
REPORT DOCUMENTATION PAGE

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information
Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other
provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT
 NUMBER(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

12. DISTRIBUTION/AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:
a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
 ABSTRACT

18. NUMBER
 OF
 PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (Include area code)

New Reprint

Cooperative search by UAV teams: A model predictive approach
using dynamic graphs

James R. Riehl, Gaemus E. Collins, Joao P. Hespanha

University of California - Santa Barbara
The Regents of the University of California, Santa Barbara
3227 Cheadle Hall
Santa Barbara, CA 93106 -2050

U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

W911NF-09-D-0001

611104

55012-LS-ICB.465

Available for public release; distribution unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not construed as an
official Department of the Army position, policy or decision, unless so designated by other documentation.

See attached

None.

UU UU UU UU

Frank Doyle

805-893-8133

Enclosure 2

REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

Continuation for Block 13

ARO Report Number 55012.465-LS-ICB
Cooperative search by UAV teams: A model pre

Block 13: Supplementary Note
© 2011 . Published in IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, Vol. Ed. 0 47, (4) (2011), (, (4).
DoD Components reserve a royalty-free, nonexclusive and irrevocable right to reproduce, publish, or otherwise use the work for
Federal purposes, and to authroize others to do so (DODGARS §32.36). The views, opinions and/or findings contained in this
report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision,
unless so designated by other documentation.

Cooperative search by UAV teams: A model predictive approach using dynamic graphs

Report Title

ABSTRACT

See attached.

Cooperative Search by UAV

Teams: A Model Predictive

Approach using Dynamic

Graphs

JAMES R. RIEHL

AT&T Government Solutions

GAEMUS E. COLLINS

Toyon Research Corporation

JOÃO P. HESPANHA, Fellow, IEEE

University of California, Santa Barbara

A receding-horizon cooperative search algorithm is presented

that jointly optimizes routes and sensor orientations for a team of

autonomous agents searching for a mobile target in a closed and

bounded region. By sampling this region at locations with high

target probability at each time step, we reduce the continuous

search problem to a sequence of optimizations on a finite,

dynamically updated graph whose vertices represent waypoints

for the searchers and whose edges indicate potential connections

between the waypoints. Paths are computed on this graph using

a receding-horizon approach, in which the horizon is a fixed

number of graph vertices. To facilitate a fair comparison between

paths of varying length on nonuniform graphs, the optimization

criterion measures the probability of finding the target per unit

travel time. Using this algorithm, we show that the team discovers

the target in finite time with probability one. Simulations verify

that this algorithm makes effective use of agents and outperforms

previously proposed search algorithms. We have successfully

hardware tested this algorithm in two small unmanned aerial

vehicles (UAVs) with gimbaled video cameras.

Manuscript received July 22, 2009; revised April 6, 2010; released

for publication September 4, 2010.

IEEE Log No. T-AES/47/4/942893.

Refereeing of this contribution was handled by V. Krishnamurthy.

Partial support for this work comes from the Air Force Office of

Scientific Research (AFOSR), Contract #FA9550-06-C-0119 and

from the Institute for Collaborative Biotechnologies through grant

W911NF-09-D-0001 from the U. S. Army Research Office.

Authors’ addresses: J. R. Riehl, AT&T Government Solutions,

5383 Hollister Ave., Santa Barbara, CA 93110, E-mail:

(jrriehl@gmail.com); G. E. Collins, Toyon Research Corporation,

6800 Cortona Dr., Goleta, CA 93111; J. P. Hespanha, Center for

Control, Dynamical Systems, and Computation, Dept. of Electrical

and Computer Engineering, University of California, Santa Barbara,

CA 93106-9560.

0018-9251/11/$26.00 c° 2011 IEEE

I. INTRODUCTION

This paper addresses the problem in which a team

of agents is searching for a target in a bounded region

with the objective of finding the target in minimum

time. Each agent is equipped with a gimbaled

sensor that can be aimed at nearby areas within the

search region. As they move around and take sensor

measurements, the agents gather information on the

likely locations of the target. The objective of each

agent is to move itself and control its sensor in a

way that minimizes the expected time for the team

to discover the target. In this paper, we present an

algorithm to approximately solve this optimization

problem. The algorithm is cooperative in that the

agents share information and jointly optimize their

routes for the benefit of the team; it is graph-based

because the search routes are defined by a sequence

of vertices in a dynamically updated graph; and

we use a receding-horizon optimization over a

constantly changing target probability density function

(pdf) similar to model predictive control. Hence we

call the algorithm cooperative graph-based model

predictive search (CGBMPS). We also describe our

implementation of this algorithm on a test platform

consisting of 2 unmanned air vehicles (UAVs) with

gimbal-mounted cameras.

We begin with a brief review of search theory.

Modern search theory was pioneered by Koopman

[14], Stone [23], and others, and was initially

motivated by the desire to develop efficient search

methods to find enemy marine vessels. More recently,

agencies such as the U.S. Coast Guard have applied

search theory to search and rescue missions with

great success, measured in saved lives [6]. Other

search applications include exploration, mining, and

surveillance [9].

Early search theory focused on the allocation

of search attention to limited areas within a large

search region, which is appropriate to cases in which

searcher motion is unconstrained. If this is not the

case, we are presented with the more difficult problem

of finding optimal paths for the searchers. For regular

unimodal probability distributions for the target

position, lawnmower-like paths are optimal. However,

when these probabilities result from sensor fusion

with false alarms and non-Gaussian noise, one is

often faced with highly irregular distribution for

which the computation of optimal paths is difficult.

Mangel formulated the continuous search problem in

[16] as an optimal control problem on the searcher’s

velocity subject to a constraint in the form of a partial

differential equation, but this problem is only solvable

for very simple initial target probability distributions.

A more practical approach is to discretize the search

space and formulate the search problem on a graph.

Under such a formulation, the set of search paths is

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011 2637

restricted to piecewise linear paths connecting a finite

set of graph vertices. Although this discretization

simplifies the problem to some extent, it is still

computationally difficult. Trummel and Weisinger

showed in [26] that the single-agent search problem

on a graph is NP-hard even for a stationary target. In

[5], Eagle and Yee were able to solve somewhat larger

problems than what had previously been possible

by formulating the problem as a nonlinear integer

program and using a branch and bound algorithm to

solve it. However, the size of computationally feasible

problems was still severely limited. DasGupta et al.

presented an approximate solution for the continuous

stationary target search based on an aggregation of

the search space using a graph partition [4]. In [21],

we used a similar approach, but with a “fractal”

formulation, which allowed the partitioning process to

be implemented on multiple levels. All of the results

mentioned so far are for a single search agent.

The problem gains additional complexity when

we consider multiple agents that are cooperatively

searching for a target. There are several methods

for reducing this complexity. Some researchers have

achieved this through emergent behavior, which is

particularly effective when communication is severely

limited [22, 8]. Chandler and Pachter approached

this problem by splitting the agents (UAVs) into

subteams and applying hierarchical decomposition

to the tasks [2]. Another effective way to reduce

the computation involved in finding optimal search

paths to locate a moving target is to restrict the

optimization to a finite, receding horizon. Somewhat

surprisingly, even very short optimization horizons

can yield good results. Hespanha et al. showed in [10]

that in pursuit-evasion games played on a discrete

grid, one step Nash policies result in finite-time

evader capture with probability one. Using slightly

longer horizons, Polycarpou et al. introduced a

finite-horizon look-ahead approach in [19] similar to

model predictive control as part of a cooperative map

learning framework. Several other researchers have

considered similar look-ahead policies for coordinated

search based on Bayesian learning models [24, 7]. A

challenge faced by these receding-horizon algorithms

is that because they require the solution to an NP-hard

search problem at each time step, the prediction

horizon must be kept short to ensure computational

feasibility. This means that if there are regions

of high target probability separated by a distance

that is much greater than the search horizon, the

algorithm’s performance may degrade significantly.

One does not have to produce pathological examples

to generate such a situation, because even a uniform

initial distribution can evolve into a highly irregular

distribution as the searchers move through the region

and update their target pdf estimates based on sensor

measurements.

With the CGBMPS algorithm, we address this

issue by performing the receding-horizon optimization

on a dynamically changing graph whose nodes are

carefully placed at locations in the search region

having the highest target probability. The prediction

horizon is defined as a fixed number of graph

edges, but the edges of the graph are not uniform in

length. The algorithm chooses paths that maximize

the probability of finding the target per unit time.

