
CrossTalk—May/June 2013 17

LARGE SCALE AGILE

stage [4]. Conducting incremental architecture evaluations that
can be incorporated into agile development sprints/iterations
assists in mitigating such a risk.

Organizations that must design, develop, deploy, and sustain
systems for several decades and manage system and software
engineering challenges simultaneously can dispense with nei-
ther agility nor attention to enduring design.

What is Scale and Why Manage It?
The amount of software in software-reliant systems has

increased tremendously; the software has become more complex,
and additional orchestration is needed between the teams that
build, integrate, and test the software components. Understanding
what is meant by large scale is important, as often several dif-
ferent challenges may be implied that must be teased apart. We
investigate scale from three perspectives: scope, team, and time.

Large-scale systems often are large in scope in terms of the
amount of new technology being introduced and the number of
the features being added, independent components or COTS
tools being integrated, users and user types to be accommo-
dated, external systems with which the system communicates,
configurations of components that can be configured for
deployment, and so on. One or more of these aspects of scope
may be present. As scope increases, the team and time dimen-
sions are likely to increase as well.

The team dimension of scale is typically the most often-
addressed aspect of scale in agile software development.
Practices such as Scrum of Scrums are meant to address
orchestration of multiple development teams in concert. There
are often teams within or across organizations that are external
to the core product development team (e.g., quality assurance,
system integration lab, project management, and marketing) that
must collaborate and provide input to product development. This
brings additional challenges: Careful orchestration is necessary
where these teams must seamlessly come up to speed with
agile development and collaboration across organizational and
lifecycle (e.g., system engineering, assurance) boundaries.

The time dimension of scale relates to both the duration of
development and lifecycle time of the system. The system will
need to be in development and operation for a longer period
than systems to which agile development is typically applied,
requiring attention to future changes and possible redesigns,
as well as to maintaining several delivered versions. Over time,
technology (hardware, software, sensors, effectors, etc.), threats,
and features will change in various ways. In response to technol-
ogy and threat changes, the system will undergo planned or
unplanned upgrades. In addition, different planning rhythms may
need to be kept in sync, which includes lifecycle budgeting and
planning, individual milestone planning, and sprint planning.

Scaling agile projects in any of these dimensions involves a
relationship to the architecture of the developed system and the
use of architecture practices. For example, when there are mul-
tiple teams, the existence of some amount of explicit architec-
ture documentation becomes important to coordinate the work
across teams. Or, when a system exists for decades, a focus on
the architecture of the system becomes important to ease the
evolution of the system over time.

Ipek Ozkaya, SEI
Michael Gagliardi, SEI
Robert L. Nord, SEI

Abstract. In this paper, we present lessons we learned while working with a
large program, helping it to modernize its very large transaction-based system that
operates 24x7, while adopting agile software development. We focus on two agile
architecting methods we used that provide rapid feedback on the state of agile
team support: architecture-centric risk factors for adoption of agile development at
scale and incremental architecture evaluations.

Architecting for Large
Scale Agile Software
Development:
A Risk-Driven Approach

Introduction
Over the past decade of their use, applying agile development

methods to large-scale projects has brought its challenges [1,
2]. Challenges are exacerbated when organizations must deal
with increased size of software and increased complexity in
orchestrating large engineering and development teams, and
when they have to ensure that the systems developed will be
viable in the market for several decades. Understanding and
systematically resolving the challenges becomes even harder
for organizations that must adapt their existing processes to
agile development (e.g., adapting the DoD acquisition lifecycle
or switching from a lengthy development cycle based on other
methods to an agile development cycle).

In this paper, we present lessons we learned while working with
a large program, helping it to modernize its very large transaction-
based system that operates 24x7, while adopting agile software
development. We focus on two agile architecting methods we
used that provide rapid feedback on the state of agile team sup-
port: architecture-centric risk factors for adoption of agile devel-
opment at scale and incremental architecture evaluations.

