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Abstract

Laser Radar sensors can be designed to provide two-dimensional (2-D) and three-

dimensional (3-D) images of a scene from a single laser pulse. Currently, there are

various data recording and presentation techniques being developed for 3-D sensors.

While the technology is still being proven, many applications are being explored

and suggested. As technological advancements are coupled with enhanced signal

processing algorithms, it is possible that this technology will present exciting new

military capabilities for sensor designers and end users.

The goal of this work is to develop an algorithm to enhance the utility of 3-D Laser

Radar sensors through accurate ranging to multiple surfaces per image pixel while

minimizing the e↵ects of di↵raction. Via a new 3-D blind deconvolution algorithm,

it will be possible to realize numerous enhancements over both traditional Gaussian

mixture modeling and single surface range estimation. While traditional Gaussian

mixture modeling can e↵ectively model the received pulse, we know that its shape

is likely altered due to optical aberrations from the imaging system and the medium

through which it is imaging. Simulation examples show that the multi-surface rang-

ing algorithm derived in this work improves range estimation over standard Gaussian

mixture modeling and frame-by-frame deconvolution by up to 89% and 85% respec-

tively.
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IMPROVING MULTIPLE SURFACE RANGE ESTIMATION OF A

3-DIMENSIONAL FLASH LADAR IN THE PRESENCE OF ATMOSPHERIC

TURBULENCE

I. Introduction

Three dimensional FLASH LAser Detection and Ranging (LADAR) sensors are

a special class of LIght Detection and Ranging (LIDAR) sensors that are able to

provide precise range measurements for every pixel in an imaged scene. Interest in

Three-Dimensional (3-D) FLASH LADAR systems is increasing for both military

and civilian applications over the more traditional scanning LADAR system. This

increase in popularity is due to the fact that 3-D FLASH LADAR systems can obtain

an entire 3-D image or data cube with a single laser pulse. In an ideal environment,

the spatial resolution that this class of sensors can achieve is limited only by the ability

to design and manufacture components with precision. However, in an operational

environment, the images may be distorted not only by system limitations, but also

by the atmosphere through which the light must pass.

1.1 Motivation

The motivation for this research initially stemmed from an inquiry from the De-

partment of Homeland Security (DHS) about imaging through obscurations. Current

state-of-the-art tactical sensors such as the AN/AAQ 33 - SNIPER targeting pod

shown in Figure 1.1, rely on passive target illumination. While this type of illumi-

nation has many inherent advantages, it does introduce several limitations as well.

Like all passive Electro Optical / Infra-Red (EO/IR) sensors, SNIPER su↵ers from
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Figure 1.1: AN/AAQ 33 - SNIPER targeting pod integrated onto the B-1B.

thermal-crossover associated with the natural heating and cooling of the earth’s sur-

face. Further, EO/IR sensors rely on the addition of an active illumination designator

to perform ranging to a target. In addition to tactical sensors, a study produced by

Forecast International in 2011 estimated that nearly $17 billion dollars will be spent

on new remote sensing satellite technology between 2012 and 2021 [1]. LADAR tech-

nology is one of the relatively new imaging technologies that will likely be employed

on the next generation of remote sensing satellite platforms.

The aforementioned are just a sampling of the justification for employing 3-D

LADAR technology on future generation remote sensors. Unfortunately, due to con-

straints such as low spatial resolution and limits on laser power, the current state of

FLASH LADAR technology would yield limited, if any improvement in total capabil-

ity over the currently fielded passive sensors. However, it may be possible to develop

algorithms that limit the negative impacts of the operational environment and couple

them with technological advances in sensor resolution and sensitivity to yield vast

improvements in future imaging/targeting sensors.

Due to the employment of active illumination, 3-D FLASH LADAR sensors can

gather ranging information for every point within a targeted scene nearly simulta-
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neously. Further, depending on the detection methodology employed, the possibility

of imaging through obscurations becomes a reality. Imaging through obscurations

has numerous civilian and military applications. For instance, Advanced Scientific

Concepts (ASC), the manufacturer of the sensor that will be utilized throughout this

research e↵ort is currently interested in demonstrating the ability to detect targets

obscured by smoke, fog or dust. One particular investigation underway applies to the

tracking of a refueling drogue by an autonomous aerial vehicle [13]. The images in

Figure 1.2 demonstrate a valuable capability inherent with 3-D FLASH LADAR.

(a) Original Image (b) Target Visually Obscured by Smoke

(c) First Return Detection (d) Second Return Detection

Figure 1.2: In this figure we show a scene visually obscured by smoke. We then show
that the 3-D FLASH LADAR system is able to see through the smoke and detect the
target of interest.
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Here we demonstrate that the LADAR system is easily able to detect targets

that are visually obstructed by smoke. Figures 1.2(a) and 1.2(b) were taken with a

traditional video camera while Figures 1.2(c) and 1.2(d) were taken with a 3-D FLASH

LADAR system. The 3-D FLASH LADAR system does receive a return o↵ of the

smoke as shown in Figure 1.2(c). However, the multi-surface ranging capability that

this dissertation will focus on allows us to detect additional reflections, thus revealing

the targets of interest in Figure 1.2(d). Clearly this has numerous military as well as

civilian applications. On the civilian side, this technology has applications for vehicles

traveling through fog or for firefighters trying to see through a smoky room to rescue

trapped personnel. On the military side, this technology would be useful for areas

such as landing an aircraft or helicopter in brown out conditions or conducting aerial

refueling operations through clouds among others.

Multi-surface ranging with the use of 3-D FLASH LADAR can also be useful in

accurately discriminating camouflaged targets of interest. A tactic that is commonly

employed on the battlefield is to develop mock targets of low value. These targets

are di�cult to discern in a tactical environment where the attack may be conducted

from miles away in a fast moving vehicle. Thus, it can be an e↵ective tactic because

it forces the aggressor to use a potentially high valued weapon on a target of little

to no importance. In the visual spectrum it is often easy to generate false targets or

hide actual targets with camouflage netting. However, the ability of a 3-D FLASH

LADAR system to detect images with range diversity can make it far more di�cult

to design false targets or e↵ectively camouflage real ones.

Clearly, 3-D FLASH LADAR provides additional useful information to the user.

In a traditional 2-D image, we only detect some sort of intensity information in the

spatial domain. For 3-D FLASH LADAR images, we not only receive intensity and

range information, but depending on the target geometry or physical characteristics,
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we may also be able to discern information from the width of the reflected pulse.

This pulse width information can often be used to discern whether a target is di↵use

or solid. Additionally, it may be possible to obtain target orientation based on pulse

width expansion [26].

Ultimately, the ability to accurately assess the threat environment is critically

important for numerous reasons. Detecting targets that may be concealed by man-

made camouflage or natural obscuration has long been a goal of numerous sensor

developments, as those targets may pose a threat to the safety of forces or success

of a military operation. Optical sensors based on active laser illumination such as

FLASH LADAR have the distinct advantage of operating at extremely short wave-

lengths enabling light to pass through small voids in the obscuration and reflect o↵ of

potential surfaces of interest. The ability to finely sample the returned waveform with

a high resolution detector array will enable an imaging sensor to produce an accurate

representation of the obscured target [50]. In addition to the previously mentioned

applications, advancement of this technology has potential application in areas such

as terrain mapping, forestry classification and autonomous vehicle navigation.

Current manufacturing limitations for 3-D FLASH LADAR are often centered

around sampling rates, detector size and development of optical components that

are free from aberration. The dimensions of each pixel in the detector array are

currently the primary limiting factor on attainable spatial resolution. As with all

emerging camera technologies, we expect this to improve as manufacturing processes

are refined. Unfortunately, as a consequence of nonuniform heating and cooling of

the Earth’s atmosphere, the temperature-induced inhomogeneities of the refractive

index of the air may have a significant impact on attainable spatial resolutions [21].

This dissertation will address those problems and reinforce that previously ill-posed

problems for 2-D imaging may actually be overdetermined for 3-D imaging [49].
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1.2 LADAR Technology

Figure 1.3: LADAR flow chart with the specific technology that the bulk of this research
will be concerned with down the right hand side highlighted in green.

LAser Detection and Ranging (LADAR) systems are a subset of LIght Detection

and Ranging (LIDAR) systems where the delineation is tied to the type of illumination

source. Further exploration of this class of sensor warrants a brief description of the

numerous variations on the technology. Figure 1.3 encapsulates many of the numerous

variants of LADAR technology. There are currently two widely recognized forms of

3-D LADAR systems. One type is a scanning LADAR system where each pixel in the

image is a result of measuring the return from a separate laser pulse. The scanning

variant of LADAR has been widely studied, and many algorithms have been developed

to process the measured data such as in [31], [32] and [63]. While the Airborne Laser

Scanner ALS variants of 3-D LADAR have demonstrated unique capability in remote

sensing, they commonly require a significant amount of time to form a complete
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image. The time delay associated with this technique will likely be unacceptable for

employment on a fast moving platform operating in a highly dynamic environment.

Fortunately, continuing technical advancements are giving rise to systems known as

3-D FLASH LADAR systems.

Unlike scanning LADAR systems, a 3-D FLASH LADAR is able to form a com-

plete 3-D image or data cube by simultaneously measuring the returned pulse for

every pixel in an image. The 3-D image or data cube is essentially a series of images

where an Avalanche Photo Diode (APD) array measures the returning photons for

each pixel separated by a constant time interval. Figures 1.4 and 1.5 provide a sim-

plified sketch of a 3-D FLASH LADAR in operation. Commonly, a laser illuminator

Figure 1.4: Transmit Portion of 3-D FLASH LADAR Operation.

Figure 1.5: Receive Portion of 3-D FLASH LADAR Operation.
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will fire a short pulse of light through some sort of beam spreader to achieve the de-

sired illumination of the target area. In a full-waveform system, the APD array will

then simultaneously sample the reflected pulse for each pixel in the detector array

at a predetermined rate. A separate 2-D image will be formed for each sampling of

the reflected laser pulse. Based on this methodology, accurate ranging will be highly

dependent upon the ability to precisely account for the time of flight of the laser

pulse.

The sampling rate and number of samples within the range gate will be largely

system/mission dependent; however, it is worthwhile to consider the two common

methods for triggering the start and end of the range-gate. The first mode under

consideration, Staring Underwater LAser Radar (SULAR) mode, records the first

frame of data at a pre-defined time from when the pulse was fired. In this manner,

the range gate for a 3-D image will have a fixed window for each detector based on

the start time, time between frames and total number of frames in the 3-D image.

Another mode of operation is commonly referred to as “HIT mode” where each image

pixel may trigger the start of the range gate at a di↵erent time based on the received

signal level. The bulk of the research presented in this dissertation will focus on 3-D

FLASH LADAR operating in SULAR mode.

1.3 Research Contributions

The following subsections o↵er a brief description of each of the three core areas

of research covered in this dissertation as well as their associated contributions.
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1.3.1 Parameterized Blind Deconvolution Through Convergence of

Variance (Chapter III).

This area of research first revisits algorithms originally presented by MacManus

and MacDonald for accomplishing parameterized blind deconvolution of Two - Di-

mensional (2-D) images in the presence of Poisson and negative binomial noise [41],

[45]. The Convergence of Variance (CoV) algorithm developed by MacManus and

the Maximum a-priori (MAP) estimate developed by MacDonald each o↵er blind

deconvolution methods tailored for implementation in a tactical environment where

processing time is extremely important. Initially, a comparison of the two algorithms

is o↵ered and several unique conclusions are developed. Ultimately a new explanation

is given which reveals that the MAP estimate provides no new capability over the

CoV technique. Further, an extension to the CoV algorithm is proposed in order

to perform parameterized blind deconvolution on 3-D FLASH LADAR images. The

primary goal of this portion of research was to demonstrate the ability to find a pa-

rameterized Point Spread Function (PSF) which could be used in the multi-surface

ranging algorithm presented in Chapter IV.

1.3.2 Multiple Surface Detection and Estimation (Chapter IV).

The core area of research for this dissertation was the development of a novel itera-

tive algorithm using an Expectation Maximization (EM) strategy which will simulta-

neously solve for multiple ranges per image pixel and remove the e↵ects of di↵raction

[14]. Challenges with employing an EM strategy are discussed, and the techniques

developed to mitigate those challenges are presented. Additionally, a constraint is pro-

posed and applied to the initially developed multi-surface ranging algorithm which

further enhances its capability. Both the constrained and non-constrained multi-

surface algorithms which account for the e↵ects of di↵raction are then compared
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against an algorithm which does not account for di↵raction and one that employs

traditional 2-D image deconvolution techniques to account for di↵raction. This new

algorithm is ultimately shown to provide a significant improvement in multi-surface

ranging capability. This capability will be critical in employing 3-D FLASH LADAR

technology in an environment where the ability to image through obscurations is

required.

1.3.3 Imaging Through Turbulence (Chapter V).

Finally, the next step in enhancing the multi-surface detection algorithm presented

in Chapter IV is developed. Initially the multi-surface ranging algorithm assumed a

known PSF to account for the e↵ects of di↵raction. Determining the PSF is a chal-

lenging problem known as blind deconvolution that has been the focus of a wealth

of research. Traditionally, blind deconvolution problems for 2-D images are ill-posed.

However, this research shows that a maximum likelihood approach to estimate the

PSF parameterized by Fried’s seeing parameter, r
0

, is possible with the addition of

range diversity from 3-D images. Unlike the MAP estimate proposed by MacDonald

and discussed in Chapter III, this technique does not require the introduction of a

prior distribution for the value of r
0

. Alternatively, the CoV technique developed by

MacManus could first be used to identify a parameterized PSF before proceeding to

use the multi-surface ranging algorithm to develop the surface profile. However, this

research will show that both the value for r
0

and the surface profile can be estimated

simultaneously. Systems of equations will be provided that highlight the added capa-

bility of working this type of problem with 3-D FLASH LADAR images. Finally, the

results will be verified through the use of both simulation and experimental data.

10



1.4 Organization

This document will be organized as follows. Relevant background material on

LADAR technology, theoretical models and experimental data collection systems will

be presented in Chapter II. Chapter III examines two previously developed parameter-

ized blind deconvolution algorithms, and discusses their application to 3-D FLASH

LADAR imagery. Chapter IV will detail the derivation of a multi-surface ranging

algorithm that simultaneously develops the range profile and removes the e↵ects

of di↵raction from a 3-D FLASH LADAR image, given a known PSF. Chapter V

presents a joint estimation technique for simultaneously developing the range profile

and parameterized PSF. Finally, Chapter VI will summarize the conclusions from this

research and present ideas for future research.
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II. Background

This chapter presents necessary support material for the research presented in this

dissertation. First, a model will be presented for simulation and representation of the

data received by a 3-D FLASH LADAR sensor. Additionally, theory will be presented

to identify the ill-e↵ects of imaging through a turbid medium in Section 2.1. Common

techniques for improving the overall Signal to Noise Ratio (SNR) in the detected

images will then be presented in Section 2.2. Section 2.3 will focus on a 2-D and 3-D

sensor that will be used throughout the research e↵ort for the collection of measured

data. An important concept for any iterative algorithm is how to determine when the

algorithm can terminate. This research will employ the convergence of variance as

the stopping criteria as discussed in Section 2.4. In simulation, the blur applied to the

detected image, or PSF, is known. However, with experimental data, we must be able

to measure the PSF for comparison with the estimates obtained from the algorithms

developed. Section 2.5 will present the method used for measuring Fried’s seeing

parameter, r
0

, which will be used in the parameterized model for the PSF. Finally,

this chapter will present a summary of similar research previously accomplished in

Section 2.6.

2.1 3-D FLASH LADAR Theory

Three dimensional FLASH LADAR is fundamentally di↵erent from scanning vari-

ants in that the entire remote scene is illuminated with a single short pulse of the laser

illuminator. On the other hand, the scanning variants only illuminate a narrow Field

of View (FOV) corresponding with a single image pixel per pulse of the laser. This

narrow beam is then scanned over the target area to compile an entire 3-D image.

While scanning systems have been shown to provide extremely detailed images, the
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size, complexity, low frame rate and cost of stabilization and beam steering hardware

make the technology impractical for tactical use.

This research will utilize some concepts learned through previous research with

scanning variants of LADAR; however, the research will focus on the 3-D FLASH

LADAR variants. Since the entire remote scene is illuminated with a single pulse

of the laser, the resultant data collected will depend on the triggering mechanism

employed. As shown in Figure 1.3, the data stored is primarily classified as either

Range and Amplitude (R&A) or full waveform. For the R&A data, each pixel in the

detector will employ some sort of detection methodology to determine the range and

intensity from the reflected waveform. The only data stored for each pixel will be

the resultant range and amplitude. In full waveform data, there are various forms

of triggering mechanisms worthy of discussion. The ASC systems employ either HIT

mode or SULAR mode of triggering. HIT mode allows for each pixel within the

detector to have a unique range gate where the start of the range gate is triggered at

some intensity threshold. While the HIT mode of operation definitely has application,

the techniques presented in this research require that each pixel in the image have

the same range gate.

For the SULAR mode of operation, each pixel within the detector will have pre-

cisely the same range gate. Each time the detector is sampled, a separate 2-D frame

will be stored which contains an intensity representation corresponding with the num-

ber of photons received over the detector integration time. Therefore, each 2-D frame

will also have a discrete range corresponding to its sample time. This compilation

of data frames can then be stacked into a 3-D data cube such that each pixel in the

detector will have the reflected waveform corresponding to the target area and the

established range gate. Based on this mode of operation, it is possible that certain

portions of the scene may not result in a pulse return within the range gate. These
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non-illuminated areas of the scene will therefore only measure the detector bias for

each sample within the range gate.

Accounting for range once a certain threshold is achieved or where a peak is

detected can only provide range accuracy to the nearest sample. Provided the sample

rate is high enough, full waveform data storage allows for highly precise ranging

capability. Generally we would want to sample the detector at the Nyquist rate.

Then, using techniques such as the correlation method presented by Richmond and

Cain [58], or the EM algorithm presented in this research, we can achieve sub-sample

ranging accuracy.

2.1.1 Pulse Model.

This research will employ the common technique of modeling the transmitted and

received pulse for a LADAR system as a Gaussian (single-surface case) or mixture of

Gaussians (multi-surface case). While the outgoing waveform will largely dictate the

inaccuracy induced by the Gaussian approximation, for many sensors this model is

generally considered acceptable [46]. Future work may consider the error introduced;

however, the error is likely to be sensor dependent [58]. Using an early variant of the

FLASH 3-D LADAR sensor developed by ASC, the Gaussian approximation allowed

for accurate single surface ranging algorithms to be developed by Dolce [16] and

McMahon [48]. The Gaussian model for the received intensity of the pulse P (t) is

P (t) =
A

�
p
2⇡

exp



� t2

2�2

�

(2.1)

where t is time, A is the pulse amplitude and � is the width parameter.

Using the Gaussian model as our basis, much of this dissertation will consider the
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possibility of N surface returns per image pixel according to

P (x, y, r
k

) =
N

X

n=1

P (n) (x, y, r
k

). (2.2)

Where each of the N individual Gaussian pulses, P (n), reflected by the target at a

range of r(n) is

P (n) (x, y, r
k

) =
A(n) (x, y)p
2⇡�(n) (x, y)

exp

"

�
�

r
k

� r(n) (x, y)
�

2

2 (�(n) (x, y))2

#

. (2.3)

The indexes x and y indicate the area in the target plane corresponding to the indi-

vidual pixels in the M ⇥M detector array, and the index r
k

represents the discrete

range for the k th frame in the data cube, or in other words, each time the pulse is

sampled by the sensor. The nth amplitude, pulse width and range of the pulse mixture

are represented by A(n), �(n) and r(n) respectively.

The received pulse is modeled by the intensity function I(u, v, r
k

), where the

received intensity is found by convolving the pulse and the PSF, h, as shown in

I (u, v, r
k

) =
M

X

x=1

M

X

y=1

P (x, y, r
k

)h (u� x, v � y), (2.4)

where the indexes u and v represent the detector plane coordinates. It has been

demonstrated that the number of photons that arrive during the detector’s integration

time can be modeled with Poisson statistics [21]. Section 2.2 will discuss the choice

of Poisson statistics over negative binomial statistics in more detail. In addition to

the laser light reflected o↵ of the target, the detector may also receive photons from

background lighting, and thermal noise. These additional photon sources will be

accounted for as a pulse bias for each detector in the APD array B (u, v). The noise

generated by the bias will also follow a Poisson distribution, resulting in a model for
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the total intensity measured by the detector of

I
tot

(u, v, r
k

) =

"

N

X

n=1

M

X

x=1

M

X

y=1

P (n) (x, y, r
k

)h (u� x, v � y)

#

+B (u, v) . (2.5)

In Section 4.1, a method is derived for estimating the pulse bias in conjunction with

the amplitude, pulse width and range of the pulse. In reality, the signal bias could be

measured by producing an image in the absence of a laser pulse; however, this may

not always be possible, thus driving the additional need to estimate this parameter.

If we assume independence of the measurements at each time step and for every

pixel in the detector array, we can state the joint probability of the observed data, d,

as

p [D
k

(u, v) = d (u, v, r
k

) ; 8u, v, k] =
M

Y

u=1

M

Y

v=1

K

Y

k=1

I
tot

(u, v, r
k

)d(u,v,rk) e�I

tot

(u,v,r

k

)

d (u, v, r
k

)!
. (2.6)

To minimize confusion in notation, an upper-case P will be used to represent the pulse,

and lower-case p will be used in representation of the various probabilities throughout

this work. The expected value of the noisy 2-D frame, D
k

(u, v), corresponding with

a range to target of r
k

is I
tot

(u, v, r
k

).

In summary, each 2-D frame is impacted by the e↵ects of di↵raction, an additive

bias and noise as shown in Figure 2.1. The noisy received 3-D image, d, of a remote

object, o, is comprised of a series of 2-D frames. The received intensity for each frame,

I
tot

, is the summation of an additive bias and the blurred image, i.
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Figure 2.1: Model for received data that is impacted by di↵raction and noise.
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2.1.2 Spatial Sampling Requirements.

In the di↵raction limited case, the maximum achievable spatial frequency, ⌫
max

,

can be computed by

⌫
max

=
D

�f
l

, (2.7)

where � is the wavelength of the light of interest and f
l

is the focal length of the lens

and D is the aperture diameter [22]. According to the Nyquist criterion, the ability to

perfectly reconstruct a digitally sampled image, or properly sample, would therefore

require a sampling frequency of 2⌫
max

. The importance of properly sampling an image

stems from the use of convolution in the model for intensity as shown in (2.5).

Achieving Nyquist sampling is a significant challenge in many optical sensing

applications, and especially in the case of 3-D FLASH LADAR. The complexity

of the electronics coupled with conventional optics often results in a detector pixel

pitch that is much greater than what is required for proper sampling. However,

assuming the standard progression of technology, history has shown that the pixel

pitch will decrease. The techniques presented in this dissertation are again intended

to demonstrate the potential value of the methodology. Future research e↵orts could

be tied to exploring their utility where proper sampling may not be possible.

2.1.3 Sources of Image Blurring and Degradation.

Due to numerous physical phenomena, the images captured by a sensor have

imperfections. First, we know that optical imperfections with the system can cause

the di↵raction of light to neighboring areas. When operating a sensor within the

atmosphere, optical imperfections can commonly be binned into those directly related

to the manufacturing of the sensor and those that result from atmospheric turbulence.

Second, the received image is generally further degraded by the e↵ects of noise. This

noise can also result from numerous sources such as read out noise, thermal noise and
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noise associated with the illumination source.