This dynamic graph structure facilitates two key

strengths of our algorithm: 1) search agents only

perform detailed searches in regions with high target

probability, and 2) long paths can be efficiently

evaluated and fairly compared with short paths.

The remainder of the paper is organized as

follows. Section II presents the cooperative search

problem in a general discrete time setting. Section III

describes our approach to this problem in the form

of a receding-horizon search algorithm on a graph. In

Section IV, we present the main results on finite-time

target discovery. Section V provides the numerical

simulations of the algorithm and discusses the results.

Section VI describes a hardware implementation of

the algorithm along with the results of several field

tests using two UAVs with gimbal-mounted cameras

in a hardware-in-the-loop simulation environment. In

Section VII, we provide conclusions and some ideas

for future research.

II. SEARCH PROBLEM FORMULATION

This section formulates the search problem as

a discrete-time optimization in which a team of

autonomous agents controls their positions and sensor

orientations, with the goal of finding a target in

minimum time.

A. Agent Dynamics and Sensor Coverage

Suppose a team of M agents is searching for a

mobile target in a bounded planar region Rμ R2.
Each agent is equipped with a gimbaled sensor that

it can aim at a limited area of the search region. The

region that a sensor can view at a particular time

instant is called the field of view (FOV), and the

subset of R viewable by the sensor as it is swept

through its entire range of motion (while the agent

on which the sensor lies is stationary) is called the

sensor’s field of regard (FOR). Fig. 1 shows the

relationship between agent, FOV, and FOR.

Let Aμ R3 be the space in which the agents
move.1 We denote the position state of the search

team by p(k) := [p1(k),p2(k), : : : ,pM(k)], where pa(k) 2
A is agent a’s position at time k, and k 2 Z¸0 is a
discrete time variable belonging to the nonnegative

integers. We assume a simple kinematic model for

1The agents are allowed to move in three dimensions for generality

of the approach, and since the sensor properties may be affected by

altitude.

2638 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

Fig. 1. Diagram of sensor FOR and FOV for search agent

located at position p(k).

the agents, which can move in any direction with

unit velocity. For each agent, we define a sensor

task qa(k) 2R that specifies the starepoint where

agent a will point its sensor at time k, and we denote

the vector of sensor tasks for the team by q(k) :=
[q1(k),q2(k), : : : ,qM(k)]. The FOV associated with

a particular sensor task will generally depend not

only the starepoint qa(k), but also on the agent’s

position pa(k) and the characteristics of the sensor.

For simplicity of presentation, we assume that there

are no additional degrees of freedom associated with

the sensor, such as zooming, that could change the

FOV while the agent position and sensor task remain

fixed. Denoting the set of all possible sensor tasks by

Q, and the set of all subsets of R by P(R), we define
a function FOV :A£Q!P(R) that maps an agent’s
position and the point at which its sensor is aimed to

the subset of R in view of that sensor. Similarly, we

use the function FOR :A!P(R) to denote the subset
of the search region lying in the FOR of an agent.

B. Sensor Model and Target Detection

Suppose an agent at position p(k) aims its sensor

at the point q(k) at some instant in time k. A target

located at a point x 2 FOV(p(k),q(k)) will have some
probability of being correctly detected by the sensor.

We generally refer to this value as the probability

of detection, and denote it by PD(p(k),q(k),x(k)) 2
[½min,1], where ½min > 0 denotes a minimum value for

the probability of detection. Although it is common

to assume that PD is a constant, we allow for a more

a general case to account for changes in the size and

shape of the FOV for different vehicle altitudes and

sensor orientations, as well as possible line-of-sight

obstructions within the FOV. We refer the reader to

[15] for a more detailed discussion of these issues in

the context of target detection with a video sensor.

The probability of detecting a target that does not lie

in the sensor’s FOV is zero. It is notationally useful to

have an expression for the probability of detection for

a target located anywhere in the search region; hence

we define a general detection function

D(p(k),q(k),x(k))

:=

½
PD(p(k),q(k),x(k)), x(k) 2 FOV(p(k),q(k))
0, otherwise

:

(1)

In this paper, we assume that the sensors do not

produce false positives; i.e., the sensors do not detect

the presence of a target where none exists.

C. Target State Estimation

Let the random variable X(k) 2R denote the state

of the target. By the nature of the search problem,

the target state is unknown, and the objective of

the agents is to gather information on X(k) using

their sensors. In order to optimize how the agents

and sensors should move, we need a method for

estimating the probability distribution of X(k) as it
evolves over time. With the possible exception of

some very simple cases, optimal estimators such

as the Kalman filter do not apply to the search

problem because target motion may be nonlinear

and Gaussian assumptions on the probability

distribution do not hold. Even if one assumes a

Gaussian initial distribution, sensor measurement

updates will cause future probability distributions

to be non-Gaussian. Consequently, target estimation

is a challenging problem and a rich field of study

in itself. We refer the reader to [1] and [11] for a

deeper analysis of the problem and several good

examples of target estimators. For the purposes of

this paper, rather than choosing a specific approach,

we provide an algorithm that applies to a wide range

of estimation methods. In particular, we work with

the class of estimators that characterize the target

pdf with a discrete approximation to an underlying

continuous pdf. We choose this class of estimators,

which includes grid-based probabilistic maps as

well as particle filters, because of their ability to

accurately incorporate nonlinear target dynamics and

environmental constraints such as road networks, as

well as accurately model non-Gaussian distributions.

In the remainder of this section, we assume that

the pdf of the target state X(k) is approximated by a

function f̂k(¢) of the following form:

f̂k(x) =

nX
i=1

wi(k)±(xi(k)¡ x), 8k 2 Z¸0, 8x 2R

(2)

where each xi(k) 2R, each wi(k) 2 [0,1], and ±(¢)
denotes a function that integrates to one over the

search region:Z
R
±(xi(k)¡ x)dx= 1, 8i 2 f1, : : : ,ng: (3)

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2639

For example, ±(¢) could take the form of a Dirac delta

function, for use with a point-mass approximation to

a probability distribution, or it could take the form

of a two-dimensional rectangular impulse function,

for the case of grid-based approximation. The pdf

approximation in (2) is a type of probability mixture

model [17], which also has the property that the sum

of all weights wi(k) is equal to one:

nX
i=1

wi(k) = 1: (4)

We define the target probability mixture model

(TPMM) as the pair [x(k),w(k)], where x(k) = [x1(k),

x2(k), : : : ,xn(k)] and w(k) = [w1(k),w2(k), : : : ,wn(k)].

Where there is no ambiguity, we may also refer to the

TPMM as the target pdf in the remainder of the paper.

The initial state of the TPMM, [x(0),w(0)] is

based on any prior knowledge of target location,

e.g. an initial probability distribution, or a uniform

distribution if no prior target information is available.

Future TPMM states depend on sensor tasks q(k) and

the prior state. The dynamics of x(k) and w(k) will

depend on the estimator used, but can be expressed in

general form as

x(k+1) = fx(x(k),w(k),q(k))

w(k+1) = fw(x(k),w(k),q(k))
(5)

where the functions fx and fw must preserve the

requirements xi(k+1) 2R and wi(k+1) 2 [0,1]
for each i, as well as condition (4). In (5), we have

defined a general model that is compatible with

many of the typical target models used in the search

literature, including Markov models [7] and particle

filters [25]. In the Appendix, we provide example

dynamics of (5) for a simple particle filter and a

probabilistic map.

D. Search Reward

The objective in the search problem is to find the

target in minimum time. To achieve this, the agents

must be able to evaluate the probability of finding the

target for various sequences of control actions. In this

section, we define a criterion called search reward to

measure this probability.

1) Single Agent Target Detection: Recall from

Section IIB that when an agent at position p aims

its sensor at the point q, the probability that a target

located at the point x will be detected is given by

D(p,q,x), which was defined as

D(p,q,x) :=

½
PD(p,q,x), x 2 FOV(p,q)
0, otherwise

for a given instant in time (we omit the time variable

k for simplicity of notation). Since the location of

the target is unknown in the search problem, we now

define the probability of detection conditioned on our

best estimate of the target position, [x,w] as discussed

in Section IIC. First, we note that the portion of the

ith TPMM component that lies within the sensor’s

FOV can be expressed as follows:Z
R
±(xi¡ x)D(p,q,x)dx:

Let D be the event that the single agent discovers
the target. One can compute the probability of D
by applying the total probability theorem over the n

components of the TPMM:

P(D) =
nX
i=1

wi

Z
R
±(xi¡ x)D(p,q,x)dx: (6)

2) Multi-Agent Target Detection: Consider now

the case in which M agents are searching for the

same target, cooperatively. That is, they share a

common goal of finding the target in minimum time,

regardless of which agent is the first to discover it.