Agile project teams recognize that there is a desired software
development state that enables them to quickly deliver releases
that provide stakeholder value [3]. This involves getting plat-
forms and frameworks, as well as supporting tool environments,
practices, processes, and team structures in place to support
efficient and sustainable development of features. Conduct-
ing a review of architecture-centric risk factors for adoption of
agile development at scale uses architecture- centric criteria to
examine the organization and project context. The review serves
to identify and mitigate key risks to achieving a desired software
development state, when there is a need to use agile develop-
ment and architecture-centric practices in concert. A common
adoption risk is losing the focus on architecting activities that
help maintain the desired state, enable cost savings, and ensure
delivery tempo when other agile adoption activities take center

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2013 2. REPORT TYPE

3. DATES COVERED
 00-00-2013 to 00-00-2013

4. TITLE AND SUBTITLE
Architecting for Large Scale Agile Software Development: A Risk-Driven
Approach

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,Software Engineering Institute,4500 Fifth
Avenue,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this paper, we present lessons we learned while working with a large program, helping it to modernize
its very large transaction-based system that operates 24x7, while adopting agile software development. We
focus on two agile architecting methods we used that provide rapid feedback on the state of agile team
support: architecture-centric risk factors for adoption of agile development at scale and incremental
architecture evaluations.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

6

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

18 CrossTalk—May/June 2013

LARGE SCALE AGILE

development adequately. To take advantage of agile develop-
ment practices, such as nightly builds and configuration control,
the right infrastructure should be in place and the necessary
training provided. Such a technology environment, with automat-
ed tests, nightly builds, and configuration control mechanisms, is
also tightly related to architectural requirements and the rate of
change requests that the system must support. This includes re-
quirements and requests involving new features, but also those
that might necessitate architectural changes.

Response to requirements change: The inability to get a
handle on the requirements management process in a volatile and
large-scale product environment will hinder the success of the
project. A special point of caution is to avoid focusing the require-
ments view on functional requirements; architecturally significant
requirements must be continuously addressed as well.

Project/team support highlights attention to granting the
authority to the downstream teams and arming them with the
necessary skills and knowledge to succeed in an agile context
while paying attention to the long-term goals of the system.
New roles typically assigned when applying agile methods (such
as product owner, Scrum master) have differing responsibilities
from the roles in the existing phase-based waterfall program
structures. Such differences may necessitate educating not only
teams but also management and the customer.

Quality attributes emphasize the architecturally significant
requirements of the system. An effort in architecture-focused
acquisition can bring forward the key, architecturally significant
concerns, such as integration and security. Often at-scale, mul-
tiple systems must be orchestrated, which requires continuous
management of the key architecturally significant requirements,
in addition to development of features.

Architecting activities must be integrated into agile devel-
opment. The view that keeps these separate often creates silos,
architecture conformance issues, and unexpected rework costs
in later stages of the development effort. Architectural decisions,
however, also must be made with consideration to the goal of
iterative development.

Customer collaboration is key to success in any develop-
ment effort. In an agile development context, customer collabo-
ration is an essential part of the activities, for example, in sprint
planning with Scrum. Communication with both internal and
external stakeholders must be open and documentation should
not be used as a substitute for communication.

Productivity measures in an agile context must incorporate
a working system as well as continuous planning. If Scrum is
chosen as the project management paradigm for agile devel-
opment, understanding of relative estimation versus absolute
estimation will be necessary. Obtaining the measures requires
continuous monitoring and improving of estimates based on
lessons learned. Providing working demos to the customer and

Architecture-centric Risk Factors for Adoption
of Agile Development at Scale

When one or more of the scope, team, or time factors are of
critical importance, incorporating architecture practices into agile
development must take high priority, especially if an organization
is new to adopting agile development practices.

In our recent engagement with a large organization, the key
dimensions of scale were defined this way: the system has (1)
gone through and would go through several technology upgrades,
(2) served a large user base, and (3) been in operation and
expected to be so for several decades. The organization faced the
challenge of moving away from its existing phase-based software
development approach to adopting agile development practices,
while dealing with several dimensions of scale.