The total PSF or spatial impulse response of an optical sensor accounts for the

di↵raction e↵ects directly attributed to the sensor optics, h
opt

, and those that can be

attributed to atmospheric turbulence, h
atm

. This total PSF, h
tot

, is the 2-D convolu-

tion of the two primary components as shown in (2.8), where x and y are the spatial

coordinates of the individual PSFs.

h
tot

(x, y) = h
opt

(x, y)⌦ h
atm

(x, y) (2.8)

A direct solution for the impulse response of a non-ideal aperture is di�cult to

compute; however, it can be found by conducting a propagation experiment using

known sensor parameters [58]. In frequency space, the total Optical Transfer Func-

tion (OTF), H
tot

, the optics OTF, H
opt

, and atmospheric OTF, H
atm

, are simply the

Fourier transforms of their respective PSFs, and the convolution operator is replaced

by the multiplication operator

F {h
tot

(x, y)} = H
tot

(⌫
x

, ⌫
y

) = H
opt

(⌫
x

, ⌫
y

)H
atm

(⌫
x

, ⌫
y

) , (2.9)

where the spatial frequencies in two dimensions are parameterized by (⌫
x

, ⌫
y

) and F

is the Fourier operator.

Imaging devices have an upper bound on their cuto↵ frequency dictated by their

optical specifications according to (2.7). Imaging through a turbid medium will at

best cause no further attenuation to the frequency content of an image, but can often

result in significant attenuation. In a 2-D image, this attenuation of frequency content

manifests as a spatial blurring of the image. However, since the 3-D FLASH LADAR

image is a composition of numerous 2-D frames, this spatial blurring will also cause

a temporal distortion as well.
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As a general rule of thumb, when collecting images with exposure times of less

than 1

100

of a second we can assume that the atmosphere through which the remote

scene is viewed remains constant [21]. While the instantaneous atmosphere is di�cult

to measure and even more challenging to estimate, models exist to predict its behavior

on average. In the short exposure scenario where the total exposure time is less than

1

100

of a second, we have the average OTF, H̄
SE

,

H̄
SE

(⌫
x

, ⌫
y

) = exp

8

<

:

�3.44

 

�̄2f 2

l

�

⌫2

x

+ ⌫2

y

�

r2
0

!
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41�
 

�̄2f 2

l

�

⌫2

x

+ ⌫2

y

�
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!
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3

5

9

=

;

.

(2.10)

In the mathematical model for H̄
SE

as a function of spatial frequency, the mean

wavelength of light detected is �̄ and r
0

is Fried’s seeing parameter. Applying this

model essentially has two stipulations of concern. First, we must have a su�ciently

short exposure time to satisfy the static atmosphere requirement. Clearly a single

image taken with a 3-D FLASH LADAR system falls within this requirement. Second,

we must be able to register the images to remove the motion e↵ects of tip / tilt caused

by the atmosphere. For purposes of this research, we will substitute H̄
SE

as our model

for the atmospheric OTF, H
atm

. However, the techniques developed in subsequent

chapters could also be demonstrated to work with the simpler long-exposure case

where the image frames are averaged without motion compensation. The average

long-exposure OTF, H̄
LE

, is

H̄
LE

(⌫
x

, ⌫
y

) = exp

8

<

:

�3.44

 

�̄2f 2

l

�

⌫2

x

+ ⌫2

y

�

r2
0

!

5/6

9

=

;

. (2.11)

Even though the individual exposures of the 3-D FLASH LADAR sensor are less than

1

100

of a second, the use of this model would apply in cases where we chose not to

account for the tip / tilt motion caused by the atmosphere.
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2.2 Image Variance and E↵ects of Averaging

Due to the partially coherent nature of the illumination source, the reflected pho-

ton distribution is negative binomial. This results in a somewhat complex noise

distribution for the composite pixel intensity for each frame. The composite intensity

also has noise contributions from background illumination which is commonly mod-

eled with a Poisson distribution. Experience has shown that the negative binomial

noise from the reflected laser pulse is commonly the most dominant form of noise.

Therefore in regions of relatively high illumination, the other sources of noise are

indistinguishable. The negative binomial Probability Mass Function (PMF) model

defines the probability that we will receive K photons over the integration time as

p (K) =
� (K +M)

� (K + 1)� (M)



1 +
M
K̄

��K



1 +
K̄

M

��M

, (2.12)

where M is the coherence parameter of the laser illumination and K̄ is the expected

number of photons. Due to its complexity, the negative binomial PMF does not

lend itself to the algorithms that were developed through the course of this research.

Fortunately, the Poisson PMF has been shown to be an adequate substitution based

primarily on the similarity between the shapes of the two PMFs given the standard

range of coherence parameters [41], [47]. As M approaches infinity, the variance of a

negative binomial random variable collapses to the mean,

�2

NB

= K̄

✓

1 +
K̄

M

◆

, (2.13)

thus converging to a Poisson variance. A comparison of the negative binomial and

Poisson PMF is shown in Figure 2.2. Here we see that as M increases, the negative

binomial PMF does in fact approach the Poisson PMF.

Motion Compensated Frame Average (MCFA) images are commonly used in imag-
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Figure 2.2: Convergence of the negative binomial PMF to the Poisson PMF with
increasing M and K̄ = 2000.

ing applications to improve the SNR. The value of using an MCFA can best be un-

derstood through a simple example. For digital image processing, SNR is commonly

modeled as

SNR =
K̄

�
, (2.14)

or the ratio of mean photons measured to the standard deviation of the measurement

[20]. This definition of SNR is only justified when the mean is always non-negative

such as the case with photon counts. For simplicity, we will now consider a Poisson

process for which we know the mean is equal to the variance. If our MCFA consists of

the summation of two independent measurements, both the mean and variance will

increase by a factor of two. However, the standard deviation only increases by a factor

of
p
2. Therefore, the SNR also improves by a factor of

p
2 every time we double the

number of frames we are averaging. Averaging frames serves to greatly mitigate the
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ill e↵ects of speckle noise in laser illuminated images [42]. Finally, averaging frames

also serves as the catalyst for using the average model for the atmosphere when trying

to enhance the spatial and temporal resolution of the 3-D image.

An additional benefit of using MCFA images is that it will also serve to increase

M. Given the variance of an individual image as shown in (2.13), the variance of a

2-image MCFA, �
NB2

, will be

�2

NB2

= 2K̄

✓

1 +
K̄

M

◆

. (2.15)

If we can now assume that the expected photons received for each image is constant,

K̄
1

= K̄
2

= K̄, (2.16)

we can perform a substitution of variables to show that M doubles for a 2-frame

MCFA. The 2-frame MCFA will also have a negative binomial distribution with

�2

NB2

= K̄ 0
✓

1 +
K̄

M

◆

= K̄ 0
✓

1 +
K̄ 0

2M

◆

, (2.17)

where

K̄ 0 = K̄
1

+ K̄
2

= 2K̄. (2.18)

Since the shape of the negative binomial PMF is primarily driven by M, this increase

in M will ultimately make our Poisson approximation more accurate.

2.3 Experimental Data Collection Systems

This section will present the two camera configurations that were used to obtain

experimental results to support this dissertation. All of the equipment was com-

mercially available, but in some cases modified slightly to perform in accordance the
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expectations designed into the algorithms.

2.3.1 2-D Visible Light System.

The optical configuration shown in Figure 2.3 was used to obtain properly sampled

2-D images. The experimental results obtained with this setup were primarily used to

verify initial concepts on the impact of turbulence on images, the ability to measure

r
0

and in support of the research presented in Chapter III. The specifications for this

setup are listed in Table 2.1. The camera used in this configuration allowed for 16-bit

Figure 2.3: Experimental sensor setup consists of a Celestron R� NexStar R� 6SE 1.5
m focal length telescope with a mask to reduce the aperture to 5 cm, and an Orion R�
StarshootTM G3 monochrome camera.

Analog to Digital (A/D) conversion and experiments show that it acts as a photon

counting device in lower intensity regions. This allows for utilization of the Poisson

and negative binomial model assumptions without applying a conversion factor to the

digitized images. However, as the detector approached higher intensity thresholds, the

conversion between digital counts and photons became non-linear. For that reason,

images were taken in low light conditions to ensure the various techniques developed

through this research could be applied.
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Table 2.1: Optical System Specifications.

Parameter Name Defined Value
Mean wavelength (�̄) 600 nm
Detector array size 582 ⇥ 582

Pixel size 8.3 µm ⇥ 8.6 µm
Sensor focal length (f) 1.5 m
Aperture diameter (D) 5 cm

2.3.2 3-D FLASH LADAR System.

The 3-D FLASH LADAR sensor used for this research was a modified ASC

Portable 3-D FLASH LADAR Camera KitTM. The sensor used all of the standard

components in this commercially available sensor; however, they were oriented into a

di↵erent configuration for the USAF Test Pilot School (TPS) as shown in Figure 2.4.

The system specifications as configured are listed in Table 2.2.

(a) Standard camera configuration (b) TPS camera configuration

Figure 2.4: (a) This is the standard configuration of the camera available from ASC.
(b) In order to meet USAF TPS requirements, the camera components were oriented
into a brassboard design to allow for installation into an airborne pod.

The experimental 3-D FLASH LADAR sensor possessed a fixed-focus lens, with

focus set to infinity. While this configuration would be advantageous for installation

into an airborne pod where long slant ranges to the target are common, it did create

some challenges in trying to establish suitable experimental target configurations.
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Table 2.2: ASC Portable 3-D FLASH LADAR SystemTMSpecifications.

Known System Parameters
Parameter Name Defined Value
Frames per image 20

Mean laser wavelength (�̄) 1.57 µm
Measured sample rate 434.5 MHz
Energy per pulse (E

t

) 0.025 J
Sensor pulse width 4.7⇥10�9s
Detector array size 128 ⇥ 128

Pixel size 100 µm ⇥ 100 µm
Lens Parameters

Parameter Name Defined Value
Sensor focal length (f

l

) 250 mm
Aperture diameter (D) 12 cm

Instantaneous Field of View (iFOV) 3�

Each individual 3-D image consisted of 20 2-D frames. In SULAR mode where

each pixel within the detector is set to a fixed range gate, this would result in a

significant limitation. Based on the sample rate, the range gate would be limited to

approximately 6.56 m with each 2-D frame separated by 0.345 m. Fortunately the

camera has a mode of operation known as “STOP” mode. In this mode of operation,

3-D images, each with 20 frames, can be taken with various starting points for the

range gate. The 3-D image for each subsequent STOP will be formed from a separate

laser pulse and will provide an additional 8 frames of data extending the range gate

by approximately 2.76 m per STOP. Figure 2.5 illustrates how the composite image

is reassembled to achieve a longer range gate. The camera has been tested with a

total of 9 additional STOPs for a total range gate of 31 m. In this mode of operation

we are truly only limited in the sensor’s ability to quickly read and store a significant

amount of digitized data. While this research appears somewhat constrained by the

requirement of using the SULAR mode of operation, techniques such as STOP mode

mitigate this constraint.
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Figure 2.5: Assembly of Composite 3-D Image Using Two Additional STOPS.

2.3.3 Speckle Parameter Estimation and Photon Calibration.

The algorithms developed in this research are based on statistical models for the

photon arrival rates of partially coherent and incoherent light. Therefore, a calibration

of both experimental sensors was warranted. For instance, the iterative algorithms

will use a stopping criteria that depends on a comparison of the variance between

the non-noisy estimates and the measured data. Additionally, one of the algorithms

depends on the ability to calculate likelihood across a range of parameters. Therefore,

we must understand the sources of variation in the measured data, and the overall

number of photons received.

Digital cameras commonly produce images by computing a digital count that

corresponds with the photons received at the detector plane over the integration

period. Unless the camera is a true photon counting device where the digital count

is equivalent to the photons received, the statistics will be skewed. The variance of a

random variable X is defined as

�2

X

= E
⇥

(X � µ
X

)2
⇤

, (2.19)

where µ
X

is the mean of the random variable X. Modeling the received photons with
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the random variable Y , a scaling by some factor, c, will yield

Y = cX. (2.20)

In converting to camera counts, the variance of this scaled value, �2

Y

, will become

�2

Y

= E
⇥

(Y � µ
Y

)2
⇤

= E
⇥

(cX � cµ
X

)2
⇤

�2

Y

= (c2)E
⇥

(X � µ
X

)2
⇤

�2

Y

= c2�2

X

.

(2.21)

By imposing a scaling factor when converting to camera counts, the variance too is

scaled by the square of that scaling factor. Therefore, if the distribution of the light

received should be Poisson, a scaled representation of the photons received in the

form of camera counts will clearly not be Poisson.

For a camera that is measuring natural light, the conversion of camera counts is

rather simple. Since a Poisson process will have a mean equal to the variance, we

only need to find a scaling factor that allows for this condition to hold. However,

caution must be exercised to ensure that conversion is linear for the intensity range

of interest, or the non-linearity will need to be addressed. For the experimental

configuration presented in Figure 2.3, this calibration was accomplished by first taking

a series of images with the lens cap on in order to capture the variance associated

with the detector bias. A series of 100 short exposure images was then captured

for a uniformly illuminated step target. This step target captured the minimum

and maximum intensity range that we expected in our experiments. The mean and

variance were then computed for this series of images in an attempt to find the scaling

factor as shown in Figure 2.6. Fortunately the mean and variance were found to be

approximately equal for the intensity ranges we were concerned with. Given that the
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(a) Step Target (b) Pixel Mean and Variance

Figure 2.6: (a) Shows the step target used to capture the minimum and maximum
expected intensity. (b) Comparison of pixel mean and variance for a 1-D slice through
the middle of the image.

camera has a 16-bit A/D converter, intensity values can range from 0 - 65535. Our

experimentation found that as long as an individual pixel intensity remained below

2,000 camera counts, there was approximately a 1 to 1 ratio for camera counts to

photons.

With the calibration for natural light achieved, the calibration for the coherence

parameter, M, of the laser illuminator used in the 2-D experiments was possible.

Given that the partially coherent light will have a negative binomial distribution

we simply needed to find the M that minimized the Mean Square Error (MSE)

between the variance computed from (2.13) and the measured variance. For the 2-D

experiments, the remote scene was illuminated using a laser with a wavelength of

630nm and a measured coherence parameter, M = 10.

The calibration of the 3-D FLASH LADAR sensor was more complex. Previous

research has relied on a two step calibration process that was similar to what was used

for the 2-D experimental setup [47]. However, this technique depends on the ability

to collect images that are illuminated by incoherent light. This was accomplished by

pointing the sensor at a bright scene, and collecting images with the laser illumina-
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tor inhibited. Unfortunately, this technique was not possible with the 3-D FLASH

LADAR camera used for this research. It is unknown if the lens on this particular

setup used a filter to attenuate wavelengths outside of a narrow band around the laser

illuminator, as attempts to calibrate the photon to camera count ratio with natural

light were inconsistent. Therefore, a scheme was required that allowed for simultane-

ous calibration of the camera count to photon calibration and coherence parameter.

A technique was developed that uses the �2 goodness of fit test to allow for this cal-

ibration. Finally, the 3-D FLASH LADAR camera has numerous di↵erent detector

sensitivity settings that will allow the camera count to photon count calibration to

vary. Previous work with an ASC LADAR system [7], and information provided by

the manufacturer led us to believe that this system was a photon counting device.

In other words, we expected the photon to camera count conversion factor to be 1.

However, we were looking for a technique to confirm this information to be true for

the system used for this research.

Given that we can easily collect dark images with the 3-D FLASH LADAR camera

by placing a cover over the lens, it was possible to characterize the variance attributed

to the combined camera bias. The remaining variance in the images can primarily be

attributed to the collection of the partially coherent illumination. In regions of high

intensity returns within the image, the variance will be dominated by speckle noise

with a negative binomial distribution. Additionally, it is known that the shape of

the distribution is primarily determined by the coherence parameter [21]. Therefore,

a technique was derived using the chi-squared goodness of fit, or �2 test, under the

hypothesis that we could use this test to first identify a likely candidate for the

coherence parameter given the shape of the distribution. The �2 goodness of fit test

statistic, X2, is

X2 =
Z

X

z=1

(O
z

� E
z

)2

E
z

, (2.22)
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where we form an expected distribution with Z bins and O
z

is the observed number

of occurrences and E
z

is the expected number of occurrences for a particular bin.

Knowing that the reflected illumination is partially coherent, we seek to find out if

the received data are from a particular negative binomial distribution. We still have

two unknowns, the photon scaling parameter and M. However, since the shape of

the distribution is primarily determined by M, we expected that the �2 test would

reveal similar results across a range of scaling factors. We could then use the results

for M to directly calculate the scaling based on a comparison with the theoretical

variance in (2.13). If our X2 statistic is high, we can conclude that the data are not a

part of the tested distribution and accept the alternate hypothesis, H
1

, which states

we have a lack of fit. However, if our X2 statistic is low, we fail to reject the null

hypothesis, H
0

. Therefore, we are looking for the non-rejection region where we fail

to reject H
0

in order to identify the most likely value of M. In using the �2 test to

find the M that produces the best fit, we test two hypotheses

X2  �2 (1� ↵;DOF ) : Conclude H
0

X2 > �2 (1� ↵;DOF ) : Conclude H
1

,
(2.23)

with a level of significance, ↵, and the degrees of freedom determined by the number

of bins selected for the distribution [36].

We first use (2.12) to find the estimated PMF for a given value of K̄ and M. We

can then form an experimental PMF by first scaling and then taking a histogram of

the measured data. Both the scaling factor and M will be varied over a predeter-

mined range. Our research has shown that the change in the non-rejection region

with increasing scale factor values is similar to a decaying exponential. For scale

factors below the true value we get high predictions for M. However, as the scale

factor approaches and then exceeds the true value, the non-rejection region begins
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to stabilize. Upon conducting numerous simulations, our hypothesis appears to be

confirmed in that the true value of M is generally centered within the non-rejection

region once it stabilizes. This allows us to narrow down the potential combinations

of scale factor and coherence parameter significantly.

It should be noted at this point, that the primary goal of this calibration proce-

dure is to get reasonably close to the true values of photon scaling factor and M.

Additionally, we wanted to find an acceptable combination of scale factor and M that

made the collected data appear to have a negative binomial distribution. Depending

on the scale factor, some deviation from the truth in the estimates with this technique

would be expected due to the error associated with scaling also known as quantization

error. Further, as observed in Figure 2.2, as M grows, minor deviations in M have

little impact on the shape of the distribution. Experimental results demonstrate that

minor deviations in both the photon scaling factor and M have minimal impact on

the final results produced by the algorithms presented in this dissertation. Once the

likely region for M is identified, we can compare the scaled variance for the measured

data according to (2.21) with the theoretical variance according to (2.13).

The following is a demonstration of the aforementioned calibration technique on

simulated data. In each of the three simulations, 1000 independent samples with

a negative binomial distribution were generated. The data were then divided by

the scale factor to represent simulated camera count data. Table 2.3 presents the

true and estimated values for scaling and M for each of the three trials. Figure 2.7

Table 2.3: Scaling and Coherence Calibration Simulation.

True Parameters vs. Estimates
Trial # Scale Factor Coherence Parameter

True Estimate True Estimate
1 3 3 150 150
2 2 2.1 250 235
3 5 5.2 200 200
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presents the findings from each of the primary steps listed above. For each of the

trials, the hypothesis test was conducted for a range of scale factors from 1 - 20 and

a range of M values from 1 - 500. The true value for M was then chosen from the

center of the stabilized non-rejection region. Using this value for M we also show

the point of intersection between the theoretical variance and the measured variance

for observations over a range of scale factors. The estimated scale factor to convert

camera counts to photons is the point of intersection.
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(a) scale factor = 3, M = 150 (b) scale factor = 3, M = 150

(c) scale factor = 2, M = 250 (d) scale factor = 2, M = 250

(e) scale factor = 5, M = 200 (f) scale factor = 5, M = 200

Figure 2.7: In this demonstration, the regions in red are where the null hypothesis can
be rejected. The regions in blue are where we fail to reject the null hypothesis. The
white box indicates the scale factor and M from which the results are based. The plots
on the right hand side show the intersection of the measured variance and theoretical
variance for a range of scale factors.
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Experimental measurements generally consisted of 144 3-D images. Based on

the simulations presented in Figure 2.7 and the limited number of samples available,

we expected a wider non-rejection region as shown in Figure 2.8(a). However, we

were able to find a reasonable range for M that had negligible impact on the overall

results. Based on the simulation results, we expect that more samples might enable

a tighter bound on the prediction. Unfortunately, the time required to collect this

data would likely introduce additional inconsistencies in the data that would need

to be addressed. Based on the results in Figure 2.8, we expect that the camera is

(a) Hypothesis Test Results (b) Scale Factor Estimation

Figure 2.8: Hypothesis test performed on data collected with ASC 3-D FLASH
LADAR sensor. Data exhibits a similar trend to what was shown in simulation. The
regions in red are where the null hypothesis can be rejected. (a) The non-rejection
region appears to stabilize centered on a coherence parameter of 195. (b) Given a
coherence parameter of 195, the scale factor is approximately 1.

a photon counting device with a M of approximately 195. Varying the value of M

from 100 to 300 will vary the scale factor from 1.3 to 0.8 respectively. However, in all

cases where we fail to reject the null hypothesis, the collected data exhibit negative

binomial characteristics with the specified scaling and coherence parameter.

As a final note, it would likely be preferential to calibrate the sensor during the

design process. For instance, the detector could be calibrated with incoherent il-

lumination and a separate calibration could be performed on the coherence of the
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laser illuminator. The technique described above using the �2 test should be e↵ec-

tive in scenarios where prior calibrations are not available. However, caution must

be exercised to avoid distorting the variance measurements due to imperfect image

registration. Any registration errors will cause a spike in the measured variance as

shown in Figure 2.6 at the edge of the step target. Therefore, we want to make our

calibration measurements near largely uniform areas within the target.
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2.4 Iterative Algorithm Stopping Criteria

A common challenge with iterative algorithms and a topic that has generated a

significant amount of recent research involves the selection of a stopping criteria [2],

[12], [19], [56]. The research conducted by MacManus and presented in Chapter III

depended primarily on the stopping criteria to arrive at an estimate for Fried’s Seeing

Parameter, r
0

. In the multi-surface ranging algorithm detailed in this dissertation, a

key feature is the ability to maximize likelihood for the correct value of r
0

. However,

since likelihood will increase with each iteration even if the wrong value of r
0

is

selected, we may find situations where likelihood is higher for a fixed number of

iterations with the wrong r
0

than it is for the correct value of r
0

. This likely has to

do with the rate at which the algorithm converges. Based on experience with the

algorithms, higher values of r
0

generally allow faster convergence than lower values.

However, if the algorithm is allowed to iterate for too long, we can distort the results.

In the algorithms employed for both 2-D and 3-D parameterized blind deconvo-

lution, the model for the received image considered a mean intensity convolved with

a PSF and further degraded by some additive amount of noise. We can solve for the

mean level of this noise. However, if the iterative algorithms are not stopped at the

appropriate time, the estimates for image intensity will ultimately be distorted by

trying to fit an estimate to the noise. This research will employ a Convergence of

Variance (CoV) technique for the stopping criteria. This technique has been employed

in similar research in the past with success [45], [48]. The data model is provided in

Figure 2.1. Given this relationship, iterations will continue until the MSE between

the collected data and the image estimate is lower than the estimated data variance.

For a 3-D image this criteria can be represented as

K

X

k=1

M

X

u,v=1

(d (u, v, r
k

)� I (u, v, r
k

))2 <
K

X

k=1

M

X

u,v=1

V (u, v, r
k

), (2.24)
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where V is the estimated data variance. At this point we can assume that any further

iterations would only serve to fit the estimates to the noise, invalidating the model

used.

