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Executive Summary 

This report presents research work performed under grant no. N00014-11-1-0576 with the Office 

of Naval Research over the period of May 2011 to September 2012. It includes contributions 

from Prof. Moeness Amin (PI), Dr. Fauzia Ahmad (Research Associate Prof), Dr. Jiang Qian 

(Postdoctoral Fellow), and Ms. Eva Lagunas (Visiting Scholar). The report consists of three 

chapters. Each chapter has its own abstract and introduction, and also has its own equation 

numbers, figure numbers, and references. 

In Chapter 1, we consider sparsity-driven change detection for human motion indication in 

through-the-wall radar imaging (TWRI) and urban sensing applications. Stationary targets and 

clutter are removed via change detection, which converts a populated scene into a sparse scene of 

a few human targets moving inside enclosed structures and behind walls. We establish 

appropriate change detection models for various possible human motions, ranging from 

translational motions to sudden short movements of the limbs, head, and/or torso. These models 

permit scene reconstruction within the compressive sensing (CS) framework. Results based on 

laboratory experiments show that a sizable reduction in the data volume is achieved using the 

proposed approach without a degradation in system performance. 

In Chapter 2, we consider sparsity-driven joint localization of stationary and moving targets 

inside enclosed structures using a reduced set of spatial-fast time-slow time observations in ultra- 

wideband (UWB) pulsed radar platforms. We exploit the compact temporal support of the UWB 

signal to suppress the front wall clutter through time gating. The resulting enhancement in the 

signal-to-clutter ratio enables application of CS for scene reconstruction. We establish an 

appropriate signal model that permits formulation of linear modeling with sensing matrices, so as 

to achieve efficient CS-based localization of stationary and moving targets in the downrange- 
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crossrange-velocity space. We demonstrate the effectiveness of the proposed scheme using real 

data collected in a laboratory environment. 

In Chapter 3, we apply the idea of partial sparsity to scene reconstruction associated with 

TWRI of stationary targets. Partially sparse recovery considers the case when it is known a priori 

that the scene being imaged consists of two parts, one of which is sparse and the other is 

expected to be dense. More specifically, we consider the scene reconstruction problem involving 

a few stationary targets of interest when the building layout is assumed known. This implies that 

the support of the dense part of the image corresponding to the exterior and interior walls is 

known a priori. This knowledge may be available either through building blueprints or from 

prior surveillance operations. Using experimental data collected in a laboratory environment, we 

demonstrate the effectiveness of the partially sparse reconstruction of stationary through-the-wall 

scenes. 

In addition to the aforementioned contributions described in Chapters 1 to 3, two other 

important challenges faced by CS in urban sensing applications were also addressed. These 

contributions are summarized below. 

Compressive sensing for urban operations and through-the-wall radar imaging has been 

shown to be successful in fast data acquisition and moving target localizations. The research in 

this area thus far has assumed effective removal of wall electromagnetic (EM) backscatterings 

prior to CS application. Wall clutter mitigation can be achieved using full data volume which is, 

however, in contradiction with the underlying premise of CS. We enable joint wall clutter 

mitigation and CS application using a reduced set of spatial-frequency observations in stepped 

frequency radar platforms. Specifically, we demonstrate that wall mitigation techniques, such as 

spatial filtering and subspace projection, can proceed using fewer measurements. We consider 
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both cases of having the same reduced set of frequencies at each of the available antenna 

locations and also when different frequency measurements are employed at different antenna 

locations. The latter casts a more challenging problem, as it is not amenable to wall removal 

using direct implementation of filtering or projection techniques. In this case, we apply CS at 

each antenna individually to recover the corresponding range profile and estimate the scene 

response at all frequencies. In applying CS, we use prior knowledge of the wall standoff distance 

to speed up the convergence of the Orthogonal Matching Pursuit for sparse data reconstruction. 

Real data are used for validation of the proposed approach. 

We consider imaging of the building interior structures using Compressive Sensing (CS) with 

applications to TWRI and urban sensing. We consider a monostatic synthetic aperture radar 

imaging system employing stepped frequency waveform. The proposed approach exploits prior 

information of building construction practices to form an appropriate sparse representation of the 

building interior layout. We devise a dictionary of possible wall locations, which is consistent 

with the fact that interior walls are typically parallel or perpendicular to the front wall. The 

dictionary accounts for the dominant normal angle reflections from exterior and interior walls for 

the monostatic imaging system. CS is applied to a reduced set of observations to recover the true 

positions of the walls. Additional information about interior walls can be obtained using a 

dictionary of possible corner reflectors, which is the response of the junction of two walls. 

Supporting results based on simulation and laboratory experiments are provided. It is shown that 

the proposed sparsifying basis outperforms the conventional through-the-wall CS model, the 

wavelet sparsifying basis, and the block sparse model for building interior layout detection. 
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Chapter 1 

Through-the-Wall Human Motion Indication using Sparsity-Driven 
Change Detection 

1.1. Introduction 

One of the primary objectives in through-the-wall radar imaging (TWRI) and urban sensing is 

the detection and localization of human targets [1-7]. Humans belong to the class of animate 

objects, which is characterized by motion of the body, breathing, and heartbeat. These features 

make animate objects distinguishable from inanimate objects and allow the detection of targets 

of interest to proceed based on changes in the phase of the scattered radar signals over successive 

probing and data observations. 

For urban sensing environments, changes in the backscattered signal phase due to human 

motion do not necessarily lend themselves to Doppler frequency shifts. This is because the 

human motion can be abrupt and highly nonstationary, producing a time-dependent phase whose 

rate of change may fail to translate into a single Doppler shift or multi-component sinusoids that 

can be captured by different Doppler filters. Instead, the corresponding wide spectrum of human 

motions becomes non-localizable and can span the entire radar frequency band. In lieu of 

Doppler filters, time- frequency processing can be applied to reveal the instantaneous frequency 

signatures [8-10]. However, apart from regularized motions, such as walking and running, time- 

frequency Doppler signal representations are often very complex and difficult to interpret, 

especially when dealing with non-homogeneous walls. Therefore, the application of Doppler and 

micro-Doppler filters for indoor target surveillance may not be a viable option. 

Change Detection (CD) can be used in lieu of Doppler processing, wherein human detection 

is accomplished by subtraction of data frames acquired over successive probing of the scene. CD 

in TWRI has been discussed in the recent literature, both in the context of moving target 
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indication [3, 11-15] and background subtraction to detect stationary targets using data acquired 

during interrogations of a scene at two different time instants [15, 16]. Target detection in 

through-the-wall radar applications is, in general, a very challenging problem, given the level of 

multipath and clutter that can contaminate the radar image and the overwhelming return from the 

front wall that tends to obscure the nearby indoor targets. For stationary target detection, CD 

requires availability of a reference (background) dataset without the targets, which is very 

difficult to obtain in practice. Target motion, on the other hand, allows easy access to a reference 

dataset through multiple interrogations of the scene. 

For moving targets, change detection mitigates the heavy clutter that is caused by strong 

reflections from exterior and interior walls and also removes stationary objects present in the 

enclosed structure, thereby rendering a densely populated scene sparse [3, 14, 17]. As a result, it 

becomes possible and more convenient to exploit compression in data collections and 

processing. Efficient data acquisition and processing enables achieving situational awareness in a 

quick and reliable manner, which is highly desirable in TWRI and urban sensing applications. 

The capability of the emerging compressive sensing (CS) techniques to reconstruct a sparse 

signal from far fewer non-adaptive measurements provides a new perspective for data reduction 

in radar imaging without compromising the imaging quality [18-21]. The application of CS for 

TWRI was first reported in [22]. CS techniques can improve the efficacy of the urban sensing 

operations by reducing the number of antenna elements and/or the number of time samples or 

frequency steps, depending on the choice of the transmit waveform, culminating in quick 

turnaround, reliable, and actionable intelligence [22-24]. 

In this Chapter, we consider sparsity-based change detection in imaging radar systems, 

aiming at detection and localization of human targets inside buildings, while simultaneously 
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achieving a sizable reduction in the data volume. CD is first used for stationary background 

removal. Rather than operating on successive pulses, CD is applied to different data frames for 

each range bin in the unambiguous range. It is noted that the frames can be consecutive, dealing 

with targets exhibiting sudden short motions, or nonconsecutive, with relatively long time 

difference, for the case in which the target changes its range gate position. Scene reconstruction 

is then achieved using sparsity-driven imaging. We focus on human targets undergoing 

translational motion as well as sudden short movements of their limbs, heads, and/or torsos. The 

latter is a typical situation underlying the activities in homes, lecture halls, and auditoriums as 

well as other sit-down human interactions. For each type of motion, we establish an appropriate 

change detection model that permits formulation of linear modeling with sensing matrices, so as 

to apply compressive sensing for scene reconstruction. 

Supporting examples based on real data collected in a laboratory environment, using the 

Radar Imaging facility at the Center for Advanced Communications, Villanova University, are 

provided. We use an imaging system with a physical aperture. Single target sparse scenes are 

imaged with the human undergoing both translation and short sudden movement of the head. For 

both types of human motions, it is shown that, compared to the conventional backprojection- 

based change detection, the sparsity-driven change detection achieves substantial reduction in the 

data volume without any degradation in the system performance. The scene reconstructions 

obtained with the sparsity-based CD not only accurately localize the target undergoing motion, 

but are also far less cluttered than the conventional reconstructions. 

The chapter is organized as follows. In Section 1.2, we describe the signal model and change 

detection for conventional backprojection-based scene reconstruction. We discuss the sparsity- 

driven change detection schemes under translational and abrupt human motions in Sections 1.3 



and 1.4, respectively, highlighting the key equations. Section 1.5 presents experimental results, 

comparing the performance of backprojection-based CD and sparsity-based CD using real data 

of human motion behind a cement board wall. Section 1.6 contains the concluding remarks. 

