions showing difference in number of trials.  The variance of the red 

curve is smaller than the blue because more trials were done and it has the same mode. 

 

Now consider two other scenarios, both that have 100 trials but one has 65 

successes and the other has only 5 successes.  The resulting pdf distributions are shown in 

Figure 3.  The pdf with 65 successes still looks rather Gaussian, but it has shifted to the 

right to show a higher probability of success around 0.6.  The second distribution is very 

close to zero, and if is examined closely the right tail is larger than the left indicating it is 

not symmetric like a normal distribution. 



 

11 

 

Figure 3.  pdf of beta distributions with 100 trials but different number of successes.  The difference 

in the parameters shows how the mode and the max value of the pdf are affected. 

 

Branching fractions for each isotope without uncertainty are documented in the 

National Nuclear Data Center’s NuDat 2.6 database [2].  It is assumed that these 

branching fractions are the means of the probabilities.  However, to solve for both the α 

and β parameters, the standard deviation or variance of one of the branches must be 

known.  The mean and standard deviation of a beta distribution are: 

       
 

   
            √

  

(   ) (     )
 

(3) 
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Of note is that, unlike a Gaussian, the mean of a beta is not the mode.  The simplicity of 

these equations means its parameters can quickly be calculated.  If the means of both 

branches and variance or standard deviation of one of the branches is known, then its α 

and β can be calculated.  The beta distribution can then be sampled from and the other 

branch is determined by taking one minus the sample drawn.  This will not work for 

instances where the number of categories is greater than two, which require a different 

distribution. 

These three types of distributions (Bernoulli, Binomial, and Beta) are based on 

only having two possible outcomes.  Some isotopes can decay in more than two ways, so 

the generalization to these distributions that handle multiple possible outcomes is 

presented in the next sections. 

Categorical Distribution 

The generalization of the Bernoulli distribution is the categorical distribution.  A 

categorical distribution has j possible outcomes.  The probability of each of those 

outcomes is known and they sum to one.  As an example, isotope A decays to isotope B 

60% of the time, isotope C 30% of the time, and D 10% of the time.  This means that 

isotope B has a probability of 0.6, isotope C of 0.3, and isotope D 0.1 in the categorical 

distribution and they sum to exactly 1. 

Multinomial Distribution 

The generalization of the binomial distribution is the multinomial distribution.  As 

with the binomial, more than one trial is done and the probability of success for each 
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outcome is known.  The pmf with the probabilities of getting a certain number of 

successes is: 

     (         )    ∏
  
  

   

 

   

 (4) 

where   ∑   
 
    is the number of trials, j is the number of categories, xi are the number 

of successes for each category (which sum to n), and pi is the probability of success for 

each category (which sum to 1).  Equation (4) is equal to the binomial pmf in Equation 

(1), when j = 2.  This relates to radioactive decay.  Assume there is no uncertainty in the 

branching fractions of isotope A from the previous example.  The probability of seeing a 

certain number of isotope B, C, or D from a known number of decays of A could be 

calculated from the pmf.  The problem is that the probabilities can never be known 

exactly; therefore, the conjugate prior to this distribution is needed.  A conjugate prior 

distribution creates a pdf based on known data. 

Dirichlet Distribution 

The Dirichlet distribution is the conjugate prior to the multinomial distribution 

and generalization of the beta distribution.  The Dirichlet has j possible outcomes, takes 

known information and gives a pdf for each of those outcomes.  The Dirichlet has j 

concentration parameters.  Like the beta distribution each parameter is equal to one plus 

the number of successes witnessed.  The pdf of the Dirichlet distribution is given in 

Equation (5). 
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             ∑    

 

   

 

(5) 

where αi are the concentration parameters, xi are the branching fractions in (0,1), and Γ is 

the gamma function.  It can be shown that the Dirichlet is the generalization of the beta 

pdf in Equation (2) by setting j = 2 in Equation (5) and using the property 

 (   )   ( ) ( )  (   )⁄ .  Kotz [3] also proves that the marginal distributions of a 

Dirichlet are beta distributions.  A marginal distribution is a distribution that defines the 

probability of a single or subset of the possible outcome(s).  The beta distributions that 

represent the marginal distributions of a Dirichlet are: 

     (           ) (6) 

In order to sample each of these beta distributions, all concentration parameters of the 

Dirichlet must be known.  Similar to a beta, the Dirichlet parameters can be calculated 

from the mean and standard deviation of each parameter, which is given in  

Equations (7), (8), and (9). 

                
  
  

 
(7) 

             
    

    
 

(8) 

                              √
  (     )

  
 (    )

 
(9) 

Just like a beta, the means are assumed to be the quoted branching fractions.  A closer 

look shows the mean is a ratio of the individual concentration parameter to the sum of the 
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concentration parameters.  In the case of interest, this is simply the branching fraction 

mean times a scalar.  It also shows that the mode differs from the mean.  Equation (9) 

reveals that as the sum of the concentration parameters increases the standard deviation 

decreases approximately inversely with α0.  This means the size of the scalar (sum of the 

concentration parameters, α0) determines the standard deviation of all the possibilities.  If 

all the means are known and the variance or standard deviation of one of the branches is 

known, then the sum of concentration parameters can be calculated.  This then 

determines the standard deviation of the other branches. 

Now expand on the example used in the categorical distribution section.  An 

experiment was done and it was measured that out of 100 decays 60 times it went to B, 

30 times it went to C, and 10 times it went to D.  The Dirichlet distribution would have 

concentration parameters of 61, 31, and 11.  Using Equation (9) the standard deviation of 

the branch going to isotope B would be 0.0482.  If the same experiment was done but this 

time 500 decays were measured and 300 times it went to isotope B then the standard 

deviation would be 0.0218.  This makes sense because the counting statistics are better in 

the experiment with 500 measurements making the variance smaller. 

This can be seen by looking at a 3d plot of our 100 measurement example 

Dirichlet distribution in Figure 4.  The plot is the pdf which can only show two 

parameters at a time.  Figure 4 shows the parameters 31 and 11 representing isotopes C 

and D respectively. 
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Figure 4.  pdf of a Dirichlet distribution with concentration parameters (61, 31, 11), of which the 

second two parameters are shown.  The peak is centered around x2 = 0.3 and x3 = 0.1, which 

corresponds to the mode of the second two parameters (31, 11). 

 

Figure 4 shows a single peak that is centered near 0.3 in the x2 direction, and 0.1 

in the x3 direction.  This corresponds to the means of the parameters 31 and 11 in the 

Dirichlet distribution (remember the mean is not where the peak is).  The white line that 

cuts through the middle of the graph is a limit of possible value.  That is, behind it those 

values are not possible in the distribution because the sum of the values must be equal to 

one.  If the Dirichlet concentration parameters are changed to the experiment with 500 

measurements the 3d plot would look like Figure 5. 
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Figure 5.  3d plot of a Dirichlet pdf, with concentration parameters (301, 151, 51), of which the 

second two parameters are shown.  The peak is centered at the same place as in Figure 4 because 

their modes are the same, but is much narrower because the sum of the parameters is greater. 

 

The peak in Figure 5 is almost in the same exact location as Figure 4, but it is 

much narrower than Figure 4’s.  This is expected since the means of both distributions 

are the same, but the sum of the concentration parameters in Figure 5 is greater meaning 

the variances of each parameter are smaller, resulting in a narrower peak. 

The beta and Dirichlet distributions look to be the best choice for randomly 

sampling branching fractions.  This is because the distributions must be continuous on the 

interval of [0, 1], and the probability be 0 at both 0 and 1.  If the probability is not 0 at 

both 0 and 1, then an isotope could potentially eliminate itself or another isotope 
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(catastrophic cancellation).  This eliminates the possibility of it being Gaussian, because 

it cannot have a probability equal to zero.  A truncated Gaussian is not a realistic 

possibility either.  This is because in order for the probability to be 0 at 0 and 1 the 

truncation would have to be at 0 + ε and 1 – ε (ε – very small number or machine 

precision).  This leaves a step value right at the boundaries that is not realistic.  The beta 

and Dirichlet distributions are the most logical choices that satisfy the above 

requirements. 

Sampling Beta and Dirichlet Distributions 

Having chosen the Dirichlet and beta distributions, an efficient method for 

drawing samples from these distributions is needed.  This will start with determining the 

Dirichlet concentration parameters.  This method will also work with isotopes that have 

only two branches or j = 2, since a Dirichlet is the generalization of a beta distribution. 