The first step was to conduct a risk analysis that combined a
focus on architecture and agile practices. We conducted the risk
analysis through several interviews and a scenario walk-through
meeting, in addition to examining the working documents of
organization-wide adoption plans. We conducted interviews with
technical team members as well as managers, where they were
in the same sessions as well as in separate sessions. The sce-
nario walk-through meeting presented the team members with
possible adoption scenarios and allowed them to analyze their
possible outcomes within the organization.

The key areas we investigated included the following:
business/acquisition and organizational climate, technology
environment, ability to respond to change, project/team support,
attention to quality attributes and architecture, customer collabo-
ration, and productivity measures. Here we identify some com-
mon risks and factors worthy of attention in each of these areas.

Business/acquisition climate: Without clear identification
of business and mission goals that reflect stakeholder concerns
and success factors and strategies, adoption of agile practices
at scale will entail resolving added challenges. Government orga-
nizations must pay special attention to contracting mechanisms.
While all mechanisms potentially can be used in software vendor
relationships, contracts should not be a barrier to building knowl-
edge within a consistent team and improving communication [5].

Organizational climate: Adoption of agile development
practices will require educating the teams about new practices
that may not be familiar to a hierarchical organization with
phase-based practices and high regulation checkpoints. Prior
history of the waterfall processes and arms-length relationships
among stakeholders, developers, and acquirers will prolong the
time it takes to adopt agile development. These risk factors can
affect both decision making in general and technical progress.
Such impacts may occur, for example, when organizational bar-
riers make it difficult or impossible to convene committees for
technical, architectural, or design reviews.

Technology environment refers to having a robust
development and design infrastructure in place to support
the development teams. Automated testing and continuous
integration practices require ongoing attention to support agile

CrossTalk—May/June 2013 19

LARGE SCALE AGILE

establishing done criteria as potentially shippable features must
be incorporated into the iteration and release planning cycles.
These cycles also require architecting activities to be seamlessly
integrated into the sprints.

Figure 1 shows a risk profile example. Having such a risk pro-
file, along with an understanding of the factors contributing to
the risks, allows an organization to set priorities in adopting agile
practices at scale. This figure also demonstrates a common
profile that organizations might face in adopting agile practices
at scale. The areas that commonly demonstrate high risks tend
to be organizational climate, response to requirements change,
and attention to quality attributes and architecture. While busi-
ness/acquisition context, productivity measures, and project/
team support also have issues related to adoption at scale, the
risks associated with them would partially resolve if attention
were given to the high-risk areas. Customer collaboration and
technology environment areas follow as low-risk areas.

Figure 1: Example of risk profile summary

The organization we worked with chose to adopt Scrum as a
project management methodology and educate its teams and
management in agile development, in addition to keeping a
significant focus on architecture.

The typical high-risk nature of architecture and quality at-
tribute areas, as shown in Figure 1, were also issues. In order to
ensure that key architectural evolution decisions, risks, and high-
priority quality attributes were managed in concert with agile
development, we conducted incremental architecture evalua-
tions with the organization, which we describe next.

Incremental Architecture Evaluations
The goal of focusing on architectural evaluation as part of the

modernization and agile adoption activities was (1) to identify
architectural risks and risk themes of the “as-is” system as well
as in migrating the “as-is” system to the target architecture, and
(2) to provide actionable recommendations to address the risks
themes. The evaluation method was based heavily on the Archi-
tecture Tradeoff Analysis Method® (ATAM®) and its principles,
but due to constraints, was conducted incrementally [6].

The constraints on the evaluation were twofold. First, the
availability of stakeholders and the architects’ time to participate
in the evaluations was limited to a small number of hours per
week. The architects were available for eight hours per week,

total. Specific stakeholder’s availability was limited to fewer than
four hours per week per stakeholder. Second, the documenta-
tion for software architecture was inadequate to perform the
architecture evaluation per ATAM’s criteria. However, we decided
to proceed with the evaluation based on the architects’ knowl-
edge and to use whatever relevant, useful documentation was
available, acknowledging the associated risks of proceeding
with the evaluation. This approach enabled us to test an evalu-
ation approach that could also be incorporated seamlessly with
other development activities in agile development planning, for
example, Scrum sprint and release activities.