1.2. Backprojection-based Change Detection 

We first develop the signal model for wideband radar operation with M transmitters and N 

receivers. A sequential multiplexing of the transmitters with simultaneous reception at multiple 

receivers is assumed. Although this signaling approach demands more acquisition time compared 

to the simultaneous transmitter operation, it is a viable option for TWRI operations. This is 

because a) More receivers than transmitters are deployed due to the important constraint of low 

cost, and b) The targets of interest move at low velocities indoors. As a result, loss of coherence 

of the target response may not be an issue. It is important to note that the sequential transmit 

operation is the salient feature of three known through-the-wall radar imaging systems; one is 

built by the Army Research Lab [3, 25], the other by the Defense Research and Development 

Canada [26], and the third by MIT Lincoln Lab [13]. With the assumption of sequential 

multiplexing, a signal model can thus be developed based on single active transmitters. We note 

that the timing interval for each data frame is assumed to be a fraction of a second so that the 

moving target appears stationary during each data collection interval. 

Let s(t) be the wideband baseband signal used for interrogating the scene. For the case of a 

single point target, located at x_ =(xp,yp),the pulse emitted by the mth. transmitter with phase 

center at \tm =(xrw,0)is received at the «th receiver with phase center at xrn =(xrn,0)'m the 

form 

Zmn(.0 = <lm»(t) + bmn(t),    amn(t) = apS(t - Tpm„)eXp(-jü)cTpm„) (1) 



where o    is the complex reflectivity of the target, which is assumed to be independent of 

frequency and aspect angle, coc is the carrier frequency, rpmn is the propagation delay for the 

signal to travel between the wth transmitter, the target at \p, and the nth receiver, and bmn(t) 

represents the contribution of the stationary background at the nth receiver with the mth 

transmitter active.  For through-the-wall propagation,   Tpmnvn\\ comprise the components 

corresponding to traveling distances before, through, and after the wall [27, 28]. Note that the 

expression in (1) does not consider the wall attenuation and free-space path loss encountered by 

the radar return. In case of two targets of equal reflectivity located at different distances from the 

radar system, these losses cause the distant target to appear weaker than the closer target in the 

image. The wall attenuation and path loss can be easily accommodated in (1) through the use of 

a scaling factor [20]. However, for notational convenience, we chose to ignore these losses in 

the problem formulation. 

In its simplest form, change detection is achieved by coherent subtraction of the data 

corresponding to two data frames, which may be consecutive or separated by one or more data 

frames. This subtraction operation is performed for each range bin. CD results in the set of 

difference signals, given by, 

&mn c)=4«+1) (o - 41 (o=<&+1) (0 - <£ (0 (2) 

where L denotes the number of frames between the two time acquisitions. The component of the 

radar return from the stationary background is the same over the two time intervals, and is thus 

removed from the difference signal. We assume that the clutter bandwidth is zero and it is 

confined to the zero Doppler frequency. It is noted that L = 1 represents the case when the two 



acquisitions are performed over consecutive frames. Using (1) and (2), the (m, n)-th difference 

signal can be expressed as, 

Szmn (0 = aps(t - r<J£?) oq<-y»crgS?)" <V('" rj?«) expC-y^r^) (3) 

where rj^mw and r^^ are the respective two-way propagation delays for the signal to travel 

between the /wth transmitter, the target, and the nth receiver, during the first and the second data 

acquisitions, respectively. 

In order to generate an image of the scene being interrogated, the MN difference signals 

corresponding to the operation of M transmitters and N receivers are processed as follows. The 

region of interest is divided into a finite number of grid points in x and y, where x and v represent 

crossrange and downrange, respectively. The composite signal corresponding to the pixel, 

located at x^ = (xq,yq), is obtained by summing time delayed versions of the MN difference 

signals, 

M-\N-\ M-\N-\ ... 
&g (0=1  I Szmn (' + Tqtmn) = I   I («if„+1) (/ + vq,mn) - «2 {f + rqtHU)) (4) 

m=0n=0 m=0n=Q 

where tqmn is the focusing delay applied to the (m, n)-th difference signal. It is noted that 

additional weighting can be applied during the summation operations of (4) to control the 

sidelobe level of the system point spread function [27, 28]. Substituting from (3) in (4) yields, 

M-lN-l .... .... 
&,(')= S S^C^ + ^^-^^expC-y^Cr^-r^))- 

m=0n=0 (5) 

Kt + *q,mn ~ *%n ) ^P(-J^c (Tpln ' ^q,mn ))) 

The complex amplitude image value I(*q) for the pixel at x^ is then obtained by applying a 

filter, matched to s(t), to öz (/) and sampling the filtered data, as per the following equation, 



H        H /=o 

where h(t) = s*(-t) is the impulse response of the matched filter, the superscript ' ' denotes 

complex conjugation, and '*' denotes the convolution operator. The process described by (4)-(6) 

is repeated for all pixels in the image to generate the composite image of the scene. The general 

case of multiple targets can be obtained by superposition of target reflections [27, 28]. 

Normally, we work with discrete versions of the measured time signals. Note that not all time 

samples of the difference signal are necessary to obtain the corresponding image. Even if some 

of the data samples are missing, information on the moving targets in the field of view can still 

be obtained. However, merely employing part of the signal time duration in backprojection 

provides an image quality that is degraded in proportion to the number of missing data [29]. 

Since the removal of stationary background converts a populated scene into a sparse scene of 

moving targets, reduction in data volume should be pursued under the CS framework. 

1.3. Sparsity-Driven Change Detection under Translational Motion 

Consider the difference signal in (3), reproduced below for convenience, for the case where the 

target is undergoing translational motion. Two nonconsecutive data frames with relatively long 

time difference are used, i.e., L» 1. 

Szmn(t) = aps(t-T^)exp(-J6)CT%^ (7) 

In this case, the target will change its range gate position during the time elapsed between the 

two data acquisitions. As seen from (7), the moving target will present itself as two targets, one 

corresponding to the target position during the first time interval and the other corresponding to 

the target location during the second data frame. It is noted that the imaged target at the reference 

position corresponding to the first data frame cannot be suppressed for the coherent change 



detection approach, whether employing backprojection or sparsity-driven imaging. On the other 

hand, the noncoherent CD approach that deals with differences of image magnitudes 

corresponding to the two data frames, allows suppression of the reference image through a zero 

thresholding operation [14]. However, as the noncoherent approach requires the scene 

reconstruction to be performed prior to change detection, it is not a feasible option for sparsity- 

based imaging, which relies on coherent CD to render the scene sparse. Therefore, we rewrite (7) 

as, 

2 
&mn (0 = I 3r At " TUmn ) exp(-J0)cTimn ) (8) 

;=1 

with 

»I-1 i = 2   and     r,mw 

r(L+1)    / = 1 

r(,)       i = 2 K) 1
 p,mn      '     *• 

Assume that the scene being imaged, or the target space, is divided into a finite number of grid- 

IT    1 
points in crossrange and downrange. If we sample the difference signal Szmn{t) at times {^}£=o 

to obtain the A"xl vector Azm„ and form the concatenated Qx\ scene reflectivity vector o 

corresponding to the spatial sampling grid, then using the developed signal model in (9), we 

obtain the linear system of equations [20, 22, 24], 

A*™=T™° 00) 

The qth column of *Fmn consists of the received signal corresponding to a target at grid point x 

and the £th element of the ^th column can be written as [20] 

V*mn\k,q=-   -,k = Q,\,...,K-\, q = Q,\,...,Q-\ (11) 
"'q,mn 



where rqmn is the two-way signal traveling time from the mth transmitter to the qth grid point 

and back to the nth receiver. Note that the Ath element of the vector sqmn is s(tk -Tqmn), which 

implies that the denominator in the R.H.S. of (11) is the energy in the time signal. Therefore, 

each column of *Fm„has unit norm. Further note that 5 in (10) is a weighted indicator vector 

defining the scene reflectivity, i.e., if there is a target at the qth grid point, the value of the qth 

element of 5 should be aq; otherwise, it is zero. 

The change detection model described in (10-11) permits the scene reconstruction within the 

compressive sensing framework. We measure an L(< K) dimensional vector of elements 

randomly chosen from Azm„. The new measurements can be expressed as 

\mn = ^mMmn = Q>mnVmno (12) 

where Q>mn is an LxK measurement matrix. Several types of measurement matrices have been 

reported in the literature [20, 21, 30 and the references therein]. To name a few, a measurement 

matrix whose elements are drawn from a Gaussian distribution, a measurement matrix having 

random ±1 entries with probability of 0.5, or a random matrix whose entries can be constructed 

by randomly selecting rows of a KxK identity matrix. It was shown in [20] that the measurement 

matrix with random ±1 elements requires the least amount of compressive measurements for the 

same radar imaging performance, and permits a relatively straight forward data acquisition 

implementation. Therefore, we choose to use such a measurement matrix in image 

reconstructions. 

Given £,mn for m = 0,\,...,M-\, M = 0,1,...,JV-1, we can recover a by solving the following 

equation, 



S = arg min 5    subject to (DYo? « \ (13) 

where 

Y = [Y0
ro,P5,...^A/-l)(iV-l)fJ   * = rfwg(*00,*01,...,*(^_IXJV_1)) 

(14) 
£ = [^00 4oi • • • 4(A/-1)(JV-1)] 

A stable solution of the sparse target space reconstruction problem in (13) is guaranteed provided 

that the product matrix 4>H? satisfies the Restricted Isometry Property (RIP), which states that all 

subsets of r columns taken from <!>¥ are, in fact, nearly orthogonal, r being the sparsity of the 

signal c [20, 21, 31]. A measurement matrix<t>, whose elements are independent, identically 

distributed Bernoulli or Gaussian random variables, has been shown to satisfy the RIP with 

matrix V resulting from sinusoids, wavelets, Gabor functions, etc. [32]. In general, it is 

computationally difficult to check this property and, therefore, other related measures on the 

product matrix <P*F, such as mutual coherence, are often used to guarantee stable recovery 

through /,-minimization [21]. Mutual coherence of the columns of <W can be viewed as the 

largest off-diagonal entry of the Gram matrix (^>Y)w(OT), where the columns of <I>*F have 

been normalized. The matrix <!>¥ is considered to be incoherent if the value of the mutual 

coherence is small. We will address the mutual coherence of the product matrix <!>¥ used in the 

experimental results in Section 1.5. We note that the problem in (13) can be solved using 

convex relaxation, greedy pursuit, or combinatorial algorithms [31, 33, 34]. In this work, we 

choose CoSaMP as the reconstruction algorithm primarily because of its ability to handle 

complex arithmetic [33]. 