Consider a Dirichlet distribution where μ1, μ2, …μj are the means of the branching 

fractions, and α0 is the sum of the Dirichlet concentration parameters.  From Equation (7) 

the individual concentration parameters (αi) become: 

    (                ) (10) 

where                 ∑   
 
              .  The standard deviation of 

each variable xi, can also be calculated from Equation (9) to be: 

    √
  (    )

    
 

(11) 

Now let s be the index of the branching fraction with the smallest mean, and φ be the 

relative standard deviation of that branch.  Relative standard deviation, also called 
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coefficient of variation, is defined as the standard deviation divided by the mean (σ/μ).  

The smallest branch is chosen because it has the largest relative standard deviation 

making it the most sensitive parameter.  Using this we can solve for α0 in terms of φ and 

μs. 

 √
  (    )

    
 (

  
  
)        (12) 

Solve for α0: 

    
      

   
    

 

 
  
  

  
   (13) 

once α0 is known from Equation (13) each concentration parameter is calculated by 

multiplying its mean by α0.  Once the concentration parameters are known they are 

checked to make sure none are greater than 10
15

.  If a parameter is greater than 10
15

 and 

its mean is close to one, the double precision random number will round to one because it 

does not have enough digits.  When a parameter is greater than 10
15

 its sample is simply 

its mean.  In the current isotope input data no concentration parameters meet this 

criterion, but this was put in to prevent potential future errors.  This issue can be put off 

by using greater precision at the cost of memory.  Now each branch can be sampled from 

its marginal Beta(xi; αi, α0 – αi). 

To maximize sampling efficiency, several beta distribution sampling and rejection 

schemes were explored.  The first and easiest to implement was to use a geometric 

rejection scheme.  The beta pdf is standardized to unity at its peak, which is developed in 

Appendix B, and referred to as BetaS(x; a, b).  This means both x and BetaS must be in 

(0,1).  A random number (ξ1) is drawn and BetaS(ξ1; a, b) is calculated.  Then a second 
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random number (ξ2) is drawn and if ξ2 ≤ BetaS(ξ1; a, b), then ξ1 is the used as the random 

sample, otherwise the process is repeated with two new random numbers.  While simple, 

this method is not very efficient and parsimonious, especially if either beta distribution 

parameter is much less than the other. 

The other scheme explored is called “Rejection using Random-Term Sampling” 

and is laid out by Mathews [4].  It uses a rejection sampling function s(x) that is a sum of 

positive terms.  The function is determined by the user, and can be used as long as s(x) ≥ 

BetaS(x; a, b) when 0 ≤ x ≤ 1.  BetaS is used again here because it will be shown later in 

this section to be more efficient to calculate than the actual beta pdf.  The goal is to pick 

terms that almost equal the BetaS, and that are easy to integrate and invert so that a 

random sample can be drawn from the inverted CDF of s(x).  Some examples of 

functions that have easily inverted CDFs are constants, linears, polynomials, and 

hyperbolic trigonometric functions (e.g. sinh, cosh).  For the cases explored s(x) was 

made a piecewise function by using heavyside functions H(x; c) defined as: 

  (   )  {
     
     

 
(14) 

where c is the x value where the step function goes from 0 to 1.  If n terms were used to 

make the sampling function, then s(x) = s1(x) + s2(x) + … sn(x).  Making s(x) into a 

piecewise function with the range of each term being (xi-1, xi) with heavyside functions 

would look like: 

  ( )  ∑  ( ) (      ) (    )

 

   

 
(15) 

where for a beta distribution x0 = 0, and xn = 1. 



 

21 

The first set of terms explored was a combination of sinh functions on either side 

of the BetaS peak, and a constant around the peak.  The issue was finding a consistent 

way to calculate the sinh coefficients so it would be as close to BetaS as possible.  This 

was especially difficult when either beta parameter was much less than the other, 

meaning the peak was very close to either one or zero.  Another method explored used a 

system of two or four linears, and a constant.  Two linears, one on each side of the peak, 

and a constant around the peak was implemented first.  Each linear went from either zero 

or one to the inflection point of BetaS on its respective side of the peak.  The inflection 

points of BetaS were found by setting its second derivative equal to zero and solving for 

x.  Equation (16) shows this solution and its derivation can be found in Appendix C. 

    
    (   )  √  (     )

   (   )   (    )
 (16) 

where a = α – 1, b = β – 1, and α and β are the beta distribution parameters. 

Once the inflection points are known, the area under each of the lines and 

constant was calculated, and then normalized so their sum was equal to one.  This gives a 

probability of selecting each one of the functions.  A random number (ξ1) is drawn and 

determines which of the functions will be sampled.  If one of the lines is selected 

Equation (17) is used to sample from its inverted CDF.  The derivation of Equation (17) 

is shown in Appendix D, and includes some simplifications when either s0 = 0, or s1 = 1. 
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where s(x) is the linear sampling function, x0 the lower bound used, x1 the upper bound 

used, s0 = s(x0), s1 = s(x1), and ξ2 is the second random number drawn.  u is the inverted 

value of the sampling function CDF with a range of [0,1].  Once u is known the value of 

x can be calculated.  This makes sense because when u = 1, x = x1, and when u = 0, x = x0, 

which are the upper and lower bounds of the sampling function chosen.  If the portion of 

s(x) randomly chosen is the constant then there is no need to find the inverse of the CDF, 

it is simply u = ξ2, and x is calculated from the same equation as the linear.  Now that x 

has been determined, BetaS(x; a, b) and s(x) are calculated.  A third random number (ξ3) 

is drawn and if ξ3 s(x) ≤ BetaS(x; a, b) then x is accepted as the random sample, otherwise 

it is rejected and the process begins again.  Shown below is a sample algorithm that 

generalizes this process with n piecewise terms. 

 

Function Sample_Beta_Linear(alpha, beta, n) Result(SampleX) 
    Use Kinds, Only: dp 
    Use Random_Numbers 
    Implicit None 
    Real(dp), Intent(In):: alpha, beta 
    Integer, Intent(In):: n !number of linear terms to use 
    Real(dp):: SampleX, y, PDF 
    Real(dp):: a, b, u 
    Real(dp):: x(0:n), s(0:n), Area(0:n), xi(1:3) 
    Integer:: i 
 
    a = alpha - 1._dp 
    b = beta - 1._dp 
    !Find x values where piecewise terms meet 
    x(0) = 0._dp 
    ForAll (i = 1:n-1) x(i) = Calc_x_Piecewise_Points(i, a, b) 
    x(n) = 1._dp 
    Area = 0._dp 
    Do i = 0, n 
        !Find y values where piecewise terms meet 
        s(i) = Sampling_Function_Value(i, x(i)) 
        !Calculate area under line for probability of selecting it to sample from 
        If (i > 0) Area(i) = Get_Area_Under_Curve(x(i-1), x(i), s(i-1), s(i)) 
    End Do 
    Area(0) = Sum(Area(1:n)) 
    ForAll (i = 1:n) Area(i) = Area(i)/Area(0) 
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    Do 
        !Get random numbers 
        xi = Random_Vector(3) 
        Do i = 1, n 
            !Check to see which line to sample from first random number 
            If(xi(1) <= Sum(Area(1:i))) Then 
                !Calculate u from lines inverse CDF using second random number 
                u = Inverse_CDF_line(xi(2), x(i-1), x(i), s(i-1), s(i)) 
                !Calculate x from u, and y of sampling function from x 
                SampleX = (1._dp-u)*x(i-1)+u*x(i) 
                y = Sampling_Function_Value(i, SampleX) 
                Exit 
            End If 
        End Do 
        !Calculate value of standardized beta PDF from x drawn 
        PDF = Beta_PDF(SampleX, a, b) 
        !Check for acceptance by comparing PDF value to third random number  
        !times the value of the sampling function 
        If (xi(3)*y <= PDF) Exit 
    End Do 

 

Using two linears that go from either zero or one to the inflection points and a 

constant does improve the parsimony of random sampling over having no rejection 

scheme, however this improvement is diminished greatly as either beta parameter 

becomes much greater than the other.  Figure 6 shows BetaS(x; 50, 450) and the sampling 

functions with three terms as an example of when this happens. 
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Figure 6.  Betas(x; 50, 450), orange and red lines are rejection sampling functions from 0 to the 1
st
 

inflection point, and 2
nd

 inflection point to 1 respectively.  Green line represents constant sampling 

function around the peak of Betas. 