Architecture Evaluation Kick-off
It can be challenging to identify the architectural mismatches

and impediments to migration from the “as-is” system to the
target architecture. This task becomes much more difficult when
architecture documentation is lacking.

The evaluation began with a kick-off meeting with the evaluation
team, the program office, and the architects. The evaluation team
presented the evaluation approach, the program office presented
the business drivers, and the architects presented the architec-
ture overview. Despite insufficient architecture documentation,
the participants decided to proceed with the evaluation, using the
architects’ knowledge and any acceptable, relevant documentation
that was available. During the architecture evaluation sessions, the
scribe would capture any undocumented architecture approaches
in the analysis template as the architects described them.

The participants agreed that there would be a series of in-
cremental architecture evaluation sessions on a weekly basis. A
notional schedule was developed, starting with mission thread and
scenario generation, to be finished within two weeks. Once the
mission threads and all of the high-priority scenarios were identified
and agreed upon, the schedule for the weekly architecture evalua-
tion sessions would be developed and vetted. The participants also
agreed that the evaluation schedule would be flexible and adapt-
able based on the evaluation progress made on a weekly basis.

Mission Thread and Scenario Generation
The operational end-to-end mission threads were developed

by meeting with the operational system manager and technical
lead and documenting the most critical threads, using the Mission
Thread template for end-to-end mission threads. Table 1 shows
a mission thread example, where Table 1(a) shows a summary of
the mission thread, including the summary description, and Table
1(b) decomposes the thread into possible steps, with engineering
considerations that impact system and software architecture deci-
sions. Table 1(c) specifies the over-arching quality attributes for
the mission thread, with engineering considerations that impact
the system and software architecture decisions.

Four unique operational mission threads were identified and
developed with the operational manager and technical lead and
vetted with the system stakeholders. The mission threads es-
tablished the end-to-end operational context for the evaluation
and identified end-to-end quality attribute considerations to be
evaluated. This was accomplished in a series of three two-hour
meetings with the evaluation team, operational manager, and
technical lead in the first week of the evaluation.

20 CrossTalk—May/June 2013

LARGE SCALE AGILE

The scenarios were generated in a series
of small scenario-generation sessions with the
architects and selected stakeholders. The ATAM
utility tree was used to capture and elicit sce-
narios. Figure 2 shows a utility tree example. The
utility tree was initially seeded with the qual-
ity attributes identified in the business driver’s
presentation and the operational mission threads.
Some scenarios were derived from the mission
threads. Each session would begin with a review
of the prior session’s results. Each session would
then elicit quality attribute considerations and
scenarios from the attending stakeholders, insert
them into the utility tree and then rank each of the
scenarios according to degree of difficulty (ranked
by architect) and importance (ranked by manage-
ment)—high, medium or low. The evaluation team,
program office, and architects would then discuss
the need for any additional scenario generation
sessions. Once the utility tree was deemed to
be finished, the evaluation team, architects, and
program office met to develop an incremental
evaluation schedule based on the high-priority
scenarios and mission threads. They agreed that
the mission threads would be the last evaluation
sessions once the high-priority scenarios were all
evaluated, in order to evaluate the architecture in
an end-to-end manner.

Architecture Evaluation Sessions
There were four mission threads and 59

scenarios generated, based on a utility tree
with nine quality attributes. The architecture
evaluation sessions covered all of the highly
ranked scenarios followed by the four mis-
sion threads. The evaluation sessions were
grouped based on the quality attributes and
the mission threads. The mission thread ses-
sions were held last so that the end-to-end
evaluation would follow the scenario-based
analyses. The scenario-based evaluation ses-
sions were roughly ordered based on what we
considered the more critical quality attributes
for the system (e.g., availability, performance,
and maintainability).