Equations (13, 14) represent one strategy that can be adopted for sparsity-based change 

detection approach, wherein a reduced number of time samples are chosen randomly for all the 

10 



transmitter-receiver pairs constituting the array apertures. The above two equations can also be 

extended so that the reduction in data measurements includes both spatial and time samples [20, 

22]. The latter strategy is not considered in this Chapter. 

1.4. Sparsity-Driven Change Detection under Short Sudden Movement 

Assume that consecutive (L=\) data frames are employed for change detection and consider a 

scene comprising a human target undergoing sudden short movements of the limbs, head, and/or 

torso. That is, only a small portion of the body moves but remains within the same resolution 

cell. In this case, we can model the target as a cluster of P point scatterers within the same 

resolution cell and only a small number, say P], of these scatterers moves during successive data 

acquisitions. For example, in a round-the-table meeting, the upper part of the human body, 

especially the hands, is likely to move while the legs remain stationary over successive 

observations. Using (1), the baseband received signal, corresponding to the (m, «)-th transmitter- 

receiver pair, for the first data frame can be expressed as, 

^l(0=i^pS(t-T^n)exp(-jCOcT^mn) + bmn(t) (15) 
p=\ 

where ap  is the complex reflectivity of the pth point scatterer, and rp^mn is the two-way 

propagation delay for the signal to travel between the (m, n)-th transmitter-receiver pair and the 

pth scatterer during the first frame. As the P scatterers are clustered within the same resolution 

cell, we can rewrite (15) as, 

*2 (0 = CTm>C - f«n) exp(-Mrmn) + bmn (t) (16) 

where rmn is the propagation delay from the wth transmitter to the center of the cell and back to 

the Arth receiver, and 
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^ = £^exp(-MAr^) (17) 
P=\ 

is the net target reflectivity with Ar^,,, = T^mn -fmn- 

Let the first P, scatterers represent the portion of the body that undergoes a short movement. 

Then, the mlh received signal corresponding to the second data frame can be expressed as, 

^l(t) = a^s{t-fmn)^{-j(ocfmn) + bmn{t) (18) 

(2) with the net reflectivity <rm^ given by, 

p p 

<y% = t°psM-Jo>AT%n)+   I  apcxp(-jcDcAT^mn) (19) 
P=\ p=p,+\ 

and the set of differential delays, \AT^„ = r^mn - fmn ]'  , corresponds to the new locations of 

the Px scatterers within the same resolution cell. The difference signal corresponding to these 

successive data measurements is given by, 

&mn(0 = *£?(0-*2(0 = (*2? -^M'-^m»)exp(-MFJwl) = Samns(t-rmn)cxp(-jo)cTmn) 

(20) 

where 8omn represents the change in reflectivity between the consecutive acquisitions. 

Again, working with a discretized version of (20) and for the target space consisting of Q 

grid-points in crossrange and downrange, we obtain the linear system of equations, 

Az*m = ^mn^mn (21) 

where *Fmn is defined in (11) and 8<rm„is a weighted indicator vector defining the change in 

scene reflectivity as observed at the nth receiver with the mth transmitter active, i.e., if there is a 
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change in target reflectivity at the qth grid point, the value of the qth element of 8oTO„ will be 

aq2mn ~aq^mn an^ zero otherwise. 

For the signal model in (21), we observe that the change in scene reflectivity depends on the 

transmitter and receiver locations. As such, the aspect-independent scattering assumption is no 

longer applicable and there exists a map of the change in scene reflectivity for each transmitter- 

receiver pair. To address this issue of limited persistence in the change in target reflectivity 

across the various transmit-receive pairs, we consider composite image formation using sub- 

apertures [35]. In this scheme, the transmit and receive arrays are divided into sub-apertures. 

Assuming isotropic scattering within the angular extent of these sub-apertures, sub-images can 

be obtained, which are then combined to form a single composite image of the scene. The sub- 

aperture based scene reconstruction can be performed within the CS framework using the change 

detection model of (21). 

Assume the M-element transmit and the yV-element receive arrays are divided into K\ and K2 

non-overlapping sub-apertures, respectively. The choice of Kx and K2 is guided by the local 

isotropy requirement, i.e., each transmit and receive sub-aperture should correspond to a small 

aspect angle dataset (typically on the order of a few degrees). In the spirit of CS, a small number 

of "random" measurements carry enough information to completely represent the sparse signal 

öo(*"*2), which is the 'image' of the scene corresponding to the k^h transmit and the &2th 

receive sub-apertures. Thus, we measure a random subset of L (< K) samples of the difference 

signal for the nk th antenna of the £2th receive sub-aperture when the mk th antenna of the £,th 

transmit sub-aperture is active. In matrix form, the new measurements can be expressed as 

^mkxnkl m^"k2       
mk]

nk2 
mk\"k2     

mk^k2 ^      ' 
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where <D^"*2) is an LxK measurement matrix corresponding to the nk th antenna position in the 

£2th receive sub-aperture and the mk th antenna in the £,th transmit sub-aperture. Given 

$m i]> for mk{ = °X • • •, \M I Kx 1 -1, nki = 0,1,..., [NIK2 ] -1, we can recover 8a(*' -*2 > by 

solving the following equation, 

daiW = argminllol. subject to v^W^a * £(M2) (23) 
a        '" 

where 

\u(.^i,k2) _rfm(k1,k2)\T /mik^kj)^!      r\u{ki,k2) \T-\T Y -LiToo     )   ^Toi      )   ■■•^\M/KI]-\,IN/K2]-I> J ' 

•<*"*■> -diagWfrU •jJA> ...of^HrN/^l-i) (24) 

Once the sub-images 8o(*'*2) corresponding to all £, transmit and £2 receive sub-apertures 

have been reconstructed, the composite image 8« can be formed as 

[Ba]q = arg max [8a(*"*2)] 
k{,k2 

(25) 

where [8o]? and [8o(*"*2)]g denote the ^th pixel of the composite image and the sub-image 

corresponding to the &,th transmit and &2th receive sub-apertures, respectively. Alternatively, 

the sub-aperture image combining can be achieved using 

[**], = ££ I [**(MiV (26) 

The expression in (25) performs a nonlinear combination of the pixel magnitudes of the sub- 

images, whereas (26) forms the composite image through a linear combination of the sub- 

aperture images. 
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It is noted that the model and reconstruction approach presented here for short sudden 

movements of the human target are also applicable to translational motion for the case when two 

consecutive measurements are used for change detection. In this case, similar to short sudden 

movements, only a small part of the body moves; however, unlike the short movements, the body 

part may move into the next resolution cell. This will lead to changes in scene reflectivity for 

both resolution cells. 

1.5. Experimental Results 

A through-the-wall wideband pulsed radar system was used for real data collection in the Radar 

Imaging Lab at Villanova University. The system uses a 0.7ns pulse, shown in Fig. 1, for scene 

interrogation. The pulse is up-converted to 3 GHz for transmission and down-converted to 

baseband through in-phase and quadrature demodulation on reception. The system operational 

bandwidth from 1.5-4.5 GHz provides a range resolution of 5cm. The peak transmit power is 

25dBm. Transmission is through a single horn antenna, model BAE-H1479, with an operational 

bandwidth from 1 to 12.4 GHz, which is mounted on a tripod. An 8-element line array of 

Vivaldi elements with an inter-element spacing of 0.06m, is used as the receiver and is placed to 

the right of the transmit antenna. The center-to-center separation between the transmitter and the 

leftmost receive antenna is 0.28m, as shown in Fig. 2. A 3.65m * 2.6m wall segment was 

constructed utilizing 1cm thick cement board on a 2-by-4 wood stud frame. The transmit antenna 

and the receive array were at a standoff distance of 1.19m from the wall. The pulse repetition 

frequency (PRF) is 10MHz, providing an unambiguous range of 15m, which is roughly three 

times the length of the room being imaged. Despite the high PRF, the system refresh rate is 

100Hz. This is because a) Equivalent time sampling is used [36], and b) Instead of simultaneous 

reception, the receive array elements are accessed sequentially through a multiplexer. 
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In order to illustrate the performance of the sparsity-driven change detection scheme under 

both translational and sudden short human motions, two different experiments were considered. 

In the first experiment, a person walked away from the wall in an empty room (the back and the 

side walls were covered with RF absorbing material) along a straight line path. The path is 

located 0.5m to the right of the center of the scene, as shown in Fig. 2. The data collection started 

with the target at position 1 and ended after the target reached position 3, with the target pausing 

at each position along the trajectory for a second. Consider the data frames corresponding to the 

target at position 2 and position 3. Each frame consists of 20 pulses, which are coherently 

integrated to improve the signal-to-noise ratio. The imaging region (target space) is chosen to be 

3m x 3m, centered at (0.5m, 4m), and divided into 61 x 61 grid points in corssrange and 

downrange, resulting in 3721 unknowns. The space-time response of the target space consists of 

8 x 1536 space-time measurements. Figure 3(a) shows the backprojection-based CD image of 

the scene using all 8 * 1536 data points. In this figure and all subsequent figures in this section, 

we plot the image intensity with the maximum intensity value in each image normalized to OdB. 

We observe that, as the human changed its range gate position during the time elapsed between 

the two data acquisitions, it presents itself as two targets in the image, and is correctly localized 

at both of its positions. 

For sparsity-based CD, only 5% of the 1536 time samples are randomly selected at each of 

the 8 receive antenna locations, resulting in 8 x 77 space-time measured data. More specifically, 

the 77 time samples at each receive location were obtained as the product of the 1536 point time- 

domain response with a 77 x 1536 measurement matrix, whose elements are randomly chosen +1 

values with a probability of Vi. According to compressive sensing theory, an r-sparse target 

space with Q unknowns can be recovered from 0(rlog(0) measurements [37].   The human 
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target roughly extended 0.5m in crossrange and 0.25m in downrange, thereby occupying 10x5 

grid points. Therefore, for the dataset under consideration wherein the target presents itself as 

two targets after change detection, the 8 * 77 measured data points exceed this requirement of 

0(r log(0) measurements. We reconstructed the target space using sparsity-based CD with 5% 

data volume one hundred times. For each trial, a different random measurement matrix was used 

to generate the reduced set of measurements, followed by sparsity-based scene reconstruction. 