 

What is apparent from Figure 6 is that if the areas under the three sampling 

functions are compared, the area under the red curve dominates.  This means the red line 

will be chosen to sample from a majority of the time.  The problem is the value of BetaS 

under the red line is almost zero making the probability of the third random number being 

less than the BetaS very small.  This highlights the need for another set of lines that start 

at 0 and 1 and go to points very close to where the peak begins to rise.  Consistently 

being able to find these points over a wide range of beta parameters is the challenge.  

Equations (18) and (19) were empirically determined and represent these points, the 

derivation of which is shown in Appendix E.  As in development of the beta distribution 
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inflection point, a = α – 1 and b = β – 1, where α and β are the beta distribution 

parameters. 

   
       √(      )      

   
 (18) 

where SR is the relative slope (      (     )      (     )) to the left and right of the 

peak are: 

    
 (   )

      ( )  
 

(19) 

Now a system of four lines and one constant can be used.  The first line goes from zero to 

the positive relative slope point in Equation (18).  The second line goes from this point to 

the first inflection point.  The constant covers the area between the two inflection points.  

The third line goes from the second inflection point to the negative relative slope point.  

The last line covers from the negative relative slope point to one.  Figure 7 shows the 

same BetaS(x; 50, 450) from Figure 6, but with this new set of sampling functions. 
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Figure 7.  Betas(50, 450), orange, and red lines represent the four linear rejection scheme.  Green line 

represents constant sampling function around the peak of Betas. 

 

The two lines that cover from zero and one to the relative slope points can barely 

be seen in Figure 7, but neither can BetaS.  This makes the four linear sampling scheme 

much more desirable, because the area under the two relative slope curves is very small 

compared to the constant and other two lines.   This means the relative slope lines are 

selected far less to sample from, and when they are sampled there is a higher probability 

the sample will be accepted.   If efficiency is considered to be the area under the BetaS 

curve compared to the area under s(x) then Figure 7 is much more efficient than Figure 6.  

The four linear and constant scheme was tested for a wide range of beta parameters 

ranging from 1 to 10
15

.  All test cases ended up having acceptance rates from 50% to 

75%, with a majority being in the low 60% range. 
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Now that an effective rejection scheme has been developed, an efficient method 

for calculating the beta pdf is needed.  Recall the equation of the beta pdf with parameters 

α and β from Equation (2). 

    (     )  
    (   )   

 (   )
 

where  (   )  ∫     (   )     
 

 
 

There are two problems with this form of the equation.  One, with the integral in the 

denominator, it makes the calculation computationally expensive due to the need for a 

table look up or quadrature routine.  Two, the distribution peak value varies depending on 

α and β.  These two issues are solved by standardizing the distribution to where the peak 

value is equal to one.  This is done by dividing Equation (2) by its peak value.  This gives 

a standardized pdf (BetaS(x; a, b)) whose values have a range of [0,1] and eliminates the 

B(α, β) integral through cancellation.  Doing this along with the simplification of using a 

= α – 1, and b = β – 1, yields Equation (20). 

      (             )  
(   )   

    
  (   )  (20) 

Equation (20) is now computationally inexpensive to calculate.  A new issue arises with 

the exponent (a + b) in the numerator.  Numerical overflow can now occur, and testing 

revealed it does using double precision when a + b > 143.  This limit is not acceptable, as 

α and β values from Dirichlet distributions for isotopes can be as large as 10
12

.  To solve 

the overflow issue logarithms are used.  Now BetaS can be represented by Equation (21) 

without concern for numerical overflow. 

      (     )   
(   )    (   )     ( )     ( )     ( )       (   ) 

(21) 
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Equation (21) uses five logarithms and one exponential evaluations rather than five and 

five in Equation (20).  Equation (21) is expected to take only 60% as long to compute.  

This was confirmed in testing over a range of α and β values that did not overflow 

Equation (20).  A derivation of all three equations can be found in Appendix B.  With a 

well-conditioned and relatively computationally inexpensive method for calculating the 

value of BetaS, all the pieces are in place to draw random samples for branching fractions.  

This allows for calculation of isotope quantities at later times in an efficient manner. 
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III.  Implementation 

The program is divided up into six main modules:  reading in the problem and 

input data, mapping and organizing the isotope and gamma data, sampling from 

distributions for half-life and branching fraction uncertainties, building decay chains and 

generating the transmutation matrix (T-matrix), calculating isotope quantities using the 

exponential moment functions, and finally calculating statistics and writing the output 

files.  This chapter will lay out details for each of these modules except for decay 

chain/T-matrix generation, and exponential moments calculations.  These modules only 

have minor changes from Harr’s [1] code such as variable name changes and interfaces 

with other subroutines/modules.  A flowchart that includes how all the subroutines and 

functions interact and are organized into modules can be found in Appendix A. 

Code Design 

The code was written in Fortran 95 using the Microsoft Visual Studio 2010 

development suite.  Fortran was chosen for its speed in performing mathematical 

calculations, and simple programming language.  Several helper modules/subroutines are 

included in the code.  These include sorting routines, random number generators, timing 

routines, a variables module, a files module, and a kinds module.  The sorting routines 

and random number generators are self-explanatory.  The timing routines calculate the 

exact time in seconds in linear or log time (specified in the input data), as well as the total 

number of times to be run.  The variables module holds all the global variables of any 

type used in the code.  This makes it easy to find information on any variable that is used 

in multiple routines, and minimized parameters that need to be passed between routines 
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and functions.  The files module holds an organized list of named integers that represent 

the external/internal unit specifier for writing and reading files.  This is helpful to ensure 

that the same unit specifier is not inadvertently used in different routines when files are 

still open.  The kinds module has specifiers for single, double, and quadruple machine 

precision for numbers.  Currently the entire program uses double precision and is able to 

sample from distributions and perform calculations without loss of precision.  There may 

be cases in the future when a small enough branching fraction is measured that would 

require quadruple precision.  Another possible need for greater precision arises if 

uncertainties in fission fragment yields are sampled. 

Input Data 

The first information read into the program is the problem data.  This file holds 

the names of the isotope and gamma data files, as well as the initial isotope formation 

files.  It also defines which uncertainties will be used, half-life and/or branching fractions.  

As a holdover from the Harr [1] code, activity calculations and their outputs is also an 

option.  Other options include linear or logarithmic time steps, and their start and stop 

time or decades.  The value of φ, discussed in the Assumptions section is also set in this 

file.  Some other performance options are the number of Monte Carlo trials to perform, 

the maximum number of decays per chain, and the line number in the isotope data of the 

highest parent isotope present.  The maximum number of decays per chain has to do with 

array allocation, thus memory use.  With the current data being used the longest decay 

chain is 25 isotopes long.  This is a good number to start with, however the option is put 

in the problem data because as new isotope data is published decays chains can 
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potentially grow.  The highest parent isotope present will have the program only build the 

T-matrix and do quantity calculations up to this specified isotope.  This can dramatically 

increase the speed of the program, but is dependent on the initial isotopes present.  For 

the different types of neutron induced fission used in this work, the highest isotope 

initially present was Lutetium 172.  As a safety margin the highest parent isotope was 

input as Francium 233.  This increased program efficiency by ~15% over calculating all 

known isotopes. 

The next file read into the program is the isotope data file.  This comes from the 

National Nuclear Data Center’s NuDat 2.6 database [2].  The specific format used comes 

from the Nuclear Wallet Cards output with uncertainties in the Nuclear Data Sheets style.  

The data is first sorted by number of protons Z, then by number of neutrons N, then by 

meta stable state or Energy, and lastly by branching fraction percent.  All columns are 

read in, but only the Z, N, Energy, T1/2 (txt), T1/2 (seconds), Dec Mode (decay mode), 

and Branching (%) columns are used by the program.  A sample of the data format is 

shown in Table 1, and skips from isotope H6 to Na24 to show a metastable state via the 

Energy column. 
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Table 1.  Sample Nuclear Wallet Card output from the NuDat 2.6 database. 