The agents cooperate by sharing a common target

pdf [x,w], which each agent updates as it gathers

new information from its sensors. In this section, we

are interested in calculating the team probability of

detection, denoted by P(Dteam), where Dteam is the
event that the target is discovered by at least one of

the agents at a given instant in time.

Suppose M agents at positions (p1, : : : ,pM) aim

their sensors at the points (q1, : : : ,qM). The FOVs

associated with each agent’s sensor task may or

may not overlap in the search region. The following

sequence of joint events enumerates all situations that

lead to Dteam, keeping in mind that once one agent
discovers the target, it is irrelevant to our problem

whether another agent simultaneously discovers the

same target:

D1 = the target is discovered by agent 1;
D2 = the target is not discovered by agent 1, but it

is discovered by agent 2;

D3 = the target is not discovered by agents 1 or 2,
but it is discovered by agent 3;
...

DM = the target is not discovered by agents 1
through M ¡1, but it is discovered by agent M.
Since these events are mutually exclusive, the event

that the target is detected by at least one agent is

simply the union of the events listed above:

Dteam =
M[
a=1

Da:

The key to evaluating the probability of each event Da
is to notice that, while the individual events are not

2640 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

independent,2 they become independent when each Da
is conditioned on a value of the target state. Using this

property, it is straightforward to show from (6) that

P(Da) =
nX
i=1

wi

Z
R

Ã
±(xi¡ x)D(pa,qa,x)

£
a¡1Y
®=1

(1¡D(p®,q®,x))
!
dx (7)

for each a 2 f1, : : : ,Mg. Since the sensor tasks fqag
happen simultaneously, the order in which we

consider the target detected by the various tasks

is irrelevant and the arbitrary ordering of agents

incurs no loss of generality. The team’s probability

of detection may be calculated by summing the

probabilities of detection for each agent:

P(Dteam) =
MX
a=1

P(Da j x,w,p,q)

=

MX
a=1

(
nX
i=1

wi

Z
R

Ã
±(xi¡ x)D(pa,qa,xi)

£
a¡1Y
®=1

(1¡D(p®,q®,xi))
!
dx

)
:

(8)

3) Cumulative Reward: Thus far we have

considered instantaneous probabilities of detection,

but the quantity we wish to minimize is the time until

the target is detected. This requires formulating a

search reward function r(k) in terms of a cumulative

probability of detection, as follows.

Let T¤ denote a hypothetical time at which the
target is found by any of the search agents. We define

the search reward as the probability that the target is

found at time k:

r(k) := P(T¤ = k):

We can express the search reward as

r(0) := 0, (9)

r(k) := P(T¤ = k) = P(T¤ = k j T¤ ¸ k)P(T¤ ¸ k):
(10)

Since the events of finding the target at different times

are mutually exclusive, we can express P(T¤ ¸ k), the
probability that the target has not been found before

time k, as

P(T¤ ¸ k) = 1¡
k¡1X
·=0

P(T¤ = ·) = 1¡
k¡1X
·=0

r(·):

2Individual events Da are not independent because knowledge about
one event occurring (or not occurring) gives us clues about the

value of the target state, which affects the outcome of the other

events.

We can now rewrite the search reward as

r(k) := P(T¤ = k j T¤ ¸ k)
Ã
1¡

k¡1X
·=0

r(·)

!
: (11)

The term P(T¤ = k j T¤ ¸ k) is the conditional
probability that the target will be found at time k

given that it was not found previously. Since [x,w]

is conditioned on the target not yet being found,

P(T¤ = k j T¤ ¸ k) = P(Dteam(k)): (12)

Combining (8), (11), and (12) results in the following

expression for the search reward:

r(k) =

MX
a=1

(
nX
i=1

wi(k)

Z
R

Ã
±(xi¡ x)D(pa(k),qa(k),xi(k))

£
a¡1Y
®=1

(1¡D(p®(k),q®(k),xi(k)))
!
dx

)

£
Ã
1¡

k¡1X
·=0

r(·)

!
: (13)

It is also useful to have an expression for the reward

collected by each individual agent. Therefore we

define ra(k) as the search reward for agent a at time

k. We can then rewrite (13) as

r(k) =

MX
a=1

ra(k),

where

ra(k) =

nX
i=1

wi(k)

Z
R

Ã
±(xi¡ x)D(pa(k),qa(k),xi(k))

£
a¡1Y
®=1

(1¡D(p®(k),q®(k),xi(k)))
!
dx

£
Ã
1¡

k¡1X
·=0

r(·)

!
: (14)

E. Problem Statement

The goal of the search problem is to optimally

control the agents and their sensors to locate the

target in minimum time. We define a search policy

to be a function ¹ that maps the current team state

p(k) and the TPMM [x(k),w(k)] to the next set of

controls to be executed by the team. That is, each

agent’s next position and sensor task is given by

[p(k+1),q(k+1)] = ¹(p(k),x(k),w(k)). The objective

in the search problem is to compute the search policy

that results in the fastest possible discovery of the

target by the team.

T¤ denotes the time at which the target is
discovered by any agent. This time is unknown at the

beginning of the search, but we can write its expected

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2641

value as

E¹[T
¤] =

1X
k=0

kr(k):

We can now express the objective of the search

problem as

min
¹
E¹[T

¤] (15)

subject to

pa(k+1) 2 Pa(k) (16)

qa(k+1) 2Qa(pa(k+1)) (17)

where the set Pa(k)½A denotes the set of all
reachable points and Qa(pa(k+1))½R the set of all

feasible sensor tasks for agent a at position pa(k+1).

These constraints are imposed by physical limitations

of the agents and their gimbaled sensors.

For agents with such sensor and motion

constraints, the problem posed in (15) is a difficult

combinatorial optimization problem. Even for the case

of a single agent, stationary target, and fixed sensor,

this search problem is known to be NP-hard [26]. The

mobile target and movable sensor introduce additional

complexity to the problem.

III. COOPERATIVE GRAPH-BASED MODEL
PREDICTIVE SEARCH ALGORITHM

In this section, we present a receding-horizon

graph-based search algorithm that approximately

solves the search problem (15)—(17). This algorithm

plans paths and sensor tasks for a team of cooperating

search agents based on predicted future target states.

Agent paths are formulated on a Euclidian graph as

a sequence of graph edges. The prediction horizon

is set to a fixed number of graph edges, rather than

a fixed time, so that paths of varying duration may

be considered. This allows agents to travel between

regions of high reward that are separated by large

areas with low reward using just one path step.

This approach is designed to reduce computation

by optimizing over a smaller number of graph edges

and therefore on a much smaller state space, while

also using careful vertex placement to maintain route

flexibility in regions of high reward. Although our

algorithm does not necessarily result in a policy that

minimizes E[T¤], the resulting policy does lead to
a finite value for this expected time and we provide

an upper bound for this quantity in Section IV.

Furthermore, Section V provides simulations showing

that the CGBMPS algorithm outperforms previously

proposed search algorithms.

A. Graph Search Formulation

Let G := (V,E) be a Euclidian graph for

path-planning with vertex set V and edge set E. The

vertices of the graph will serve as waypoints for

the agents, which are connected by graph edges to

form paths. When there is no ambiguity, we use the

notation v to denote both the vertex in the set V and

its location in A, the space in which the agents move.
Similarly, e= (v,v0) will denote both the edge in the
set E and the line segment connecting its endpoint

vertices v and v0.
A path in G is a sequence of vertices P :=

(v1,v2, : : : ,v`) such that (vi,vi+1) 2 E. Each path
segment (vi,vi+1) will be considered as one step in

the prediction horizon. The path cost in G is the time

duration of the path and is defined as

C(P) :=

`¡1X
i=1

c(vi,vi+1) (18)

where c(vi,vi+1) is an edge-cost function c : E! [0,1)
that represents the transit time between vertices,

assuming the agents move with unit velocity.3

Starting from an agent’s current location, the

algorithm selects the agent’s future route as an `-step

path in G that maximizes a path reward function.

In an attempt to minimize the expected time E[T¤]
to find the target, we define a path reward function

corresponding to the team’s probability of finding

the target per unit time [see criterion (20) below].