For each of the 100 trials, we also computed the mutual coherence of the columns of the product 

of the measurement matrix O, with random ±1 elemental values, and the "P matrix defined in 

(14). The average value of the mutual coherence of the corresponding product matrix is equal to 

0.892. Figure 3(b) depicts the sparsity-based CD result, averaged over one hundred trials. The 

higher the intensity of a grid point in this figure, the greater is the number of times that grid point 

was populated during the 100 reconstruction trials. We observe that, on average, the sparsity- 

based CD scheme detects and localizes the target accurately at both positions. Also, compared to 

the backprojection-based result of Fig. 3(a), the image in Fig. 3(b) is less cluttered. The 'cleaner' 

image is due to the fact that a sparse solution is enforced by the /, minimization in (13). 

To further verify the performance of the sparsity-driven scheme, we computed the rate of 

successful reconstruction corresponding to the 100 trials for the translation motion. An image 

was regarded as a successful reconstruction if the pixel with the highest intensity was located 

within the extent of the target at the first (closer) position and if the second imaged target was 

populated with at least one pixel of significant intensity. Comparing the intensity of the two 

imaged targets in the backprojected image, the significant pixel intensity was selected to be 

within 5 dB of the highest intensity. An example of a successful reconstruction is provided in 

Fig. 4. Based on these criteria, the successful recovery rate was determined to be 84%. 
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Next, we collected data from a scene, consisting of a standing human facing the wall, located 

at 0.5m crossrange and at a downrange of 3.9m from the radar, as shown in Fig. 5. The data was 

collected with the target initially looking straight at the wall and then suddenly lifting the head to 

look upwards. As the person moved the head, there was also a slight movement of the shoulders 

and heaving of the chest. Two data frames of 20 pulses each, corresponding to the two head 

positions, were considered. The system parameters, the dimensions of the target space, the 

number of grid points, and the number of space-time measurements employed for the 

backprojection-based and sparsity-based reconstructions are all the same as those for the 

translational motion example. The target space image obtained using the backprojection-based 

CD with full data volume (after coherent integration) is shown in Fig. 6. We observe that the 

change detection approach was able to detect the cumulative change in target reflectivity due to 

the head movement and associated slight outward and upward movement of the chest as the 

target looked upwards. Compared to the translational motion image of Fig. 3(a), the sudden short 

movement image is more cluttered. This is because the radar return is much weaker in this case 

due to a slight motion of only a small part of the body. 

For the corresponding sparsity-based CD composite imaging results, we used two sub- 

apertures, each consisting of 4 receive antenna elements, and employed only 5% of the total data 

volume. That is, we used 77 time samples per antenna location within each of the sub-apertures. 

Similar to the translational motion example, we performed scene reconstruction one hundred 

times, and the averaged target space images with the sub-images combined in accordance to (25) 

and (26) are provided in Figs. 7(a) and 7(b), respectively. We observe that, on average, the two 

sub-image combining approaches provide comparable performance, and the sparsity-based CD 

approach successfully detects and localizes the target undergoing short movement using much 
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reduced data volume. For comparison, the sparsity-based scene reconstruction using the full 

receive array and 5% data volume, averaged over one hundred trials, is also provided in Fig. 8. 

We note that although the non-composite image approach, on average, detects the presence of 

both the head and chest movements, the location of the highest intensity pixel is offset in 

downrange by about 5cm. Despite this issue, the average performance of the non-composite 

scheme is reasonable compared to that of the composite imaging approaches. The reason being 

that the receive array is just 0.42m in length, and the aspect angle variation across the array 

elements is no more than 6 degrees for the considered target space. Thus, the isotropic scattering 

assumption is not violated through the use of the full receive array. 

For the sudden movement case, we also computed the rate of successful reconstruction 

corresponding to the 100 trials for the sparsity-based composite image approaches. An image 

was regarded as a successful reconstruction if the pixel with the highest intensity was located 

within the extent of the target. Based on this criterion, the respective successful recovery rates 

for the sub-image combination schemes of (25) and (26) were determined to be 75% and 73%. 

1.6. Conclusion 

In this Chapter, we detected and localized moving humans behind walls and inside enclosed 

structures using an approach that combines sparsity-driven radar imaging and change detection. 

Removal of stationary background via change detection converts populated scenes to sparse 

scenes, whereby compressive sensing schemes can exploit full benefits of sparsity-driven 

imaging. Both translational motion and short sudden movements of the head, limbs, and/or torso 

were considered and appropriate change detection models were developed for both motion types 

that allowed scene reconstruction within the compressive sensing framework. Examples of a 

human target undergoing translation motion and slight movement of the head behind a cement 
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board wall were used to validate the developed models and to evaluate the performance of the 

proposed sparsity-driven change detection scheme. Using pulsed radar operation, it was 

demonstrated that a sizable reduction in the data volume is achieved by the proposed approach 

without degradation in system performance. 

It is noted that the work presented here only considered the sparsity of the target space and 

did not make any further assumptions about the support of the sparse solution during the 

reconstruction process. As the humans are extended targets, they appear as clusters in the 

through-the-wall images. As such, the corresponding sparse solution support has an underlying 

block structure [38, 39]. Future efforts will focus on exploiting this structured sparsity to further 

reduce the number of compressive measurements required for stable recovery. 
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Figure 1. The wideband pulse used for imaging. 

Fig. 2. Scene Layout for the target undergoing translational motion. 

25 



5.5 

4.5 

CD 

m 4 

c 

1 

-10 

-15 

-0.5 0 0.5 1 
Crossrange (m) 

(a) 

1.5 

0 0.5 1 1.5 2 
Crossrange (m) 

(b) 

Figure 3. (a) Backprojection based CD image using the full dataset. (b) Sparsity-based CD image 
using 5% of the data volume, averaged over 100 trials. 
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Figure 4. Sparsity-based CD image for one of the trials under translational motion. 

Figure 5. Scene layout for the target undergoing sudden short movement. 
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Figure 6. Backprojection based CD image using full data volume for the target undergoing 
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Figure 7. Sparsity-based composite images with 5% data volume for the sub-image combining 
approach in (a) eq. (25), and (b) eq. (26). The images are the averages of 100 reconstructions. 
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Figure 8. Sparsity-based image using 5% data volume without partitioning the receive array into 
sub-apertures. 
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Chapter 2 

Joint Localization of Stationary and Moving Targets behind Walls using 
Sparse Scene Recovery 

2.1. Introduction 

With recent advances in both algorithm and component technologies, there are increasing 

demands on radar imaging systems to deliver high resolution images in both range and 

crossrange. This demand requires use of wideband signals and large array apertures, which in 

turn, leads to the collection and processing of large amounts of data along the spatial, temporal, 

and frequency dimensions. This trend is set to continue with the ever-present usage of radar 

sensors and wide deployment of radar sensor networks. 

The generation of massive amounts of data presents a major challenge towards the objective 

of detecting and localizing moving and stationary targets of interest, such as humans and 

weapons, inside enclosed structures in an efficient and reliable manner in through-the-wall radar 

imaging (TWRI) and urban sensing applications [l]-[3]. The emerging field of compressive 

sensing (CS), which enables reconstruction of a sparse signal from far fewer nonadaptive 

measurements [4]-[5], provides an alternative for data reduction in radar imaging without 

compromising image quality [6]-[9]. For TWRI, these techniques offer efficient sensing 

operations that culminate in quick and reliable, actionable intelligence [10]-[15]. 

In TWRI, the presence of the front wall renders the target detection problem very difficult 

and challenging. The wall produces a strong radar return that not only tends to obscure the 

nearby inside targets, but also reduces the signal-to-clutter ratio (SCR) of the scene image. The 

low SCR, together with the fact that the wall is extended in crossrange and occupies several 

pixels in the image, renders the assumption of a sparse observed scene invalid.   This has an 

adverse effect on the scene reconstruction performance when employing CS. 
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Different strategies have been devised for suppression of the wall clutter to enable target 

detection behind walls. Change detection was considered in [16]-[18], wherein the stationary 

background was removed by taking the difference of data observations over successive probing 

of the scene. Sparsity-driven imaging techniques were then applied to the difference signals to 

detect and localize the moving targets [12], [19]. Clutter cancellation filtering provides another 

option, which has been successfully applied as a preprocessing step in [20] and [21] for general 

multi-input multi-output (MIMO) radar and synthetic aperture radar (SAR) imaging applications. 

However, along with the wall clutter, both of these methods also suppress the returns from the 

stationary targets of interest in the scene, and as such, allow subsequent application of CS to 

recover only the moving targets. For wall-clutter mitigation in stationary scenes, several 

techniques have also been proposed in the last few years. For example, in an EM modeling based 

approach, the wall parameters are estimated from the radar returns, and then used to model and 

subtract the wall contributions from the received data [22]. This wall-dependent technique is 

effective under full data volume, but its performance is subject to wall estimation and modeling 

errors. Wall-independent methods, such as spatial filtering [23] and subspace projection [24], 

have been developed, and have been successfully applied to CS reconstruction [25]. However, 

these methods assume monostatic operation with the array located parallel to the front wall, and 

exploit the invariance of the wall return across the array under such a deployment for mitigating 

the wall return. 

In this Chapter, we propose an alternate approach for jointly detecting and localizing 

stationary and moving targets behind walls, while simultaneously achieving a sizable reduction 

in the number of data measurements. We assume an ultra-wideband (UWB) pulse-Doppler 

imaging radar system with a physical multistatic aperture. We exploit the compact temporal 
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support of UWB signals to employ time gating [26]-[29], in lieu of the aforementioned clutter 

cancellation methods, for suppressing the wall returns. This enhances the SCR and maintains the 

sparsity of the scene, thereby permitting the application of CS techniques for streamlining data 

acquisition and scene reconstruction with few observations compared to conventional 

approaches. 

The Chapter establishes an appropriate signal model that enables formulation of linear 

modeling with sensing matrices, so as to achieve reconstruction of the downrange-crossrange- 

velocity space via sparse recovery techniques. Supporting results based on real data collected in 

a laboratory environment are provided. It is shown that the sparsity-based scheme for joint 

localization of stationary and moving targets achieves a sizable reduction in the data volume 

without any degradation in the system performance. 

The Chapter is organized as follows. In Section 2.2, we describe the UWB signal model for 

the multistatic imaging radar under the assumption of sequential use of the available transmitters. 

Conventional backprojection based downrange-crossrange-Doppler processing method is 

reviewed in Section 2.3. We present the sparsity-based stationary and moving target localization 

scheme in Section 2.4, highlighting the sensing matrix based linear modeling formulation. 