Multiple techniques exist for identifying the estimated data variance. First of all,

we could directly compute the variance if we have a series of images taken of the

same scene. Alternatively, if the sensor can be accurately calibrated and we have

an understanding of the nature of the light being detected, we can mathematically

predict the estimated data variance. Given a partially coherent illumination source,

the noise in the images will likely be dominated by speckle noise where the image

variance can be accurately modeled with the negative binomial PDF [58]. Therefore,

the expected variance for each image pixel and range slice would be

V
NB

(u, v, r
k

) = d
NB

(u, v, r
k

)



1 +
d
NB

(u, v, r
k

)

M

�

, (2.25)

where

d
NB

(u, v, r
k

) = d (u, v, r
k

)� B (u, v) . (2.26)

Further refinement can be given to this model when the variance of the detector bias

is also considered. In FLASH LADAR, detector bias can be measured by taking

images without firing the laser and is generally modeled with the Poisson PMF [58].

Therefore the overall variance would be

V (u, v, r
k

) = B (u, v) + V
NB

(u, v, r
k

) . (2.27)

The actual distribution of the variance will be sensor dependent; however, the model

in (2.27) accurately approximated the variance of the calibrated 3-D FLASH LADAR

sensor used for the experimentation in this research.
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2.5 Seeing Parameter Measurement from Collected Imagery

In Figure 2.9 we demonstrate the ability to measure r
0

by measuring the step

response from the collected image. The impulse response is then found by taking the

derivative of this measured step response. Once we have the impulse response we

can vary r
0

per the relationship in (2.9) to find the theoretical total OTF that min-

imizes the error between the measured impulse response and the theoretical impulse

response. This demonstration was accomplished by blurring a perfect step target

with an average short exposure OTF using an r
0

of 0.0015m.
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(a) Step target without blur (b) Blurred step target

(c) Step response (d) Impulse response

(e) Measured frequency response

Figure 2.9: (a) Step target without any blur. (b) Step target blurred using a short
exposure OTF with an r0 of 0.0015m. (c) Measured step response by looking at the
horizontal change in intensity. (d) Impulse response computed by taking the first
derivative of the step response. (e) Frequency response computed by taking the Fourier
transform of the impulse response.
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2.6 Previous Research

The following section will summarize and contrast previously published research

on topics pertaining to this dissertation. On the specific topic of parameterized blind

deconvolution with multi-surface ranging, no other research could be found. However,

this dissertation levied ideas from several sub-topics in the final formulation of the

overarching research goal.

2.6.1 Blind Deconvolution.

The importance of image deblurring is evident based on the wealth of research

conducted on the topic of blind deconvolution. Due to the ill-posed nature of blind

deconvolution with 2-D images, it is mathematically impossible to directly solve for

the PSF impacting collected images when noise is present [38]. Despite this hurdle,

numerous algorithms have been developed to circumvent these mathematical chal-

lenges with considerable success by making various assumptions or approximations

[5], [11], [25], [35], [37], [61], [60], [64] and [68]. While the problem can be extremely

challenging with 2-D images, Millane et al. realized that working with 3-D images

presented the potential to reduce common constraints such as sensor sampling re-

quirements and convergence time on iterative algorithms [49].

Complexity of the algorithm, applicability to certain classes of blurring functions

and the time required to perform the necessary operations are common concerns

associated with blind deconvolution algorithms. Kundur and Hatzinakos authored

a pair of articles that provide an exceptional summary of the challenges associated

with blind deconvolution and the various strategies commonly employed [33], [34].

The articles highlighted numerous considerations for image processing applications

that will directly a↵ect this research. First, due to the ill-conditioned nature of the

problem, small perturbations in the received data can lead to large deviations in the
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estimates produced by various algorithms. As an extension to this concept, noise

amplification is especially likely [15]. This research reduces the issues associated

with noise amplification through selection of an iterative algorithm stopping criterion

based on noise variance, and application of a constraint on the amplitude. Another

common issue with blind deconvolution is that multiple solutions are likely to exist

[4], [29]. This research will minimize the chances for convergence to an undesirable

solution through educated initialization and applied constraints.

In many remote sensing applications, processing time and complexity are the

primary design considerations for an algorithm. As an example, the APEX method

is a non-iterative, blind deconvolution technique that can enhance certain classes of

imagery in near real time [8], [9]. The technique operates on a restricted class of

blurs, in the form of 2-D radially symmetric, bell-shaped, heavy-tailed probability

density functions. While this technique is very e↵ective on certain classes of imagery,

it does not provide an estimate of r
0

as given in the CoV technique. A comparison of

this work to the CoV technique was provided in [45]. As previously mentioned, the

ability to recover r
0

has applicability beyond the primary focus of conducting blind

deconvolution.

The work reported on in [10] and [17] is significant because it shows the value of

the Richardson-Lucy (RL) Filter for iteratively deblurring images. Variations on this

technique are employed throughout this research in conjunction with OTFs param-

eterized by r
0

. One technique for simplifying this problem considers a parameteri-

zation of the OTF [41], [43] and [45]. This work will extend the concepts presented

by MacDonald and MacManus to show that working with 3-D images presents new

opportunities that were previously mathematically ill-posed as theorized by Millane

[49].

The parameterized OTF is chosen to simplify the structure of the unknown blur-
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ring function to a certain class of atmospheric models. The goal of this simplification

is to make the algorithm more suitable for implementation in a tactical environment

where near-real-time operation is required. When using MCFA compilations of im-

ages where each individual image has an exposure time of less than 1

100

of a second,

the average short-exposure OTF, H̄
SE

, is reduced to a function of a single unknown

parameter, Fried’s seeing parameter, r
0

, as shown in (2.10). A similar average OTF

has been discussed for the long exposure case (2.11) as well. While there are benefits

to using long-exposure imaging in certain scenarios such as astrophotography, the loss

of frequency content is often an undesired side-e↵ect. In a tactical military scenario

or any other dynamic environment, it would be impractical if not impossible to point

a sensor at a target long enough to warrant the use of long-exposure imaging.

Figure 2.10 compares the frequency response that is di↵raction limited, to the

frequency response considering a long and short-exposure OTF for two levels of at-

mospheric seeing. It is evident from a frequency content standpoint that there are

inherent benefits with using properly registered short-exposure images. The param-

eters for this demonstration were chosen to match those in Table 2.1 that will be

employed to obtain the experimental results shown in Chapter III. As expected, the

short-exposure OTF is very close to the di↵raction limited OTF when r
0

= 5 cm.

However, the long-exposure OTF reveals a significant attenuation in high frequency

content. Higher levels of turbulence yield a higher loss in frequency content for the

long-exposure scenario, and significant attenuation of high frequency content for the

short-exposure scenario as shown in Figure 2.10(b).

One of the primary benefits associated with parameterized blind deconvolution is

computational e�ciency. While the most significant improvement is realized through

deconvolution with the actual instantaneous OTF, simultaneously computing the in-

stantaneous OTF and deblurring an image is computationally intensive. However,
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(a) OTF Comparison for r
0

=5 cm (b) OTF Comparison for r
0

=2 cm

Figure 2.10: (a) Comparison of the frequency response for this sensor given a D/r0

ratio of 1. (b) Comparison of the frequency response for this sensor given a D/r0 ratio
of 2.5.

this research will show that deconvolution with an average theoretical model for the

OTF can produce significant gains in image quality while reducing the computational

burden. Additionally, in scenarios where the average atmosphere remains relatively

constant, the problem can almost be treated as a deconvolution problem rather than a

blind deconvolution once the initial parameterized blind deconvolution is completed.

2.6.2 Multiple Surface Ranging.

Variations of LADAR technology have proven useful in a myriad of civilian and

military applications. Common civilian uses are 3-D mapping of surfaces, autonomous

vehicle navigation and forestry classification. Military applications include tasks such

as targeting and autonomous aerial refueling. Current military application may be

limited due to sensor capability; however, as the technology improves, additional

emphasis will be given to incorporating LADAR onto new or existing platforms.

Previously conducted research and the demonstrated ranging accuracy of LADAR

systems have forged an interest in a myriad of defense applications.

Currently there is a significant desire within the Department of Defense (DoD) and
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DHS to employ a 3-D imaging sensor. Provided spatial resolution can be improved to

be comparable with currently employed passive sensors, 3-D FLASH LADAR technol-

ogy is a likely successor. One of the primary motivators for this move is that previous

simulations and experiments with both ALS and FLASH systems have demonstrated

the ability to image through foliage canopies, camouflage netting or various other

obscurations.

In LADAR imaging, a common method for obtaining the ranges to multiple sur-

faces per detector is to fit a Gaussian mixture (2.2) to the received pulse through the

use of various techniques such as an EM algorithm [6], [27], [55] and [67]. Hernández

et al. developed a multiple surface ranging algorithm that relied on reversible jump

Markov chain Monte Carlo techniques [24]. While their work shows great promise

for many applications, the complexity of the algorithm does not lend itself to near

real time image processing. Additionally, most algorithms operate on each pixel in

isolation and do not consider the spatial or temporal e↵ects from interaction with

neighboring surfaces. While the techniques may give additional insight to candidate

ranges for an image, depending on the severity of the di↵raction e↵ects, the surfaces

visible in the collected data may vary significantly from reality. The primary goal of

this portion of the research was to develop an EM solution which could accurately

discriminate the range to multiple true surfaces per pixel while discarding false re-

turns due to di↵raction. Since we are considering statistical independence for each

detector in the APD array, and the received pulse is a composition of temporally

displaced Gaussians, ideas and techniques for pulse estimation can be leveraged from

numerous other disciplines. Gaussian decomposition has applications in nearly any

case where the collected data can be decomposed into numerous subsets, each with

an approximately normal distribution.

Fortunately Gaussian decomposition or mixture modeling is studied a great deal
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in the literature, but numerous challenges are commonly cited with reference to de-

veloping an estimator for the Gaussian mixture. Expectation Maximization (EM) is

a common technique employed to isolate the parameters of interest in the received

data [24], [46]. Zhuang points out that common challenges are employing estima-

tors when the number of components in the mixture are unknown, or when mixture

components may merge due to their individual parameters [69]. Vlassis and Nikas

approached the first problem with a greedy EM technique. They performed an it-

erative process where the number of components was incrementally increased until

the number corresponding with the solution with the highest likelihood was obtained

[66]. With 3-D FLASH LADAR, this process could be extremely time consuming as

the number of components grows, therefore making this an impractical solution for

this work. Rather, this research will propose the establishment of an upper bound,

and then refining the estimate based on pulse parameter estimates.

The approach employed for multi-surface ranging is similar to the EM approach

derived by Dolce for fusing 2-D and 3-D LADAR data [16]. However, the work is not

equivalent because Dolce’s work does not account for the possibility of multiple sur-

faces per pixel, nor does it provide an estimate for the pulse amplitude or pulse width.

Dolce’s algorithm was only concerned with a single pulse detector. For this reason,

he was able to use the amplitude received from the Richardson-Lucy deconvolution

of the 2-D image. However, since we would like to solve the problem where multiple

surface returns may be received by each detector, we will not have that luxury. An

interesting topic for future research would be to combine the work presented in this

dissertation with the work conducted by Dolce.

A considerable amount of previous research focused on LADAR technology has

been devoted to enhancing the capability of ALS systems such as in [28], [32], [46]

and [63]. One advantage for ALS sensors, is that their spatial resolution is primarily
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determined by the system’s ability to finely scan over the target area and accurately

reconstruct the received pulses into an image. Mallet and Bretar provide a good sum-

mary of various techniques and successes that have been realized with this technology

with respect to multiple surface ranging [46]. Unfortunately, ALS systems commonly

require a considerable amount of time to form an image, and the targeted scene must

remain fairly constant during the imaging period. In addition to the constraints on

the targeting area, ALS sensors also su↵er from added complexity due to the require-

ment for a tracking and stabilization system. As pointed out by Halmos, one of the

primary driving factors for the interest in FLASH systems is that “size can be dra-

matically reduced by eliminating the stabilization subsystem that can be a large part

of the LADAR implementation cost and size” [23].

As 3-D FLASH technology improves, the benefits of ALS systems without the

detractors may be possible. In addition to the research tailored specifically to ALS

systems, the following work has been devoted to multiple surface ranging with FLASH

or hybrid systems. By gathering polarization information from various surfaces in con-

junction with 3-D FLASH LADAR data, Murray demonstrated that multiple surfaces

could be discerned. Additionally, the undesired obscuration could be discarded based

on a priori knowledge of the polarization of the desired surface [50]. In addition to

the more common imaging through camouflage applications, Gelbart et al. used a

FLASH system to image through ocean environments to demonstrate the ability to

detect sea mines or obstructions that may impact a beach landing. Gelbart ascer-

tained the number of surfaces in the received data by counting the zero-crossings of

the first derivative of the received pulse [18]. An observation in common with both

e↵orts was that the spatial resolution for collected images was poor due to hardware

limitations and complexity of the detector array. As a proof-of-concept, the JIG-

SAW LADAR sensor developed for the Defense Advanced Research Projects Agency
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(DARPA) used a hybrid of both FLASH and ALS technology. By scanning with

an 8⇥128 detector array, the sensor could rapidly obtain a 304⇥256 3-D image [40].

While the spatial resolution of this system was an improvement, the added complex-

ity and increase in hardware associated with tracking and image stabilization would

likely limit the technique’s utility for many applications where size is an important

design consideration.

The previously mentioned research highlights the potential advantages of employ-

ing 3-D LADAR or more specifically 3-D FLASH LADAR on future sensor platforms.

Common among each of the previously mentioned e↵orts is the lack of addressing the

e↵ects of imaging through a turbid medium. The techniques and associated systems

have demonstrated the ability to identify multiple surfaces per detector. However, no

previously developed algorithm has been identified that accounts for the spatial mix-

ing associated with the lowering of the spatial frequency cuto↵, and how it impacts

multi-surface ranging. As sensors improve in maximum attainable spatial resolution,

this impact will only become more pronounced.

2.6.3 3-D FLASH LADAR Image Enhancement.

Recent work conducted at Utah State University focused on improving the ability

to perform Automated Target Recognition (ATR) with 3-D LADAR images [54].

The focus of this research was to use post processing techniques to enhance the

resolution of surface edges through multi-surface ranging techniques. While the focus

of the research has similar goals, there were several underlying assumptions that

reduce the applicability to the specific problems being addressed in this dissertation.

Perhaps the most di�cult assumptions to overcome are, that the range, intensity,

and pointing direction of each return was known and that the surfaces were assumed

to have constant reflectivity and a Lambertian bi-directional reflectance distribution
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function.

Likely the most similar research to what is presented in this dissertation was

produced by McMahon [47], [48]. McMahon’s work was the only previous research

that could be found with a focus on improving or restoring the images collected

through blind deconvolution. He found that by using the range diversity present

in 3-D FLASH LADAR images, he could simultaneously solve for the instantaneous

OTF and an enhanced model for the 3-D image. Several di↵erences exist between his

research and what is presented in this dissertation. First and foremost, McMahon’s

work only accounts for a single surface per detector. He ultimately proposes the

topic of multi-surface ranging as future research. Additionally, he produces estimates

for the instantaneous OTF rather than the parameterized average OTF. While this

technique has application where post-processing can be conducted, it is likely too

complex to be conducted in a near real time fashion.

Based on the similar structure of the iterative algorithm developed by McMa-

hon [48] and the Multi-Surface Including Di↵raction (MSID) algorithm presented in

Chapter IV, we can compare rough estimates on the computational power required

for each iteration. Likely the most complex mathematical component in each algo-

rithm is the computation of the 2-D Fast Fourier Transform (FFT) or 2-D inverse

Fast Fourier Transform (iFFT). The remaining operations are simply pixel-by-pixel

additions, multiplications and divisions. The 2-D FFT can be used to e�ciently per-

form convolution by multiplying the 2-D FFT of both components and then taking

the 2-D iFFT of the result. Similarly, the use of 2-D FFTs and iFFTs can also be used

to speed up the correlation operations throughout the algorithms by also taking the

complex conjugate of one of the two components. Given the solutions for the pulse

shape, PSF, gain and bias derived by McMahon [48], each iteration will take three 2-

D iFFTs, and six 2-D FFTs. For each level of seeing tested, an iteration of the MSID
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algorithm can be completed with just two 2-D iFFTs, and two 2-D FFTs. This results

in a roughly 56% decrease in processing time per iteration for the MSID algorithm.

As we will discuss in Chapter V, parameterized blind deconvolution in conjunction

with the MSID algorithm is performed in a search routine. However, with the use of

parallel processing and enough available processing threads, the search routine could

be accomplished in roughly the same time that a single level of atmospheric seeing

could be tested.

A final contrast with the research conducted by McMahon is that his work does

not produce direct estimates for all of the pulse parameters. Rather, he produces

a refined estimate for the pulse, and then employs a ranging algorithm separately.

Despite the di↵erences, McMahon’s work established a solid foundation from which

the research in this dissertation is derived.
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III. Convergence of Variance for Seeing Parameter

Estimation

In this chapter, two previously developed image reconstruction algorithms are

presented that will remove the e↵ect of atmospheric turbulence on 2-D images. While

neither of the algorithms presented in this chapter are novel, this chapter will consist of

an expansion upon previous findings and a discussion / demonstration of the potential

challenges with applying the techniques to 3-D imagery. The primary focus of this

portion of research was to identify a blind deconvolution technique that could be

employed in a tactical military environment where both time and computational

power are limited. Additionally, the following techniques have application in the

measurement of atmospheric seeing conditions. In a blind deconvolution fashion, the

algorithms simultaneously compute a high resolution image and an average model for

the atmospheric blur parameterized by Fried’s seeing parameter.

Convergence of Variance (CoV) presented in Section 2.4 as a stopping criteria has

been incorporated with success in various blind deconvolution algorithms [44], [48].

MacManus later demonstrated that CoV by itself allowed for identification of the best

model for the PSF parameterized by r
0

[45]. The novelty in his approach was that

it did not assume a prior distribution for the seeing parameter, rather it assessed

the convergence of the image’s variance as the stopping criteria and identification of

the proper seeing parameter from a range of candidate values. Experimental results

show that the CoV technique allows for estimation of the seeing parameter accurate

to within 0.5 cm and often even better depending on the signal to noise ratio.

This chapter is organized as follows: Section 3.1 presents background material on

image deconvolution and the challenges associated with blind deconvolution, in Sec-

tion 3.2 the two techniques will be compared on a variety of artificially blurred images,
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Section 3.3 demonstrates the value of the CoV technique on actual collected imagery

and Section 3.4 presents considerations and challenges associated with extending this

technique to 3-D imagery.

3.1 Image Deconvolution

The process of deconvolution is commonly performed on collected images, i, that

are degraded by a PSF and noise. The goal of the process is to recover the true

representation of the remote scene. The notation for the image model in this chapter

will di↵er slightly from Chapter II. In this chapter we are primarily concerned with

2-D images. In the 2-D case, the model for the received data, d, is the convolution of

the remote object, o, with the PSF, h, with an additive amount of noise, n, as shown

in

(o⌦ h) + n = d. (3.1)

For the 2-D case, we are simply accounting for a received intensity during the detec-

tors integration time rather than trying to account for the entire pulse shape reflected

o↵ of the remote scene. As previously mentioned, there are a plethora of algorithms

designed to aid in this problem. Perhaps the most widely accepted or recognized algo-

rithm for image deconvolution when the collected images follow a Poisson distribution

is the RL algorithm.

3.1.1 Richardson-Lucy Deconvolution Algorithm.

One of the key benefits of the RL algorithm,

ô (x, y)
new

= ô (x, y)
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X

u
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d (u, v)
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I (u, v |r
0

) = E [d (u, v)| r
0
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y

ô (x, y)h (u� x, v � y |r
0

), (3.3)

for a wide variety of imaging applications in the presence of Poisson statistics, is that

if the algorithm converges, it will converge to the MLE [39], [62]. In (3.2), ô is an

estimate for o and I is the expected value of the intensity received at each detector

pixel given a specific PSF. Since (3.2) is an iterative algorithm dependent upon previ-

ous estimates for the image, ô (x, y)
old

, we must provide some sort of initialization to

the algorithm. Typically, the initial value for the image estimate is just set to equal

the collected data.

A commonly cited drawback to the RL algorithm is the noise amplification that

occurs as the number of iterations increases [10], [15]. Noise amplification is a com-

mon problem with iterative ML algorithms where the algorithm is attempting to fit

the estimate to a particular distribution as closely as possible. Therefore, we must

stop iterations before noise amplification occurs. Clearly this could be accomplished

interactively by the user; however, for an automated or blind routine, any required

user interaction would be undesirable. The method proposed in this work will rely

on the convergence of the estimate of the noise power and the predicted variance of

the collected data to cease iterations.

3.1.2 Blind Estimate of Seeing via Maximum a Priori Technique.

The idea of using the RL algorithm in a blind fashion to de-blur an image was

previously presented by Fish et al. [17]. However, their work did not employ the

theoretical models for the long and short-exposure transfer functions parameterized by

r
0

[21]. Perhaps the most similar work to this portion of the research was accomplished

by MacDonald. He developed a blind technique that was iterative in nature like the
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RL algorithm, yet he considered a priori information for images distorted by speckle

noise following more of a negative binomial distribution [44]. MacDonald considered

a priori information for the distribution of r
0

in hopes of maximizing the likelihood

at the appropriate level of seeing.

Assuming the collected image can be approximated with the Poisson PMF, and

if we assume independence of the measurements for every pixel in the detector array,

we can state the joint probability of the observed noisy image, i, as

p [I = d (u, v) ; 8 (u, v)] =
Y

u

Y

v

I (u, v |r
0

)d(u,v) e�I(u,v|r0 )

d (u, v)!
. (3.4)

Ideally, we would like to maximize the likelihood or log likelihood

L (r
0

) =
X

u

X

v

[d (u, v) ln [I (u, v |r
0

)]� I (u, v |r
0

)� ln [d (u, v)!]], (3.5)

over a range for r
0

to identify the appropriate PSF. Unfortunately, likelihood contin-

ually increases with r
0

as illustrated by the following example in Figure 3.1. While

the RL algorithm maximizes likelihood for a given PSF, the ML solution over a range

of r
0

values does not necessarily occur when the correct PSF parameterized by r
0

is

chosen. This is the direct problem that MacDonald sought to solve by introducing a

priori information for the distribution of r
0

.
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(a) Original Image (b) Blurred Image (r
0

=2.5 cm)

(c) Log Likelihood

Figure 3.1: (a) The original image without the added e↵ects of atmospheric blurring.
(b) The image that would be received by a sensor with the specifications listed in Table
3.1 given an r0 of 2.5 cm. (c) Likelihood as a function of r0. Zooming in on the plot of
likelihood vs. r0 will show a gradual increase in likelihood with increasing r0.
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MacDonald hypothesized that a distribution could be applied to the value for r
0

based on the intuitive observation that the seeing is seldom extremely better than

the average and can often be worse. The form of the probability density function for

the random parameter r
0

was assumed to be

f
R0 (r0) =

"

e�M

2
(r0/ravg)

r
avg

/M2

#

, (3.6)

where r
avg

is the average atmospheric seeing, and M2 is the number of pixels in

the detector array. In situations where r
avg

is unknown, we initialize the value to be

equal to the aperture diameter [41]. We can then execute the likelihood maximization

strategy produced by MacDonald. If the value of r
0

that maximizes likelihood is less

than the initialized value for r
avg

, we set the value of r
avg

to the new r
0

estimate

and recompute the estimate for r
0

. We continue this process until the estimate for

r
0

is equal to r
a

vg. When applying this technique to the example illustrated in

Figure 3.1, we see that likelihood is maximized near the correct value of r
0

as shown

in Figure 3.2. While the technique is successful in this scenario, two mathematical

(a) Prior for r
0

(b) Log Likelihood Using the Prior for r
0

Figure 3.2: (a) Log likelihood of the exponential prior as a function of r0. (b) Overall
log likelihood with the addition of the prior. With the addition of the prior, likelihood
is maximized for the correct value of r0.
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challenges remain. First, the choice of an exponential distribution for r
0

is probably

inaccurate. Extremely low values of r
0

are expected to be nearly as unlikely as high

values. Second, the e↵ect of scaling the exponential density function by the number

of pixels in the detector array is di�cult to justify for partially illuminated scenes

such as astronomical images. The CoV technique will remove the requirement for the

prior distribution on r
0

and allow us to directly converge to the correct value.