This optimization criterion enables the algorithm to

compare paths of various lengths.

As each agent travels along its path P, it executes

a sequence of sensor tasks, which we call a sensor

schedule and denote by S(P,k) := (q(k),q(k+1),

: : : ,q(k+TP)), where each q(¢) is a scheduled sensor
task belonging to Q(k), the set of all feasible sensor
tasks for the agent at time k, and TP := bC(P)c is the
total number of sensor tasks that may be executed

along the path P. In this discrete time setting, we

assume that the duration of each sensor task is

one unit of time. Fig. 2 shows a diagram of an

agent executing a sensor schedule along its path

P. The sensor tasks q(k) may be chosen arbitrarily

or computed by an optimization. This allows for

several possible methods of algorithm implementation,

including

1) Fixed Sensor Tasking: Construct S(P,k)

assuming a fixed pattern of sensor motion, such as

slewing side to side within the FOR.

2) Joint Routing and Sensor Optimization:

Construct S(P,k) by optimizing over all possible

sensor schedules along the path P.

Fixed sensor tasking requires much less computation,

but when the speed of the agents is too fast for the

sensors to view everything inside the agents’ FORs,

or urban scenarios with line-of-sight blockages,

method 2 may yield significant benefit over method 1.

3UAVs in the presence of wind may move with unit air velocity,

but have different ground velocities. This can be easily incorporated

into the algorithm so that predicted paths use UAV ground velocity

(accounting for wind). In this case upwind paths have higher costs.

2642 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

Fig. 2. Example sensor schedule for agent traveling along

path P.

Whichever method is used, the sensor tasking

algorithm must contain a model of the sensor gimbal

so that it will only generate candidate sensor tasks

within the gimbal range limits.

The computation of the path reward depends on

which method of sensor tasking is used. Suppose

that the search agents f1, : : : ,a¡1g have planned
paths fPiga¡1i=1 and corresponding sensor schedules

fS(Pi,k)ga¡1i=1 . For fixed sensor tasking, we define the

path reward for agent a traveling along candidate path

Pa as

Ra(P1, : : : ,Pa) :=

k+TPaX
·=k

ra(·) (19)

where ra(·) is computed using (14) with a sensor

schedule S(Pa,k) that is computed by some fixed

algorithm. Note that any paths fPigMi=a+1 for the agents
fa+1, : : : ,Mg do not affect (19). The path reward
for joint routing and sensor optimization includes an

optimization over all sensor schedules, and can be

expressed as follows:

Ra(P1, : : : ,Pa) := max
S(Pa,k)

k+TPaX
·=k

ra(·): (20)

To provide a fair measure of reward over paths of

various lengths, we define the normalized path reward

R̄a for the path Pa as the path reward divided by the

path cost:

R̄a(P1, : : : ,Pa) :=
Ra(P1, : : : ,Pa)

C(Pa)
: (21)

Since the time-step is defined as the duration of one

sensor task, the reweighting in (21) is equivalent to

dividing by the number of sensor tasks in the plan.

One can think of (21) as a reward-per-sensor-task

function, and optimizing this function should yield

collections of tasks that give the highest reward per

task.

As mentioned previously, each agent computes a

new path whenever it reaches a waypoint. Since the

graph edges have nonuniform length, the agents will

generally arrive at waypoints, and hence compute

paths, at different times. At each time k, we therefore

define two groups of agents: the set Aplan(k) of agents

that have arrived at waypoints and need to plan new

paths, and the set Aen(k) of the remaining agents that

are en route to waypoints. In the CGBMPS algorithm,

whenever the set Aplan(k) is nonempty, the agents in

that set compute new paths assuming that the agents

in the set Aen(k) will continue on their current paths.

With this formulation, we can express each step in the

receding-horizon optimization as

fP¤a : a 2 Aplan(k)g := argmax
fPa:a2Aplan(k)g

MX
i=1

R̄i(P1, : : : ,Pi):

(22)
Often the set Aplan(k) consists of a single agent,

reducing (22) to an optimization for the path of

that agent. If this is not the case, a computationally

practical approximation to (22) consists of a

sequential optimization by the planning agents, which

we can express as

P¤a := argmax
Pa

R̄a(P
¤
1 , : : : ,P

¤
a¡1,Pa) 8a 2 Aplan(k)

(23)

where each P¤i is either the current path of an en route
agent i 2 Aen(k) that was computed at a previous time
or a path computed using (23) by an agent earlier in

the sequence Aplan(k). For simplicity of notation and

without loss of generality, we assume in (23) that the

agents f1, : : : ,Mg are reindexed (if necessary) so that
the agents in Aen(k) have lower indices than those in

Aplan(k).

Notice that since each agent evaluates reward over

a different time period TPa , some agents may plan

paths further into the future than others. This does

not pose a problem for the algorithm, since (21) is

evaluated by accounting for only the reward that prior

agents have planned to collect up until their respective

time horizons. However, there is the potential for an

agent A to “steal” reward from another agent B if

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2643

Fig. 3. Step-by-step example of graph construction process. Black points represent states of particle filter approximation to target pdf.

(a) Place hexagonal lattice over search region. (b) Apply threshold to edges. (c) Connect using Delaunay triangulation.

(d) Combine graphs b and c for final graph.

agent A’s path covers a longer time period and cuts

in front of where agent B would be expected to go

had it planned a longer path. In this case, at its next

waypoint, agent B must simply plan a course that

takes agent A’s impinging path into account.

B. Dynamic Graph Generation

Although the CGBMPS algorithm will work with

any graph, the structure of the graph has a significant

impact on computation, and the vertex and edge

placements will affect the algorithm’s performance.

Also, since the target probability distribution is

constantly changing due to sensor measurements

and predicted target motion, the graph should be

periodically updated to keep the agents searching

only high-reward areas. This graph update should

occur at each time k at which the set of agents

Aplan(k) is nonempty. We now present a dynamic

graph construction process that guarantees desirable

performance properties of the CGBMPS algorithm.

Fig. 3 shows an example of this process.

In the following procedure, we use the function

W(x,w,v) to denote the sum of the weights of all

components of the TPMM lying inside the FOR of

a point v 2 A, that is

W(x,w,v) :=

nX
i=1

wi

Z
R
±(xi¡ x) ¢ inFOR(v,x)dx

where inFOR(v,x) 2 f0,1g indicates whether or not
the point x is inside the FOR of the point v, and is

expressed by

inFOR(v,x) :=

½
1, x 2 FOR(v)
0, otherwise

: (24)

Graph Construction Process:

1) Construct a uniform lattice graph G := (V,E)

over the search region R having the property that for

every point r in R, there exists a vertex v 2 V such
that the point r falls within the FOR of v. This can

always be achieved by choosing a sufficiently small

vertex spacing in the lattice [cf. Fig. 3(a)].

2644 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

2) Choose a reward threshold ¿ > 0 and let G¿k :=

(V¿k ,E
¿
k) be the subgraph of G induced by the vertex

set V¿k := fv 2 V :W(x(k),w(k),v)¸ ¿g[V1, the set
of vertices for which the reward is no less than ¿

combined with the set V1 := fv11, : : : ,v21g of vertices
that serve as initial waypoints for the agents. The edge

set E¿k consists of all edges in E that connect pairs of

vertices that both belong to the set V¿k [cf. Fig. 3(b)].

3) Let GDelk := (V¿k ,E
Del
k) be the graph generated

by a Delaunay triangulation of V¿k [18]. Next, let

GDel<dk := (V¿k ,E
Del<d
k) be the subgraph of GDelk

obtained by keeping only the edges connecting

vertices of degree less than d, where d is the degree of

the lattice graph G. That is, EDel<dk := f(v,v0) 2 EDelk :

deg(v)< d and deg(v0)< dg [cf. Fig. 3(c)].
4) The final graph Gk := (Vk,Ek) is the

combination of graphs G¿k and G
Del<d
k , with vertex set

Vk := V
¿
k and edge set Ek := E

¿
k [EDel<dk [cf. Fig. 3(d)].

In step 1, any type of lattice graph will suffice, but

we have found that a degree-3 hexagonal lattice is a

particularly good choice. The threshold ¿ in step 2

should be carefully chosen so that it includes only

high-reward edges but does not exclude so many

edges that the number of feasible paths is severely

restricted. The purpose of step 3 is to ensure that the

graph Gk is connected and provides paths between

unconnected areas of high reward. We include only

the Delaunay edges connecting vertices of degree less

than 3 because these are the edges between boundary

vertices of the disconnected components in the graph.