A Element Z N Energy Mass Exc Unc T1/2 (txt) 
T1/2 

(seconds) Abund. Unc 
Dec 

Mode 
Branching 

(%) 

1 N 0 1 0 8.0713 5 10.183 M 17 610.98 -1.00E+03 -1000 B- 100 

1 H 1 0 0 7.2889 10 
-1000 

STABLE NA -1000 1.00E+00 70 X -1000 

2 H 1 1 0 13.136 15 
-1000 

STABLE NA -1000 1.15E-04 70 X -1000 

3 H 1 2 0 14.9498 22 12.32 Y 2 388800000 -1.00E+03 -1000 B- 100 

5 H 1 4 0 32.89 9 5.7 MEV 21 7.995E-23 -1.00E+03 -1000 2N 100 

6 H 1 5 0 41.9 3 1.6 MEV 4 2.848E-22 -1.00E+03 -1000 N 100 

24 Na 11 13 0 -8.4179 4 14.997 H 12 53989.2 -1.00E+03 -1000 B- 100 

24 Na 11 13 0.4722 -7.9457 4 20.18 MS 10 0.0202 -1.00E+03 -1000 IT 99.95 

24 Na 11 13 0.4722 -7.9457 4 20.18 MS 10 0.0202 -1.00E+03 -1000 B- 0.05 

25 Na 11 14 0 -9.3578 12 59.1 S 6 59.1 -1.00E+03 -1000 B- 100 

 

The next file(s) to be read in is the initial isotope quantity data.  These files 

contain the Element, A number, metastable state, and initial quantity.  A sample of the 

format is shown in Table 2.  Multiple files with different initial quantity information can 

be used.  As will be seen later in the Output Statistics and Data section the different initial 

amounts will have their own rows or columns in all the different output files. 

 

Table 2.  Sample format for the initial isotope quantity input. 

A Element Meta Amount 

67 Mn 0 1.58E-09 

67 Ni 0 1.17E-06 

67 Zn 0 1.92E-10 

68 Co 0 2.23E-06 

68 Cu 1 3.76E-07 

68 Cu 0 1.39E-07 

68 Fe 0 1.61E-07 

 

The initial isotope quantities used for this study were eight types of neutron 

induced fission.  They were U235 fission with thermal, fast, and high energy neutrons; 
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U238 fast, and high; as well as Pu239 thermal, fast, and high energy neutrons.  The data 

used for these different fissions comes from England and Rider [5].  Neutron induced 

fission was chosen because it realistically yields the largest number of initial isotopes 

(average of 821).  This brings into play as many decay chains, and initial quantities at 

different points in the chains as possible. 

Once the initial quantities have been read in, the isotopes of interest file is read in 

to the program.  This file lists all the isotopes for which output files will be written.  This 

could be from one to all known isotopes.  The reason for this file is if all isotopes are 

output it will take more time to write all the output files, and will most likely take up in 

the gigabyte range of hard drive space.  If the user is interested in all isotopes, a separate 

program was written that can read in the same isotope data file and output an isotope of 

interest file that includes all isotopes.  It is recommended that if the isotope data file is 

modified or a new one is created, to run it through this other program to ensure all 

potential isotopes are included. 

The last files to be read are those needed if activity is going to be calculated.  

These files for gamma data, and gamma bin information are in the format used by Harr 

[1].  As a final note for this section, all the input files except for the problem data file 

require an extra header line that gives either the total number of lines in the file, or 

number of isotopes of interest, number of initial quantity files, etc.  After any changes to 

a file this number needs to be checked before the program is run. 
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Isotope Data 

Once all the input data has been read in, some checking, manipulation, and 

mapping of the isotope data needs to be done.  The first is a branching check of all 

isotopes.  Before a check is done to make sure each isotope’s different decays add up to 

one, some things are changed.  For instance in cases where an isotope undergoes B- 

decay and something else at the same time the NuDat data includes that other portion of 

the decay in the B- branching fraction.  As an example let’s say an isotope undergoes just 

B- decay 95% of the time, and B- plus alpha decay 5% of the time.  The NuDat data will 

show two lines one with B- as 100, and BA (for B- plus alpha) as 5, the fractions of 

which do not sum to one.  The branching fraction check subroutine corrects issues like 

these by simply looking for the subsets of B- and electron capture decay and subtracting 

them accordingly.  After this is done the decay fractions of each isotope is summed and if 

it is not within a set tolerance of one, the line number, Z, N and branching fraction sum of 

the isotope is written to an error file. 

After the branching fraction check, if half-life uncertainty is used a subroutine 

will take the text portion of the isotope data input file and extract the standard deviation 

and turn it into a real number.  There are cases where the standard deviation is quoted as 

different numbers above and below the mean.  In this case it will calculate two standard 

deviations, one that is used for values above the mean and one for below the mean. 

The last thing done to the isotope data is to map each decay to its daughter 

isotope.  This is done by going through each decay from the isotope input data file and 

selecting the case it matches.  That case will determine how many protons, neutrons, or 

metastable states to add or subtract from the parent isotope.  It will then find where this 
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daughter isotope is within the isotopes array and put a pointer for that decay to it.  If a 

case for the decay is not found it is written to an error output file.  Currently a majority of 

the decay type errors are spontaneous fission.  The program does not currently deal with 

spontaneous fission.  This is not an issue because all of the initial isotopes formed for this 

study and their daughters do not have enough protons and neutrons to fission 

spontaneously. 

Once these routines are done with the isotope data, similar routines go through the 

gamma data per Harr [1].  Once this is done, initialization of the program is complete.  

The first Monte Carlo trial is started and uncertainties are sampled from their respective 

distributions. 

Distribution Sampling 

If half-life uncertainty is a selected option, then a sample for each isotope is 

drawn from a normal distribution.  This is done by drawing 12 random numbers, 

summing them and subtracting 6.  If the isotope has two standard deviations, the one for 

below the mean is used if the value is negative, and the one for above the mean is used if 

the value is positive.  The value is then multiplied by the standard deviation and then 

added to the mean to get the random sample. 

            (∑   
 

 

 

   

) 
(22) 

where tHL is the randomly sampled half-life, µHL and σHL are the half-life mean and 

standard deviation respectively, ξ is a random number in (0, 1), and n is the number of 

random numbers drawn (12 in this case).  This method is not very parsimonious with 
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random numbers, but is efficient computationally and covers +/- six standard deviations 

from the mean.  It was also done because as Harr [1] discovered by contacting the 

National Institute of Standards and Technology (NIST), isotopes with these two standard 

deviations represented normal distributions with different standard deviations on each 

side of the peak. 

If branching fraction uncertainty is selected then the method laid out in the 

Sampling Beta and Dirichlet Distributions section is used.  This method is not as 

straightforward as the half-life uncertainty sampling method.  First, each isotope is 

checked to see if it has multiple branches.  If there are multiple branches then a Dirichlet 

sampling routine is called with the isotope information and number of branches.  Based 

on the means of each branch and the input parameter φ, the sum of the concentration 

parameters is calculated and then each concentration parameter individually.  From there 

a subroutine that implements the rejection scheme developed earlier is called to get a 

random sample for each branching fraction.  After all branches of an isotope are 

randomly sampled, they are normalized so their sum is equal to one.  This process is then 

repeated for all isotopes. 

Output Statistics and Data 

The last piece of the program takes all the quantity calculations and performs 

some statistical calculations and outputs the data to text files for analysis.  After each 

Monte Carlo trial a routine is called that writes the quantity values for each isotope of 

interest to a file.  When complete there is a separate file for each isotope of interest that 

contains all times run, all initial quantity inputs, and the quantity values.  If there are 
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numerous isotopes of interest, writing all the quantity values to a file will take up a large 

amount of memory, as well as time.  In the cases run for this study that did 1,000 Monte 

Carlo trials, with 31 different times, and 8 initial quantity inputs each isotope had a file 

size of approximately 4.5 Megabytes.  With all known isotopes input as isotopes of 

interest it takes up about 3.6 Gigabytes of disk space for each run.  If an isotope of 

interest has quantity values of zero at all times run, for all initial quantity inputs then a 

file will not be created for it.  This is done as to not waste disk space, and computer time 

writing out zeros to a file.  Because of the potential need for large amounts of disk space, 

writing out all these quantity values is an option that is specified in the problem data file. 

Once all the Monte Carlo trials are completed, the mean and standard deviation of 

each isotope of interest is calculated from its quantity values.  If the isotope of interest 

has values greater than zero at any time run then two files are opened one for its mean 

and the other for standard deviation.  Its respective mean and standard deviations are then 

written to these files for each time and initial quantity input. 