3.1.3 Blind Estimate of Seeing via CoV Technique.

The CoV technique works on the premise of searching for the best possible PSF

parameterized by r
0

in the amount of time available for processing. Given more time,

the technique will provide a more refined estimate for r
0

. We will first explain this

technique in more detail using the assumption that the images collected follow the

Poisson model. Later we will demonstrate the technique using images that follow a

negative binomial noise model. Ultimately, the technique should work regardless of

the noise distribution assuming the correct iterative deblurring algorithm and con-

vergence criteria are used.

This technique relies on detecting the point where the MSE between the collected

data and the image estimate is lower than the estimated data variance. At this point

we can assume that any further iterations would only serve to fit the estimates to the

noise. In other words, for 2-D images, iterations would cease when

X

u

X

v

(d (u, v)� I (u, v))
2

<
X

u

X

v

V (u, v), (3.7)

where V is the actual image variance. Assuming the collected MCFA follows Poisson

statistics, the deblurring algorithm employed would be the Richardson-Lucy algo-

rithm in (3.2), and

V (u, v) = d (u, v) . (3.8)

57



The relationship in (3.8) is allowed since the assumption can be made that the inten-

sity captured by each detector is independent of other detectors, and each intensity

can essentially be thought of as an independent Poisson random variable. The sum-

mation of these random variables is therefore a good approximation for the total

image variance.

Due to the photon counting nature of many imaging applications, the Poisson dis-

tribution is often employed as a statistical distribution for the detected images. How-

ever, due to the highly coherent nature of laser light, images detected by a LADAR

sensor often follow more of a negative binomial distribution. Fortunately, the robust-

ness of the CoV technique allows for employment in this scenario as well. MacDonald

derived an iterative MLE where the noise is dominated by laser speckle as

ô (x, y)
new

= ô (x, y)
old

P

u

P

v

⇣

d(u,v)

I(u,v|r0)h (u� x, v � y| r
0

)
⌘

P

u

P

v

⇣

d(u,v)+M
M+I(u,v|r0)h (u� x, v � y| r

0

)
⌘ , (3.9)

where M is the coherence parameter of the light [44]. Using the deblurring algorithm

in (3.9), we would again iterate until the relationship in (3.7) is satisfied where

V (u, v) = d (u, v)



1 +
d (u, v)

M

�

. (3.10)

The diagram in Figure 3.3 demonstrates how this technique could be employed in

an operational scenario where processing time and computational power are limited.

In this scenario, images are collected and fed into the r
0

estimation process. At any

point in time, the best possible estimate for r
0

can be drawn upon for deblurring

an image. However, in parallel, the r
0

estimation loop will continue to work on

characterizing the current atmospheric seeing conditions. One of the key advantages

to this algorithm is that it is easy to parallelize. Even with a common home computer
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Figure 3.3: Potential employment scenario for the CoV technique, where the r0 esti-
mation loop is allowed to continually execute on recently collected images. The most
recent estimate for r0 can then be fed to an iterative deblurring algorithm to provide
rapid results to the user.

that has a multi-core processor, it is possible to simultaneously test multiple values of

r
0

for convergence. The r
0

to employ in the deblurring algorithm would be the lowest

value of r
0

for which (3.7) is satisfied. As MacManus pointed out and as indicated

in Figure 3.4, we can also further enhance the process by first conducting a coarse

estimate of r
0

followed by a more refined estimate [45]. MacDonald references the

employment of a convergence test for ceasing iterations in his algorithm; however, it

is apparent that he did not utilize this test as a su�cient criteria for identifying the

correct value of atmospheric seeing [41]. As previously mentioned, if allowed su�cient

time, the relationship in (3.7) will be satisfied for the correct r
0

and all values higher.

Given adequate SNR in the measured images, the criteria will never be attained for

low estimates of r
0

. The following sections will demonstrate the employment of this
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Figure 3.4: In this demonstration, the true value for r0 is 4.3 cm. However, the
algorithm first converges at 5 cm using a 1 cm/step course search. It then accomplishes
a 0.1 cm/step fine search to converge to the true value at 4.3 cm.

technique on images with Poisson and negative binomial noise to show that a priori

information is not required to achieve accurate estimates for r
0

.

3.2 Simulation

The following results will demonstrate the utility of the CoV technique and com-

pare the results to the MAP algorithm developed by MacDonald for images with

Poisson and negative binomial noise. The optical specifications listed in Table 3.1

and used for the simulations were not limited to what could readily be obtained for

experimentation. Rather, the specifications were chosen to mimic what could po-

tentially be incorporated into a targeting pod design based on size limitations. The

specifications will allow for properly sampled images according to (2.7). We will first

consider simulation results using a fully illuminated scene. We will then simulate

conditions for astrophotography where the scenes are only partially illuminated.
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Table 3.1: Simulated System Specifications.

Parameter Name Defined Value
Mean wavelength (�̄) 600 nm

Pixel size 5 µm ⇥ 5 µm
Sensor focal length (f

l

) 3 m
Aperture diameter (D) 15 cm

Coherence Parameter (M) 30

3.2.1 Fully Illuminated Scenes.

In this section we will present results from images that are fully illuminated. By

fully illuminated, we mean that the overwhelming majority of the scene is not dark,

and contains varying levels of contrast. Recall that MacDonald’s algorithm defined a

prior for r
0

of exponential form scaled by the total number of pixels in the detector

as shown in (3.6).

In the following examples, the cameraman photo built into MATLAB R� is blurred

using a total OTF that is the product of the di↵raction limited OTF and an aver-

age short-exposure OTF with various levels of r
0

. Multiple trials will be conducted

with MCFA images composed of 1, 10, 20, 30, 50 and 100 individual frames with

independent realizations of Poisson noise to demonstrate the e↵ects of SNR on each

algorithm. The original, blurred and an example of a recovered image are shown in

Figure 3.5. In order to implement MacDonald’s algorithm, we either need an initial

estimate on the average value for atmospheric seeing, r
avg

, or we can initialize it to

the aperture diameter if no estimate can be made. For purposes of fair comparison,

we will assume that no prior estimates are known for atmospheric seeing, and r
avg

will be initialized to the aperture diameter.

Table 3.2 shows that the CoV technique and MacDonald’s algorithm produce

nearly identical results with the only exceptions highlighted in bold. MCFA images

consisting of more frames take longer to converge due to the higher intensities at each

61



Figure 3.5: In this demonstration, the true image (left) is blurred with an average
short-exposure OTF with an r0 of 2.6 cm. The blurred/noisy image (center) is the
summation of 30 individual frames with independent realizations of Poisson noise. The
image estimate (right) was obtained using the best estimate of r0=2.6 cm with the cap
on the number of iterations set to 5000 for the CoV technique.

pixel associated with the summation of individual frames. While the algorithm does

not always converge to the true value of r
0

, the estimated value was always within

0.5 cm of the true value. The estimates for r
0

often appear to be lower than the

true value, and this is likely due to the algorithm’s attempt to remove minor focus

errors that were not accounted for when assigning the image as truth data. The

PSF arising from minor focus error will blur the image in a way that may not be

easily distinguished from an atmospheric blur [70]. Therefore minor focus error could

contribute to the low estimates for r
0

. Additionally, a large portion of the scene

consists of background objects that are likely a↵ected by a lower r
0

than what is in

the foreground. Therefore the CoV technique is likely attempting to account for this.

This assessment is drawn from and supported by the fact that, provided we have an

adequate SNR, the ideally simulated scenes in Section 3.2.2 never converge below the

true value regardless of the number of iterations the algorithm is allowed to perform.
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Table 3.2: Results for Fully Illuminated Image Simulation with Poisson Noise (True
r0 = 2.6 cm). Results in Bold Indicate the Algorithm that Performed Worse for a
Particular Scenario

Max Iterations Allowed - 1000
Frames SNR (dB) MAP Estimator (cm) CoV (cm)

Result Error Result Error
1 41.5 2.4 -0.2 2.4 -0.2
10 51.5 2.7 0.1 2.7 0.1
20 54.5 2.8 0.2 2.8 0.2
30 56.2 2.9 0.3 2.9 0.3
50 58.4 3.0 0.4 3.0 0.4
100 61.5 3.2 0.6 3.1 0.5

Max Iterations Allowed - 5000
Frames SNR (dB) MAP Estimator (cm) CoV (cm)

Result Error Result Error
1 41.5 2.1 -0.5 2.2 -0.4
10 51.5 2.4 -0.2 2.4 -0.2
20 54.5 2.5 -0.1 2.5 -0.1
30 56.2 2.5 -0.1 2.6 0
50 58.4 2.6 0 2.6 0
100 61.5 2.7 0.1 2.7 0.1

Max Iterations Allowed - 10000
Frames SNR (dB) MAP Estimator (cm) CoV (cm)

Result Error Result Error
1 41.5 2.1 -0.5 2.1 -0.5
10 51.5 2.3 -0.3 2.3 -0.3
20 54.5 2.4 -0.2 2.4 -0.2
30 56.2 2.4 -0.2 2.4 -0.2
50 58.4 2.5 -0.1 2.5 -0.1
100 61.5 2.6 0 2.6 0

Max Iterations Allowed - 20000
Frames SNR (dB) MAP Estimator (cm) CoV (cm)

Result Error Result Error
1 41.5 2.1 -0.5 2.1 -0.5
10 51.5 2.3 -0.3 2.3 -0.3
20 54.5 2.3 -0.3 2.3 -0.3
30 56.2 2.3 -0.3 2.4 -0.2
50 58.4 2.4 -0.2 2.4 -0.2
100 61.5 2.5 -0.1 2.5 -0.1
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The performance of the CoV technique is based on the quality of the blurred image

and the amount of time available for processing. Provided enough time is allowed,

(3.7) will be satisfied for the best estimate of r
0

. However, allowing too much time

does not present a problem for this algorithm. By observing the di↵erence between

the left-side and right-side of (3.7) at each iteration, we can update an estimate for

the number of remaining iterations required for convergence, EI, using

IV (n) =
P

u,v=1

(d (u, v)� I (u, v))2

BV =
P

u,v=1

V (u, v)

EI = IV (n�1)�BV

IV (n�1)�IV (n)

, (3.11)

where n represents the iteration number, BV is the variance of the collected image,

and IV is the MSE between the collected images and the non-noisy estimate. Es-

sentially the relationships in (3.11) are used to predict how long the algorithm will

have to iterate based on the current rate of convergence [45]. Figure 3.6 demonstrates

that when the value of r
0

is too low, the estimated number of remaining iterations

diverges.
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(a) Coarse Estimation for r
0

=2.6 cm

(b) Fine Estimation for r
0

=2.6 cm

Figure 3.6: Estimated iterations remaining for an MCFA image composed of 30 inde-
pendent frames. (a) Coarse estimation shows convergence for r0 values greater than 3
cm, but divergence for values of 2 cm or less when the true r0=2.6 cm. (b) Fine estima-
tion with a cap of 5000 iterations shows convergence for r0 values of 2.6 cm or greater.
Based on experience with this algorithm, it is expected that convergence will occur for
an r0 value of 2.4 cm due to the concave down nature of the curve as supported by the
results in Table 3.2.
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We now repeat this experiment in the presence of negative binomial noise to sim-

ulate the expected results from laser illuminated imagery. Figure 3.7 again demon-

strates the results using an MCFA consisting of 30 frames and a cap on the maximum

iterations set to 5000. A close inspection of the blurred/noisy image reveals a sig-

nificant and visible increase in overall noise variance. As expected, this does impact

the final results. Table 3.3 summarizes the results obtained for the CoV technique,

as well as the MAP estimator using the introduction of a prior for the distribution of

r
0

. However, in the case of negative binomial noise, the di↵erences in the results are

more significant. By introducing the prior, the tendency to underestimate r
0

is more

pronounced. This trend of underestimation of r
0

was also noticed by MacDonald [41].

Again, it is expected that focus error in the original image is a contributing factor

in the underestimation of r
0

. This presents an interesting topic for potential future

research.

Figure 3.7: In this demonstration, the true image (left) is blurred with an average
short-exposure OTF with an r0 of 2.6 cm. The blurred/noisy image (center) is the
summation of 30 individual frames with independent realizations of negative binomial
noise. The image estimate (right) was obtained using the best estimate of r0=2.6 cm
with the cap on the number of iterations set to 5000 for the CoV technique.
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Table 3.3: Results for Fully Illuminated Image Simulation with Negative Binomial
Noise (True r0 = 2.6 cm). Results in Bold Indicate the Algorithm that Performed
Worse for a Particular Scenario

Max Iterations Allowed - 1000
Frames SNR (dB) MacDonald’s Algorithm (cm) CoV (cm)

Result Error Result Error
1 14.7 0.9 -1.7 1.5 -1.1
10 24.7 2.1 -0.5 2.5 -0.1
20 27.7 2.4 -0.2 2.8 0.2
30 29.4 2.6 0 3.0 0.4
50 31.6 3.0 0.4 3.1 0.5
100 34.7 3.2 0.6 3.2 0.6

Max Iterations Allowed - 5000
Frames SNR (dB) MacDonald’s Algorithm (cm) CoV (cm)

Result Error Result Error
1 14.7 0.9 -1.7 1.4 -1.2
10 24.7 1.8 -0.8 2.0 -0.6
20 27.7 2.0 -0.6 2.2 -0.4
30 29.4 2.2 -0.4 2.4 -0.2
50 31.6 2.4 -0.2 2.4 -0.2
100 34.7 2.5 -0.1 2.5 -0.1

Max Iterations Allowed - 10000
Frames SNR (dB) MacDonald’s Algorithm (cm) CoV (cm)

Result Error Result Error
1 14.7 0.9 -1.7 1.3 -1.3
10 24.7 1.8 -0.8 1.9 -0.7
20 27.7 2.0 -0.6 2.1 -0.5
30 29.4 2.1 -0.5 2.2 -0.4
50 31.6 2.2 -0.4 2.3 -0.3
100 34.7 2.3 -0.3 2.4 -0.2

Max Iterations Allowed - 20000
Frames SNR (dB) MacDonald’s Algorithm (cm) CoV (cm)

Result Error Result Error
1 14.7 0.8 -1.8 1.3 -1.3
10 24.7 1.8 -0.8 1.9 -0.7
20 27.7 1.9 -0.7 2.0 -0.6
30 29.4 2.0 -0.6 2.0 -0.6
50 31.6 2.1 -0.5 2.2 -0.4
100 34.7 2.2 -0.4 2.2 -0.4
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At this point, the functionality of the CoV technique has been demonstrated

for fully illuminated scenes. Further experimentation was conducted on simulated

stellar targets to identify the potential for measurement of atmospheric seeing on

scenes where the majority of the image consists only of background illumination and

noise. Since these targets are fully simulated, and thus inherently perfectly focused,

underestimation of r
0

was not expected to be a problem for the CoV technique.

Provided the algorithm is allowed enough time to iterate, convergence to the correct

r
0

should be achieved. However, the scaling factor of M2 in the prior (3.6) was

expected to still cause some bias in the estimates for r
0

using MacDonald’s algorithm.

3.2.2 Partially Illuminated Scenes.

Space Situational Awareness (SSA) is a key mission of the United States Air Force

Space Command and was a key motivator for MacManus’ research. One aspect of

SSA involves using both telescope networks and radars to detect, identify, record and

track all man-made objects orbiting the Earth. Knowing the exact locations of these

orbiting objects in space is crucial for future space operation safety. Any debris that

results from international space operations will be an ongoing risk to US assets for

years to come as the orbits of the debris degrade toward Earth. The SSA mission only

increases in importance as additional high value assets are placed in orbit. This is

merely a single example and justification of the importance for deblurring techniques

applicable to astronomical images [45].

The following simulations will consider three separate target configurations. We

will look at a single point source that could be representative of a star, a scene that

has multiple point sources arranged throughout the image and finally we will look

at a cross bar pattern, as in Figure 3.8. We will again consider both Poisson and

negative binomial assumptions with various SNR levels.
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Figure 3.8: (left) This scene is representative of a single star or point source. (center)
This scene contains multiple point sources with varying intensities and spacings. The
spacing between the two point sources in the center of the image is a single pixel.
(right) This scene contains a cross bar pattern.

The testing in Section 3.2.1 revealed that both algorithms are impacted by SNR

and focus error. However, the simulations also revealed that no gain in performance

was realized through the introduction of the prior for r
0

, and that the CoV technique

exhibited promise for estimation of r
0

as well as a deblurred scene. The results that

follow add support for the hypothesis that underestimation of r
0

was a function of

both SNR and focus error. The SNR for the various MCFAs used in the following

simulations is identified in Table 3.4. As expected, the SNR for MCFAs with Poisson

noise is higher than the SNR for MCFAs with negative binomial noise.

For demonstration purposes, the algorithm was allowed a cap of 1,000,000 iter-

ations. Even under these conditions, underestimation was never a factor for images

with adequate SNR using the CoV technique. At this point, it is unknown if it would

be possible to predict the precise level of SNR at which the algorithm will converge

to the correct value of r
0

since the relationship appears to be scene or contrast depen-

dent. However, we can conclude that higher levels for SNR will yield better results.

Additionally, even at low values of SNR we achieve reasonable estimations for the

deblurred scene and r
0

using the CoV technique. On the other hand, by introducing

a prior for the distribution of r
0

, underestimation is more prevalent.
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Table 3.4: Signal to Noise Ratio for Simulation Data

Signal to Noise Ratio (dB) for Poisson MCFAs
Frames in MCFA Point Source Multiple Point Sources Cross Bar

1 15.0 17.2 30.0
10 24.8 26.2 39.3
20 28.0 29.2 42.9
30 29.6 30.7 44.7
50 31.9 33.3 46.9

Signal to Noise Ratio (dB) for Negative Binomial MCFAs
Frames in MCFA Point Source Multiple Point Sources Cross Bar

1 11.8 13.1 14.4
10 22.6 23.7 25.7
20 26.3 27.0 29.3
30 27.5 28.1 30.5
50 29.4 30.0 32.7

Tables 3.5 and 3.7 demonstrate the utility of the CoV algorithm on partially

illuminated scenes with Poisson and negative binomial noise respectively. Trials where

the estimate for r
0

matched the true value are shown in bold. From these results, we

conclude that provided enough frames are properly registered and averaged to provide

adequate SNR, and enough time is allowed for convergence, the value of r
0

can be

estimated to within 1 mm for the simulated optical configuration. In cases where we

have low SNR the algorithm will tend to underestimate, but this is expected since the

noise power in the images masks some of the high frequency content. If insu�cient

time is allowed for convergence, the algorithm will produce a high estimate for r
0

, as

observed when the cap for iterations was limited to 1,000. Additionally, we notice

that in cases of adequate SNR, we do not have a problem of underestimation of r
0

since focus error was not present in these images.
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Table 3.5: Results for Partially Illuminated Image Simulation with Poisson Noise (True
r0 = 3.3 cm). Results in Bold Indicate the Estimate Matched the True Value for r0.

Max Iterations Allowed - 1000
Frames MAP Estimator (cm) CoV (cm)

Point Multi-Point Cross Bar Point Multi-Point Cross Bar
1 0.1 1.5 2.6 3.2 3.2 3.4
10 2.9 3.1 3.3 3.3 3.5 4.2
20 3.2 3.2 3.4 3.3 3.6 4.6
30 3.3 3.3 3.5 3.3 3.8 5.1
50 3.3 3.3 3.6 3.4 3.9 5.9

Max Iterations Allowed - 10000
Frames MAP Estimator (cm) CoV (cm)

Point Multi-Point Cross Bar Point Multi-Point Cross Bar
1 0.1 1.3 2.6 3.2 3.2 3.2
10 2.9 3.0 3.2 3.3 3.3 3.3
20 3.1 3.2 3.3 3.3 3.3 3.3
30 3.2 3.2 3.3 3.3 3.3 3.3
50 3.2 3.2 3.3 3.3 3.3 3.4

Max Iterations Allowed - 20000
Frames MAP Estimator (cm) CoV (cm)

Point Multi-Point Cross Bar Point Multi-Point Cross Bar
1 0.1 1.3 2.6 3.2 3.2 3.2
10 2.9 3.0 3.2 3.3 3.3 3.3
20 3.1 3.1 3.3 3.3 3.3 3.3
30 3.1 3.2 3.3 3.3 3.3 3.3
50 3.2 3.2 3.3 3.3 3.3 3.3

Max Iterations Allowed - 1000000
Frames MAP Estimator (cm) CoV (cm)

Point Multi-Point Cross Bar Point Multi-Point Cross Bar
1 0.1 1.3 2.5 3.2 3.2 3.2
10 2.8 3.0 3.2 3.3 3.3 3.3
20 3.1 3.1 3.3 3.3 3.3 3.3
30 3.1 3.2 3.3 3.3 3.3 3.3
50 3.2 3.2 3.3 3.3 3.3 3.3
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In Figure 3.9 we demonstrate the performance of the CoV technique for the three

target types in the presence of Poisson noise. Using the RL deconvolution algorithm

with a cap on the number of iterations set to 10,000, and an MCFA consisting of

30 frames, we were able to recover the correct r
0

in all cases. For the point source

targets, the blurring e↵ects of the simulated atmosphere reduce the intensity to the

point that it is di�cult to visually identify the various point sources. However, when

deconvolution is completed, each of the sources is easily identified. For the cross bar

pattern, the process of deconvolution makes it much easier to identify the structure

of the target pattern. While it may seem that a cap of 10,000 iterations is unrea-

sonable, the algorithm will only take as much time as needed to converge within this

upper bound. For instance, if the termination criteria is met before the upper bound

on iterations is achieved, the algorithm will terminate. Even with a standard home

computer with a 2.7GHz Intel R� CoreTM i5 processor and 16GB of memory, conver-

gence was achieved in a reasonably short period of time for all target types as shown

in Table 3.6. In this example, coarse convergence is to the nearest centimeter and

Table 3.6: Convergence Times for Simulations Shown in Figure 3.9.

Target Type Coarse Convergence Fine Convergence Total
Iterations Time (sec) Iterations Time (sec) Time (sec)

Single Point 627 1.66 968 2.49 4.15
Multi-Point 800 1.90 1,709 4.45 6.35
Cross Bar 2,123 4.26 8,275 17.51 21.77

fine convergence goes to the nearest millimeter. The algorithm could be manually

interrupted sooner if needed. At which point, the lowest value of r
0

that has allowed

convergence would be returned as the answer. For instance, in the example shown in

Figure 3.9, if we interrupted the routine after 4.26 seconds for the cross bar pattern,

we would get an estimated r
0

of 4 cm. The estimate continues to be refined until the

best estimate is achieved after 21.77 seconds.
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(a) Single Point Source

(b) Multiple Point Sources

(c) Cross Bar Pattern

Figure 3.9: Demonstration of the CoV technique using the RL deconvolution algorithm
with an MCFA consisting of 30 frames for the single point source (a), multiple point
sources (b), and the cross bar pattern (c).