The remaining Delaunay edges are unnecessary. Step

4 combines the graphs of steps 2 and 3 to produce the

final graph.

An additional consideration in the graph

construction is that to ensure achievable flight paths,

the initial graph vertex spacing must be chosen coarse

enough that an agent can move from any vertex to any

other vertex without looping. This is easy to compute

from the minimum turn radius of the agents, and in

our experience with UAVs, results in a vertex spacing

that still satisfies the requirement of step 1.

C. Non-Zero-Reward Paths

In this section, we show that for graphs

constructed by the above process, there always exist

search paths starting from any vertex on which the

agents can collect positive reward, provided the

following assumption holds.

Assumption 1 There exists a constant ° > 0 such

that for every point v 2A and for every m 2N, the
evolution of [x(k),w(k)] governed by (5) satisfies the

property

W(x(k+m),w(k+m),v)¸ °mW(x(k),w(k),v):
This assumption is a requirement on the dynamics

of [x(k),w(k)]; it essentially states that the total target

weight within the FOR of a vertex cannot drop below

a threshold value in a finite number of time steps.

In a grid-based probabilistic map, for example, this

assumption is satisfied provided that there is at least

one non-zero entry in the columns of the transition

probability matrix for the cells inside the FOR of v.

The assumption will hold in a particle filter provided

a large enough number of particles and also enough

randomization in the model to make sure that while

many particles may leave a region, others may enter

so that the total weight does not decay to zero. Under

this assumption on the TPMM, the following lemma

provides a lower bound on the conditional probability

that the target will be found at some time in the

interval [k+1,k+T] given that it was not found at

or before time k. This result will be instrumental in

proving that the CGBMPS algorithm is able to find

the target with probability one.

LEMMA 1 There exists a constant ² > 0 and a time

T > 0 such that for every graph Gk generated by the

graph construction process and every collection of

`-step paths fP1, : : : ,PMg in Gk, there exists a sequence
of sensor tasks fq(k+ j)gT¡1j=0 for which

k+T¡1X
·=k

P(Dteam(·) j x(·),w(·),p(·),q(·))¸ ²:

PROOF Let v1 designate the first vertex in path P1,

and choose a vertex v2 for which there exists an edge

e 2 Ek connecting v1 and v2. This is always possible
because the Delaunay triangulation guarantees that Gk
is connected. The graph construction process ensures

that W(x(k),w(k),v2)¸ ¿ , where ¿ is the reward
threshold selected in step 2 of the graph construction

process. Let Rmax be the maximum Euclidean distance

between any two vertices in Gk. Using the fact

that agents travel with unit velocity, denote the

maximum number of time steps between two vertices

by T := bRmaxc. By Assumption 1, we have that
W(x(k+T),w(k+T),v2)¸ °TW(x(k),w(k),v2), and
thus W(x(k),w(k),v2)¸ °T¿ . We now choose a sensor
schedule S(Pa,k) that includes the sensor task

q(k+m) := argmax
q2Qe,p2e

nX
i=1

wi(k+m)

£
Z
R
±(xi(k+m)¡ x)D(p,q,x))dx

for some m· T, where Qe is the set of all feasible
sensor tasks for an agent along e. Recall from

Section IIB that the minimum value for the probability

of detection is denoted by ½min. The minimum amount

of target weight contained within the sensor task

q(k+m) is achieved for a uniform target weight

distribution, and is given by °T¿½min(AFOV=AFOR),

where AFOV is the minimum area of the FOV

and AFOR is the maximum area of the FOR for

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2645

TABLE I

Cooperative Graph-Based Model Predictive Search Algorithm

ALGORITHM 1 CGBMPS

1: k := 0

2: Construct G0 = (V0,E0) as in Section IIIB

3: For each agent a 2 f1, : : : ,Mg, assign an arbitrary initial path Pa = (va1,va2) on G0 and a corresponding sensor schedule S(Pa,0)
4: while target has not been discovered do

5: Each agent a points its sensor at qa(k) and takes measurements

6: Compute the set of agents arriving at waypoints Aplan(k)

7: if the set Aplan(k) is nonempty then

8: Update Gk as in Section IIIB

9: for each agent a in the set Aplan(k) do

10: Compute the path P¤a starting from va
2
and sensor schedule S(P¤a ,k) using (22)

11: end for

12: end if

13: Agents move toward next waypoint in path

14: Evaluate x(k+1), w(k+1), and r(k+1) using (5) and (13)

15: k := k+1

16: end while

17: T¤ := k¡ 1

any agent/sensor configuration. We conclude

from (14) and (20) that
PM
a=1Ra(P1, : : : ,Pa)¸

°T¿½min(AFOV=AFOR)(1¡
Pk
·=0 r(·)). Therefore,

Lemma 1 holds with

²= °T¿½min(AFOV=AFOR)

Ã
1¡

kX
·=0

r(·)

!
:

D. CGBMPS Algorithm

The CGBMPS algorithm is described in Table I. It

begins with the initialization of the graph and each

agent’s path and sensor schedule in steps 2 and 3.

At each subsequent time step k, whenever the set of

agents Aplan(k) is nonempty, the graph is updated,

and the agents in Aplan(k) select new paths and sensor

schedules according to (22). This process repeats until

the target is found at time T¤, which is proven to be
finite with probability one in Theorem 1.

Whenever a path is computed, it starts from the

waypoint after the one that was reached. There are

two key reasons for implementing the algorithm in

this way. First, this allows time for computation of

the next path, avoiding situations where an agent

has reached a waypoint and does not have any

destination until it completes a computation. Second,

it is advantageous to have one waypoint planned in

advance so that sharp turns in the upcoming path may

be smoothed.

E. Computational Complexity

The CGBMPS algorithm provides a

computationally efficient method for approximating

the original search problem posed in (15) by using a

graph that is designed to allow agents to optimize over

a set containing only the most rewarding paths. Let

Ke denote the maximum time required to compute

the reward collected along an edge e in the graph.

Performing an exhaustive search over this set of

paths results in a bound on the computation time that

depends on the maximum degree of the graph d, the

length of the prediction horizon `, and the number

of agents M, by the expression M!Ke`d
`. Note that

this is a worst case computation bound because in

a nonuniform graph, it is quite rare that all agents

will arrive at waypoints simultaneously and hence

compute new paths all at the same time. The factor

M! corresponds to the optimization given in (22),

in which an exhaustive search is performed over

every possible order of agents. If one opts to use the

computationally simpler, sequential approximation

(23) instead, the expression becomes MKe`d
`.

Additionally, in the computation of the optimal path

P¤a , we can take advantage of the property that the
reward for the paths (v1,v2,v3) and (v1,v2,v4) is the

same for the subpath between vertices v1 and v2. The

fact that one only needs to compute the reward for

the segment (v1,v2) once, further reduces the total

computation required for this algorithm. This results

in the slightly improved bound of MKe
P`
i=1d

i to

compute paths for the team of agents. It is clearly

computationally advantageous to keep the degree

d of the graph low and the prediction horizon `

short. One can also reduce the total number paths

to evaluate by doing some reasonable pruning on

the set of candidate paths Pa, such as eliminating
backtracking and paths with sharp turns that the

agents cannot physically follow. Here, we have shown

computation results for an exhaustive search over

the prediction horizon, but it should be noted that

algorithms such as branch and bound [5] may further

reduce complexity.

2646 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

F. Searching for Multiple Targets

Although we presented the CGBMPS algorithm

in the context of a search for a single target, the

algorithm is easily adapted to work for multiple

targets. The main difference in implementation is that

instead of using a TPMM to model the pdf of one

target, one should model the combined pdfs of each

target or a target occupancy map as described in [11].

Simulations in Section VB show that the CGBMPS

algorithm performs well on multiple-target searches.

We leave for future work the problem of determining

multiple-target discovery results analogous to the

single-target results of Section IV.

IV. PERSISTENT SEARCH

In this section we show that the CGBMPS

algorithm results in finite-time target discovery with

probability one. We use the notion of a persistent

search policy, which is inspired by the persistent

pursuit policies discussed in [10].