Section 2.5 provides the experiment results, depicting the performance of the sparsity-based 

localization scheme for the case of a few stationary and moving targets inside a room using 

reduced data volume. Conclusions are drawn in Section 2.6. 

2.2. Ultra-Wideband Signal Model 

In this section, we develop the signal model for ultra-wideband radar operation with M 

transmitters and N receivers. A sequential multiplexing of the transmitters with simultaneous 

reception at multiple receivers is assumed. Although this signaling approach demands more 
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acquisition time compared to the simultaneous transmitter operation, it is a viable option for 

TWRI operations. This is because a) More receivers than transmitters are deployed due to the 

important constraint of low cost, and b) The moving targets of interest have low velocities 

indoors. It is important to note that the sequential transmit operation is the salient feature of three 

known through-the-wall radar imaging systems; one is built by the Army Research Lab [16], the 

other by the Defense Research and Development Canada [30], and the third by MIT Lincoln Lab 

[31]. With the assumption of sequential multiplexing, a signal model can thus be developed 

based on single active transmitters. 

Consider an M-element transmit array and an iV-element receive array, both located along the 

x-axis at a standoff distance y0j from a homogeneous wall, as shown in Fig. 1. Note that 

although the arrays are assumed to be parallel to the front wall for notational simplicity, this is 

not a requirement. Let \lm =(xtm,0) and xrn =(xrn>0) be the respective phase centers of the /nth 

transmitter and the nth receiver. Let the transmit signal be expressed as 

s(t) = a(t)exp(j2nfct) (1) 

where a(t) is the ultra-wideband baseband signal and fc is the carrier frequency, and let Tr be 

the pulse repetition interval. Consider a coherent processing interval of K pulses per transmitter 

and a single point target moving slowly away from the origin with constant horizontal and 

vertical velocity components (v^.v^),  as depicted in Fig. 1.    Let the target position be 

\p=(xp,yp)  at time  t = 0.  Assume that the timing interval for sequencing through the 

transmitters is short enough so that the target appears stationary during each data collection 

interval of length MTr. This implies that the target position corresponding to the Ath pulse is 

given by 
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Xp (*) = (Xp + VxpkMTr»yp + VypkMrr ) (2) 

The baseband target return measured by the nth receiver corresponding to the kth pulse 

emitted by the /nth transmitter is given by 

*£* (0 = °pa(f ~ kMrr ~ mTr - rmnp(k)) expi-jlnf^Jk)) (3) 

where ap is the complex reflectivity of the target and rmn p(k) is the propagation delay for the 

Mi pulse to travel from the mth transmitter to the target at xp(k), and back to the nth receiver. 

For through-the-wall propagation, rm    (k) comprises the components corresponding to traveling 

distances before, through, and after the wall [32]. In the presence of P point targets, the received 

signal component corresponding to the targets will be a superposition of the individual target 

returns in (3) withp = 0,1,...,P-\. Interactions between the targets and multipath returns are 

ignored in this model. Note that any stationary targets behind the wall are included in this model 

and would correspond to the motion parameter pair {vxp,vyp) = (0,0).Further note that the slowly 

moving targets are assumed to remain within the same range cell over the coherent processing 

interval. 

On the other hand, as the wall is a specular reflector, the baseband wall return received at 

the «th receiver corresponding to the kth. pulse emitted by the mth transmitter can be expressed as 

Cf(0 = cJwalls(t-kMTr-mTr -Tmn^all)cxp(-j2^fcTmnwall) + BZll(t) (4) 

where awall is the complex wall reflectivity, r^^ is the propagation delay from the /wth 

transmitter  to  the  wall  and  back  to  the  nth  receiver,  and   B™k (t) represents  the  wall 
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reverberations of decaying amplitudes resulting from multiple reflections within the wall (see 

Fig. 2). The propagation delay r^,^, is given by [33] 

I 7 7 I 7 7 
_ \(Xlm ~ Xw,mn)   + >o# + \(Xrn ~ Xw,mn)   + >o#" 

Tmn,wall ~ P) 

where c is the speed of light in free space, and 

Xy/,mn = Z ■ v °) 

is the point of reflection on the wall corresponding to the mth transmitter and the nth receiver, as 

shown in Fig. 2. Note that, as the wall is stationary, the delay r^ wall does not vary from one 

pulse to the next. Therefore, the expression in (4) assumes the same value fork = 0,...,K -1. 

Combining (3) and (4), the total baseband signal received by the nth receiver, corresponding to 

the kth pulse with the mth transmitter active, is given by 

d<0-*3<0+Z«£i(0 (7) 

The returns from behind-the-wall targets, both moving and stationary, are, in general, much 

weaker than the front wall reflections, resulting in a low SCR. Because of the UWB nature of 

the transmit signal, it is natural to remedy this situation by gating out the wall return in the time 

domain, thereby providing access to the sparse behind-the-wall scene of a few stationary and 

moving targets of interest. Therefore, the time-gated received signal contains only contributions 

from the P targets behind the wall as well as any residuals of the wall not removed or fully 

mitigated by gating. In this Chapter, we assume that wall clutter is effectively suppressed by 

gating. Therefore, using (7), we obtain 

wo-zc*« (8) 

35 



2.3. Backprojection Based Stationary and Moving Target Localization 

Radar images are typically formed using the well-known backprojection algorithm [34]-[37]. 

High resolution imaging of stationary scenes for through-the-wall applications is considered in 

[38]-[41]. However, the presence of moving targets in the observed scene presents a problem for 

conventional backprojection. Unlike stationary targets, the moving targets are defocused and get 

smeared across the image. This makes it very difficult to detect and localize moving targets in 

the backprojected image [42]. Often, the approach to handling moving targets involves Doppler 

discrimination [43] in order to form a focused image of the moving targets. The simplest version 

is implemented as a Fast Fourier Transform (FFT) along the slow-time dimension of the raw data 

cube, followed by backprojection applied to the fast time vs. spatial data per Doppler bin, as 

illustrated in Fig. 3. 

Consider the signal {zmnk (0}f=~o received Dv me nth receiver with the mth transmitter 

active over the coherent processing interval, where zmnk (t) is given by (8). After application of 

the Fourier transform to {zmnk (t)}k=0 along slow time, let the resulting signal corresponding to 

the /th Doppler frequency bin be denoted by  zlmn (t).  In order to generate the range vs. 

crossrange image corresponding to the /th Doppler bin, the signal zlmn (/) corresponding to all M 

transmitters and all N receivers is processed as follows. 

The region of interest is divided into a finite number of pixels, say Nx x N , in crossrange 

and downrange. For the considered geometry of Fig. 1, the crossrange is represented by the x- 

axis and the v-axis is the downrange. The composite signal corresponding to the qth pixel, 

located at x? = (xq,yq), can be obtained by applying focusing delays, and then summing the 

results [37], 
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, M-\N-\    . 

m=0«=0 

Note that the focusing delay rmn    corresponds to the two-way signal propagation time between 

the /nth transmitter, the qth. pixel, and the nth receiver. If the target is indeed present at the qth 

pixel location, i.e., xq=xp, then the focusing delays align all the signals corresponding to the 

different transmitters and receivers, resulting in the signals being coherently combined. On the 

other hand, if there is no target at the qth pixel, the same focusing time delays will cause the 

various signals to stagger in time, thereby producing a reduced combined output. 

The complex amplitude image value corresponding to the qth pixel is obtained from (9) as 

Il(xg) = zlq(t)[=Q. (10) 

The process described by (9) and (10) is performed for all Nx x Ny pixels to generate the 

complex image of the scene corresponding to the /th Doppler bin. 

Note that it is possible to obtain the spatial and motion parameters of targets in the field of 

view even if some of the spatial-fast time-slow time measurements are missing. However, 

merely employing some of the transmit and receive elements, a few pulses, and/or part of the 

signal time duration, in the backprojection based scene reconstruction scheme degrades the 

image quality [44]. CS framework is, therefore, more suitable for pursuing reduction in data 

volume. 

2.4. CS Based Stationary and Moving Target Localization 

In this section, we develop the linear signal model with sensing matrices for application of CS 

and present the sparse reconstruction scheme for joint localization of stationary and moving 

targets inside enclosed structures. 
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2.4.1.     Linear Model Formulation 

With the observed scene divided into Nx x N pixels in crossrange and downrange, consider Nv 

and   Nv discrete values of the expected horizontal and vertical velocities,  respectively. 

Therefore, an image with A^ x N   pixels in crossrange and downrange is associated with each 

considered horizontal and vertical velocity pair, resulting in a four-dimensional target space. 

Note that the considered velocities contain the (0, 0) velocity pair to include stationary targets. 

Sampling the received signal zmnk (t) at times {/, }fj(f , we obtain a Q x 1 vector zmnlc. For the 

/th velocity pair (v^v^), we vectorize the corresponding crossrange vs. downrange image into 

an NxNyxl scene reflectivity vector «(v^v^.The vector o(vx/,vyl) is a weighted indicator 

vector defining the scene reflectivity corresponding to the /th considered velocity pair, i.e., if 

there is a target at the spatial grid point (x, v) with motion parameters (vxl,vyi), then the value of 

the corresponding element of a(vx/,vyl) should be nonzero; Otherwise, it is zero. 

Using the developed signal model in (3) and (8), we obtain the linear system of equations, 

■** ^^(WyMw,,), l = 0X...,(NVxNVy -1) (11) 

where the matrix ^'m^(v;(/,v>,/)is of dimension Q*NxNy. The qth column of "P^O^v /) 

consists of the received signal corresponding to a target at pixel x with motion parameters 

(vxl,v ,) and the /th element of the qth column can be written as 

\ymnkivxhvyi)\q = s(ti-kMTr -mTr -Tmng(k))exp(-j27rfczm„q(k)) (12) 

where Tmng(k) is the two-way signal traveling time, corresponding to (v^.v^), from the mth 

transmitter to the #th spatial grid point and back to the nth receiver for the Mi pulse. 
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Stacking the received signal samples corresponding to K pulses from all MN transmitting and 

receiving element pairs, we obtain the MNKQ x 1 measurement vector z as 

z = V(vxhvylMVxl,vyl),  l = 0,\,...,(NVxNVy-l) (13) 

where 

TK'vy) = [^JooK/'V),...,^M_,x^-iX^_1)(v;c/,v>,/)] . (14) 

Finally, forming the MNKQxNXNyNvNv matrix *F as 

*F = ,*'(VxO»v>o)'-',*'(vx(^„^-l)»v^(Ar„JVly-l))J » 05) 

we obtain the linear matrix equation 

z = ¥o (16) 

with o being the concatenation of target reflectivity vectors corresponding to every possible 

considered velocity combination. 