73



Table 3.7: Results for Partially Illuminated Image Simulation with Negative Binomial
Noise (True r0 = 3.3 cm). Results in Bold Indicate the Estimate Matched the True
Value for r0.

Max Iterations Allowed - 1000
Frames MAP Estimator (cm) CoV (cm)

Point Multi-Point Cross Bar Point Multi-Point Cross Bar
1 0.1 1.0 1.8 3.1 3.0 5.0
10 2.4 2.7 2.8 3.4 3.7 5.1
20 2.9 3.0 3.0 3.5 4.0 5.8
30 3.0 3.1 3.1 3.7 4.8 6.5
50 3.2 3.2 3.2 3.9 5.0 8.5

Max Iterations Allowed - 10000
Frames MAP Estimator (cm) CoV (cm)

Point Multi-Point Cross Bar Point Multi-Point Cross Bar
1 0.1 0.5 1.7 3.1 2.9 3.4
10 2.3 2.6 2.7 3.3 3.2 3.4
20 2.7 2.9 3.0 3.3 3.3 3.5
30 2.9 3.0 3.1 3.3 3.3 3.7
50 3.0 3.1 3.3 3.3 3.3 4.0

Max Iterations Allowed - 20000
Frames MAP Estimator (cm) CoV (cm)

Point Multi-Point Cross Bar Point Multi-Point Cross Bar
1 0.1 0.4 1.7 3.1 2.9 3.2
10 2.3 2.6 2.7 3.2 3.2 3.2
20 2.7 2.9 3.1 3.2 3.3 3.3
30 2.9 3.0 3.1 3.3 3.3 3.3
50 3.0 3.1 3.2 3.3 3.3 3.3

Max Iterations Allowed - 1000000
Frames MAP Estimator (cm) CoV (cm)

Point Multi-Point Cross Bar Point Multi-Point Cross Bar
1 0.1 0.4 1.7 3.1 2.9 3.2
10 2.3 2.5 2.7 3.2 3.2 3.2
20 2.7 2.8 3.0 3.2 3.3 3.3
30 2.8 3.0 3.1 3.3 3.3 3.3
50 3.0 3.1 3.1 3.3 3.3 3.3
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3.3 Experimental Results

The optical configuration shown in Figure 2.3 was used to obtain properly sampled

images. The specifications for this setup are listed in Table 2.1. The experiments for

fully illuminated scenes will use the image in Figure 3.10 as a target. This target will

be placed indoors, 10 meters from the sensor where turbulence and illumination can be

controlled. The incorporation of a step in the bottom portion of the scene will permit

the measurement of the true r
0

for comparison with the estimated values. In order to

create a turbulent atmosphere to image through, a heat source was directed in front

of the telescope aperture. This technique allowed for the generation of repeatable

turbulent atmospheres with r
0

values in the sub-centimeter range. Without the use

of this heat source, all of the images would likely have been at or near the di↵raction

limit making validation of the CoV technique di�cult.

Figure 3.10: Scene used for each of the fully illuminated experiments. The top portion
of the scene includes various characters of decreasing size. The bottom portion of the
scene has a step target to allow for measurement of the true r0.

3.3.1 Fully Illuminated Scenes - Natural Light.

In the following two experiments, the remote scene was fully illuminated by nat-

ural lighting. Given that the light source was incoherent, the Poisson statistical

distribution for the photon arrival rate applies [21]. We will use the Richardson-
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Lucy deconvolution algorithm (3.2) with PSFs parameterized by a range of r
0

values

from 0.1 cm up to the aperture diameter of 5 cm. The images were blurred using a

heat source to create various levels of atmospheric turbulence and subsequent image

blurring.

In Figure 3.11 we demonstrate the ability to measure r
0

by measuring the step

response from the collected MCFA as described in Section 2.5. The impulse response

is then found by taking the derivative of this measured step response. Once we

have the impulse response, we can vary r
0

per the relationship in (2.9) to find the

theoretical total PSF, h
tot

, that minimizes the error between the measured impulse

response and the theoretical impulse response.
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(a) Collected MCFA (b) Mean Step Response

(c) Theoretical/Experimental OTF Comparison

Figure 3.11: Using the step in the bottom portion of the colected remote scene (a)
we can compute the mean step response for the collected MCFA (b). From this step
response we compute the experimental OTF and find the theoretical short exposure
OTF that minimizes MSE between the two (c).
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In the first experiment shown in Figure 3.12, r
0

was measured at 0.4 cm. Using

the CoV technique, we obtain an estimate of r
0

= 0.5 cm for an error in estimation

of only 1 mm. At this point it is important to note that the edges of the deblurred

images are distorted due to the implementation of the RL algorithm using the 2-D

FFT in MATLAB. This implementation was chosen in order to decrease the time

required for execution and results in a fair substitution as long as the image edges

are not of importance. Therefore, when computing the variance per the relationship

in (3.7), the variance for the image edges were ignored. In the collected MCFA, it is

di�cult to discern the smaller font sizes. However, when deconvolution is conducted

with an OTF parameterized by the estimate for r
0

, it is possible to identify each of

the characters. In the second experiment shown in Figure 3.13, r
0

was measured at

1.1 cm. Using the CoV technique, we obtain an estimate of r
0

= 1.1 cm. While

the blurring due to turbulence was less severe in this experiment, improvement in

sharpness of the characters is again noted when deconvolution was conducted using

the estimate for r
0

.

(a) Collected MCFA (b) Deblurred Scene

Figure 3.12: (a) Collected MCFA consisting of 100 registered frames, each with an
exposure time of 0.001s. (b) Deblurred image using the lowest r0 for which convergence
was achieved (r0 = 0.5 cm).

78



(a) Collected MCFA (b) Deblurred Scene

Figure 3.13: (a) Collected MCFA consisting of 100 registered frames, each with an
exposure time of 0.001s. (b) Deblurred image using the lowest r0 for which convergence
was achieved (r0 = 1.1 cm).

3.3.2 Fully Illuminated Scenes - Laser Illumination.

In the following two experiments, the remote scene was illuminated using a laser

with a wavelength of 630 nm. Given that the light source was partially coherent, with

a measured coherence parameter, M = 10, the negative binomial model for speckle

noise applies [21]. We will use the ML estimator in (3.9) with PSFs parameterized

by a range of r
0

values from 0.1 cm up to the aperture diameter of 5 cm.

In the first experiment shown in Figure 3.14, r
0

was measured at 0.5 cm. Using

the CoV technique, we obtain an estimate of r
0

= 0.5 cm. In the collected MCFA,

it is di�cult to discern the smaller font sizes, and based on where the illumination

spot was centered, the top two rows of text are nearly illegible. However, when

deconvolution is conducted with an OTF parameterized by the estimate for r
0

it is

possible to identify most of the characters. It is much easier to identify the row of Qs,

and the top row of Es is faintly visible. In the second experiment shown in Figure

3.15, r
0

was measured at 1.1 cm. Using the CoV technique, we obtain an estimate of

r
0

= 1.1 cm. While the blurring due to turbulence was less severe in this experiment,
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significant improvement is again noted when deconvolution was conducted using the

estimate for r
0

.

Table 3.8: Summary of Results for Fully Illuminated Image Experiments.

Trial Estimated r
0

(cm) Measured r
0

(cm)
Natural Light - Low r

0

0.5 0.4
Natural Light - High r

0

1.1 1.1
Laser Illumination - Low r

0

0.5 0.5
Laser Illumination - High r

0

1.1 1.1
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Figure 3.14: (a) Collected MCFA consisting of 100 registered frames, each with an
exposure time of 0.005s. (b) Deblurred image using the lowest r0 for which convergence
was achieved (r0 = 0.5 cm).

Figure 3.15: (a) Collected MCFA consisting of 100 registered frames, each with an
exposure time of 0.005s. (b) Deblurred image using the lowest r0 for which convergence
was achieved (r0 = 1.1 cm).
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3.3.3 Correlation Technique for Measurement of Atmospheric Seeing.

With the previous experiments, the true value of r
0

could be measured by imaging

a step target and taking the derivative to find the impulse response as shown in Fig-

ure 3.11. The step target could be placed in line with the desired remote scene such

that the measurements were made through nearly identical columns of turbulent air.

However, when trying to measure the true r
0

of stellar images for comparison with

the experimental results, this was not a viable solution. We could average many short

exposure images of a single star in order to get the average short exposure OTF pa-

rameterized by r
0

, however this requires precise tilt removal and any shift estimation

errors will appear as attenuation of the short exposure OTF and underestimation of

r
0

. Trying to average enough frames to achieve the long exposure OTF in order to

find r
0

would likely take thousands of images to converge upon the optimal solution.

Based on the frame rate of the experimental collection system, it is possible that the

value for r
0

would change in the time required to gather this amount of data. There-

fore, we considered an alternative technique for measuring the value of atmospheric

seeing that considers the cross correlation of the collected images.

By considering all possible combinations of the cross correlations between a series

of individual short exposure images, {S
k

: k = 1, ..., K}, taken of a star, we can find

the Cross Power Spectral Density (CPSD), P
S

(⌫
x

, ⌫
y

), where

P
S

(⌫
x

, ⌫
y

) = E [F {S
k

(x, y)}F⇤ {S
k

0 (x, y)}] 8k 6= k0. (3.12)

In other words, the CPSD is the correlation between the normalized Fourier trans-

forms of all possible image combinations [30]. For a sequence of K images, there are

a total of K(K � 1)/2 non redundant cross correlations. Additionally, the CPSD of
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the blurred point source can be shown to have the following relationship

P
S

(⌫
x

, ⌫
y

) = E
�

|H (⌫
x

, ⌫
y

)|2
 

, (3.13)

where E
�

|H (⌫
x

, ⌫
y

)|2
 

is the speckle transfer function [59]. Fortunately, the speckle

transfer function can also be parameterized by r
0

. Therefore, in order to obtain the

true value for atmospheric seeing, we can find the value of r
0

that minimizes the error

in (3.13). At this point we must keep in mind that this technique for measuring r
0

is

limited to cases where we are imaging a point source. We will use this technique to

demonstrate that the CoV technique will in fact identify the correct r
0

.

3.3.4 Partially Illuminated Scenes.

For the experiments involving partially illuminated scenes, we chose to image a

star. Stars can essentially be considered point sources of light, allowing us to use

the technique presented in Section 3.3.3 to obtain truth data for comparison with

the CoV results. While the resultant deblurred image is intuitive, the estimated

values for r
0

prove that the technique can be successfully used to measure r
0

for

partially illuminated scenes. For the experiments, we chose a relatively bright star

near Polaris to image. This minimized the relative motion between the FOV and the

imaged portion of the sky. All individual images were taken using an exposure time of

0.001s to ensure that the short-exposure model was applicable [21]. Additionally, each

of the MCFAs is a compilation of 20 individual frames. Some experimentation with

MCFAs consisting of more than 20 frames was accomplished. However, no increase

in performance was observed.

In Table 3.9, the estimated value for r
0

was always within 0.2 cm of the measured

value. Initially the cap on the number of iterations was set to 1,000. In all cases, if

convergence was achieved for a particular level of r
0

, it occurred within the first 100
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Table 3.9: Results for Partially Illuminated Image Experiments.

Trial Estimated r
0

(cm) Measured r
0

(cm)
1 2.3 2.1
2 2.4 2.2
3 2.3 2.2
4 2.4 2.1
5 2.4 2.1

iterations. We then increased the number of iterations to 10,000 and subsequently

20,000 to see if convergence could be achieved for a lower level of r
0

, but the results

remained the same with the increased cap on iterations.

Figure 3.16: The collected MCFA consisting of 20 registered short exposure images
(left) and the deblurred image estimate when the average short exposure OTF with an
r0 of 2.4 cm is used for deconvolution (right).

For the image shown in Figure 3.16 we first conducted a course search with a step

size of 1 cm revealing that the minimum value of r
0

that will allow convergence is 3

cm. We then step through with a smaller step size and show that convergence can

be achieved for values of r
0

as low as 2.4 cm. For this image, convergence occurs

after just 68 iterations for an r
0

of 2.4 cm. However, it is divergent for anything less

than this value. In Figure 3.16 we show the resultant deblurred image when using

this best estimate for r
0

in conjunction with the RL deconvolution algorithm and the

average short exposure OTF. As expected the image estimate approaches more of a

point source than the original image.
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3.4 Extension of CoV Technique for 3-D FLASH LADAR Images

Through the course of this research, it was found that the accuracy of the CoV

technique was primarily dependent on the variance determined threshold for stopping

the algorithm. This threshold is chosen based on the assumed noise model. For

FLASH LADAR imagery, this does present a challenge since there are again various

forms of noise present in the image. In order to e↵ectively use the CoV technique

we must be able to either predict the variance attributed to each source of noise, or

measure the total variance through a series of independent images.

Three dimensional LADAR technology is receiving an increased interest as the

technology improves. Currently, the commercially available sensors are severely

under-sampled, and do not experience the e↵ects of di↵raction from atmospheric

turbulence. However, as the technology continues to progress, it is expected that

minimizing the e↵ects of atmospheric turbulence will be important. Conversely, cer-

tain applications such as the imaging and tracking of space debris may require an

optics configuration where the current sensors would receive properly sampled im-

ages. In those cases, the CoV technique could potentially be applied to identify the

PSF parameterized by r
0

that will deblur the scene.

A typical full-waveform 3-D LADAR image is comprised of multiple 2-D images

or frames separated by a small time delta. Therefore, the 3-D image can be flattened

into a 2-D image by simply removing the range information and accumulating the in-

tensity information for each pixel for the series of individual frames. Flattening a 3-D

image into a 2-D image presents several challenges to the CoV technique. The pri-

mary issue being that the summation of multiple negative binomial random variables

with di↵erent means is not another negative binomial random variable. Therefore

it would be di�cult to determine the best deconvolution algorithm to use based on

the distribution of the data. By applying the Central Limit Theorem, it may be
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possible to make a case for employing a deconvolution algorithm based on the Gaus-

sian distribution. Likely less of a limiting factor would be the case where the image

has uniform reflectance across a diversity of ranges. In this scenario, any contrast

in intensity through multiple regions of the image may be lost, making it di�cult to

determine the best r
0

. Fortunately, the atmosphere can be considered static for the

laser illuminator pulse duration and subsequent detector integration times that are

common to 3-D LADAR sensors [21], [58]. Given these challenges, likely the best

option for employing the CoV technique on 3-D FLASH LADAR images would be

to treat each of the 2-D frames separately. Based on this premise, this technique

was originally explored as a means of identifying the best PSF parameterized by r
0

to be employed in algorithms such as the multiple surface FLASH LADAR ranging

algorithm that will be discussed in Chapter IV and originally presented in [53].

Given the 3-D FLASH LADAR image model provided in Chapter II, we expect

the total variance to consist of multiple components. Likely the most dominant

form of image variance in illuminated portions of the scene will be speckle noise.

However, the additional detector noise or background lighting noise may significantly

impact the overall stopping threshold, especially in low illumination images. Due to

the independence of the di↵erent noise sources, the total image variance for the kth

frame, �2

Tk

, will equal

�2

Tk

=
�

�2

Sk

+ �2

Bk

�

, (3.14)

where �2

Sk

is the noise due to speckle illumination and �2

Bk

is the noise due to detector

bias for each of the K 2-D frames in the 3-D image. Since the 3-D image is made

up of numerous 2-D images corresponding with unique ranges, we need to choose the

image that allows the CoV technique the greatest chance for success. Given that the

target profile in Figure 3.17 (a) is centered within the range gate of the 3-D FLASH

LADAR sensor, we would expect the individual 2-D frames to have various levels of
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contrast. Additionally, it is possible that the 2-D frames corresponding to specific

ranges may not have a visible return present as shown in Figure 3.18. As shown

in Figure 3.17(b), the estimates of r
0

are generally within 3 mm of the true value

when the frames of higher contrast (frames 6-10 and 13-15) are used. However, when

frames with low contrast are used, the accuracy of the estimates falls o↵. Additional

demonstrations with the CoV technique on actual 3-D FLASH LADAR images will

be provided in Chapter V.
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(a) Target Profile

(b) Estimates for r
0

Figure 3.17: (a) Simulated target with a single raised bar placed at a range of 103
meters and the background is located at 105 meters. The reflectivity of the single bar
is 0.7 and the reflectivity of the background is 1.0. (b) Estimated values of r0 for each
of the 2-D frames in the simulated 3-D FLASH LADAR image where the true value
of r0 = 1.5 cm. Error bars indicate the standard deviation of estimates for 30 separate
trials.
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Figure 3.18: Individual 2-D frames based on the single bar target in Figure 3.17 being
centered in the range gate for a LADAR system with parameters listed in Table 4.1.
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3.5 Chapter Summary

The original focus of this work was to develop a blind deconvolution technique

that could be employed in a tactical military environment where both time and com-

putational power are limited. The intent behind its expansion and inclusion in this

dissertation was to provide a means of comparison with the techniques that will be

provided in Chapter V. The CoV technique detailed above allows for rapid and ac-

curate estimations of the atmospheric OTF parameterized by the seeing parameter,

r
0

. As shown in Figure 3.3, the technique can be interrupted after any amount of

time, at which point the best available results would be provided. If more time is pro-

vided, the results are generally enhanced. Additionally, the CoV technique reduces

the possibility of noise amplification common with iterative deconvolution algorithms

by ceasing iteration once the statistically predicted variance is achieved.

An interesting discovery was also made through the course of this e↵ort and is

highlighted in Section 3.2.1. This technique may be useful in recovering from minor

focus error in the collected images. There are similarities between the atmospheric

OTF and the OTF that arises from a minor focus error. As a result, the estimates

for r
0

may be lower than the true value. Therefore, if this algorithm is to be used for

atmospheric seeing measurement, the images must be in focus. Another source of error

in estimation may arise if various portions of the scene have di↵ering levels of r
0

. In the

cameraman photo used for the simulations, the objects in the background were likely

impacted by a di↵erent level of atmospheric turbulence than those in the foreground.

A potential topic for future research would be the relationship between the seeing

parameter and focus interaction for varying levels of focus error and atmospheric

turbulence.
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IV. Multiple Surface Estimation

This chapter focuses on the development of a multiple surface ranging algorithm

for full waveform 3-D FLASH LADAR images. In addition to providing pulse infor-

mation for multiple surfaces per image pixel, the presented algorithm also reduces

the e↵ects of di↵raction [52]. Simulation results will be presented to demonstrate the

utility of this algorithm in cases where the blurring function is known. Experimental

results will be presented in Chapter V in conjunction with results demonstrating the

ability to solve for a parameterized blurring function.

Currently there are numerous e�cient techniques such as peak estimation, cross-

correlation and leading edge detection for identifying a single surface per pixel [58].

Of these techniques, the cross-correlation technique can be shown to be extremely ac-

curate in identifying the range to a single surface. When multiple surfaces are present

in each pixel or detector, the process of accurately identifying the correct ranges to

each surface is more complex. With some modification, traditional ranging techniques

can account for multiple surfaces given adequate temporal separation of the received

pulses. However, e↵ects due to the medium through which we are imaging introduce

error into a traditional ranging technique. By di↵racting light from neighboring areas

within the scene, each detector or pixel may receive a pulse in which numerous false

surfaces can be identified in addition to the potential for multiple true surfaces.

This chapter is organized as follows: Section 4.1 details the techniques employed

to find solutions for the components of the Gaussian mixture model, in Section 4.2

an alternative solution is derived with a constraint applied to the amplitudes of the

estimated pulses, Section 4.3 details the parameters used for simulation, Section 4.4

presents considerations and challenges associated with employing EM techniques to

solve this problem and Section 4.5 presents a comparison of range RMSE for various

competing algorithms or techniques.
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4.1 EM Solution

The following algorithm is derived using an EM approach to jointly estimate the

pulse parameters for a total of N surface returns as well as a signal bias. The MSID

approach is similar to the EM approach derived by Dolce for fusing 2-D and 3-D

LADAR data [16]. However, the work is not equivalent because Dolce’s work does

not account for the possibility of multiple surfaces per pixel, nor does it provide

an estimate for the pulse amplitude or width. The EM process is generally broken

down into two steps. First, the E-Step involves formulating a statistical relationship

between the data collected (incomplete-data) and some known data model (complete-

data), and then finding the expectation of the complete-data log-likelihood. The

second step, the M-Step is to iteratively maximize the expectation of the complete-

data log-likelihood function found in the E-Step [14]. The following sections will

describe in detail the process for jointly estimating the pulse amplitudes, widths,

ranges and overall bias for each image pixel.

4.1.1 Formulating the Complete and Incomplete-data.

As previously mentioned, the first step to the EM algorithm is to formulate the

statistical relationship between the observed or collected data (incomplete-data) and

the data model (complete-data). Since we are assuming our received pulse is essen-

tially a Gaussian mixture with an additive bias, the relationship is

d (u, v, r
k

) =
N

X

n=1

M

X

x=1

M

X

y=1

d̃(n) (u, v, x, y, r
k

) + d̃
B

(u, v, r
k

) (4.1)

where d is the incomplete-data and the complete-data is made up of a component

for the received pulse, d̃(n), and a separate component for the detector bias, d̃
B

. It is

important to note at this point that we are finding a total ofN amplitudes, ranges and
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corresponding pulse widths for each pixel. The expected values of the complete-data

components are shown in (4.2) and (4.3).

E
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Since both components of the complete-data are approximated by the Poisson PMF,

and the sum of Poisson random variables is also Poisson, we can now state the joint

probability of the complete-data, p
J

, as
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where the probability for the nth pulse, p(n), is
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and the probability for the bias, p
B

, is
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Now that we have the joint probability, we can form the complete-data log-likelihood,

L, by taking the natural logarithm of equation (4.4) such that
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N
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(4.7)

With the complete-data log-likelihood formed, we are now ready to perform the E-

Step.

4.1.2 Finding the Expectation E-Step.

The E-Step involves finding the expectation of (4.7) conditioned on the incomplete-

data and the previous estimates for the pulse and bias. Through the course of the

following derivation, it was realized that maximizing the expectation with respect

to the bias and the pulse are separable. Therefore, the following equations will be

broken up into respective conditional expectations for the Gaussian pulse mixture,

Q(n), and the bias, Q
B

, to simplify the explanation. We now let Q be the overall

conditional expectation of the complete-data log-likelihood function such that

Q =
N

X

n=1

Q(n) +Q
B

, (4.8)
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and

Q
B

=
M

P

u=1

M

P

v=1

K

P

k=1

E
h

d̃
B

(u, v, r
k

)
�

�

�

d (u, v, r
k

) , P (n)

old

(u, v, r
k

) , B
old

(u, v)
i

ln [B (u, v)]

�B (u, v)� E
n

ln
h

d̃
B

(u, v, r
k

)!
i

�

�

�

d (u, v, r
k

) , P (n)

old

(u, v, r
k

) , B
old

(u, v)
o

.

(4.10)

It can be shown that the expected value of the complete-data components with re-

spect to the incomplete-data and the previous estimates for the pulse and bias are as

indicated in (4.11) and (4.12) [62].
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In (4.11) and (4.12), I
old

(u, v, r
k

) is the image produced by the pulse estimate and

the additive bias and is equal to

I
old

(u, v, r
k

) =
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X

n=1

M
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x=1
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X

y=1

P (n)
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)h (u� x, v � y) + B
old

(u, v). (4.13)
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4.1.3 Maximizing the Expectation M-Step.