A search policy ¹, as defined in Section IIE is said

to be persistent if there exists some ² > 0 such that

P(Dteam(k) j x(k),w(k),p(k),q(k))> ² 8k 2 Z¸0

is satisfied for the positions p(k) and sensor tasks q(k)

that are generated by the search policy ¹. In other

words, the probability of locating the target at time

k, given that it was not found previously, is always

greater than ². While it may be difficult for a search

policy to satisfy this property, we can guarantee the

following slightly weaker property when the agents

are guaranteed to collect positive reward over some

finite time horizon. A search policy is said to be

persistent on the average if there is some ² > 0 and

some T 2 N such that
T¡1X
i=0

P(Dteam(k+ i) j x(k+ i),w(k+ i),p(k+ i),q(k+ i))> ²

8k 2Z¸0 (25)

is satisfied for the positions p(k) and sensor tasks q(k)

that are generated by the search policy ¹. The time T

is called the period of persistence.

Let F¹(k) := P(T
¤ · k j ¹) denote the distribution

function of T¤ given the search policy ¹. We can
alternatively write this as

F¹(k) =

kX
·=1

r(·) = 1¡
kY
·=1

(1¡ r(·)):

The following lemma is proved in [10].

LEMMA 2 For a persistent on the average search

policy ¹ with period T, P(T¤ <1 j ¹) = 1, F¹(k)¸
1¡ (1¡ ²)bk=Tc 8k 2 Z¸0, and E¹[T¤]· T²¡1, with ²
given in (25).

We now state the main result on finite-time target

discovery, which proves that the CGBMPS algorithm

terminates with probability one.

THEOREM 1 The CGBMPS algorithm results in target

discovery in finite time with probability one and

E[T¤]· T

°T¿½min(AFOV=AFOR)

where

° is defined by Assumption 1,

T defined in Lemma 1, is the period of persistence,

¿ is the threshold selected in step 2 of the graph

construction process, and

½min is the lower bound on the probability of

detection.

PROOF From Lemma 1, we conclude that the search

policy generated by the CGBMPS algorithm, using

optimal sensor schedules, satisfies

k+T¡1X
·=k

P(Dteam(·) j x(·),w(·),p(·),q(·))

¸ °T¿½min(AFOV=AFOR)
Ã
1¡

kX
·=0

r(·)

!
:

At time k = 0 we have

T¡1X
·=0

P(Dteam(·) j x(·),w(·),p(·),q(·))

¸ °T¿½min(AFOV=AFOR):
From the definition given in (25), we conclude that

the search policy is persistent on the average, with

period T and

²= °T¿½min(AFOV=AFOR):

Theorem 1 then follows directly from Lemma 2 with ²

as defined above.

V. SIMULATIONS

The CGBMPS algorithm was coded in MATLAB

and simulations were performed to evaluate the

performance and scalability of the search. The

algorithm was then coded in C++ to test against

Toyon’s SLAMEM® simulation, a high-fidelity

entity-level simulation environment.

A. MATLAB Simulations

The CGBMPS algorithm was initially tested in

MATLAB. A MATLAB prototype algorithm was

created to simulate a cooperative search scenario

with four agents searching for a target in a 5 km

by 5 km square region. The FOR of each agent was

selected to be a circle 1 km in diameter and the FOV

a circle 200 m in diameter. All agents start from

the same initial position, move at a constant speed

of 10 m/s and took measurements every 5 s. The

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2647

Fig. 4. Snapshots of MATLAB search simulation using particle filter (a) and probabilistic map (b). Agents are represented by solid

circles, and diamonds are their waypoints.

initial target pdf consisted of a weighted sum of

three randomly placed Gaussian distributions with

random covariances, and the TPMM was constructed

using a particle filter as described in Appendix A.

For path planning, we used a degree-3 hexagonal

lattice graph, which is dynamically updated using the

process described in Section III, and the agents used a

three-step prediction horizon. Fig. 4 shows snapshots

of two simulations using different representations of

the target pdf. Notice how the graph construction

allows the agents to plan paths across low-interest

regions to regions of high target likelihood that would

not be reachable in three steps on a uniform lattice

graph.

The first set of Monte Carlo tests is designed

to test the effectiveness of the cooperation between

agents. Table II shows the average discovery times

of the CGBMPS algorithm for teams of one to four

cooperating agents. Notice that two agents find the

target in just over half the time it takes one agent,

and three agents find the target in about one third

of the time. In this particular scenario, the addition

of a fourth agent is nearing the point of diminishing

returns, but in general, the algorithm makes efficient

use of agents. This efficiency can be attributed to the

sharing of target pdf information between agents.

Table III compares the performance of the

CGBMPS algorithm with previously proposed search

algorithms, each using three agents. The greedy search

algorithm in line 1 chooses one-step paths on a static

square lattice graph that maximize the probability of

finding the target. This is equivalent to giving each

agent the choice of moving straight, left, or right

TABLE II

Average Time to Target Discovery for Teams of 1—4 Agents,

Averaged Over 500 Runs

Number of Agents (M) Average Time to Discovery (s)

1 1401

2 713

3 486

4 440

TABLE III

Algorithm Performance Comparison, Results Averaged Over 500

Runs

Search Method (with 4 agents) Average Time to Discovery (s)

Greedy search 1092

3-step fixed RH Search 846

CGBMPS (fixed sensor) 476

CGBMPS (joint sensor optimization) 432

at fixed time intervals and is similar to the greedy

pursuit policies proposed in [10]. The results of line

2 were generated using a three-step receding-horizon

algorithm on a static square lattice graph, which is

similar to algorithms described in [19], [24], and

[7]. Lines 3 and 4, when compared with lines 1

and 2, show that the CGBMPS algorithm performs

significantly better than the other algorithms that use

a fixed time horizon over static graphs with edges of

uniform length. The key advantage of the CGBMPS

algorithm is its ability to evaluate longer high-reward

paths than the fixed-step methods, but with roughly

the same amount of computation. Furthermore, the

method of joint routing and sensor tasking resulted in

2648 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

Fig. 5. Snapshot of CGBMPS operating in SLAMEM simulation environment.

almost 10 percent faster target discovery than fixed

sensor tasking.

B. SLAMEM Simulations

We also implemented the CGBMPS algorithm

in Toyon’s high-fidelity SLAMEM simulation

environment. SLAMEM contains detailed models

for ground targets, surveillance platforms, sensors,

attack aircraft, UAVs, data exploitation, multi-source

fusion, sensor retasking, and attack nomination.

SLAMEM models road networks, foliage cover, wind,

buildings, and terrain (using the terrain elevation

data (DTED)). Testing in SLAMEM exercised

the CGBMPS algorithm against detailed, realistic

scenarios with multiple UAVs and targets, and helped

us prepare the algorithm for flight testing.

SLAMEM has been used as the center for our

system development on the hardware implementation

of the CGBMPS algorithm. Our control and data

fusion algorithms work with SLAMEM sensor and

communications models to emulate a complete UAV

autonomous control system. Video sensor exploitation

models produce measurements to determine the

presence of objects in a region, and communications

models provide realistic data link constraints on

the network to determine the feasibility of our

decentralized processing and control architecture.

SLAMEM asset models accurately represent the

Unicorn UAV platforms and other standard military

platforms in the simulation and execute commands

from our control algorithms. GVSTM supplies realistic

targets of interest to the simulation.

In the SLAMEM simulations, one or more UAVs

were autonomously controlled by the CGBMPS

algorithm to locate one or more targets in a specified

area of interest (AOI). The parameters for the

simulations match closely with the parameters of the

hardware tests (cf. Section VI). The search region

(AOI) spanned 10:5 km2 of gently sloping terrain.

The UAV airspeed was set to approximately 50 km/hr,

and the flight altitude was fixed to 100 m—120 m

above ground level. At this altitude, the sensor FOV

footprint on the ground covers approximately 0:1 km2,

meaning that the UAVs see only 1% of the search

region with each camera view. A screenshot of the

CGBMPS SLAMEM simulation appears in Fig. 5.

Simulation results measured T¤, the amount of
time it took the UAV or UAV team to detect the

target(s). In each trial, T¤ results were averaged over
100 Monte Carlo trials. Several variations of UAV

teams, ground targets, and search algorithms were

simulated. In these tests, because each Monte Carlo

run required a large computation effort, we only

compared CGBMPS with algorithms that we knew

would perform very well for the specific model used

for the target motion.

1) Random Search: As a UAV approaches a

waypoint, the random search algorithm selects the

next UAV waypoint at random within the AOI. This

algorithm very often tends to send the UAV through

the middle of the AOI. By matching the random target

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2649

Fig. 6. UAV path for Raster search.