Another option in the problem data is to output the overall statistical data.  If this 

option is marked true then the relative standard deviation of each isotope of interest 

present is calculated.  Then the average and standard deviation of these relative standard 

deviations are calculated for each time run and initial quantity input.  The results are 

written to two files.  A third file is written containing a list of the relative standard 

deviations with isotopes from greatest to least for each time and initial quantity.  This 

allows the user to see which isotopes of interest have the largest relative standard 

deviations. 
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Verification 

To ensure the overall code performed as expected the modules themselves and 

even routines/functions were tested individually.  More in depth verification was done 

specifically for beta distribution sampling.  A Monte Carlo program was written that 

would randomly sample a beta distribution with and without rejection schemes.  Test 

cases had distribution parameters that ranged from 1 to 10
24

, with any run that had 

parameters greater than 10
15

 using quadruple precision.  Because random samples were 

being taken the outputs were not exact.  For test cases performed with 1,000 Monte Carlo 

trials the mean and standard deviation only varied by one hundredth of a percent. 

Beta pdf values were verified by using the same range of parameters above and 

comparing results from Equation (21) to results from Equation (20).  This proved that 

Equation (21) would not overflow while returning an answer that had the same precision 

as Equation (20) to 13 digits. 

The overall isotope quantity outputs were verified by comparing the output of the 

program without half-life or branching fraction uncertainty to a separate program that 

calculated these same quantities using both a numerical integration solution and a 

Bateman equation solution.  The outputs between the Bateman solution and the program 

(exponential moments solution) typically had maximum relative errors of around 10
-8

.  

The relative error between the numerical integration solution and the program had 

maximums of 10
-2

. 
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Performance 

All runs and development were done on a Dell XPS 8300 with an Intel i7-2600 

processor at 3.40 GHz, and 12 gigabytes of RAM.  The operating system is Windows 7 

Professional 64 bit, Service Pack 1.  The development suite used was Microsoft Visual 

Studio 2010 version 10.0.30319.1, with the Intel Visual Fortran Composer XE 2011 

Update 9, version 12.1.3526.2010.  The program can be compiled to run using either 32 

or 64 bit.  Initially Intel’s auto parallelization mode was selected when compiling but 

after testing it was found disabling it actually decreased run times by about 75%. 

Typical run times using this setup along with 1,000 Monte Carlo trials, 31 time 

steps, all known isotopes as isotopes of interest, and 8 different initial quantity inputs 

were around 2.5 hours.  The run time is most sensitive to the number of Monte Carlo 

trials and the number of time values.  Program initialization takes about 45 seconds, and 

writing final statistics to files takes only a few seconds.  Each Monte Carlo trial has an 

overhead computation time of about one second, which is primarily the time needed to 

sample all the half-life and branching fraction uncertainties.  This means each time step, 

or the time it takes it to generate a transmutation matrix and calculate all the exponential 

moments, takes about 1/4 of a second. 

The same setup uses approximately 150 megabytes of RAM while running.  This 

relatively low memory requirement is achieved by writing out the individual isotope 

quantity amounts after each Monte Carlo run.  If this was not done the same run would 

require almost 5 gigabytes of RAM during a run.  This is an issue for two reasons.  One 

32 bit Windows systems cannot handle arrays that require more than 2 gigabytes of 
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memory.  Two it places a large strain on a majority of PCs currently in use, and 

eliminates the possibility of doing two runs on the same computer at once. 

As mentioned earlier the time to sample all the branching fractions and half-lives 

currently takes about one second, which is about 11% of the computer time.  This is with 

the sampling rejection scheme that uses four linears and a constant.  If no rejection 

scheme is implemented the number of random numbers used explodes and the sampling 

routine dominates the program runtime.  To test the rejection scheme’s performance a 

program run with the same inputs as one of the analysis runs was done.  Counters were 

added to record the number of calls to the beta pdf sampling routine as well as the 

number of random numbers used.  For one Monte Carlo trial without a rejection scheme 

the beta pdf was called 2,179 times, and used 5,997,231,659 random numbers.  That is an 

average of 2,752,286 random numbers per call to the routine.  The run took 53 minutes, 

which is over a 3,000 times increase in run time.  With the rejection scheme the sampling 

routine was called the same number of times (2,179), but used only 10,464 random 

numbers.  That is an average of 4.8 random numbers for each call to the routine.  The 

minimum number of random numbers the routine uses is three, which means it has an 

average acceptance rate of 63%.  This proves the need for and effectiveness of the four 

linear and constant rejection scheme over a wide range of beta distribution parameters. 

Program run times are on the order of 1 to 3 hours for 1,000 Monte Carlo trials.  

Further improvements could be found in how the transmutation matrices are generated.  

The next step that would most likely yield the most improvement in run time is to save all 

the decay chains to an array, so it only has to be calculated once.  
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IV.  Results and Analysis 

To investigate the effect of branching fraction uncertainty on isotope quantities, 

four branching fraction relative standard deviation percentages (defined as φ in the 

Sampling Beta and Dirichlet Distributions section) were explored:  1%, 5%, 10%, and 

20%.  For each of these φs, two separate runs were completed, one where only branching 

fraction uncertainties were used, and another where both branching fraction uncertainties 

and half-life uncertainties were considered.  A single run was done with only half-life 

uncertainties, because it is independent of φ.  Short hand notation is used hereafter for 

each type of run done, BF for branching fraction uncertainty only, HL for half-life 

uncertainty only, and HLBF for runs done with both these uncertainties. 

The fission fragment yields from three neutron spectrums of three different 

isotopes were used as initial quantity values.  The neutron spectrums were thermal, fast 

(fission energy neutrons), and high (fusion energy neutrons).  The three fuel isotopes 

were U235, U238, and Pu239 (note:  U238 does not have a thermal fission cross section, 

so no data for this case is presented).  This makes eight initial quantity values that will 

henceforth be referred to by their fuel isotope then neutron spectrum (e.g. Pu239 high or 

U235 thermal). 

The time values were logarithmic starting at 10
-1

 seconds and ending at 10
9
 

seconds (~31.7 years), with three time values per decade.  The range was chosen because 

it represents times of interest for nuclear forensics and fallout prediction, and was a large 

enough range to recognize and analyze trends.  1,000 Monte Carlo trials were performed 

for two runs with the same input parameters to compare relative error.  This was done to 
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see if 1,000 Monte Carlo trials was a statistically large enough sample.  Between the two 

runs, the mean isotope quantities had an average relative error of around 10
-4

.  The 

standard deviation average relative error was 10
-2

.  This shows the means typically agreed 

to four digits, and the standard deviations to two digits.   Two longer runs with 10,000 

Monte Carlo trials were performed and again for the mean the average relative error was 

10
-4

.  The standard deviation relative error was 10
-2

.  Because increasing the number of 

trials to 10,000 had no or very little effect on relative error, 1,000 trials was used for the 

remaining runs. 

Uncertainty Ratios 

In order to compare and analyze the quantity of all isotopes present, a metric that 

is independent of magnitude is needed.  This is because the amount of an isotope can 

vary by orders of magnitude over a period of time, but also the range of quantities 

between isotopes varies by orders of magnitude.  Relative standard deviation (σ/µ) is 

properly suited for this, but in this case its overall statistics get skewed to larger numbers 

from those isotopes that are rapidly decaying away to zero quantity.  When this happens 

to an isotope its relative standard deviation gets very large, potentially greater than one. 

Because of the relative standard deviation problem, ratios of the different standard 

deviations were used.  For each isotope present at a given time the ratio of its standard 

deviation from the BF run was divided by the standard deviation from the HLBF run 

(σBF/σHLBF).  Similarly the standard deviation from the HL run was divided by the 

standard deviation of the HLBF run (σHL/σHLBF).  This gives the fraction of uncertainty in 

an isotope’s quantity due to branching fractions and half-lives respectively.  The ratios 
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will be in [0,1], because total uncertainty must increase or remain the same when 

additional source of uncertainty is introduced.  It also avoids the relative standard 

deviation problem because the mean is not used.  If the statement above about the two 

ratios was accurate then 
   

     
   

   

     
, which is not the case.  These uncertainties are 

not additive because if you change one it affects the other.  It was also considered that the 

sum of the variances from the HL and BF run would equal the variance of the HLBF run, 

which is not the case either.  What is known is that the actual uncertainty due to 

branching fractions must be between 
   

     
 and   

   

     
. 