The session participants decided that there
would be three two-hour architecture evalu-
ation sessions per week. The sessions would
focus on specific, pre-determined scenarios,
based on the quality attribute utility tree and
mission threads (e.g., the first week of evalu-
ation sessions would focus on the important
availability scenarios, with intent to utilize an
evaluation backlog flowing into the next week’s
session schedule, if necessary).

We expected to analyze two scenarios per
session, since the documentation was poor.

Name Long-term customer order placement with supervisor override
Vignette
(Summary
Description)

Multi-channel order placement with outsourced fulfillment.

The primary business activities are taking orders for products, fulfilling orders, and
providing customer service (for example, order changes, return authorization)
Orders can be placed over the internet or by calling a customer service agent. Payment
processing for credit card payments is handled by a third party (Intuit,
ChasePaymentech, etc.). If the payment processing service is not available, the call
center agent accepts credit card payments without authorization, and incur the fraud
risk. If the service is down for more than 8 hours, the agent accepts credit card
information but hold sending the order to the fulfillment service until the payment
processing service is restored and payments can be authorized.

Order fulfillment is outsourced to a partner, who handles inventory management, order
assembly and packing, and shipping and tracking (Amazon, Webgistix, Archway, etc.).
There is a service level agreement (SLA) that all orders placed before 4:00pm Eastern Time
will be shipped the same day. Our visibility into their process is limited to tracking the
shipment on the shipper’s web service using the tracking number.

Nodes Actors Customer
Call Center Agent
Call Center Supervisor
Systems shown in Architecture Overview

Assumptions 1. Customer A is a long-time customer of the company, with high lifetime
value.

a. What does this mean exactly? More considerations for timeliness, coupons,
and so on, need to be analyzed.

b. What about high value business customer B? Needs more analysis regarding
integration into our system.

c. What about family / household value?
2. Shipping charges are computed and applied automatically, but a Supervisor can

override this for a particular order.
3. Our visibility into their process is limited to tracking the shipment on the

shipper’s web service using the tracking number.

	 Table 1(a): Partially filled mission thread example

Table 1(b): Mission thread steps elaboration

Table 1 (c): Quality attribute requirements related to the mission thread

Mission
Steps

Description Engineering
Considerations,

Issues,
Challenges

1 Customer A places an order on the web site. The order
value qualifies for free shipping.

2 Payment authorization is obtained for the order. (<5 sec)
3 The order is recorded and sent for fulfillment.
4 Customer A’s customer history is updated.
5 ….

	

Quality Attribute Engineering Considerations, Issues, Etc.
Call Center Routing Performance
Call Center Screen Pop Performance
Call Center Routing Accuracy
Order Accuracy
Time‐to‐market
Modifiability
Testability
Availability
Usability for Call Center Agents
Migratability
Scalabiility

	

CrossTalk—May/June 2013 21

LARGE SCALE AGILE

Once we finished all the scenario analyses for a quality attribute,
we would develop the schedule for the next quality attribute set
of scenarios. We repeated this for the entire utility tree and then
scheduled the end-to-end mission thread analysis sessions,
expecting one thread per two-hour session. The entire set of
evaluation sessions required 23 sessions over the course of
eight calendar weeks. The evaluation team met to develop risk
and non-risk themes after the scenario analyses of each quality
attribute and mission thread.

Architecture Evaluation Results
The evaluation sessions resulted in the discovery of numer-

ous, unique, architecture risks and non-risks. The number of
risks found was within the typical number and quality of risks
found in an architecture evaluation for a system of this type
and size. The length of each evaluation session was extended
due to the lack of architecture documentation and the need to
document roughly the architectural approaches as they arose
during the sessions.

The end-to-end mission thread analyses uncovered many
risks that were not identified in the scenario-based evaluation
sessions. These risks dealt with architectural decisions that sup-
ported end-to-end operational processing of data that is difficult
to identify when examining parts of a system (as is typical of a
scenario walkthrough).