TABLE IV

Simulation Results for Search Algorithms Running in SLAMEM

T¤ = Time to Target

Search Algorithm Detection in Minutes

Random 21.1

Raster scan 25.7

CGBMPS, Dynamic graph, 1-step 24.7

CGBMPS, Dynamic graph, 3-step 18.7

CGBMPS, Dynamic graph, 5-step 18.7

Note: Numeric entries show T¤ in minutes, where T¤ = the

time required to detect a single target, averaged over 100 Monte

Carlo trials.

motion with the motion of the random searchers,

we obtained an algorithm that is quite effective. In

practice such matching could not be done for real

targets.

2) Raster Search: The Raster search algorithm

scans the entire AOI side-to-side, bottom-to-top, as in

Fig. 6. This is actually the optimal search algorithm

to discover a stationary target when the initial target

probability distribution is uniform over the search

region.

3) CGBMPS: The algorithm described in this

paper. This algorithm was tested with one, three, and

five-step prediction horizons.

These results appear in Table IV. It is important

to note the search results shown in Tables IV and

V depend on the target motion models. Targets

moving randomly along the road network tend to

spend more time in the middle of the AOI, making

them more easily detected by the random search. A

different target motion model that kept targets more

stationary, or moving near the perimeter of the AOI,

would give more advantage to the Raster search.

Our results are very encouraging because they show

that the CGBMPS algorithm compares favorably

with algorithms that explore specific motion models

for the target. In contrast, the CGBMPS algorithm

will perform well with nearly any target motion

model because of its versatile target state estimation

framework (Section IIC).

Table V shows the results for multiple UAVs and

multiple targets. One can observe that each subsequent

target takes longer to find, and that the team of three

agents cooperates effectively. While, in this case, three

TABLE V

This Table Shows SLAMEM Simulation Results for the CGBMPS

Algorithm with Varying Numbers of UAVs and Targets, Averaged

Over 100 Monte Carlo Trials

Time to (1st, 2nd, 3rd) Target

UAVs # Targets Detection in Minutes

3 1 7.5

1 3 7.0, 26.2, 55.2

3 3 1.8, 5.7, 14.1

UAVs found the targets on average more than three

times faster than a single UAV, this can be attributed

to advantageous starting positions for the second and

third UAVs.

VI. HARDWARE IMPLEMENTATION

The CGBMPS algorithm has been successfully

field-tested using both Unicorn [27] and Raven

[20] UAV platforms. This section describes the

hardware-software system setup and implementation

used for testing with Unicorns, Toyon’s UAV test

platform. We also present some results from the field

tests.

To facilitate hardware-in-the-loop (HIL) testing

of the search algorithm, the SLAMEM simulation

environment was modified to allow integration of real

UAVs and ground vehicles with other simulated assets

and vehicles, all as part of one complex scenario [3].

SLAMEM communicates with Virtual CockpitTM [28],

the UAV ground control software, to receive position

updates for the real UAVs and then render them in

simulation. SLAMEM can also receive GPS updates

from a real target and render this target in simulation.

In this way, SLAMEM can act as the HIL display

and control interface for the real UAVs in the air and

real vehicles on the ground. Meanwhile, SLAMEM

can also simulate additional assets and targets. The

real entities and simulated entities may all interact

within SLAMEM, facilitating mixed HIL+simulation

scenarios, as shown in Fig. 7.

A. UAV Platform

Our primary test platform is the Unicorn UAV

(Fig. 8). This platform is based on the Unicorn

2650 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

Fig. 7. Annotated laptop screen capture showing SLAMEM and Virtual Cockpit running on our ground control station. Virtual Cockpit

(on left) displays real-time UAV statistics and prior flight paths. SLAMEM (on right) shows real and simulated UAVs, real and

simulated targets, roads, and other control parameters.

Fig. 8. Unicorn wing outfitted with Procerus® KestrelTM autopilot system and gimbaled video camera.

expanded polypropylene (EPP) foam wing [27]. This

is a radio controlled, 6000 EPP foam wing powered

by four lithium-polymer battery packs driving an

electric motor attached to a propeller. This power-train

propels the UAV at about 50 km/hr (airspeed). On

a full charge the batteries will provide roughly 1 hr

of flight time. Our Unicorn UAVs also house the

KestralTM Autopilot control board, a gimbaled video

camera, two radio modems, batteries, and wiring

to connect the various components. The UAV uses

separate channels for the telemetry data and the video

stream, thus necessitating two radio modems.

B. Gimbaled Video Camera

A small 480 line, 5 V, CCD, NTSC video camera

is attached to a two degree of freedom gimbal,

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2651

Fig. 9. Miniature video camera and gimbal mechanism.

mounted on the bottom of each UAV. The camera

and gimbal can be seen in Fig. 9. The elevation

has unconstrained movement in the range ¡90±—0±.
The azimuth is limited to movement in the range

¡135±—45± (with 0± looking straight out the nose of
the UAV). The camera has a fixed zoom that can be

changed by replacing the camera lens.

The UAVs are typically flown at 100 m altitude,

above ground level (AGL). Intersecting the camera

FOV with the Earth from this altitude yields a FOV

footprint on the ground covering about 0:1 km2.

Analog video from the camera is transmitted

wirelessly to a receiver on the ground.

C. Kestral Autopilot

Low-level control logic is handled by the Kestrel

Autopilot [12]. Navigation controls for the UAV

are communicated to the Autopilot in the form of

waypoint commands: geodetic locations above the

ground in latitude/longitude/altitude (above the geoid).

Gimbal targeting commands can be sent either in

azimuth/elevation (relative to the platform), or as a

latitude/longitude/altitude in an Earth-based coordinate

frame. The system also allows a limited degree of

manual flight and gimbal control using a gamepad.

The CGBMPS algorithm controls the UAV by

selecting waypoints and sending them to the autopilot.

These waypoints come from nodes in the search graph

G (Section IIIA), and are selected by the optimization

in (22) or (23).

D. Field Test Results

A team of two Unicorns were autonomously

controlled by the CGBMPS algorithm to cooperatively

discover and locate targets in a 10:5 km2 region. The

UAVs search using dynamically updated probabilistic

maps and particle filters. Each UAV controller runs a

separate instance of the CGBMPS algorithm, and each

instance used estimator-based decentralized control to

estimate current states and future search actions for

the other UAV. Cooperation occurs by UAVs sharing

their states and predicting each other’s sensor actions.

One of the UAVs was real, while the other was

simulated in SLAMEM. The demo included

1 real target (a pickup truck carrying a GPS unit to

render it in SLAMEM),

2 simulated targets,

1 real Unicorn UAV, and

1 simulated Unicorn UAV.

UAV airspeed was approximately 50 km/hr, flying at

100 m AGL. The sensor FOV footprint on the ground

covers approximately 0:1 km2, meaning that the UAVs

see only 1% of the search region with each camera

view. All target motions were random, including the

motions of the real target. The first target detection

occurred by the real UAV at 15:54 into the trial; the

second target detection was by a simulated UAV at

22:17.

Figs. 10 and 11 show screenshots that were

generated using recorded data from the field tests of

the CGBMPS algorithm.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a cooperative search algorithm

that uses receding-horizon optimization on a

dynamically updated graph and achieves finite-time

target discovery with probability one. The novel

contributions of this algorithm are 1) optimizing on

a dynamic graph updated based on changing target

probability distribution, 2) using a waypoint-based

prediction horizon allowing for comparison between

paths of various lengths, and 3) incorporating the use

2652 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

Fig. 10. Two Unicorn UAVs begin search of AOI (white rectangle) for three targets (gray rectangles). Curved UAV search paths are

shown as black lines connecting vertices in the search graph (not displayed). UAV sensor task footprints appear as quadrilaterals.

Fig. 11. Once target is detected and track on that target has been instantiated, particle filter is used to update and predict track state.

Particle cloud appears in figure as cluster of dots near road. UAV has transitioned from search to bird-dogging, and SLAMEM shows

it’s future path as loop around predicted position of target.

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2653

of gimbaled sensors whose orientations can be jointly

optimized with the paths of the agents. Simulations

showed that the waypoint-based prediction horizon

with a strategic placement of graph vertices

significantly improved search algorithm performance

over traditional implementations having a fixed time

horizon on graphs with edges of uniform length.