To present the results clearly, a count of the number of isotopes whose ratio is 

greater than a set amount was done.  As an example, if the amount was 0.5, then 

    
   

     
            

   

     
     must be true for an isotope to be counted.  The 

amount 0.5 would count all isotopes that have uncertainty due to branching fractions as 

the dominant factor.  If the amount was 0.2 then all isotopes who have at least 20% of 

their uncertainty due branching fractions is counted.  This count of isotopes is done for 

both ratios 
   

     
 and   

   

     
 separately, and divided by the total number of isotopes 

present at that time.  This gives a percentage of isotopes that meet the criteria.  As 

mentioned in the previous paragraph the actual number is somewhere between the two 

ratios.  To take this into account the two counts are averaged and error bars show the 

range between them, Figure 8 shows this for U238 high where uncertainty due to 

branching fractions dominate. 
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Figure 8.  Comparison of uncertainty due to branching fractions ratios as a percent of all isotopes 

present for U238 high and φ = 10%. 

 

Figure 8 shows that as far as the number of isotopes goes, the difference between 

the two ratios is typically within 5% of each other.  For the other types of fission the 

shape and magnitude of the curves are similar (± 2%).  The one with the largest 

difference is U238 fast, whose percent of isotopes present values are all approximately 

5% greater at all times shown. 

Figure 8 shows the point at which either uncertainty from half-lives or branching 

fractions dominate.  To get a better idea of what the distribution of these ratios is like an 

empirical CDF was done at an early time and late time and is shown in Figure 9. 
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Figure 9.  Comparison of empirical CDFs for the different ratios at 1 second and ~1.5 years for U238 

high and φ = 10%.  At both times the ratio for most isotopes is either very close to zero or one. This 

means very few isotopes have uncertainties from both half-lives and branching fractions that are of 

the same order of magnitude. 

 

The empirical CDFs in Figure 9 show that at both early and late times the isotopes 

present either are significantly dominated by uncertainty from half-lives or uncertainty 

from branching fractions.  In all four curves the ratio values go from less than 0.1 to 

greater than 0.9 in less than 0.2 on the CDF axis.  This means less than 20% of the 

isotopes present at both times have comparable uncertainties from both half-lives and 

branching fractions.  
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Another way of showing what is going on and confirms this trend over all times is 

to graph multiple curves with different ratio values, this is done in Figure 10. 

 

Figure 10.  Comparison of multiple uncertainty ratio values as a percent of all isotopes present for 

U238 high and φ = 10%. 

 

Figure 10 shows how closely spaced the ratio values are, meaning at all times a 

majority of the distribution is either very close to zero or one.  Again this supports that 

for most isotopes their uncertainty is either dominated by half-lives or branching 

fractions, very few have comparable contributions from both.  Both Figure 9 and Figure 

10 look at only U238 high with φ = 10%.  Other fission types and φs were plotted and 

showed very similar results. 
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Branching Fraction Uncertainty (φ) Results 

Now that a method for comparing all the isotopes present at a given time has been 

developed, the branching fraction uncertainty (φ) can be varied and analyzed.  As stated 

earlier runs were done with φ = 1%, 5%, 10%, and 20%.  Ratio values of 0.5 were chosen 

for the curves because it shows the point where either uncertainty due to branching 

fractions or half-lives dominate the overall uncertainty.  Figure 11 shows the effect of 

varying φ. 

 

Figure 11.  Comparison of Branching Fraction Uncertainties (φ) with ratio values of 0.5 as a percent 

of all isotopes present for U238 high. 
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What is apparent in Figure 11 is that changing φ has little effect on changing the 

percent of isotopes it dominates at a given time.  Going from φ = 1% to φ = 20% 

typically only increases the percent of isotopes present by about 10%.  It should be noted 

that at early times the number of isotopes present is around 800, where at late times it 

dwindles down to a little over 200.  The real driving factor is time.  There is an increase 

from less than 10% at less than one minute to around 50% of isotopes present in the 

month timeframe.  The fact that time is a factor makes sense.  As isotopes decay away 

and become very long lived or stable, half-life uncertainty should begin to decrease.  This 

is because half-life uncertainty is only a factor in determining when an isotope will be 

present.  Branching fraction uncertainty is a factor in determining what isotope will be 

present.  So as time passes and more long lived or stable isotopes are present the effect of 

half-life uncertainty decreases, whereas as time passes and more opportunities for 

isotopes to branch occur branching fraction uncertainty should increase.  What was 

surprising in Figure 11 is how quickly the curves rise to where a majority of the isotopes 

present are dominated by branching fraction uncertainty. 

As shown in Figure 9 from the previous section the ratio distributions go from 

zero to one so quickly.  This means changing the ratio value in Figure 11 anywhere 

between 0.05 and 0.95 would raise or lower the curves by only a few percent.  This also 

helps explain as to why there is little difference when φ is changed.  Because most 

isotopes are either significantly dominated by half-life or branching fraction uncertainty 

changing φ would have little effect.  The driving factor is not how big φ is, but the fact 

that it is present.  This applies when analyzing all possible isotopes present at a given 
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time.  If individual isotopes are analyzed varying φ can play a role in the magnitude of 

the uncertainty.  The ground state of Sn129 is shown as an example in Figure 12. 

 

Figure 12.  Empirical CDFs of the Ground State of Sn129 with different values of φ from U235 

thermal at 10,000 seconds. 

 

As φ increases the empirical CDF’s range increases, showing that the uncertainty 

goes up, while the mean remains constant.  The standard deviation of these distributions 

is shown in Table 3, and shows that as φ increases the standard deviation increases 

proportionally. 
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Table 3.  Quantity standard deviation of Sn129 ground state for varying φ at 10,000 seconds from 

U235 thermal fission. 

φ 1% 5% 10% 20% 

Standard Deviation 1.0192e-17 5.0594e-17 1.0319e-16 2.0316e-16 

 

Increasing φ does have an effect.  However, for most isotopes increasing φ as 

compared to the contribution of uncertainty from half-lives has little effect.  This is 

because the uncertainty from half-lives is most likely either much greater than or much 

less than the uncertainty from branching fractions. 

Limiting Quantity Fraction 

Double precision in Fortran allows numbers to get as small as 10
-308

.  However, 

this is much smaller than what is needed to realistically track quantity fractions of 

isotopes.  If there are approximately 1.45e
23

 fissions per kiloton of yield Bridgman [6], 

and the largest potential weapon would be around 100 megatons, this means a quantity 

fraction would have to be greater than 6.9e
-29

 to be present.  For a 1 kiloton weapon this 

number would be 6.9e
-24

.  Potential collection samples would have to be much larger than 

this.  This number is called the limiting quantity fraction or quantity which we care about 

or can measure.  It is then used as a cutoff where any quantity fraction less than this 

limiting quantity fraction is not counted in statistics.  The limiting quantity fraction can 

be varied to see how it affects the percentage of isotopes present that are dominated by 

branching fraction uncertainties. 
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Figure 13.  Limiting quantity fraction effect on percent of isotopes dominated by branching fraction 

uncertainty for U238 high fission and φ = 10%. 

 

Figure 13 shows four different minimum quantities showing the line for percent 

of isotopes dominated by branching fraction uncertainty.  The error bars are omitted in 

this figure so the reader can discern the small differences in the curves.  At early times 

there is very little difference in the curves and all are well within each other’s error bars.  

At late times the smallest two levels are still right on top of each other.  This shows there 

is a level where limiting quantity fraction has little or no effect.  The quantity fraction is 

so small that most isotopes that are at this level are most likely rapidly decaying away to 

zero.  The interesting thing is as the limiting quantity fraction is increased the curves 

grow in magnitude as time increases.  The purple curve representing a limiting quantity 
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fraction of 10
-5

 is about the top 50% isotopes in quantity.  Meaning at early times it only 

shows about 400 isotopes, and at late times a little over 100 isotopes.  This suggests that 

isotopes present in larger amounts are more likely to be dominated by branching fraction 

uncertainties rather than half-life uncertainties at later times. 

Quantity Fraction Distributions 

One of the program outputs is each isotope’s quantity fraction mean and standard 

deviation for each time and initial quantity value.  This allows for comparison of isotopes 

across times or different initial quantities with error bars that represent the standard 

deviation.  In the absence of any additional information, it is common practice to assume 

that these statistics are normally distributed.  The goal of this section is to show when a 

normal distribution is and is not a good approximation of an isotope’s quantity fraction. 