Now that we have the expectation of the complete-data log-likelihood function,

we can maximize it with respect to N total ranges, pulse widths and amplitudes as

well as the signal bias. Similar to the previous work by Dolce, the received pulse

from each surface is assumed to exist entirely in the range gate [16]. This assumption

allows us to find a direct solution for range. In order to find estimates for A(n), r(n),

�(n) and B we must take the derivative of Q with respect to each parameter, set the

resultant derivative equal to zero and then solve for the desired parameter.

Even though we are looking for a solution that involves N surface returns, it

is possible and perhaps even likely depending on the imaged scene that the FOV

for a given pixel may have fewer surfaces visible. In those cases, the corresponding

amplitudes for ranges that are not truly present in the image scene are driven towards

zero by this algorithm as will be demonstrated in Section 4.5. Several techniques

exist for finding an upper bound on the number of surfaces in each pixel such as the

center-of-gravity and zero-crossing of the first derivative of the received pulse [67].

This work assumed a fixed cap of two visible surfaces per pixel; however, this cap

could be adjusted to account for varying numbers of surfaces per pixel depending on

the number of 2-D slices per image.

We will first demonstrate the maximization process for the pulse amplitudes.

Bringing the derivative inside of the summations of (4.14) is the first step to maximiz-

ing the expectation with respect to amplitude. Upon inspection it is evident that Q
B

in (4.8) is not dependent on A(n) (x, y), thus its derivative with respect to A(n) (x, y)
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will be zero and we are left with
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Computing the derivative of (4.14) and eliminating terms with no dependency on

A(n) (x, y), we can further simplify to
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We now have that the derivative of Q with respect to A(n) (x, y) is
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The Dirac delta function in (4.16) allows us to remove two of the summations with

respect to x and y via the sifting property, since all values not equal to x
0

and y
0

will
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be zero, leaving us with
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We can now set (4.17) equal to zero and solve for A(n) (x, y),
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If we now recall the assumption that the pulse is entirely within the range gate and

make the additional assumption that

N

X

x,y=1

h(x, y) = 1, (4.19)

the denominator of (4.18) will sum to one leaving us with a final iterative solution

for A(n) (x, y) that is
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We can perform a very similar process for maximizing Q with respect to range, but

this time we consider our assumption of the pulse being within the range gate up

front. This assumption forces the summation of the pulse with respect to a change

in range to remain a constant. Or in other words, even though the pulse location is

dependent on range, the summation of the derivative with respect to r(n)(x
0

, y
0

) is
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zero. We now just have the derivative
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to maximize. Following a very similar simplification process to the above process for

the amplitude, we are left with the solution for range
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This solution is nearly identical to the solution found by Dolce, with the exception

that it is generalized for multiple surfaces per detector, and it does not consider the

e↵ects of 3-D and 2-D fusion [16]. Originally, pulse width was not of major concern

because the simulation results were not sensitive to changes in pulse width given

that all targets were simulated to be oriented normally to the illumination source.

However, through the course of employing this algorithm on experimentally collected

data where targets were not always oriented normally to the illumination source,

it was realized that pulse width deviation caused a noticeable error in the results.

For this reason, the solution for pulse width was derived using the same techniques

previously presented, and found to equal
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(4.23)

During the iterative process, the algorithm will then allow the pulse width to adjust

based on the orientation and physical properties of the targeted surfaces.
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We can now perform a similar procedure to find the solution for pixel bias. For

this solution we again refer back to equations (4.8), (4.9) and (4.10). We notice that

(4.9) is not dependent on pixel bias. Therefore taking the derivative of (4.10) with

respect to B(u
0

, v
0

) will be su�cient
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Equation (4.24) simplifies to
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The partial derivative of B(u, v) with respect to B(u
0

, v
0

) will yield a Dirac delta

allowing for further simplification to
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This equation can now be set equal to zero and solved for B(u
0

, v
0

) yielding the

solution for pixel bias as shown in (4.27)
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Using the results from (4.20), (4.22), (4.23) and (4.27) we are now able to iteratively

find estimates for all parameters simultaneously. The following section presents an

added constraint on amplitude estimation that further enhances the capability of the

algorithm.

Initialization is a commonly cited challenge for EM algorithms [69]. However, the
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iterative solutions presented in (4.20), (4.22), (4.23) and (4.27), can e↵ectively be

initialized as follows:

• Initialize range through peak search or correlation technique

• Initialize amplitude to intensity values at initial range estimates

• Initialize pulse width to the outgoing pulse width

• Initialize pixel bias to minimum value in received pulse

This methodology for initialization proved e↵ective as shown in the later results.

4.2 Constrained Amplitude EM Solution

It is generally accepted that the Richardson-Lucy algorithm (3.2) will produce a

maximum likelihood estimate of a 2-D scene when the blurring source or PSF is known

and the noise is Poisson [57], [62]. However, when an image is both spatially and

temporally blurred as is the case with 3-D imaging through a turbulent atmosphere,

the Richardson-Lucy algorithm may be less than optimal.

The solutions provided in Section 4.1.3 allowed us to directly solve for the am-

plitude, range, pulse width and bias for N surfaces as detected by each pixel in a

APD array while also removing the spatial and temporal blurring associated with the

PSF. Using the stopping criteria from Section 2.4, it was observed that the algorithm

often converged before optimal estimates on pulse amplitude were achieved. While

the results from the algorithm were still an improvement over traditional techniques,

an attempt was made to improve upon this solution by considering the following

constraint. When dealing with full-waveform data, each 3-D image can be flattened

into an amplitude only 2-D image by simply summing the amplitude for each slice

in the data cube. With this in mind, the amplitude only 2-D image obtained from

101



the Richardson-Lucy deconvolution algorithm appears to be a potential candidate

for an added constraint to prevent inappropriate convergence of the EM Algorithm

designed for 3-D data. Alternatively, a more time consuming but likely more accu-

rate approach would be to use the ML estimate derived by MacDonald on each 2-D

frame as described in Section 3.4 prior to summation into an overall 2-D image of the

remote scene [44]. Finally, a constraint of this nature could also be applied in cases

where di↵raction is not of concern. In this case, the 2-D image used as the constraint

would be obtained by summing the received data along the temporal axis. The work

by Schulz supports the idea of introducing a penalty function via a Lagrange multi-

plier to prevent the algorithm’s convergence to undesirable solutions [60]. Provided

the function that we add as a penalty is continuously di↵erentiable, the method of

using a Lagrange multiplier will allow for convergence to a maximal solution for the

log-likelihood subject to the constraint [65].

Using the amplitude only representation of the 3-D data cube, we found the best

results when using the ML estimate on each 2-D frame prior to summation into the

constraint image. This constraint image is used to penalize estimates for amplitude

any time the following equation is not satisfied

A
c

(x, y) =
N

X

n=1

A(n) (x, y), (4.28)

where A
c

is the amplitude of the 2-D constraint image. The original multi-surface

EM algorithm allowed for maximization of the log-likelihood, L, with respect to N

amplitudes, ranges and pulse widths as well as a pixel bias. In the case of the N

surface model, this can be written in simplified notation as

L (A, r, �, B) =
N

X

n=1

f
�

A(n), r(n), �(n), B
�

, (4.29)
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where f represents the component of the log-likelihood for each of the surface returns

and is a function of pulse amplitude, range, width and bias. We now want to maximize

L (A, r, �, B) subject to a new constraint, g (A), where

g (A) =
N

X

n=1

A(n) � A
c

= 0. (4.30)

In order to incorporate this constraint, we must introduce a new variable, �, for our

Lagrange multiplier and then maximize the constrained log-likelihood, L
'

,

L
'

(A, r, �, B,�) = L (A, r, �, B)� � [g (A)] . (4.31)

By incorporating the constraint via the method above, we ensure that mathemati-

cal rigor is retained, and can demonstrate the enhanced performance over the non-

constrained algorithm. Using (4.7) as a basis, L
'

becomes
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(4.32)

With the constrained complete-data log-likelihood formed, we are again ready to

perform the EM process.

It is readily apparent from (4.32) that the solutions for range, pulse width and

bias will not be changed by the inclusion of the constraint. Therefore, only a new

solution for amplitude and the constraint parameter are needed. Due to the addition
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of the constraint, Q(n), from (4.9) becomes
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Ultimately through the maximization process, we find that the constrained solution

for amplitude becomes
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If we now recall the assumption that the pulse is entirely within the range gate as

well as the assumption on the PSF as shown in (4.19), the right hand term in the

denominator of (4.34) will sum to one leaving us with a final iterative solution
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At this point, the only thing remaining is to derive the solution for the Lagrange

multiplier. The derivative of Q
'

with respect to �(x
0

, y
0

) easily simplifies to

@Q
'

@� (x
0

, y
0

)
=

N

X

n=1

A(n) (x
0

, y
0

)� A
c

(x
0

, y
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). (4.36)
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Setting (4.36) to zero yields the following relationship:

N
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n=1
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) . (4.37)

We can now substitute the solution from (4.35) into this relationship to allow us to

find a solution for �(x
0

, y
0

).
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The resultant solution for �(x
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, y
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At this point we have all of the necessary pulse parameter solutions in both a

constrained and non-constrained fashion. By incorporating the PSF into our model

we have enhanced the accuracy of the model and enabled the removal of the e↵ects of

di↵raction. The subsequent results presented in this chapter will assume that the PSF

is known. However, Chapter V will demonstrate that the average PSF parameterized

by r
0

can be computed with the help of this algorithm.

4.3 Simulation

This work will report results from simulated 3-D FLASH LADAR data that was

designed to mimic an ASC TigereyeTM camera. For this reason, simulation parameters

were set to those published for the system.
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4.3.1 Sensor Parameters.

Table 4.1 identifies the known specifications for the ASC sensor. Proper sampling

Table 4.1: ASC 3-D Tigereye FLASH LADAR System Specifications.

Known System Parameters
Parameter Name Defined Value
Frames per image 20

Laser wavelength (�) 1.57 µm
Sample rate 420 MHz

Range delta per frame 0.357 m
Total range gate 7.14 m

Energy per pulse (E
t

) 0.025 J
Sensor pulse width 4.7x10�9s
Detector Array Size 128 ⇥ 128

Pixel Size 100 µm ⇥ 100 µm
Lens Parameters for Simulation

Parameter Name Defined Value
Sensor focal length (f

l

) 3 m
Aperture diameter (D) 2.325 cm

Instantaneous Field of View (iFOV) 0.24�

of the images is important due to the use of deconvolution in the algorithm. The

maximum dimension, �, on a pixel in the detector array must abide by the relationship

[22]

�  �f
l

2D
. (4.40)

The factor of two in the denominator arises from the Nyquist sampling theorem

which states we must sample at twice the maximum achievable spatial frequency,

⌫
max

, as shown in (2.7). Therefore, given the known system specifications for the

ASC system, the lens parameters were chosen as also shown in Table 4.1. While this

is not a current commercially available lens configuration, the flexibility of simulation

allows for selection of the optics parameters in order to ensure proper sampling of

the simulated images according to (4.40). Ultimately the goal was to simulate the

type of di↵raction that would be experienced by an airborne platform incorporating

106



FLASH LADAR technology as a remote sensor at long slant ranges from the target.

Therefore the parameter values for the simulation were chosen to allow the ratio of

aperture diameter, D, to atmospheric seeing parameter, r
0

, to be similar to what

would be experienced in an airborne sensor application.

4.3.2 Target Profiles.

All targets for this simulation were designed such that all surfaces would produce

returns within the range gate.
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(a) 3-bar Target Range Image (b) Obscured Target Range Image

(c) Multiple Void Target Range Image

Figure 4.1: (a) The 3-bar target has an opaque background at a distance of 2 meters
from the three separate opaque raised surfaces. (b) Has a foreground at a distance that
is 2 meters from the partially obscured surface in the background. Only the center
section of the foreground is transparent, the remainder of the surfaces are opaque. (c)
Has an opaque foreground at a fixed distance, with an opaque background that varies
from 1 to 4 meters from the foreground.
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While the algorithm has demonstrated increased performance in multiple surface

ranging for all tested profiles, this dissertation will consider three unique target profiles

shown in Figures 4.1 and 4.2. The target profiles were designed to ensure that some

pixels had various numbers of surfaces visible. In the case of the 3-bar target and

multi-void target, only the edges of the features possessed multiple surfaces per pixel.

However, the obscured target has an entire region in the center of the target where

multiple surfaces are present. For the example targets shown, no pixel will have more

than two surfaces visible. However, once the e↵ects of di↵raction are added in, some

pixels may receive returns from additional surfaces depending on the severity of the

simulated turbulence. Given the relatively short range gate for a single 3-D image,

the number of surfaces in the included target profiles was limited to two. However, for

a larger range gate the algorithm can easily be expanded to account for the general

case of N surfaces [53].
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(a) 3-bar Target Range Image (b) Pixels with Multiple Surfaces

(c) Obsured Target Range Image (d) Pixels with Multiple Surfaces

(e) Multiple Void Target Range Image (f) Pixels with Multiple Surfaces

Figure 4.2: (a) Has a background at a distance of 2 meters from the three separate
raised surfaces. (b) The areas in white indicate the pixels whose iFOV contain 2
surfaces, while all remaining pixels have only a single surface visible in the iFOV. (c)
Has a foreground at a distance that is 2 meters from the partially obscured surface in
the background. (d) The areas in white indicate the pixels where the iFOV contains 2
surfaces. (e) Has a foreground at a fixed distance, with a background that varies from
1 to 4 meters from the foreground. (f) The areas in white indicate the pixels where
the iFOV contains 2 surfaces.
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4.4 Mixture Modeling Considerations

Expectation Maximization in conjunction with Gaussian mixture modeling is a

common technique employed to isolate the parameters of interest in the received

LADAR data [46]. However, Zhuang points out that common challenges with employ-

ing EM in conjunction with Gaussian mixture modeling are determining the number

of components in the mixture or isolating mixture components that may merge due to

their individual parameters [69]. For various applications of Gaussian mixture mod-

eling, Vlassis and Nikas solved the first problem with a Greedy EM approach. They

performed an iterative process where the number of components was incrementally

increased until the number corresponding with the solution with the highest likeli-

hood was obtained [66]. Unfortunately, to employ this solution on the multi-surface

detection problem including the e↵ects of di↵raction would be intractable due to the

sheer volume of possibilities. For instance, if we consider a 128 ⇥ 128 array, where

each detector may have between 0 � 2 surfaces visible, we would have to consider

316384 possible combinations for each image we wish to process. Additionally, it also

seems intuitive that the maximum likelihood estimate will occur where the maximum

possible number of surfaces are estimated since the algorithm will attempt to fit the

noise inherent in the received signal. This research proposes a new solution to this

problem. The Cap and Refine (CaR) strategy places an upper bound on the number

of surfaces for which pulse parameters are generated. The respective pulse amplitudes

will then be used to refine the number of surfaces visible in each detector.

4.4.1 Key Challenges with Multisurface Modeling.

In practice, the true upper bound on the number of surfaces visible by each detec-

tor could be established through various methods. Techniques such as the center-of-

gravity and zero-crossing of the first derivative have been employed in the past with
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success [67]. Based on the objectives of this research, the upper cap on the number of

surfaces was fixed at two, but could easily be adjusted to account for the possibility

of additional visible surfaces per pixel. The novelty for the approach employed by

this research does not arise from the ability to define the upper cap on the number

of surfaces. Rather, the novelty is that we can use the unique functionality of the

MSID algorithm in conjunction with various detection schemes to e�ciently estimate

the number of components in our Gaussian mixture. Or in other words, once we have

solved for the maximum possible components or surface returns, we can then discard

those that are insignificant after a single execution of the MSID algorithm, rather

than iteratively search for the best possible Gaussian mixture.

(a) Estimate not Accounting for Di↵raction (b) Estimate Accounting for Di↵raction

Figure 4.3: Comparison of pulses when the e↵ects of di↵raction were not accounted for
(a), and when the e↵ects of di↵raction were incorporated into the estimation algorithm
(b).

The MSID algorithm produces a number of amplitude, range and pulse width

estimates for each detector based on the upper cap established. In cases where one or

more of the surfaces either arises from e↵ects due to di↵raction, or in cases where there

are no surfaces visible in the FOV, the corresponding estimates for amplitude will be

driven towards zero. Due to the e↵ects of noise and the residual e↵ects from di↵raction

even after deconvolution, the algorithm may not perfectly drive undesired surfaces to
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zero. In Figure 4.3 we consider two scenarios again with the 3-bar target from Figure

4.2(a). In Figure 4.3 (a) and (b), we plot the received pulse for pixel (55,75) in both

an ideal case where the e↵ects of di↵raction are not present (non-di↵racted pulse) as

well as the actual received pulse where the image is both spatially and temporally

blurred due to the e↵ects of di↵raction with D

r0
⇡ 2. Since the selected pixel is two

Figure 4.4: Identifies the location of the image pixel used.

pixels above the edge of one of the raised bars as shown in Figure 4.4, in the ideal

scenario we would only expect to see a single pulse return at 103 meters. However, the

e↵ects of di↵raction have caused some of the light that reflected o↵ of the background

at 105 meters to fall incident onto this detector as well, causing a temporal distortion

which manifests as a second visible return in the received waveform. This presents

one of the fundamental problems when performing multiple surface modeling where

the collected images may be impacted by the e↵ects of di↵raction.

Figure 4.3 also demonstrates the utility of two techniques that could be employed

for this multi-surface estimation problem. First we consider a traditional Gaussian

mixture model, Figure 4.3(a), which does not incorporate the e↵ects of di↵raction in

the estimation of the pulse. In this case we see that the technique estimates a pulse

that closely matches the received pulse. The technique also extracts the amplitude
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and range information for each of the two components in the mixture. However, once

we incorporated the e↵ects of di↵raction through the MSID algorithm, we were able

to drive the estimate for the second pulse towards zero as shown in Figure 4.3(b).

While the second return is barely visible at this point, its amplitude is not perfectly

zero, highlighting another key challenge associated with the multi-surface estimation

problem.

At this point, a decision is required as to whether or not the reflection from a sec-

ond surface represented by an amplitude of 353 photons is of interest or not. Clearly

a classical detection approach could be employed where the threshold is determined

by the noise variance. For instance, Stilla et al. compared the pulse amplitude to

the standard deviation of the background noise. In cases where the pulse amplitude

exceeded three times the standard deviation of the noise for at least the duration of

the transmitted pulse, their initial classification was that a pulse was present [63].

They then used waveform-stacking to refine their classification of whether or not a

surface of interest was truly present. While this detection algorithm is e�cient to

implement, the choice of threshold is somewhat arbitrary given the statistics used in

our model. Additionally, the technique does not take advantage of the fact that we

are using full waveform data.

4.4.2 Using Probability of False Alarm as Key Metric.

While perhaps not as e�cient to implement as a simple threshold detection scheme,

detection methods using waveform data can be shown to be extremely accurate [58].

Additionally, the performance of the technique can be adjusted to mission specific

roles by simply adjusting the parameter of interest. For instance if we primarily

wanted to minimize the possibility of detecting a surface that doesn’t truly exist, we
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could adjust the probability of false alarm, p
F

. Given the following hypotheses:

H
0

- No surface is present in this pixel at this range

H
1

- Surface is present in this pixel at this range

the probability of false alarm is

p
F

= p [H
1

|H
0

] . (4.41)

At this point, we will be working with the estimates produced by the MSID algorithm

in conjunction with the measured data. Ultimately, the goal is to determine the

amplitude threshold that will ensure we exceed the user defined threshold for p
F

.

Any surfaces with amplitude estimates below this threshold could be discarded and

classified as the algorithm’s attempt to fit a pulse to the noise.

In order to execute this detection strategy we also need to establish the Likeli-

hood Ratio Test (LRT). For purposes of this research we will consider equal prior

probabilities and equal costs allowing

⇤ =
p (D|H

1

)

p (D|H
0

)
> 1 say H

1

. Otherwise say H
0

(4.42)

where D is a pulse return with amplitude corresponding with the threshold we wish

to test [58]. If prior knowledge of the scene is available, this test could be adjusted to

potentially allow for better performance. Given the pulse width and bias estimates

that were found using the MSID algorithm, we can find the amplitude threshold that

satisfies the user defined value for p
F

. Unfortunately due to the fact that we are using

full waveform data, a closed form solution for the amplitude threshold does not exist.

However, Monte Carlo methods could be employed to obtain this threshold [58].

Using the width parameter generated from the MSID algorithm, we can simulate
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numerous independent noisy waveforms. Using the measured or estimated bias level,

we can predict the noise variance in the signal. The amplitude of the simulated noisy

return can be gradually increased. For each amplitude level, p
F

is computed [58].

Our amplitude threshold is established once we reach the user defined value for p
F

.

In this manner, we can compute a threshold that varies with the width of the received

pulse.

While this process can be considered computationally intensive, it would be pos-

sible to compute the threshold in advance for a range of pulse width and bias values

and store them in a lookup table since each amplitude threshold is entirely dependent

on these values. Computing the values in advance could easily allow for a test that

could be executed in real time. Demonstration of this technique for a p
F

= 0.01 in

conjunction with the performance gains from the MSID algorithm are detailed in the

following section.

4.5 Results

The following results will demonstrate the performance enhancements of the algo-

rithm developed through this research over traditional Gaussian mixture modeling.

Various algorithms were tested against MCFA images, where each MCFA image is

composed of 30 separate 3-D images. Using the MCFA images serves to improve the

SNR. First, we must consider a metric by which the algorithms will be compared.

4.5.1 Range Accuracy Measurement.

In the case of the multi-surface problem, comparing the performance of the tech-

niques is not simply a matter of looking at the di↵erence between the range estimate

and the true value. We must also consider the true number of ranges present for each

pixel and the algorithm’s ability to accurately predict both the number of surfaces
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visible as well as the true range to that surface. The following method will be used to

compare the performance of the algorithms. For this work, we again assume that the

max number of surfaces visible in any one image pixel is two. However, this technique

will also scale as the number of surfaces increases.

In a 3-D FLASH LADAR system we are primarily concerned with the accurate

ranging to the target, but amplitude also plays a key role in visual depiction of the

target. Since the algorithms mentioned above are initially hard-coded to force each

pixel to have the maximum number of surfaces, we must balance both the predicted

range and amplitude. The following range accuracy measurement will consider the

RMSE between the predicted and true ranges weighted by the predicted amplitudes.

In that manner we will not penalize any of the algorithms for predicting a false range if

the corresponding amplitude is driven to zero or more specifically below the threshold

established by the techniques listed in Section 4.4.2. However, if an algorithm falsely

predicts a range, it will be penalized based on the amplitude corresponding to the

falsely predicted range. For instance, (4.43) demonstrates the error calculation if the

algorithm correctly predicts that there are two surfaces present for a pixel, (4.44) is

the error calculation for a pixel that only has one surface present but the algorithm

predicts two and (4.46) is the case where one surface is present and the algorithm

correctly predicts this.

✏
2,2

= A(1) (x, y)
�

r(1) (x, y)� r(1)(true) (x, y)
�

2

+A(2) (x, y)
�
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�

2

(4.43)

✏
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Once the error, ✏
predicted,true

, is computed for each pixel, the mean error is taken over

the entire image and divided by the mean amplitude of all estimated surfaces. Finally,

the square root of this value is taken, giving us an error value with units of meters.

This final value will be used to judge the accuracy of the algorithm.

4.5.2 Comparison of Algorithms.

This section will compare four multi-surface estimation techniques against the

three target profiles listed in Figure 4.2. The primary metric that will be used to judge

overall performance will be the range accuracy measurement listed in Section 4.5.1.