2.4.2.     CS Data Acquisition and Scene Reconstruction 

The model described in (16) permits the scene reconstruction within the CS framework. We 

measure a J < MNKQ dimensional vector of elements randomly chosen from z. The reduced set 

of measurements can be expressed as 

Z = 0'P<J (17) 

where 4> is a JxMNKQ measurement matrix. For measurement reduction simultaneously 

along the spatial, slow time, and fast time dimensions, the specific structure of the matrix <I> is 

given by 

* = (*1®I0XiNi)-(*2®I0^).(O3®Ia^).diqg(®f,...,*iM«c-I>)        (18) 
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where ' <8>' denotes the Kronecker product, I(.)is an identity matrix with the subscript indicating 

its dimensions, and Ml, Nx, Kx, and Qx denote the reduced number of transmit elements, receive 

elements, pulses, and fast time samples, respectively, with the total number of reduced 

measurements J = MXNXKXQX. The matrix <!>, is an M,xM matrix, <D2 is an NxxN matrix, 

03 is a KxxK matrix, and 0^\i = 0,...,MNK-\ is a QX*Q matrix for determining the 

reduced number of transmitting elements, receiving elements, pulses and fast time samples, 

respectively. Each of the three matrices 01,^>2'
and^>3 consists of randomly selected rows of 

an identity matrix. These choices of reduced matrix dimensions amount to selection of subsets of 

existing available degrees of freedom offered by the fully deployed imaging system. Any other 

matrix structure does not yield to any hardware simplicity or saving in acquisition time. On the 

other hand, three different choices are available for compressive acquisition of each pulse in fast 

time [45]. That is, the matrix <I>4 ,z' = 0,...,MVX-l,can be 1) a Gaussian random matrix with 

entries drawn from N(0,1), 2) a random matrix with entries equal to +1 with probability XA, or 3) 

a matrix consisting of randomly selected rows of an identity matrix. The three options provide 

tradeoff between the imaging performance and ease of hardware implementation, as discussed in 

detail in [45]. A possible receiver hardware implementation for the first two types of random 

matrices is depicted in Fig. 4 using the /„th receive element with the /TOth transmit element 

active, where in e{0,l,...,7V-l} and im e{0,l,...,M-l} are the indices of the randomly selected 

reduced set of receivers and transmitters. The reduced number of pulses is assumed to be 

transmitted in a random fashion, with the receiver synchronized to the transmitter. Further 

assume T0,TX,...,TK _, to be the time period between consecutive transmissions in the sequence of 
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randomly selected K{ pulses, as shown in Fig. 4. The switch implements the time gating for wall 

return removal and the time-gated signals are input to the subsequent random fast time 

measurement system. Each pulse is first multiplied by each column of the fast time measurement 

matrix and the product is then integrated. Both of these operations can be implemented by 

microwave mixers and low-pass filters [45]. The subsequent sampling operation in the system 

can, thus, furnish 'clean' data without the wall returns at a reduced volume. 

Given the reduced measurement vector z in (17), we can recover o by solving the following 

equation, 

£ = arg min ||«| .subject to z « 4>To (19) 
<T 

The problem in (19) can be solved using convex relaxation, greedy pursuit, or combinatorial 

algorithms [46]-[48]. In this work, we use OMP for the CS based reconstruction [49]. We note 

that the reconstructed vector can be rearranged into Nv Nv   matrices of dimensions Nx x Nv in 

order to depict the estimated target reflectivity for different vertical and horizontal velocity 

combinations. The stationary targets will be localized for the (0,0) velocity pair. 

Further note that if the wall clutter is not totally mitigated and the wall residuals are 

comparable in strength to the target returns, then the image will contain artifacts resulting from 

reconstruction of the wall residuals. Also, OMP may require relatively more iterations to recover 

the targets in this case. 

2.5. Experimental Results 

An ultra-wideband pulsed radar system was used to perform real data measurements of a 

through-the-wall scene of stationary and moving targets in the Radar Imaging Lab at Villanova 

University. The radar employs a 0.7 ns Gaussian pulse for scene interrogation. The pulse is up- 

converted to 3 GHz for transmission and down-converted to baseband through in-phase and 
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quadrature demodulation on reception. The operational bandwidth of the radar system extends 

from 1.5 to 4.5 GHz. The peak transmit power is 25 dBm. Transmission is through a single horn 

antenna, model BAE-H1479, with an operational bandwidth from 1 to 12.4 GHz, which is 

mounted on a tripod. An 8-element uniform line array of Vivaldi elements with an inter-element 

spacing of 0.06 m, is used as the receiver and is placed to the right of the transmit antenna. The 

center-to-center separation between the transmitter and the leftmost receive antenna is 0.3 m, as 

shown in Fig. 5. A 3.65 m x 2.6 m wall segment was constructed utilizing 1 cm thick cement 

board on a 2-by-4 wood stud frame. The transmit antenna and the receive array were at a 

standoff distance of 1.19 m from the wall. The radar has a pulse repetition frequency (PRF) of 10 

MHz. Despite the high PRF, the system refresh rate is 100Hz. This is because a) Equivalent time 

sampling is used [50], and b) Instead of simultaneous reception, the receive array elements are 

accessed sequentially through a multiplexer. 

The origin of the coordinate system was chosen to be at the center of the receive array. The 

scene behind the wall consisted of one stationary target and one moving target, as shown in Fig. 

5. A metal sphere of 0.3 m diameter, placed on a 1 m high Styrofoam pedestal, was used as the 

stationary target. The pedestal was located 1.25 m behind the wall, centered at (0.49 m, 2.45 m). 

A person walked towards the front wall at a speed of 0.7 m/s approximately along a straight line 

path, which is located 0.2 m to the right of the transmitter. The back and the right side wall in the 

region behind the front wall were covered with RF absorbing material, whereas the 8 in thick 

concrete side wall on the left and the floor were uncovered. A coherent processing interval of 15 

pulses was selected. 

The image region is chosen to be 4 m x 6 m, centered at (-0.31 m, 3 m), and divided into 41 

x 36 pixels in crossrange and downrange.  As the human moves directly towards the radar, we 
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only consider varying vertical velocity from -1.4 m/s to 0 m/s, with a step size of 0.7 m/s, 

resulting in three velocity pixels. In the following, we present the scene reconstruction results 

both with and without time gating of the front wall return. For the CS based reconstruction, the 

random measurement matrices OJ,   are chosen to be the same for each pulse. 

2.5.1.     Scene Reconstruction without Time Gating 

The space-slow time-fast time response of the scene consists of 8 x 15 x 2872 measurements. 

Figure 6 shows the backprojection-based images of the scene using all 8 x 15 x 2872 data 

points. In these and all subsequent images, we plot the image intensity on a 45 dB scale, with the 

intensity normalized to the maximum over the total target space. As discussed in Section III, we 

first performed Doppler filtering through an FFT operation along slow time, and then chose the 

Doppler bins corresponding to 0 and 14 Hz from the resulting space-fast time-Doppler data cube 

to form the respective images corresponding to the stationary target (see Fig. 6(a)) and the target 

moving at a velocity of -0.7 m/s (see Fig. 6(b)). The true positions of both targets are indicated 

by white ovals. We observe from Fig. 6(a) that the stationary target is barely detected due to the 

strong wall return. Although the moving target is correctly localized in Fig. 6(b), spectral leakage 

due to the high sidelobe energy from the much stronger stationary wall contaminates the moving 

target image. 

For the CS based reconstruction, only 33.3% of the 15 pulses and 13.9% of the fast-time 

samples are randomly selected for each of the 8 receive elements, resulting in 8 x 5 x 400 space- 

slow time-fast time measured data. This is equivalent to 4.6% of the total data volume. More 

specifically, the 400 fast time samples at each receive element were obtained with a Gaussian 

random matrix, whose elements are drawn from N(0,1). The reduction in the slow time data was 

achieved with a matrix whose entries were selected randomly from rows of an identity matrix. 
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We reconstructed the target space using the proposed CS scheme with 4.6% data volume fifty 

times. For each trial, a different overall random measurement matrix was used to generate the 

reduced set of measurements, followed by sparse scene reconstruction with the number of OMP 

iterations set to 50. Figure 7 depicts the CS based result, averaged over fifty trials, corresponding 

to the three velocity bins. The higher the intensity of a pixel in this figure, the greater is the 

number of times that pixel was populated during the 50 reconstruction trials. We observe from 

Figs. 7(a) and 7(b) that both the stationary sphere and the moving person cannot be localized. 

The reason behind this failure is two-fold: 1) The front wall is a strong extended target and as 

such, most of the degrees of freedom of the reconstruction process are used up for the wall, and 

2) The low SCR, due to the much weaker returns from the moving and stationary targets 

compared to the front wall reflections, causes the targets to be not reconstructed with the residual 

degrees of freedom of the OMP. These results confirm that the performance of the sparse 

reconstruction scheme is hindered by the presence of the front wall. 

2.5.2. Scene Reconstruction after Time Gating 

After removal of the front wall return from the received signals through time gating, the space- 

slow time-fast time data includes 8 x 15 x 2048 measurements. The full time-gated data was 

used for scene reconstruction with the backprojection based approach. The resulting images are 

depicted in Figs. 8(a) and 8(b), for the 0 Hz and 14 Hz Doppler bins, respectively. Clearly, in the 

absence of the wall, the algorithm has successfully detected and localized both stationary and 

moving targets. 

Figure 9 provides the corresponding result of OMP reconstruction, averaged over fifty trials. 

In each trial, we used all eight receivers, randomly selected 5 pulses (33.3% of 15) and chose 400 

Gaussian random measurements (19.5% of 2048) in fast time, which amounts to using 6.5% of 
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the total data volume. The number of OMP iterations was set to 4. Figures 9(a), 9(b), and 9(c) are 

the respective images corresponding to the 0 m/s, -0.7 m/s, and -1.4 m/s velocities. It is apparent 

that with the wall removed, both the stationary and moving targets have been correctly localized 

even with the reduced set of measurements. 