Analysis of all isotopes present after fission for all times would be overwhelming.  

Instead individual isotopes that displayed a particular characteristic across multiple 

fission types or timeframes were analyzed.  This was done to help try and identify trends 

or attributes.  The first isotope chosen was the ground state of Sn129.  It was chosen 

because it is dominated by half-life uncertainty at 10,000 seconds.  Figure 14 shows 

empirical CDFs for a runs with branching fraction uncertainty only, half-life uncertainty 

only, and with both a branching fraction and half-life uncertainty.  Overlaid with dashed 

lines are normal CDFs with means and standard deviations that match the isotope data. 
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Figure 14.  Empirical CDFs of the Ground State of Sn129 from U235 thermal at 10,000 seconds with 

φ = 1%, as compared to a Normal CDFs with the same mean and standard deviation. 

 

As can be seen in Figure 14 when half-life uncertainty is considered compared to 

branching fraction uncertainty it increases the standard deviation.  It also deviates more 

from a normal distribution in both the tails and around the peak.  This carries through to 

the run when both uncertainties are considered.  Even so, all three runs match up closely 

with their respective normal distributions.  The last thing to note about this isotope is it 

just starting to decay away to zero, and within one more decade or 100,000 seconds it 

will be gone. 
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Now an isotope whose uncertainty is dominated by branching fractions will be 

examined.  Te124 is very long lived and is dominated by branching fraction uncertainty 

for the entire timeframe examined.  Figure 15 looks at the distributions at early time 0.1 

seconds for all three types of runs. 

 

Figure 15.  Empirical CDFs of Te124 from Pu239 fast at 0.1 seconds with φ = 20%, as compared to a 

Normal CDFs with the same mean and standard deviation. 

 

Even though branching fraction uncertainty is the dominant factor at this time, the 

distributions remain very close to normal in Figure 15.  Another difference between 

Figure 14 and Figure 15 is the difference in φ.  In Figure 14 φ = 1%, and in Figure 15 φ = 

20%, however both curves with branching fraction uncertainty only, match up closely 
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with their normal.  This shows φ does not affect the shape of the distribution.  There was 

some thought that since branching fractions are sampled from beta distributions when the 

uncertainty gets large it could deviate more from normal distributions than half-life 

uncertainty, but this looks like it is not the case.  During early time Te124 is going 

through a transient and is increasing in quantity as seen in Figure 16 with a log log 

quantity versus time plot. 

 

Figure 16.  Log log plot of the quantity of Te124 as a function of time from Pu239 fast where φ = 

20%.  The error bars represent one standard deviation from the mean. 
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The transient at early times increase the quantity by several orders of magnitude 

but the error bars stay within that order magnitude, and from Figure 15 the distributions 

remain close to normal. 

The next isotope analyzed was Xe139.  It was also chosen because around 100 

seconds its quantity is very stable with no transients.  Figure 17 shows CDFs for 

branching fraction compared to half-life and branching fraction uncertainty. 

 

Figure 17.  Empirical CDFs of the Xe139 from U238 fast after 100 seconds with φ = 1%, as compared 

to a Normal CDFs with the same mean and standard deviation. 

 

Both the empirical and normal CDFs in Figure 17 match up very closely.  They 

are the best fits to normal distributions thus far.  When half-life uncertainty is added in it 
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can be seen the standard deviation and uncertainty increase significantly.  This means 

half-life uncertainty dominates.  The half-life uncertainty alone was not shown in Figure 

17 because it lies directly on top of the half-life and branching fraction uncertainty CDFs.  

The best explanation for the Xe139 CDFs being so close to normal is that it is not going 

through any quantity transients. 

Now an isotope that has a very large quantity uncertainty at a time needs to be 

examined.  Figure 18 shows the quantity of Ni74 as a function of time for two runs, with 

only half-life uncertainty as well as half-life and branching fraction uncertainty.  

Branching fraction uncertainty was left out because its small error bars cluttered the plot, 

and added nothing. 
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Figure 18.  Log log plot of the quantity of Ni74 as a function of time for U235 fast fission with φ = 

5%.  The error bars represent one standard deviation from the mean. 

 

As Ni74 begins rapidly decaying away to zero the two data sets begin to diverge.  

This shows how half-life uncertainty can change the quantity of a rapidly decaying 

isotope by orders of magnitude.  This is also shown by looking at the error bars in the last 

three time steps where they only have an upper bound.  This also corresponds to the times 

when its standard deviation is larger than the mean.  Examining this further, Figure 19 

takes a closer look at the empirical CDFs of the last time step (46.4 seconds) where this 

isotope is present. 
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Figure 19.  Empirical CDFs of Ni74 from U235 fast fission at 46.4 seconds with φ = 5%. 

 

Note that the quantity axis in Figure 19 is logarithmic.  This obviously means 

these distributions are not normal, but more closely follow some kind of log distribution.  

It also means the error bars at these late times are not accurate, and must be adjusted to 

accurately represent this logarithmic distribution.  This was the only condition found that 

caused the quantity distributions to differ from normal.  This condition is when half-life 

uncertainty is present as the isotope is decaying away rapidly to zero.  The empirical CDF 

with only branching fraction uncertainty was also examined but again it matched a 

normal distribution as in the two previous example isotopes.  The CDFs from an earlier 

time (1 second) when Ni74 is not rapidly decaying away is shown in Figure 20. 
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Figure 20.  Empirical CDFs of Ni74 from U235 fast at 1 second with φ = 5%. 

 

These CDFs match up much closer to normal distributions, they are at least not 

logarithmic.  This means the error bars in Figure 18 at early times are accurate, and 

shows that as an isotope gets close to decaying away its quantity distribution moves to a 

logarithmic. 

It also shows how quantity uncertainty when dominated by branching fraction 

uncertainty can be closely approximated by a normal distribution.  This was not always 

the case when half-life uncertainty was dominate, especially when the isotope is rapidly 

decaying away. 
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V.  Conclusions 

The objective of this study was to create a program that could be used to explore 

the effects of branching fraction uncertainty on radioactive decay chains.  The program 

leveraged work already done to model half-life uncertainty using the exponential 

moments method and transmutation matrices.  A method was developed for random 

sampling of branching fractions using a Dirichlet distribution marginalized by beta 

distributions.  A sampling rejection scheme was implemented to sample these beta 

distributions parsimoniously and quickly. 

Because branching fraction uncertainty data for most isotopes is unknown, an 

unbiased method for calculating uncertainties was developed.  This method took the 

branch with the smallest mean of each isotope and made its relative standard deviation a 

certain percentage (φ).  This percentage was an input parameter of the program, and was 

the same for all isotopes.  Nine runs with 1,000 Monte Carlo trials each were completed.  

One run was done with only half-life uncertainty considered.  Two runs were done at 

with φ equal to 1%, 5%, 10%, and 20% each, one being with only branching fraction 

uncertainty, and the other with both half-life and branching fraction uncertainty 

considered. 

The standard deviation from each isotope present at a given time for each of the 

different runs was compared.  Using ratios of these uncertainties, overall uncertainty from 

branching fractions was compared to uncertainty due to half-lives.  As a percentage of 

isotopes present at a given time it was shown that uncertainty due to half-lives dominated 

most isotopes at early times (< 1 month), and uncertainty due to branching fractions 
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dominated at times greater than 1 month.  This makes sense because half-life determines 

more of when an isotope is present, where branching fractions determine what amount of 

that isotope is present.  As time passes, uncertainty due to half-life decreases while 

uncertainty from branching fractions increases as more decays occur introducing more 

opportunities for branching.  Increasing φ from 1% to 20% only increased the number 

isotopes dominated by branching fraction uncertainty by about 5%. 

It was also shown that approximately 20% of isotopes present at any given time 

have uncertainties of the same order of magnitude from both half-lives and branching 

fractions.  This means a majority of isotopes are either dominated by uncertainty from 

half-lives or branching fractions.  When only isotopes present in greater quantities are 

considered, the percent of isotopes present dominated by branching fractions increases at 

times later than 1 minute. 

The quantity distributions about the means can be considered very close to normal 

regardless of if uncertainty due to half-life or branching fraction dominates.  The only 

known exception to this is when an isotope begins rapidly decaying to zero on a log time 

scale.  As this occurs the distribution becomes logarithmic. 