The techniques will be tested against images with various levels of range diversity as

well as two levels of atmospheric turbulence based on r
0

values of 1 cm and 2 cm.

Figure 4.5: Range RMSE Comparison.

The first technique under consideration was a simple Gaussian decomposition

using an EM technique. This technique will essentially fit the best possible two-

component per pixel Gaussian mixture to the received data without considering the

e↵ects of di↵raction. The second technique was to use the ML estimate (3.9) on each

frame of the 3-D image prior to estimation of the individual surfaces. Third, we will
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look at the performance of the originally developed non-constrained MSID algorithm

[53]. Finally, we will look at the constrained MSID algorithm [52].

From the results in Figure 4.5 it is visible that the constrained MSID algorithm

obtains the best performance for the estimation problem for each of the target profiles

considered. The overall magnitude for RMSE is highly dependent on target type;

however, the observed trend on algorithm performance was similar across all target

types. The improvements of the constrained MSID algorithm compared with non-

constrained MSID algorithm were only slight in some cases. However, the ability

to accurately predict the number of surfaces visible by the detector in conjunction

with the CaR technique was significantly enhanced when using the constrained MSID

algorithm.

The true numbers of surfaces visible by each detector under ideal conditions are

shown in Figure 4.2. When compared with the truth, the constrained MSID algorithm

clearly outperforms the other techniques as shown in Figure 4.6 for the 3-bar target

blurred by an OTF with an r
0

of 2 cm. Here, the pixels that are estimated to

have two surfaces visible are indicated in white. The pixels where the amplitude of

only a single surface is determined to be significant are either gray or black. The

determining factor for which surface is used to estimate an individual return is based

on the initialization value for range. The results from this test were used to finalize

the optimal mixture of components based on the estimated data. The constrained

MSID algorithm demonstrated the best ability to drive false surfaces towards zero

making it easier to develop an accurate mixture model using the CaR technique.

For comparison purposes similar results were produced for the obscured target in

Figure 4.7 and the multi-void target in Figure 4.8. For each of the target types, the

constrained MSID algorithm demonstrated the best ability to eliminate false surfaces

that appear due to noise or di↵raction e↵ects.
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(a) Gaussian Mixture (b) ML Frame-by-Frame

(c) Non-constrained MSID (d) Constrained MSID

Figure 4.6: Surface prediction using CaR technique with r

o

= 2cm for (a) Gaussian mix-
ture EM algorithm without including the e↵ects of di↵raction, (b) RL Frame-by-Frame
deconvolution technique, (c) non-constrained MSID algorithm and (d) the constrained
MSID algorithm. The pixels where the amplitudes of both surfaces yield a detection
are indicated in white. The pixels where the amplitude of the second surface, A(2)(x, y),
was the only one of significance are indicated in gray. Finally, the pixels where the
amplitude of the first surface, A(1)(x, y), was the only one of significance are indicated
in black.
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(a) Gaussian Mixture (b) ML Frame-by-Frame

(c) Non-constrained MSID
f

(d) Constrained MSID

Figure 4.7: Surface prediction using CaR technique with r

o

= 2cm for (a) Gaussian mix-
ture EM algorithm without including the e↵ects of di↵raction, (b) RL Frame-by-Frame
deconvolution technique, (c) non-constrained MSID algorithm and (d) the constrained
MSID algorithm. The pixels where the amplitudes of both surfaces yield a detection
are indicated in white. The pixels where the amplitude of the second surface, A(2)(x, y),
was the only one of significance are indicated in gray. Finally, the pixels where the
amplitude of the first surface, A(1)(x, y), was the only one of significance are indicated
in black.
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(a) Gaussian Mixture (b) ML Frame-by-Frame

(c) Non-constrained MSID (d) Constrained MSID

Figure 4.8: Surface prediction using CaR technique with r

o

= 2cm for (a) Gaussian mix-
ture EM algorithm without including the e↵ects of di↵raction, (b) RL Frame-by-Frame
deconvolution technique, (c) non-constrained MSID algorithm and (d) the constrained
MSID algorithm. The pixels where the amplitudes of both surfaces yield a detection
are indicated in white. The pixels where the amplitude of the second surface, A(2)(x, y),
was the only one of significance are indicated in gray. Finally, the pixels where the
amplitude of the first surface, A(1)(x, y), was the only one of significance are indicated
in black.
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(a) Gaussian Mixture (b) Constrained MSID

Figure 4.9: Comparison of 3-D surface returns for 3-bar target using a (a) Gaussian
mixture EM algorithm without including the e↵ects of di↵raction, and (b) the con-
strained MSID algorithm which accounts for the e↵ects of di↵raction. By including
the e↵ects of di↵raction, our estimate of the 3-D target is significantly more accurate
when compared to the truth in Figure 4.1 (a).

(a) Gaussian Mixture (b) Constrained MSID

Figure 4.10: Comparison of 3-D surface returns for obscured target using a (a) Gaus-
sian mixture EM algorithm without including the e↵ects of di↵raction, and (b) the
constrained MSID algorithm which accounts for the e↵ects of di↵raction. By including
the e↵ects of di↵raction, our estimate of the 3-D target is significantly more accurate
when compared to the truth in Figure 4.1 (b).
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(a) Gaussian Mixture (b) Constrained MSID

Figure 4.11: Comparison of 3-D surface returns for multiple void target using a (a)
Gaussian mixture EM algorithm without including the e↵ects of di↵raction, and (b) the
constrained MSID algorithm which accounts for the e↵ects of di↵raction. By including
the e↵ects of di↵raction, our estimate of the 3-D target is significantly more accurate
when compared to the truth in Figure 4.1 (c).
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In Figures 4.12, 4.13 and 4.14 we compare the range error by pixel for the various

target profiles from Figure 4.2 for each of the four multi-surface ranging techniques.

The results provide an intuitive explanation for the variation in range RMSE. The

traditional Gaussian decomposition strategy has minimal range error when there are

truly two surfaces to estimate, such as in the center of the image for the obscured

target. However, near the edges of the obscuration where some of the reflected light

from the far surface di↵racts onto neighboring pixels we experience an increase in

range error as expected. By using the ML estimate on each frame of the 3-D data,

we can reduce this error somewhat, though largest reductions in error occur when the

e↵ects of di↵raction are directly incorporated into the multi-surface ranging algorithm.

On the 3-bar target and the multi-void target, we again see that as the light from

di↵erent surfaces is di↵racted to neighboring areas of the image, we experience higher

levels of error.

Figure 4.12: 3-Bar target range error by pixel comparison (meters2).
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Figure 4.13: Obscured target range error by pixel comparison (meters2).

Figure 4.14: Multi-void target range error by pixel comparison (meters2).
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4.6 Chapter Summary

By incorporating the e↵ects of di↵raction, the MSID algorithm developed through

this research allows for significant enhancement to the multi-surface estimation prob-

lem when properly sampled images are taken through atmospheric turbulence. Two

variations of the MSID algorithm were developed. First, direct solutions for the pulse

return parameters and pixel bias were derived. Second, a constraint on the amplitude

was applied which allowed for much more refined pulse return estimates. Rather than

employ deconvolution techniques that are tailored for 2-D images, both approaches

incorporate the e↵ects of di↵raction into the Gaussian mixture model. Additionally,

the MSID algorithm simultaneously solves for range, pulse width and amplitude for

multiple surfaces per detector while enhancing pulse returns that may have been

diminished due to the di↵ractive e↵ects of the atmosphere.

Through the incorporation of the e↵ects of di↵raction into the algorithm, the ill

e↵ects of temporal and spatial distortion were simultaneously reduced. The results

obtained from the MSID algorithm were superior to those obtained through more

traditional techniques. Simulation examples show that the MSID algorithm derived

in this work improves range estimation over standard Gaussian mixture modeling

and frame-by-frame deconvolution on average by 89% and 85% respectively based on

range RMSE calculations. Current limitations on the technology limit the ill e↵ects

when imaging through turbulence, but as technology improves and resolution of the

detectors increases, the ill e↵ects will become significantly more pronounced.

Given the technical challenges associated with the manufacturing of these sensors,

the issue of proper sampling appears to be a considerable hurdle to overcome for many

applications. However, the goal of this research was to demonstrate the promise of the

novel technique presented in this chapter on multiple surface ranging in the presence

of atmospheric aberrations. Additionally, the MSID algorithm would have current
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applicability where sensors with very long focal lengths are employed. For instance,

employing a 3-D FLASH LADAR in conjunction with an astronomical telescope could

facilitate the sampling required. An optical system of this nature could yield benefits

in SSA.
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V. 3-D FLASH LADAR Parameterized Blind Deconvolution

This chapter focuses on the development of a novel blind deconvolution algorithm

employed on properly sampled 3-D FLASH LADAR images. This research will build

upon the MSID algorithm previously developed to minimize the e↵ects of di↵raction

on 3-D FLASH LADAR while producing accurate ranging to multiple surfaces [52].

Using an enhanced version of this algorithm and considering the range diversity in-

herent in 3-D images allows for simultaneous estimation of the parameterized PSF

and spatial / temporal enhancement of the image. Simulation results will be pre-

sented to demonstrate the utility of this algorithm in controlled cases where the true

PSF is known [51]. Experimental results will also be presented where the PSF can

be measured.

As previously mentioned, parameterized blind deconvolution for 2-D images is

an ill-posed problem. While solutions have been developed that can overcome this

hurdle, additional assumptions or approximations are often required. Using a likeli-

hood maximization approach, this research will show that by adding range diversity

through 3-D imaging, parameterized blind deconvolution is no longer an ill-posed

problem.

This chapter is organized as follows: Section 5.1 details the system of equations

that leads to an over-determined problem when dealing with properly sampled FLASH

3-D images. In Section 5.2 the strategy for finding the parameterized OTF is provided.

Section 5.3 presents the parameters and target profiles used for simulation and Section

5.4 presents the findings when using actual experimentally collected images impacted

by atmospheric turbulence.
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5.1 Joint Estimation of Image and Atmospheric Seeing - System of Equa-

tions

Previous work presented in Chapter IV assumed that the PSF was known, and

simultaneously provided iterative solutions for pulse amplitude, range, width and

bias. Using the MSID algorithm we will now show that through the simultaneous

estimation of all of the visible surfaces for each detector, we can also accurately

identify the PSF parameterized by r
0

. Both the constrained and non-constrained

MSID algorithm have been tested with success. However, the advantage with using

the non-constrained algorithm for this application is that we do not need to first

perform a deconvolution on the 2-D representation of the received image. A potential

employment strategy would be to first use the non-constrained MSID algorithm to find

the optimal parameterized PSF. We could then use this optimal parameterized PSF

in conjunction with the constrained MSID algorithm to further refine the estimate.

It is through this joint estimation that we are able to fully demonstrate the utility

of this multiple surface ranging capability for minimizing the spatial and temporal

blurring in a tactical environment. Using the average atmospheric models in (2.10)

and (2.11) the OTF is reduced to a single unknown, r
0

. The ability to find this single

unknown for the OTF, and its Fourier relationship to the PSF can be considered a

solution to the parameterized blind deconvolution problem.

While the problem of parameterized blind deconvolution is ill-posed for 2-D im-

ages, for 3-D images it is possible that the problem may be over-determined. The

over-determined nature of the problem is derived from the fact that we are using

3-D images where the total image is collected in an extremely short time span. The

laser pulse is of such a short duration, that the atmosphere can be considered static

and a single PSF is applied to all range slices in the image [21]. The 2-D system of

130



equations is

I (u, v) =
M

X

x,y=1

o (x, y)h (u� x, v � y| r
0

) (5.1)

where i is the image estimate, o is the object we are trying to estimate and our PSF,

h, is parameterized by r
0

. Here we have a total of M2 equations, but we have (M2+1)

unknowns, since for every image we have both an object sampled by M2 pixels and

a unique PSF. The 3-D system of equations is

I (u, v, r
k

) =
N

X

n=1

M

X

x,y=1

P (n) (x, y, r
k

)h (u� x, v � y| r
0

) + B (u, v) for k = {1 : K}

(5.2)

where K is the total number of range samples or frames in the image. For 3-D images

we therefore have KM2 equations but only (3N +1)M2+1 unknowns, since we want

to estimate amplitude, range and pulse width for each return, bias for the detector

and r
0

for the PSF. Therefore, we now have the possibility for an over-determined

problem if the condition

K � 3N + 2 (5.3)

is satisfied, since K must be an integer. In addition to the condition in (5.3), the

targeted scene must also have range diversity in order to prevent an ill-posed problem.

5.2 Maximum Likelihood Solution for Atmospheric Seeing

The goal of this work is to show that likelihood can be maximized through joint

estimation of range, amplitude, pulse width, bias and atmospheric seeing. Given the

joint probability of the received data as shown in (2.6) the log-likelihood, L, can be

computed as

L =
M

X

u,v=1

K

X

k=1

[d (u, v, r
k

) ln (I
tot

(u, v, r
k

))� I
tot

(u, v, r
k

)� ln (d (u, v, r
k

)!)]. (5.4)
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In (5.4), the final term, d(u, v, r
k

)! is a constant that does not vary as we search for

the correct value of r
0

to maximize likelihood. Therefore, we simply seek to maximize

this adjusted likelihood function, L
'

,

L
'

=
M

X

u,v=1

K

X

k=1

[d (u, v, r
k

) ln (I
tot

(u, v, r
k

))� I
tot

(u, v, r
k

)]. (5.5)

5.3 Simulation

This work will report results from simulated 3-D FLASH LADAR data that was

again designed to mimic an ASC Tigereye camera. For this reason, simulation pa-

rameters were set to those published for the system as shown in Table 4.1. This

section will be broken down into three main parts. First we will present the target

profiles considered. Second, we will show how range diversity is critical to the ability

to jointly estimate the pulse, bias and atmospheric seeing. Finally, we will show that

joint estimation of multiple surfaces is required in order to solve this problem.

5.3.1 Simulated Target Profiles.

Each simulated 3-D image will consist of 20 individual data frames. With a

sample rate of 420 MHz, each 128 ⇥ 128 pixel data frame will represent a range

delta of approximately 0.357 m for a total range gate of 7.14 m. All targets for

this simulation were designed such that the surfaces would produce returns within

the range gate. Target profiles were selected to illustrate the dependence on range

diversity. This paper will consider three unique target profiles shown in Fig. 5.1.

With the exception of the flat target in Fig. 5.1(a), the target profiles were designed

to ensure that there was range diversity throughout the scene. The flat target was

designed to show that likelihood cannot be maximized using the techniques described

in this paper without range diversity in the scene.
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(a) Flat target - reflectivity (b) Flat target - range

(c) Single bar target - reflectivity (d) Single bar target - range

(e) Multi void target - reflectivity (f) Multi void target - range

Figure 5.1: (a) The flat target has a single bar in the center with lower reflectivity.
(b) The flat target is at a range of 105 meters across the entire sensor field of view. (c)
The single bar target again has a single bar in the center with lower reflectivity. (d)
Additionally, the single bar target has range diversity since the background is at 105
meters, and the single raised bar in the center is at 103 meters. (e) The multiple void
target has numerous voids with lower reflectivity. (f) The multi void target has the
entire foreground at 100 meters and various size voids at ranges between 101 and 104
meters.
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5.3.2 Range Diversity and Likelihood Maximization.

The simulation results were obtained by first executing the multi-surface ranging

algorithm on an image ensemble consisting of an average of 30 individual 3-D images

across a range of r
0

values from 0.001 m to 0.025 m. Image averaging was used to

improve SNR and the frames were properly registered making the employment of the

average short exposure OTF (2.10) valid. The adjusted likelihood was then computed

according to (5.5), and the optimal solution was chosen as the one that maximized

likelihood. The results below will focus on the ability to accurately estimate the

value for r
0

, since the results in Chapter IV demonstrated the capability of the MSID

algorithm given a known value for r
0

.

Figure 5.2 shows the adjusted likelihood with respect to r
0

for each of the targets

identified in Figure 5.1. In each case, the simulated image for the target was developed

using 1 cm for the true value of r
0

. As expected, the flat target did not allow for

maximization of r
0

at the correct value. Rather, likelihood continued to increase with

increasing r
0

. On the other hand, both the single bar target and the multi void target

allowed for maximization of likelihood at the correct value of 1 cm.
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(a) Flat target - Likelihood vs r
0

(b) Single bar target - Likelihood vs r
0

(c) Single bar target - zoom view

(d) Multi void target - Likelihood vs r
0

(e) Multi void target - zoom view

Figure 5.2: (a) The flat target has a continuously increasing likelihood with respect to
increasing levels of r0 (b) The single bar target has a small amount of range variance
throughout the image, yet likelihood is maximized. (c) Upon zooming in, likelihood is
clearly maximized at the correct value of 1 cm for the single bar target. (d) The multi
void target has far more range diversity, and likelihood is again maximized. (e) Upon
zooming in, likelihood is clearly maximized at the correct value of 1 cm for the multi
void target.
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5.3.3 Joint Estimation of Multiple Surfaces.

It should be noted that accurate results are far more likely for this joint estimation

problem if simultaneous estimation of all surfaces is accomplished. Since blurring

occurs both temporally and spatially, we must account for both if we want to identify

the correct blurring function using this algorithm. The single bar target was designed

such that each pixel would have at most two surfaces in its FOV. Additionally, only

the pixels with an FOV that contained the edges of the bar would have more than

a single surface if di↵raction e↵ects were not present. By constraining the algorithm

so that we solve for at most one surface per pixel, the ability to predict an accurate

level for r
0

is significantly degraded. This is likely due to the fact that the system of

equations in (5.2) no longer applies. Figure 5.3 shows that the maximum likelihood

value does not occur at the correct value of r
0

= 1 cm when we only estimate a single

surface per pixel. Instead, likelihood is maximized at r
0

= 0.5 cm.

Figure 5.3: When only considering a single surface per detector for the single bar
target, likelihood maximization produces a low estimate for the value of r0.
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5.4 Experimental

The simulation results discussed in the previous section demonstrated high levels

of precision in the ability to estimate the multiple surface model in conjunction with

the atmospheric seeing parameter. While the simulation was designed to closely

replicate the results from an actual 3-D FLASH LADAR sensor, the complexity of

the problem was reduced based on the target geometry. For the simulations, all

targets were oriented normal to the sensor. Therefore, any pulse width expansion

could be considered associated with the e↵ects of di↵raction. However, experimental

conditions considered targets with various orientations. In this case, the received pulse

width could vary due to the angle at which the outgoing pulse strikes the surface.

The experimental results demonstrate that the algorithm is capable of separating the

cause of pulse width variation.

5.4.1 Sensor Parameters.

The sensor used for this research was a modified ASC Portable 3-D FLASH

LADAR Camera KitTM. The sensor used all of the standard components in this

commercially available sensor; however, they were oriented into a di↵erent configu-

ration for the USAF TPS as shown in Figure 2.4. The only significant di↵erences

between the specifications listed in Table 4.1 used for simulation and the sensor used

for this experiment is with the optics. The optics parameters for the experiment

are listed in Table 2.2. Given the sampling requirements in (4.40) and the optical

specifications in Table 2.2, the maximum pixel size for proper sampling should be 2

µm⇥2 µm. However, the actual sensor detector had a much greater pixel size at 100

µm⇥100 µm.

Previous e↵orts with similar FLASH LADAR systems addressed the sampling

requirement by significantly restricting the aperture diameter with a mask [16], [?].
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Figure 5.4: Frequency response as a function of spatial frequency for r0 levels between
0.0005m and 0.002m.

For the size of the individual detectors in this sensor, the aperture would have needed

to be approximately 2 mm for proper sampling with this technique. By restricting the

aperture that far we would have greatly reduced the amount of light gathered thus

negatively impacting the SNR. As an alternative, we chose to use a highly turbulent

atmosphere to reduce the sampling requirement.

The atmosphere can essentially be treated as a low pass filter. The more turbulent

the atmosphere becomes, the lower the sampling requirement will become as well.

Considering the relationships in (2.9) and (2.10) we can show how the maximally

observed spatial frequency is decreased as turbulence is increased or in other words

as r
0

is decreased. Given the pixel pitch of the ASC sensor, the maximum spatial

frequency satisfying Nyquist criteria is 5, 000 (1/m). Yet the optical specifications in

Table 2.2 in conjunction with the relationship in (2.7) yield a sampling requirement

of 305.7 ⇥ 103 (1/m). Therefore, the goal was to find an r
0

value that produced a

cuto↵ frequency below 5, 000 (1/m). As shown in Figure 5.4, the frequency cuto↵ is

reduced in conjunction with a reduction in r
0

.
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Based on the available sensor parameters, r
0

levels of approximately 0.0015m will

yield proper sampling. Atmospheric seeing levels of this nature would be di�cult to

find naturally. Therefore, an extremely turbulent atmosphere was generated in front

of the aperture using a 60,000 British Thermal Unit (BTU) heat source. This heat

source consistently created r
0

levels between 0.001m and 0.002m. We have found

that the MSID algorithm has some capability to deal with slightly undersampled

data. However, the extent to which the data can be undersampled with this technique

remains to be proven as a future research topic.

Placing this source of turbulence in front of the aperture had another benefit for

this experiment. Since this sensor was originally designed to be placed in a pod on an

aircraft, the lens was focused at infinity. With the ranges used for this experiment,

the lens being focused at infinity resulted in a blurring of the images. The focus error

OTF is similar to the atmospheric OTF at lower frequencies [22]. However, there are

additional high frequency components in the focus error OTF. By imaging through

the turbulent atmosphere, the added high frequency components were filtered out.

The resultant OTF was measured to be very close to the theoretical short exposure

OTF as shown in the following results.

5.4.2 Experimental Target Profiles.

The images collected for this research consist of two separate target configura-

tions. Figure 5.5 displays the first configuration and its associated range profile.

This configuration was designed such that ideally only the edge pixels where the two

sheets overlap would have multiple surfaces. The second target configuration shown

in Figure 5.6 is similar to the obscured target simulated in Chapter IV. With this

target configuration the front sheet of plywood had the center section removed. An

aluminum screen was then placed over this opening to allow a portion of the light
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to pass through and a portion to be reflected. A second sheet of plywood was then

placed behind the first sheet to provide a second return.

For target configuration 1, the two sheets of plywood were separated in range by

approximately 2.6 m. The sheets were each oriented perpendicular from the sensor.

Additionally, the sheets were positioned such that there would be some overlap at

the center. Given the 3� FOV for the sensor and the range to the target, each pixel

will correspond with a spatial area of approximately 6.5 ⇥ 6.5 cm2. Therefore, we

would expect only the column of pixels in the detector array corresponding with the

overlap to have more than one surface in its FOV in an ideal environment. However,

the following results show that this is not the case.

For target configuration 2, the two sheets of plywood were separated in range by

approximately 3.4m. The sheet in the foreground had an opening in the center that

was covered with an aluminum mesh screen. A second sheet of plywood was oriented

behind and parallel to the first sheet. This configuration allows us to demonstrate

the ability to detect an object through an obscuration. Given the range to this target

and the 3� FOV of the sensor, each image pixel will correspond with an area of

approximately 6⇥ 6 cm2.
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(a) Target Configuration 1 (b) Range Profile

(c) 3-D View of Target Configuration 1

Figure 5.5: (a) Plywood in foreground at approximately 156.4m overlaps a second sheet
of plywood placed at approximately 159m. (b) Range profile for target configuration
1. (c) 3-D representation of target configuration.
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(a) Target Configuration 2

(b) Range to Surface 1 (c) Range to Surface 2

(d) 3-D View of Target Configuration 2

Figure 5.6: (a) Plywood in foreground at approximately 145.8m contains a mesh screen
in the center to allow ranging to the second sheet of plywood placed at approximately
149.2m. (b) Range to the most dominant surface in each pixel. (c) Range to second
most dominant surface in each pixel. (d) 3-D representation of target configuration.
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Figure 5.7: Individual 2-D frames for target configuration #1.
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Figure 5.8: Individual 2-D frames for target configuration #2.
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5.4.3 Atmospheric Seeing - Truth Measurement Technique.