2.5.3.     Computational Complexity 

For a scene of sparsity L, the computational complexity of OMP is 0(NxNvNv Nv M^-yKxQxL) s       x      y 

[51]. On the other hand, conventional backprojection employing the full dataset has a complexity 

of 0((NxNyNVxNVy + QU\og2QU)MNK),  where  U is the upsampling ratio  for fast-time 

interpolation [52]. We computed the complexity associated with backprojection and CS-based 

method employing OMP for the examples in Sections V.A and V.B. The upsampling ratio was 

selected to be 20 in both cases, while the sparsity was taken to be 4 and 50, respectively, for CS 

reconstruction with and without time-gating. The results are provided in Table I. For the 

considered parameters, backprojection and OMP have comparable computational complexity 

when time-gating is employed, while backprojection is an order of magnitude less 

computationally intensive than OMP when the wall return is not gated out. 

2.6. Conclusion 

We presented a compressive sensing based data acquisition and image reconstruction technique 

for joint localization of stationary and moving targets in through-the-wall radar imaging and 

urban sensing applications. We suppressed the front wall returns through time gating, which was 

made possible by the short temporal support characteristic of the UWB transmit waveform. The 

SCR enhancement as a result of time gating permits the application of CS techniques for scene 

reconstruction with few observations. We established an appropriate signal model that enabled 

formulation of linear modeling with sensing matrices for the problem of sparsity based 
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reconstruction of the downrange-crossrange-velocity space. Results based on real data 

experiments demonstrated that joint localization of stationary and moving targets can be 

achieved via sparse regularization using a reduced set of measurements without any degradation 

in system performance. 
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Fig. 6. Backprojection result without time gating, (a) the stationary target, (b) moving target. 
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Chapter 3 

Partially Sparse Reconstruction of Behind-the-Wall Scenes 

3.1. Introduction 

Detection and localization of targets inside enclosed structures using radio frequency sensors are 

the primary objectives of urban sensing and through-the-wall radar imaging (TWRI) [1-9]. It is 

highly desirable to achieve these objectives in an efficient and reliable manner. This goal is 

primarily challenged due to increasing demands on radar systems to deliver high resolution 

images in both range and cross-range, which requires use of wideband signals and large array 

apertures, respectively. In addition, the clutter caused by the wall backscatter can significantly 

contaminate the radar data and compromise the main intent of providing enhanced system 

capabilities for imaging of building interiors and tracking of targets behind walls. 

Emerging compressive sensing (CS) techniques have recently been used to aid in efficient 

data acquisition in radar imaging systems for urban sensing applications [10-12]. The capability 

of CS to reconstruct a sparse signal from far fewer non-adaptive measurements provides a new 

perspective for data reduction in radar imaging without compromising the imaging quality. 

Moving target detection and localization inside buildings lends itself readily to the CS paradigm 

either by removal of stationary background (clutter and stationary targets) via change detection 

[13] or through exploiting sparsity in the Doppler domain [14]. However, these means are not 

available when targets of interest are stationary. 

In order to detect and localize stationary targets behind walls, wall reflections should be 

properly suppressed, or significantly mitigated without requiring imaging of a reference or 

background scene. Several approaches for mitigation of the wall contribution to the received 
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signal have been proposed in the literature [6, 15-17]. These approaches were originally 

introduced to work on the full data volume, and were later shown to be equally effective under 

reduced data volume and within the sparse signal reconstruction framework [18, 19]. More 

specifically, direct applications of wall clutter mitigation techniques, such as spatial filtering15 

and subspace projection [16, 17], were shown to be effective in [18], provided that the same 

reduced set of frequencies, or time samples, were used at each antenna position. However, 

having the same frequency observations or time samples may not always be possible. For 

instance, some individual frequencies or frequency subbands may be unavailable due to 

competing wireless services or intentional interferences. For the case when different sets of 

reduced frequencies are used for different antennas, a scene reconstruction approach was 

proposed in [19] in which CS was used to reconstruct the individual range profiles, thereby 

providing the wall clutter mitigation methods with the response measured at the same set of 

frequencies. However, in addition to an increase in computational complexity, the CS technique 

in [19] suffers from the following issues: a) Less reduction in data volume compared to the case 

when the same set of reduced frequencies are used from each antenna, and (b) Loss in 

reconstruction quality despite the use of a larger amount of data. 

In this Chapter, instead of using wall clutter mitigation as a preprocessing step to image 

formation, we apply the idea of partial sparsity to through-the-wall scene reconstruction under 

reduced data volume. Partially sparse recovery considers the case when it is known a priori that 

the scene being imaged consists of two parts, one of which is sparse and the other is expected to 

be dense [20, 21]. More specifically, we consider the scene reconstruction problem involving a 

few stationary targets of interest when the building layout is assumed known. This implies that 

the support of the dense part of the image corresponding to the exterior and interior walls is 
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assumed known. This knowledge may be available either through building blueprints or from 

prior surveillance operations. We focus on stepped-frequency synthetic aperture radar (SAR) 

operation and assume that few frequency observations are available, which could be the same or 

different from one antenna position to another constituting the set of reduced spatial 

measurements. Using data collected in a laboratory setting, we demonstrate the effectiveness of 

the partial sparsity based approach for reconstruction of stationary through-the-wall scenes. 

The remainder of this Chapter is organized as follows. Section 3.2 presents the signal model 

under the assumption of partial sparsity. The fundamental equations for the partially sparse scene 

reconstruction are provided in Section 3.3. Section 3.4 evaluates the performance of the partially 

sparse through-the-wall scene reconstruction using real-data collected in a semi-controlled 

laboratory environment. Conclusions are drawn in Section 3.5. 

3.2. Partially Sparse Signal Model 

Consider the use of a synthetic aperture radar in which a single antenna at one location transmits 

and receives the radar signal, then moves to the next location, and repeats the same operation 

along the axis parallel to a homogenous front wall. Assume N antenna locations and a stepped- 

frequency signal of M frequencies, which are equispaced over the desired bandwidth coM_x - co0, 

com =ü)0 + mAco, m-0,\,...,M-\ (1) 

where a>0 is the lowest frequency in the desired frequency band and Aco is the frequency step 

size. The scene behind the front wall is assumed to be composed of/* point targets and L-\ walls, 

which are parallel to the front wall and to the radar scan direction. It is noted that, as the walls 

behave as specular reflectors at the operational frequency range for TWRI, no backscattered 
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signals are received from walls in the scene that are perpendicular to the front wall. We, 

therefore, exclude perpendicular walls from the signal model. 

The component of the received signal corresponding to the /«th frequency at the «th antenna, 

with phase center at xm = (xm,0), due to the P point targets is given by [5] 

p-\ 
ytg, (w,«) = X a  exp(-ja)mTpn) (2) 

where a is the complex reflectivity of the pth target andrpnis the two-way traveling time 

between the «th antenna and the /?th target. On the other hand, the reflections from the L walls 

measured at the «th antenna location corresponding to the «rth frequency can be expressed as15 

L-\ 
ywaii ("», n) = X erwj exp(-ja>mTw j) (3) 

/=0 

where <rw t is the complex reflectivity of the /th wall and TW , is the two-way traveling time of the 

signal from the «th antenna to the /th wall. Note that since the scan direction is parallel to the 

walls, the delay rwl does not depend on the variable n and is a function only of the downrange 

distance between the /th wall and the antenna baseline. The «th received signal corresponding to 

the wth frequency is, thus, given by 

v(w, n) = ytgt (m, n) + ywall (m, n) (4) 

Assume that the scene being imaged or the target space is divided into a finite number of grid- 

points, say Q, in crossrange and downrange. Let y„ represent the received signal vector 

corresponding to the Mfrequencies and the «th antenna location, and s be the concatenated Qxl 
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scene reflectivity vector corresponding to the spatial sampling grid. Under the assumption that 

the building layout is known a priori, s can be expressed as s = [sf s2 ]r, where s, e C is the 

dense part whose support is known and s2 e Ce_r is the sparse part. Then, using eqns. (2)-(4), 

we obtain the matrix-vector form 

y* = A*iSi + A„2s2 (5) 

where An2 is an Mx(Q-r) dictionary matrix, whose rows are given by 

[A^LKexpC-./Vo,«)   exP(-/Vi,„)   •••   exp(-jo)mT(QA)n)] (6) 

with x being the two-way traveling time between the «th antenna and the gth grid-point, and 

Anl is an Mxr dictionary matrix, whose rows are given by, 

[A„,]OT=[exp(-yö>m2z0/c)30„    exp(-7ö>m2z1/c)3M    •••   exp(-yö;m2z(e_1)/c)3(ß_1)J      (7) 

In (7), zq represents the downrange coordinate of the ^rth grid-point, and 3q n is an indicator 

function which assumes a unit value only when the qXh. grid-point lies in front of the «th antenna, 

as illustrated in Fig. 1. That is, if xq represents the crossrange coordinate of the ^th grid-point 

and    Sx     represents    the    crossrange    sampling    step,    then    3gn = 1     provided    that 

xq - öx 12 < xtn < xq + Sx 12. 

Equation (5) considers the contribution of only one antenna location. Stacking the measurement 

vectors corresponding to all N antennas to form a tall vector y, we obtain the linear system of 

equations 

y = A,s,+A2s2 (8) 
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where 

y-LYo  yi   ■■* y^-u > 

Ai-[A01    An    •••   A(jV_ni] , (9) 

A2-IA02    A,2    •••   A(AM)2] 

L(JV-1)1 

T 
L(tf-1)2 

Note that the vector y contains the full dataset corresponding to the N antenna locations and the 

M frequencies. For the case of reduced data volume, consider £, which is a AT (« MN) 

dimensional vector consisting of elements randomly chosen from y as follows, 

^ = <Dy = <DAlSl+OA2s2 (10) 

where <D is a K x MN measurement matrix of the form, 

O = kron(v|/,I^)-diag{<p0,(p1,...,9^_1},     K = KXK2 (11) 

In (11), 'kron' denotes the Kronecker product, 1^ is a Kx x K] identity matrix, v|/ is a K2 x N 

measurement matrix constructed by randomly selecting K2 rows of anNxNidentity matrix, 

and <p„, n = 0,..., .ZV -1, is a KxxM measurement matrix constructed by randomly selecting Kl 

rows of an MxMidentity matrix. We note that \|/ determines the reduced antenna locations, 

whereas q>„ determines the reduced set of frequencies corresponding to the nth antenna location. 