Overall, the incremental architecture evaluation sessions
allowed the team to work within the constraints of the engi-
neering team. The schedule developed to conduct such an
evaluation approach focused on priority of the scenarios and
mission thread steps identified. The approach created tasks
that were about two-to-three hours in length and resulted
in concrete development and architecture artifacts. This
particular evaluation was not incorporated with Scrum sprint
activities because the organization had not completed the
sprint planning yet. However, the definition of the tasks and
the technical outputs created an example of how incremental
evaluation could be incorporated into a Scrum development
approach by balancing development tasks with a focus on
architecture evaluations.

Takeaways
Embracing the principles of agile software development and

software architecture provides improved visibility of project
status and improved tactics for risk management.

There are different aspects of scale that are manageable with
different approaches, such as scope, team, and time.

We see evidence that a systematic architecture-centric review
of organizational and project factors, as this organization used,
is essential for understanding risks and dealing with the chal-
lenges arising in large-scale software development.

We believe the incremental evaluation approach applied to
this system could be beneficial in an agile development ap-
proach, where small, short architecture evaluation sessions
could be implemented in agile sprints. The artifacts we exemplify
here, such as mission threads and quality attribute utility trees,
could be invaluable in both helping with backlog management
and augmenting sprint planning.

Figure 2: Utility tree example

22 CrossTalk—May/June 2013

LARGE SCALE AGILE

Acknowledgements/Disclaimers:

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the DoD
under Contract No. FA8721-05-C-0003 with Carnegie Mellon University
for the operation of the Software Engineering Institute, a federally funded
research and development center.

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND
SOFTWARE ENGINEERING INSTITUTE MATERIAL IS FURNISHED
ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IM-
PLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY,
EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATE-
RIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY
WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM
PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distri-
bution. Architecture Tradeoff Analysis Method®, ATAM® are registered in
the U.S. Patent and Trademark Office by Carnegie Mellon University.

DM-0000094

Ipek Ozkaya is a senior member of the techni-
cal and works to develop empirical methods
for improving software development efficiency
and system evolution with a focus on software
architecture practices, software economics,
and requirements management. Her latest
publications include multiple articles on
these subjects focusing on agile architecting,
dependency management, and architectural
technical debt. Ozkaya serves on the advisory
board of the IEEE Software magazine.

Software Engineering Institute
4500 Fifth Avenue, Pittsburgh, PA
Phone: 412-268-3551
Fax: 412-268-5758
E-mail: ozkaya@sei.cmu.edu

Michael Gagliardi has more than 25 years’ ex-
perience in real-time, mission-critical software
architecture and engineering activities on a
variety of DoD systems. He currently works
in the SEI Research, Technology, and System
Solutions Program on the Architecture-
Centric Engineering Initiative, and is leading
the development of architecture evaluation
and quality attribute specification methods for
system and system-of-system architectures.

Robert L. Nord is a senior member of the
technical staff at the SEI and works to
develop and communicate effective methods
and practices for software architecture. He is
co-author of the practitioner-oriented books,
Applied Software Architecture and Docu-
menting Software Architectures: Views and
Beyond and lectures on architecture-centric
approaches.

ABOUT THE AUTHORS

REFERENCES
1. Grant, T. “Navigate the Future of Agile and Lean.” Forrester, January 10, 2012.
2. Leffingwell, D. Scaling Software Agility. Upper Saddle River, NJ: Addison-Wesley, 2007.
3. Bachmann, F., Nord, R. L., and Ozkaya, I. “Architectural Tactics to Support Rapid
 and Agile Stability.” Special Issue on Rapid and Agile Stability, CrossTalk, 25.3
 (2012): 20-25.
4. Brown, N., Nord, R., and Ozkaya I. “Enabling Agility Through Architecture.”
 CrossTalk 23.6 (2010): 12-17.
5. Lapham, M. A., Miller, S., Adams, L., Brown, N., Hackemack, B., Hammons, C.,
 Levine, L., and Schenker, A. Agile Methods: Selected DoD Management and
 Acquisition Concerns, October 2011, Technical Note, CMU/SEI-2011-TN-002.
6. Bass, L., Clement, P., and Kazman, R. Software Architecture in Practice, 3rd ed.
 Addison Wesley, 2012.