Both configurations were designed such that the true level of r
0

could be measured

and compared with the estimates obtained using the MSID algorithm. The true seeing

parameter is measured using the technique identified in Section 2.5. To implement

this measurement technique, we can consider a range slice that only has one sheet

of plywood in view. From this 2-D slice, we can calculate the step response by

measuring the change from background to illuminated surface. For example, when

only considering the intensity image corresponding with a range of 159m in the first

target configuration, we get the 2-D image and measured frequency response as shown

in Figure 5.9. Candidate OTFs across a suitable range of r
0

values can then be

compared against this measured OTF to find the one that produces the MMSE.

Notice that the measured frequency response contains high frequency components

that are absent from the theoretical candidate OTFs. This is likely due to the noise

present in the measured step response.

145



(a) Measured Step Target (b) Impulse Response

(c) Measured Frequency Response

Figure 5.9: (a) Step target obtained by only considering the image intensity at a
range of 159m. (b) Impulse response computed by first finding the step response or
vertical change in intensity and then taking the first derivative of the step response.
(c) Measured frequency response with an overlay of the best fit short exposure OTF
(r0=0.0012m), and a range of candidate OTFs.
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5.4.4 Experimental Results.

Using the previously mentioned target configurations, we now execute the MSID

algorithm for a range of r
0

values. The search window for r
0

will consist of levels

from 0.0001m to 0.01m with an increment of 0.0001m. One of the key advantages

with this algorithm is that execution of the MSID algorithm for each level of r
0

is

independent. This allows for easy parallelization or e�cient search patterns such as

the pattern described in Figure 3.4. Using the estimated parameters, we can compute

the adjusted likelihood according to (5.5). As an example, Figure 5.10 shows the

adjusted likelihood for each level of r
0

within this search window for Trial #1.

(a) Adjusted Likelihood vs r
0

(b) Zoom View of Adjusted Likelihood

Figure 5.10: (a) Adjusted likelihood for a range of r0 values from 0.0001m to 0.01m.
(b) Maximization of likelihood occurs at 0.0012m.

Figure 5.10 shows that maximization of the adjusted likelihood occurs at r
0

=

0.0012m, which was what was expected based on the measured level of r
0

. Of the

four experiments conducted, each were accurate to within 0.0002 meters as shown

in Table 5.1. More importantly, the results of the experiments were consistent with

the results from simulations where we had significantly more control over the target

geometry, simulated turbulence and optical specifications. The spatial and temporal

blurring for target configuration #2 had less of an impact than what was observed

147



Table 5.1: Comparison of Measured and Estimated r0 Values.

Target Profile #1 r
0

Values (meters)
Trial Measured MSID - Estimated CoV - Estimated

Frame 11 Frame 19
1 0.0012 0.0012 0.0012 0.0013
2 0.0013 0.0014 0.0013 0.0013

Target Profile #2 r
0

Values (meters)
Trial Measured MSID - Estimated CoV - Estimated

Frame 12 Frame 22
3 0.0019 0.0018 0.0017 0.0018
4 0.0019 0.0017 0.0016 0.0017

for target configuration #1 as indicated by the levels of r
0

shown in Table 5.1. The

experiments for target configuration #1 were conducted on 6 February 2012 when the

ambient air temperature was below 40�F. The experiments for target configuration #2

were conducted on 3 October 2012 when the ambient air temperature was above 70�F.

Given the lower temperature di↵erence between the ambient air and the output of

the 60, 000 BTU heat source, we expect the values of r
0

to be higher when the outside

air is warmer as indicated. The next section will visually show the improvement in

estimation capability using the MSID algorithm.

The results from the CoV method detailed in Chapter III are also listed in Table

5.1. Based on the results from simulation, shown in Section 3.4, we hand selected two

frames from each 3-D image to perform the CoV method. Recalling that simulations

show improved accuracy in higher contrast images, we chose frames 11 and 19 for

target configuration #1, and frames 12 and 22 for target configuration #2. The results

from the CoV method are similar to the estimates obtained through maximization

of likelihood in conjunction with the MSID algorithm. This highlights that the CoV

technique is a viable backup in cases where abnormalities in pulse shape may make

maximization of likelihood in conjunction with the MSID algorithm unreliable.
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5.4.5 Observed Performance Enhancement.

The overall goal of this technique is to simultaneously find the pulse parameters

and value of r
0

that maximizes likelihood as demonstrated in Section 5.3. For com-

parison purposes we will also consider an EM solution that does not account for the

e↵ects of di↵raction and only seeks to fit the best possible Gaussian mixture to the

received data. Range RMSE measurements are not possible since we do not have

truth range information to each point in the scene. However, we can assess the algo-

rithm’s ability to accurately predict the correct number of surfaces for each point in

the scene based on target geometry as well as the ability to accurately predict r
0

.

The MSID algorithm relies on the CaR technique to identify the true number of

surfaces per pixel [52]. The target configurations and the sensor range gate were set

up such that a maximum of two returns should be visible in each detector. Therefore,

the MSID algorithm will estimate a Gaussian mixture with two returns for each

pixel. In cases where a pixel has fewer returns than the pre-defined cap, the algorithm

should ideally drive those amplitudes towards zero. As previously demonstrated, once

the algorithm’s termination criteria is achieved, we then execute the full-waveform

detection strategy to determine if the individual pulse amplitudes warrant a detection

[58]. Given the target geometry in configuration #1, we would only expect the single

column of pixels corresponding with the overlap of the two sheets of plywood to have

multiple returns when the e↵ects of di↵raction are removed. For target configuration

#2, we expect the center region of the plywood and the edge of the front sheet of

plywood to have multiple returns.

Figure 5.11 shows that the overlap region between the two sheets of plywood is as

many as four pixels wide. At a range of approximately 157 m, this would mean that

the overlap region is up to 26 cm wide, providing a significant amount of ambiguity to

the true overlap point. In Figure 5.12 each of the received pulses and pulse estimates

149



Figure 5.11: Target Configuration #1 - Number of surfaces detected for each pixel
without accounting for the e↵ects of di↵raction.

are compared for the highlighted region from Figure 5.11. With the exception of pixels

(60,69) and (65,69), each of the received pulses have two returns corresponding with

the surface prediction. However, based on target geometry, we would only expect one

of the received pulses to contain multiple surface returns in the absence of di↵raction

e↵ects.
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(a) Pixel (60,69) (b) Pixel (61,69)

(c) Pixel (62,69) (a) Pixel (63,69)

(b) Pixel (64,69) (c) Pixel (65,69)

Figure 5.12: Individual pulse reconstructions compared with received pulses for the
highlighted region from Figure 5.11 without accounting for the e↵ects of di↵raction.
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By incorporating the e↵ects of di↵raction, we can more accurately estimate the

number of surfaces per pixel. Figure 5.13 shows the number of surfaces that are

detected per pixel when the value of r
0

which maximized the likelihood (r
0

= 0.0012m)

is used. By accounting for the e↵ects of di↵raction, the region of overlap is reduced

to a single column in most places. In Figure 5.14 each of the received pulses and

Figure 5.13: Target Configuration #1 - Number of surfaces detected for each pixel
when accounting for the e↵ects of di↵raction.

pulse estimates are compared for the highlighted region from Figure 5.13. Through

the use of the MSID algorithm, the amplitude for the second surface is driven below

the detection threshold for all but pixel (62,69).
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(a) Pixel (60,69) (b) Pixel (61,69)

(c) Pixel (62,69) (a) Pixel (63,69)

(b) Pixel (64,69) (c) Pixel (65,69)

Figure 5.14: Individual pulse reconstructions compared with received pulses for the
highlighted region from Figure 5.13 when accounting for the e↵ects of di↵raction.
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An additional metric for comparison is based on the known target height. The

sheet of plywood on the right is 1.22 m tall, and the range to this sheet of plywood

is approximately 157 m. Given this geometry and the sensor parameters we would

expect the sheet to only require a vertical range of 19 - 20 pixels in the detector FOV.

However, when the straight Gaussian mixture model is applied to the received data,

the target is measured at 22 - 23 pixels tall. Once the MSID algorithm is applied,

the target only requires a vertical range of 19 - 21 pixels in the detector FOV. This

reduction in blurring around the edges of the target can be observed by looking at

the di↵erence between Figures 5.11 and 5.13 as shown in Figure 5.15.

Figure 5.15: Target Configuration #1 - Di↵erence in the number of surfaces detected
for each pixel when not accounting for the e↵ects of di↵raction minus the results from
the MSID algorithm.

We now demonstrate similar results for target configuration #2. When a Gaussian

mixture model is applied to the received data without accounting for the e↵ects of
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di↵raction, the CaR technique reveals multiple surfaces in many pixels where only

a single surface should exist. In an ideal environment, a single row / column of

pixels should have multiple surfaces visible corresponding with the top / left sides

of the target respectively. Additionally, the center section of the target should also

have multiple surfaces visible. However, when we fail to account for the e↵ects of

di↵raction, we again see that the spatial and temporal blurring around the edges of

the target results in numerous false detections as shown in Figure 5.16.

Figure 5.16: Target Configuration #2 - Number of surfaces detected for each pixel
without accounting for the e↵ects of di↵raction.

By incorporating the e↵ects of di↵raction, the estimated number of surfaces per

pixel can again be brought more in line with the expectation based on target geometry.

Figure 5.17 shows the number of surfaces that are detected per pixel when the value

of r
0

which maximized likelihood (r
0

= 0.0019m) is used. By accounting for the
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e↵ects of di↵raction, the overlap regions on the left and top of the target are reduced

in most places. Additionally, there is a reduction in blurring around the edges of the

Figure 5.17: Target Configuration #2 - Number of surfaces detected for each pixel
when accounting for the e↵ects of di↵raction.

target as observed by comparing the di↵erence in Figures 5.16 and 5.17 as shown in

Figure 5.18.
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Figure 5.18: Target Configuration #2 - Di↵erence in the number of surfaces detected
for each pixel when not accounting for the e↵ects of di↵raction minus the results from
the MSID algorithm.
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5.4.6 Joint Estimation Requirement.

The previous results demonstrated that a likelihood maximization approach to

the parameterized blind deconvolution problem is possible with properly sampled 3-

D images. As a final consideration, the requirement to fully account for all surfaces

visible in the received data will be demonstrated. Through simulation, we found

that the ability to accurately estimate the value of r
0

was significantly degraded by

failing to account for the temporal and spatial interaction of all surfaces. When only

accounting for a single surface per detector, we found that likelihood was maximized

for a low estimate of r
0

. When working with experimentally collected data, the

ability to accurately estimate r
0

was again degraded. For both target configurations,

the maximization of likelihood with respect to r
0

occurred at a value higher than

previously estimated or measured as demonstrated in Figures 5.19 and 5.20.

(a) Adjusted Likelihood vs r
0

(b) Zoom View of Adjusted Likelihood

Figure 5.19: Target configuration #1 single surface estimation. (a) Adjusted likelihood
for a range of r0 values from 0.0001m to 0.01m. (b) Maximization of likelihood occurs
at 0.0016m where the measured value was 0.0012m.

5.5 Chapter Summary

Enhancements in the capability gained through 3-D imaging are significant. Cur-

rent sensors may have limited military utility due to the maturity of the technology.
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(a) Adjusted Likelihood vs r
0

(b) Zoom View of Adjusted Likelihood

Figure 5.20: Target configuration #2 single surface estimation. (a) Adjusted likelihood
for a range of r0 values from 0.0001m to 0.01m. (b) Maximization of likelihood occurs
at 0.0024m where the measured value was 0.0018m.

However, it is expected that this technology may eventually fully coexist with pas-

sive type sensors due to a myriad of associated advantages. The algorithm developed

for this research demonstrates that parameterized blind deconvolution is an over-

determined problem for range diverse scenes, with a direct solution that maximizes

likelihood. When coupled with the MSID algorithm, we can simultaneously discrim-

inate the range to multiple surfaces per pixel, while also improving spatial resolution

and temporal accuracy. This algorithm will further enhance the ability to detect tar-

gets behind an obscuration. Improvements such as these are critical for the migration

of this technology to the next generation of imaging sensors.

This algorithm is novel in its approach to the parameterized blind deconvolution

problem in that it uses the added information available with 3-D imaging. Given the

following conditions:

• Exposure time is short enough that the atmosphere can be considered static

• Range diversity exists in the targeted scene

• Relationship in (5.3) is satisfied
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the problem appears to have a direct solution. All work to this point has been con-

ducted with the assumption that the images are properly sampled. This requirement

was a driving factor for using such high levels of turbulence in the experiments. It

is possible that similar techniques could be used for images that are not properly

sampled or slightly under sampled and this possibility poses an interesting topic for

future experimentation. Finally, while this technique was only demonstrated with the

short exposure OTF parameterized by r
0

, it is likely that the technique would work

for other blurring functions that can be reduced to functions of a few parameters such

as focus error.
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VI. Conclusion

Contributions from this research enhance the ability to accurately extract pulse

information with a three dimensional FLASH LAser Detection and Ranging (3-D

FLASH LADAR) sensor where multiple returns per image pixel are possible. The

algorithms and techniques developed significantly enhance ranging accuracy and tar-

get modeling where the received image is degraded by the e↵ects of imaging through

a turbid medium. Additionally, the algorithms were designed with computational

e�ciency in mind such that they could be employed in a tactical environment where

processing time and power may be limited.

Active illumination sensors such as 3-D FLASH LADAR have recently garnered

a significant amount of interest for defense and civilian applications. Due to the

employment of active flood illumination, 3-D FLASH LADAR sensors can gather

ranging information for every point within a targeted scene nearly simultaneously.

Furthermore, depending on the detection methodology employed, the possibility of

imaging through obscurations becomes a reality. Potential benefits from this technol-

ogy are currently constrained by manufacturing challenges as well as the di�culty in

extracting the parameters of interest out of the received data. This research focuses

on the latter constraint of parameter extraction and enhancement. As an aside, the

research concludes that unique solutions exist to some problems that were previously

deemed mathematically ill-posed for traditional optical sensors.

This chapter provides a summary of each of the primary chapters in this disser-

tation, reviews the key contributions to this research discipline and o↵ers numerous

ideas for future research that could yield even further enhancement.
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6.1 Chapter Summaries

Chapter II reviewed key theoretical concepts that were employed throughout this

research e↵ort. The focus of this review was on 3-D FLASH LADAR operation,

statistical modeling of noise in collected images, estimation techniques with itera-

tive algorithms and the e↵ects of atmospheric turbulence on collected imagery. An

overview of the sensors employed for collection of experimental data was provided. Fi-

nally, previous research on blind deconvolution, multi-surface ranging and 3-D FLASH

LADAR image enhancement was summarized and compared with this work.

Chapter III revisited parameterized blind deconvolution techniques that were de-

veloped by MacDonald and MacManus for two dimensional (2-D) imagery [41], [45].

MacDonald employed a noise based stopping criteria in conjunction with an a pri-

ori assumption for the distribution of the atmospheric seeing parameter, r
0

. This

allowed him to simultaneously find a maximum likelihood solution for the parame-

terized Optical Transfer Function (OTF) and the deblurred image. MacManus later

demonstrated that the a priori assumption was not required. Rather, employment

of the noise based stopping criteria was su�cient to solve the parameterized blind

deconvolution problem. Numerous experiments with fully illuminated and partially

illuminated scenes were conducted to validate the results obtained through simu-

lation. Additionally, the algorithm was employed against scenes illuminated with

both incoherent and partially coherent light. Finally, this technique was applied to

simulated 3-D FLASH LADAR images to demonstrate its e↵ectiveness.

Chapter IV details the development of the novel multiple surface ranging algo-

rithm that accounts for the e↵ects of di↵raction. This algorithm takes the somewhat

common approach of applying a Gaussian mixture model to the received 3-D FLASH

LADAR data. However, the pulse model is expanded to simultaneously incorporate

the e↵ects of di↵raction on the received pulse. Solutions for pulse amplitude, range

162



and width are developed for each return in the received data. Additionally a solution

for the detector bias is developed for situations where it is impractical to measure

separately. A novel approach to determining the optimal mixture or number of re-

turns per pixel is presented. Finally, a constraint on the pulse amplitude estimates

is derived to prevent improper convergence of the algorithm. Simulated 3-D FLASH

LADAR data was used to compare the performance of the various ranging techniques.

Traditional Gaussian mixture modeling without considering the e↵ects of di↵raction,

frame-by-frame 2-D deconvolution techniques and the constrained / non-constrained

multi-surface ranging algorithms were each employed on the simulated data.

Chapter V provides the capstone for the research e↵ort. In this chapter the set

of equations are developed that demonstrate that parameterized blind deconvolution

is often an overdetermined problem when working with range diverse 3-D FLASH

LADAR data. A maximum likelihood solution is employed to determine the opti-

mal level of atmospheric seeing to deblur the collected images. The technique is

first employed on simulated data where the target geometry, orientation and atmo-

spheric seeing are precisely controlled. An actual 3-D FLASH LADAR sensor is then

employed to validate the results from simulation.

6.2 Summary of Key Contributions

6.2.1 Multi-surface Ranging Algorithm.

Perhaps the most significant contribution of this work was the derivation of a

multi-surface ranging algorithm that incorporates the e↵ects of di↵raction. This

algorithm simultaneously estimates pulse parameters from the received data for mul-

tiple surfaces per image pixel. Through a survey of relevant literature, no other

multi-surface ranging algorithm that removes the e↵ects of di↵raction could be iden-

tified. Depending on the application of the 3-D FLASH LADAR sensor, the e↵ects
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of di↵raction can have significant negative impact on the received images.

Multiple enhancements were observed in the processed images with this algorithm.

First, the accuracy of this multi-surface estimation is improved through the reduc-

tion of di↵raction e↵ects caused by imaging through a turbulent atmosphere. With

2-D images, di↵raction e↵ects manifest as a spatial blur. However, in 3-D imaging,

di↵raction e↵ects simultaneously manifest as a spatial and temporal blur. The tem-

poral blurring can cause the realization of false surface returns in the received data.

The algorithm developed for this research significantly reduces temporal blurring.

Traditional multi-surface ranging algorithms would treat the surfaces that arise from

temporal blurring as additional returns, while the MSID algorithm attempts to re-

move them. Second, the employment strategy for the algorithm discussed within this

dissertation addresses common challenges associated with Expectation Maximization

(EM) for Gaussian mixture modeling such as parameter initialization and more im-

portantly determining the number of components that exist in the mixture. This

research employs a Cap and Refine (CaR) strategy, where the presence of false re-

turns are initially accounted for but then eliminated through iteration of the EM

algorithm. Third, the algorithm also improves the spatial representation of the image

that is commonly associated with 2-D blind deconvolution techniques.

6.2.2 Amplitude Constraint to Prevent Early Convergence of Vari-

ance.

Convergence of variance is a useful stopping criteria for algorithms such as the

one developed in this dissertation. However, through the course of testing this algo-

rithm, it was uncovered that the algorithm commonly terminates before the optimal

solution is found. This is due to the simultaneous estimation of pulse amplitude and

bias parameters. A constraint was derived through the use of a Lagrange multiplier
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that significantly reduced the chances for improper convergence. By applying a con-

straint on the amplitude that is based on the deblurred 2-D image representation, we

minimize the chances of hitting the stopping criteria for the iterative algorithm before

the optimal solution is found. Of notable importance, this amplitude constraint has

application even in cases where the image is not impacted by the e↵ects of di↵raction.

6.2.3 Maximum Likelihood Solution to Parameterized Blind Decon-

volution Problem.

Through consideration of range diversity available with 3-D FLASH LADAR, the

problem of parameterized blind deconvolution often becomes over-determined. Using

the multi-surface ranging algorithm, this research shows that likelihood is maximized

for the correct value of atmospheric seeing. Due to the ill-posed nature of the problem

with 2-D images, similar attempts at a solution require additional assumptions and/or

a priori information to allow for a likelihood maximization approach. Of additional

importance, the capability to produce a solution to this previously ill-posed problem

by taking advantage of range diversity highlights potential opportunities for other

challenging problems commonly encountered with 2-D imaging.

6.2.4 Employment of CoV Technique on 3-D FLASH LADAR Images.

The results presented in this dissertation demonstrate that the Convergence of

Variance (CoV) technique originally developed by MacManus has application in de-

termining the parameterized blurring function in 3-D FLASH LADAR imaging. How-

ever, this research also points to the relationship between accuracy of the r
0

estimates

and the Signal to Noise Ratio (SNR) in the collected images. Due to the manner in

which 3-D FLASH LADAR images are recorded, the user may be required to derive

an optimal method for selection of a 2-D frame on which the CoV technique will be
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performed.

6.3 Future Research

During the execution of this research program, numerous topics were uncovered

which may yield further enhancement in the field of imaging with 3-D FLASH LADAR

sensors.

6.3.1 2-D and 3-D Data Fusion.

The algorithms developed in this research e↵ort and the results they produced

relied on properly sampled imaging data. However, the current state of sensor tech-

nology presents numerous challenges to the collection of properly sampled data. This

research e↵ort obtained properly sampled data by using an extremely turbulent at-

mosphere to act as a low-pass filter. Alternatively, given the current state of the

technology, properly sampled data could only be achieved with optical configurations

with high focal ratios. Through the fusion of properly sampled 2-D imagery and under

sampled 3-D imagery, it may be possible to reduce the sampling requirement for 3-D

sensors while yielding similar performance gains summarized in this work. We found

that the multi-surface ranging algorithm had some capability to deal with slightly

undersampled data. However, the extent to which the data can be undersampled

with this technique also remains to be proven as a future research topic.

6.3.2 Applicability to Other Parameterized Blurring Functions.

For purposes of this research, we substituted the average short exposure transfer

function, H̄
SE

, as our model for the atmospheric Optical Transfer Function (OTF),

H
atm

. However, the techniques developed should be directly applicable to other cases

where the blurring function can be reduced to relatively few unknowns. One inter-
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esting topic would be to extend this research to remove the e↵ects of focus blur. This

particular extension may be useful for deblurring 3-D FLASH LADAR images with

long range gates at relatively short ranges. Additionally, a potential extension for this

future research would be the relationship between the seeing parameter and focus in-

teraction for varying levels of focus error and atmospheric turbulence. In Chapter III

we noticed an interaction between focus and atmospheric blur which resulted in low

estimates for atmospheric seeing. It would be interesting to see if the two could be

separated.

6.3.3 Direct Solution for Parameterized OTF.

This research employed a maximization of likelihood approach to find the optimal

parameterized OTF. However, it may be possible to directly solve for the parameter-

ized OTF in conjunction with the deblurred pulse model. An attempt was made to

approximate the Point Spread Function (PSF) as a Gaussian and directly solve for

the width parameter in an iterative fashion. However, this technique did not yield

accurate results.

6.3.4 Alternative Stopping Criteria.

The iterative algorithms presented in this research rely on the CoV technique to

establish the stopping criteria. However, due to the Gaussian approximation for the

returned pulse, this technique may be problematic in non-uniform data. An explo-

ration / comparison of other stopping criteria is warranted such as those presented

by Arioli [3].
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