This study only looked for general guidelines that can be applied.  The program is 

flexible and the data outputs sufficient enough to study particular chains or isotopes of 

interest to get a better idea of branching uncertainty effects on them. 

Potential Future Work 

It should be remembered that this work was only a parameter study, with all the 

branching fraction uncertainties being applied in a somewhat equitable manner.  The 
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most logical improvement to the program would be to use experimentally determined 

branching fraction uncertainty data.  If enough of these data become available to 

incorporate, it should be remembered that if the variance of one of the branches for an 

isotope is known, the variance of the other branches is already determined.  This means if 

variances for multiple branches are experimentally determined, a method for weighting 

each dataset must be developed so as to give an accurate Dirichlet distribution.  Another 

improvement would be to include uncertainty of the initial quantity of isotopes from 

neutron induced fission.  If this is done, it should be remembered this can also be 

represented with a Dirichlet distribution because it is categorical.  However the Dirichlet 

distribution will have many more parameters, upwards of 821, with the potential for very 

large parameters that could not be randomly sampled with double machine precision. 

Improvements to the efficiency of the program are another area for future work.  

These include saving out the all the decay chains to an array so they would not have to be 

calculated each Monte Carlo run, or a more parsimonious way of sampling the half-life 

uncertainty distributions. 
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Appendix B:  Derivation of Standardized Beta pdf 

Probability density function for a beta distribution with parameters α and β. 
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The beta distribution pdf is now: 
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To standardize the pdf the max value must be known (where the peak is), this is done by 

finding where the derivative with respect to x is equal to zero. 
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The only way Equation (25) can be equal to zero is when ( (   )    )   .  Solve 

for x: 

   
 

   
 

   

     
 

(26) 

this equation is equal to the mode of a Beta distribution. 

Now the pdf can be standardized to a peak value of one by dividing by the peak 

value. 

 
    (     )

    (
 

   
    )

 (
(   )(   )

 
)
 

(
(   ) 

 
)
 

 
(27) 



 

66 

This is a fairly simple equation that is not only standardized to a peak value of one, but 

also does not have a Beta function in it.  It can be further simplified to: 

      (     )  
(   )   

    
  (   )  (28) 

The issue with Equations (27) and (28) is that when either a, b, or a + b get large they can 

numerically overflow.  This is resolved by taking the log of each side and leveraging 

logarithm rules so Equation (28) becomes: 

      (     )   
(   )    (   )     ( )     ( )     ( )       (   ) 

(29) 
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Appendix C:  Derivation of Beta pdf Inflection Points 

Take either Equation (27) or (28) and find its second derivative. 
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(   )(   )
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(  (   )  (   )     (   )(  (    ) ))

(   )   
 (30) 

The inflection points are where the second derivative is equal to zero.  The only way for 

this to happen in Equation (30) is for the third factor to be equal to zero. 

(  (   )  (   )     (   )(  (    ) ))    

Solve for x: 

   
    (   )  √  (     )

   (   )   (    )
 (31) 

If a ≤ 1 or b ≤ 1, then one or both inflection points will be outside x’s range of (0,1).  If 

this is the case then the rejection scheme only uses the relative slope points and the 

constant around the peak of the standardized pdf.  As a and b approach one in the minus 

case, loss of precision occurs.  This is taken care of by multiplying Equation (31) by: 

  (
    (   )  √  (     )

   (   )   (    )
)(
    (   )  √  (     )

    (   )  √  (     )
) 

If the numerator and denominator are expanded and terms cancelled Equation (32) is the 

result. 

   
    

    (   )  √  (     )
 

(32) 

Equation (32) is now well-conditioned and can be used for the minus case of 

Equation (31). 
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Appendix D:  Derivation of Inverting CDF for a line 

For a line s with a left bound of x0 and right bound of x1, let s(x0) = s0, s(x1) = s1 

then the equation for the line is: 

  ( )    (   )      
(33) 

         
    
     

 

          

Integrate Equation (33) to get the total area under the line. 

 ∫ ( )   

 

 

     
 

 
(34) 

Then divide the equation for the line by Equation (34) and integrate to get its CDF. 

 ∫
  ( )

     

 

 

   
        

     
 

     
 

(35) 

Set Equation (35) equal to ξ, a random number between [0,1) and solve for u. 

  ( )  
   √  

    
     

  

     
 (36) 

To find the correct root solve u(1), and u(0) for each case.  For the plus case ( )  

   

     
  ( )  

     

     
 , for the minus case  ( )     ( )   .  The minus case is correct 

for the CDF.  Expanding Equation (36) and factoring to remove the       from the 

denominator results in: 

  ( )  
(     ) 

   √  
 (   )    

  
 

(37) 
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The (   ) in the denominator will not result in loss of precision because ξ lives in 

[0,1).  Now u can be randomly sampled from the CDF of the line s.  Because of the 

method developed with four linears and a constant two of the sampling function lines will 

have either s0 = 0, or s1 = 0.  When s0 = 0, Equation (37) simplifies to √ , and when 

s1 = 0 it simplifies to   (  √   ). 
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Appendix E:  Derivation of Standardized Beta pdf Relative Slope 

Start with either Equation (27) or (28) from Appendix B, and taking its derivative 

you get an equation for the slope of the standardized beta pdf: 

       (     )  
(
(   )(   )

 
) (
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 ) ( (   )    )

(   ) 
 (38) 

Then divide the slope by the standardized pdf to get the relative slope. 
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(39) 

where SR is the relative slope.  Solving for x results in two solutions: 

   
       √(      )      

   
 (40) 

of which the minus is correct because it yields solutions within the domain 0 < x < 1. 
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Appendix F:  Prioritized List of Model and Code Improvements 

1. Parallelization:  Because the program relies on Monte Carlo methods, 

there is great potential that parallelization could reduce runtimes.  However the 

auto parallelization feature in the Intel compiler actually increased runtimes.  An 

analysis of the code by someone experienced in parallelization techniques is 

needed.  With today’s multi-processor computers this could lead to the greatest 

reduction in runtime. 

2. Incorporate known branching fraction uncertainties:  Some branching 

fraction uncertainties are documented, and more may be done in the future.  A 

method that incorporates these uncertainties while still adhering to the model laid 

out in this study is needed. 

3. Calculate decay chains only once:  Currently decay chains for all the 

isotopes are calculated for each time of each Monte Carlo trial.  These decay 

chains do not change, making this method redundant.  The large number of decay 

chains may make it infeasible to save to an array, or too inefficient to write to a 

file and read back in every time.  However, these or other methods need to be 

explored for efficiency sake. 

4. Improve sampling of half-life uncertainties:  The method used is not 

parsimonious in random numbers, and is not realistic for a Gaussian distribution 

(when an isotope is quoted as having a +σ and –σ).  It was recommended by NIST 
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to splice the two halves of the different Gaussians together.  If this is done you get 

a distribution similar to the one in Figure 21. 

 

Figure 21.  pdf of two Gaussians with different standard deviations spliced together.  The mean is 0.5. 

 

Approximately 200 isotopes in the current NuDat data have two different σ 

values.  A more appropriate distribution is needed that does not have a step value 

at the mean, and satisfies both σ values. 
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5. Incorporate uncertainty in initial quantities:  This is another piece in the 

physics of radioactive decay that needs to be explored as a significant source of 

uncertainty.  As an example fission fragment yields range across many orders of 

magnitude (10
-2

 to 10
-14

).  Because of this, uncertainty in these yields could have 

an impact in decay isotope quantities. 

6. Account for spontaneous fission:  For this study the fraction of an isotope 

that can spontaneously fission was ignored.  This could be done because no 

isotopes that result from neutron induced fission can spontaneously fission.  This 

does need to be accounted for to make the code complete. 

7. Improve the Beta distribution rejection scheme:  The current rejection 

scheme has an average acceptance rate of around 63%.  If the goal of the user is 

run more Monte Carlo trials and only a few times, then improving this scheme 

would result in a noticeable reduction in runtime. 

8. Transmutation matrix inversion:  Inverting the T-matrices would allow the 

user to calculate quantities present at earlier times with uncertainty.  This is useful 

in nuclear forensics, where the quantity of an isotope is measured at a time after a 

nuclear event.  The need is to be able to plug this amount into a program that will 

give the isotopes initially present with uncertainty. 
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