3.3. Partially Sparse Reconstruction 

Given the reduced set of measurements £, the scene being imaged can be reconstructed under 

the assumption of partial sparsity by solving the following optimization problem [20, 21] 

s = argmin||s2|. subject to ^ = OA,s,+OA2s2 (12) 
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The problem in (12) can be solved using convex relaxation algorithms [20]. In this work, we 

choose an alternate method outlined in [21].  Let P be the matrix of the orthogonal projection 

from Ce onto SR^A,)1, where 5R(OA1)
1is the orthogonal complement of the range space of 

the matrix OA,. If OAj has full rank, then Pcan be expressed as 

P = I* -(<I»A1)((«I»A1)
//(OA1))-1(«I»A1)

// (13) 

where IK is a K x K identity matrix and the superscript '/f denotes the Hermitian operation. On 

the other hand, if <DA, has a reduced rank, then we have to resort to the singular value 

decomposition (SVD) of <DA, to obtain the matrix P. Let the SVD of OAt be given by 

OA, =[UMU12] A   0 
0    0 

Ml 

,v12 J 
(14) 

where Ais a diagonal matrix of the non-zero singular values, Uu andU12are the matrices 

consisting of the left singular vectors corresponding to the non-zero and zero singular values, 

respectively, and Vn and V12 consist of the right singular vectors corresponding to the non-zero 

and zero singular values, respectively. In this case, P can be obtained as 

P = U12Ug (15) 

Applying the projection matrix P to the observation vector £, we obtain 

P^ = P<DA,s, + POA2s2 = PO>A2s2 (16) 

We can then recover the (t - r) -sparse vector s2 by solving the problem 

s2 = argminl^lj subject to PI;» P<DA2s2 (17) 
s2 
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where / is the sparsity of the scene s. Note that as the measurements are in general noisy, the 

equality in (16) has been replaced by approximate equality in the constraint in (17). The problem 

in (17) belongs to the classical setting of CS and, thus, can be solved using convex relaxation, 

greedy pursuit, or combinatorial algorithms. In this work, we choose CoSaMP as the 

reconstruction algorithm primarily because of its ability to handle complex arithmetic [22]. 

Given s2, the following linear matrix equation 

0>AlSl = ^-<l>A2s2 (18) 

can be solved to recover the dense part s,. If K < r, least squares can be used to obtain the 

solution Sj. Otherwise, a minimum-norm solution can be obtained. 

3.4. Experimental Results 

In this section, we present scene reconstruction results using the partial sparsity technique using 

experimental data collected in a laboratory environment and compare the performance with that 

obtained with classical compressive sensing. In all scene reconstruction results provided in this 

section, we plot the image intensity on a dB scale with the maximum intensity value in each 

image normalized to OdB. The true targets in the images are indicated with white ovals. 

3.4.1.     CS Measurement Strategy and Windowing for Enhanced Sparsity 

The CS measurement strategy employed in this section retains all antenna positions and only 

applies frequency thinning, as shown in Fig. 2. That is, reduced sets of frequencies are chosen 

randomly for each of the antenna locations constituting the synthetic aperture. In this case, the 

expression for measurement matrix <J> in (11) reduces to, 

<D = diag{(p0,91,...,q>^_1},  K = Kx (19) 
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Further, as the range sidelobes associated with raw stepped-frequency measurements make the 

scene appear less sparse, a window function is employed to increase the sidelobe decay rate, 

thereby reducing the error in the subsequent CS reconstruction [23]. In fact, owing to the 

particular structure of the measurement matrix <I> in (19), the window function can be applied to 

the CS measurement vector % a posteriori and need not be incorporated into the dictionary 

matrices. To elaborate on this point, consider the windowed version of (8) given by 

y' = W'AlSl+W'A2s2,   W' = diag{W,W,...,W},  W = diag{w0,w1,...,ww_1} (20) 

where   w0, w{,..., wM_x   are the weights corresponding to the window function, and the 

dimensions of the matrix W are MNxMN. The corresponding CS measurement vector takes 

the form 

^Oy^OW'A^.+OW'AjSj (21) 

where the product <DW can be expressed as 

<DW'=diag{9o,(p1,...,9^1}-W' = diag{(PoW,(p1W,...,(pyv_1W} (22) 

Making use of the fact that the matrix <p„ contains no more than one non-zero element in each 

row and each column, the product q>„Wcan be rewritten as [23] 

<P„W = W„cp„,     W„ =diag{wion,whn,...,wi(KJ (23) 

where i0n, /lw,..., i(K _1)n is the set of column indices corresponding to the non-zero entries of the 

matrix <p„. As a result, instead of solving the partial sparsity based CS reconstruction problem 

using the new measurements %', the subsequent reconstruction finds the solution to the 

augmented problem 
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s = arg min|s21 subject to W^ = W<DA,s, + W<I>A2s2 (24) 

where W = diag{W0,..., W„_,}. 

3.4.2. Experimental Setup 

A through-the-wall SAR system was set up in the Radar Imaging Lab at Villanova University. A 

horn antenna, model ETS-Lindgren 3164-04, with an operational bandwidth of 0.7 to 6 GHz, 

was mounted on a scanner to synthesize a 67-element line array along the x-axis, parallel to a 

0.14m thick solid concrete wall at a standoff distance of 1.24m, as shown in Fig. 3. The inter- 

element spacing of the array is 0.0187m. The back and the side walls of the room were covered 

with RF absorbing material. An Agilent network analyzer, model ENA-5071B with an operation 

frequency range of 300 kHz - 8.5 GHz, was used for signal generation and data collection. A 

stepped-frequency signal covering the 1-3 GHz frequency band with a step size of 2.75MHz was 

employed. Thus, at each scan position, the radar collected 728 frequency measurements over the 

frequency range of interest. A vertical dihedral was used as the target and placed at 0m in 

crossrange and 3.03m in downrange, as shown in Fig. 3. The size of each face of the dihedral is 

0.39m by 0.28m. 

3.4.3. Scene Reconstruction Results 

The region to be imaged was chosen to be 2.4m x 3.9m centered at (0, 1.95)m and divided into 

33 x 53 pixels, respectively. Fig. 4(a) shows the image obtained with backprojection using the 

full dataset and application of the Harming window. We can clearly see the ringing due to the 

antenna mismatch, the front and back faces of the wall, and the target. Note that there is a bias in 

the downrange locations of the back face of the wall and the target in the image. This is because 

the speed change in the wall material has not been accounted for in backprojection. Although it 
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provides good quality images when the full data volume is available, backprojection 

compromises the image quality when a reduced number of data samples is considered, thereby 

impeding the detection of targets behind the wall in the image domain. This is illustrated in Fig. 

4(b), wherein only 20% of the data volume (146 randomly chosen frequencies for each of the 67 

antenna locations) was used for backprojection. 

Next, we reconstructed the scene using both classical CS and the partial sparsity-based CS 

with 20% data volume one hundred times. For each trial, a different random measurement matrix 

was used to generate the reduced set of measurements, which were then weighted with a 

Hanning window, followed by classical CS and partial sparsity-based scene reconstructions. In 

this example, the dense part of the scene, extending in downrange from 0 to 1.8m and in 

crossrange from -0.7 to 0.7m, consists of 825 pixels, while the sparsity of s2 was chosen as 1. 

Figure 5(a) depicts the classical CS result, while the partial sparsity based reconstruction of the 

sparse part of the scene is shown in Fig. 5(b), both averaged over one hundred trials. The scene 

sparsity in CoSaMP was set to 826 for Fig. 5(a) and 1 for Fig. 5(b). The higher the intensity of a 

grid point in these images, the greater is the number of times that grid point was populated 

during the 100 reconstruction trials. We observe from Fig. 5(a) that the classical CS scheme was 

unable to detect the dihedral in any of the 100 trials because of the strong antenna mismatch and 

wall responses. On the other hand, the partial sparsity based scheme was able to detect and 

localize the target with a success rate of 100%. The full scene reconstruction using partial 

sparsity based technique, averaged over 100 trials, is provided in Fig. 5(c). Least squares was 

used to recover the dense part of the scene. 
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3.5. Conclusion 

In this Chapter, we applied the idea of partial sparsity to scene reconstruction associated with 

through-the-wall radar imaging of stationary targets. Partially sparse recovery deals with the case 

when it is known a priori that part of the scene being imaged is dense while the rest is sparse. For 

the underlying problem, the dense part of the scene corresponds to the building layout and the 

support of the corresponding part of the image is assumed to be known beforehand. This 

knowledge may be available either through building blueprints or from prior surveillance 

operations. Using experimental data collected in a laboratory environment, we demonstrated the 

effectiveness of the partially sparse reconstruction in detecting and locating stationary targets in 

through-the-wall scenes while achieving a sizable reduction in the data volume. 
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Figure 1. Illustration of the indicator function, which depicts that the indicator function will 
assume unit values only for the blue pixels when the antenna is at the position shown. 
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Figure 2. Efficient measurement strategy. 

73 



Center of Dihedral is 48in 
above the floor 

< 
3.03m E 

Figure 3. Scene Layout. 

35 

3 

25 

1     2 

1 5 

1 

05 

0 
0 

x(m) 

(a) 

_ 
H-5            3 5I- 

1-10 

-1-15 
25L ■ 

1-20 

I25   1   2  1 
N 

I"»          1.5 Si 

0.5 fc ■ 
■ .50              oLij IcssS 

n 
0 

x(m) 

(b) 

10 

15 

20 

: 
-30 

j-35 

■40 

I 4!; 

-50 

Figure 4. Backprojected images using Harming window and (a) Full dataset, and (b) 20% of 
the data volume. 

74 



-5 35 

-10 
3 

•15 

-20 
25 

-25 I     2 
N 

-30 1 5 

-35 
1 

-40 

-45 
05 

(a) (b) 

(c) 

Figure 5. Scene reconstructions using 20% of the data volume and Harming window, (a) 
Classical CS; (b) Partial Sparsity based reconstruction of the sparse part of the scene; 

(c) Partially sparse reconstruction of the whole scene. 
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