Using joint routing and sensor optimization provides

an additional increase in performance. Furthermore,

we have successfully tested the CGBMPS algorithm

on a physical system consisting of two UAVs with

gimbal-mounted cameras.

The decentralized version of the algorithm,

in which each agent maintains estimates on the

positions and sensor measurements of its teammates

and updates these estimates whenever it receives

information from other agents, warrants further study.

However, the communication bandwidth requirements

of the centralized algorithm we have presented are

relatively low. The central computer only needs to

send waypoints (latitude,longitude,altitude) to the

UAVs, amounting to no more than a few hundred

bytes. The only data returned from the UAVs are

the positive detections, since negative detections are

assumed whenever no data is received.

The frequency with which one must upload

these waypoint packets depends on the coarseness

of the search graph. Our graph construction process

specifies a vertex spacing approximately twice the

diameter of the sensor FOR. For a Raven UAV, this

distance is about 400 m. Flying at a nominal speed

of about 15 m/s, this leaves about 26 s between

waypoints. Before the UAV reaches each waypoint,

a new waypoint or multi-waypoint path should be

uploaded. So even if the search algorithm determined

a complete flight path change at each recalculation,

the total communication amounts to a few hundred

bytes every 26 s.

Moreover, for UAVs, low-power long-range

communication is available because one generally has

line-of-sight. For example, in another project [13],

we are using relatively weak radios that still have

60 mi range–this is possible because we have of

line-of-sight from UAV to UAV and because in this

work we never need to transmit large volumes of data.

ACKNOWLEDGMENTS

The authors would like to thank Craig Agate for

assistance with target state estimation and probability

modeling.

APPENDIX. TARGET PROBABILITY MIXTURE MODEL
EXAMPLES

A. Example 1: Particle Filter

Particle filtering is a sequential Monte Carlo-based

method for state estimation that is especially well

suited to systems with nonlinear dynamics and

non-Gaussian probability distributions. It involves

modeling a system with a large number of dynamic

“particles” whose states evolve according to some

stochastic model. Weights are typically updated

upon the arrival of new measurements and are then

normalized so that the total weight of the particles

is equal to one. For a particle filter that estimates

the location of a mobile target, the probability that

the target is located within some region of the state

space can be estimated by summing the weights

of the particles lying in that region. Hence regions

in which the particles are densely spaced represent

areas with high target likelihood, while low density

regions indicate low target likelihood. Following is a

generalized model of a simple particle filter.

Let x(k) = [x1(k),x2(k), : : : ,xn(k)] represent the

positions of the particles whose corresponding weights

are given by w(k) = [w1(k),w2(k), : : : ,wn(k)]. The

system dynamics can be expressed as follows:

POSITION UPDATE : xi(k+1) = fx(xi(k),vi(k)) (26)

WEIGHT UPDATE : w̃i(k+1) = wi(k)

MY
a=1

£ (1¡D(pa(k),qa(k),xi(k))) (27)

RENORMALIZATION : w(k+1) = w̃(k+1)
1Pn

i=1
w̃i(k+1)

(28)

where w̃(k) := (w̃1(k), : : : , w̃n(k)) is an intermediate

vector of unnormalized target weights and v(k) :=

(v1(k), : : : ,vn(k)) is a process noise sequence. The

function fx is used to propagate the particle positions

according to a model of the target dynamics,

randomized with v(k). For our purposes, the noise

sequence v(k) is known by all agents. In this case, the

weight update equation (27) uses the fact that the delta

function defined in (3) takes the form of a Dirac delta

function.

We omit from this section a discussion of specific

particle filter implementations in favor of a more

general model. However, much of the power of

particle filter estimation lies in the refined sampling

and resampling techniques used in the more advanced

models. We refer the reader to [1] for a survey of

several particle filtering methods.

B. Example 2: Grid-Based Probabilistic Map

A grid-based probabilistic map is another method

for estimating the states of an uncertain system. It

involves representing a system’s state-space by a grid

of cells, each of which has a weight corresponding to

the probability of the target being located inside that

cell. The cell weights are updated based on incoming

measurements and predicted future states. Following is

a generalized implementation of a probabilistic map.

2654 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

Let x= [x1,x2, : : : ,xn] represent the static center
points of the cells, whose corresponding weights are

given by w(k) = [w1(k),w2(k), : : : ,wn(k)]. The system

dynamics can be expressed by

WEIGHT UPDATE : w̃i(k+1) = wi(k)

Z
R
±(xi¡ x)

£
MY
a=1

(1¡D(pa(k),qa(k),x(k)))dx

(29)

DIFFUSION : ŵ(k+1) = fw(w̃(k+1)) (30)

RENORMALIZATION : w(k+1) = ŵ(k+1)
1Pn

i=1
ŵi(k+1)

(31)

where w̃(k) and ŵ(k) are intermediate vectors of
target weights. For this grid-based method, the delta

function ±(¢) is a two-dimensional rectangular impulse
function the size of one grid cell. The function fw can

be used to diffuse target weights between adjacent

cells according to a transition probability matrix. Note

that since the xi are fixed in a grid-based probabilistic

map, there is no position update. See [11] for a more

detailed description.

REFERENCES

[1] Arulampalam, M. S., et al.
A tutorial on particle filters for online
nonlinear/non-Gaussian Bayesian tracking.
IEEE Transactions on Signal Processing, 50, 2 (2002).

[2] Chandler, P. and Pachter, M.
Hierarchical control for autonomous teams.
In Proceedings of the AIAA Guidance, Navigation, and
Control Conference, 2001.

[3] Collins, G. E., Vegdahl, P. S., and Riehl, J. R.
A mixed simulation and hardware-in-the-loop display
and controller for autonomous sensing and navigation by
unmanned air vehicles.
In K. Schum and D. A. Trevisani (Eds.), Modeling and
Simulation for Military Operations II, vol. 6564, 2007,
65640X.

[4] DasGupta, B., et al.
Honey-pot constrained searching with local sensory
information.
Nonlinear Analysis: Hybrid Systems and Applications, 65, 9
(Nov. 2006), 1773—1793.

[5] Eagle, J. and Yee, J.
An optimal branch-and-bound procedure for the
constrained path, moving target search problem.
Operations Research, 28, 1 (1990).

[6] Frost, J. R. and Stone, L. D.
Review of search theory: Advances and applications to
search and rescue decision support.
U.S. Coast Guard Research and Development Center,
Groton, CT, Technical report, Sept. 2001.

[7] Furukawa, T., et al.
Recursive Bayesian search-and-tracking using coordinated
UAVs for lost targets.
In Proceedings of the 38th IEEE Conference on Robotics
and Automation, 2006, 2521—2526.

[8] Gaudiano, P., et al.
Control of UAV swarms: What the bugs can teach us.
In Proceedings of the 2nd AIAA “Unmanned Unlimited”
Systems, Technologies, and Operations-Aerospace, Land,

and Sea Conference and Workshop, 2003.

[9] Haley, K. B. and Stone, L. D. (Eds.)
Search Theory and Applications.
New York: Plenum Press, 1980.

[10] Hespanha, J. P., Kim, H. J., and Sastry, S.
Multiple-agent probabilistic pursuit-evasion games.
In Proceedings of the 38th Conference on Decision and
Control, vol. 3, Dec. 1999, 2432—2437.

[11] Hespanha, J. P. and Kzlocak, H.
Efficient computation of dynamic probabilistic maps.
In Proceedings of the 10th Mediterranean Conference on
Control and Automation, 2002.

[12] Kestrel Autopilot
http://procerusuav.com/productsKestrelAutopilot.php.

[13] Klein, D., et al.
Source localization in a sparse acoustic sensor network
using UAV-based semantic data mules.
Submitted to SenSys’10, Apr. 2010.

[14] Koopman, B. O.
Search and screening.
Center for Naval Analyses, Alexandria, VA, Operations
Evaluations Group Report 56, 1946.

[15] Mallick, M.
Geolocation using video sensor measurements.
In Proceedings of the 10th International Conference on
Information Fusion, 2007.

[16] Mangel, M.
Search theory: A differential equations approach.
In Chudnovsky and Chudnovsky (Eds.), Search Theory:
Some Recent Developments, New York: Marcel Dekker,
1989, 55—101.

[17] McLachlan, G. J. and Peel, D.
Finite Mixture Models.
Hoboken, NJ: Wiley, 2000.

[18] Okabe, A., Boots, B., and Sugihara, K.
Spatial Tessellations: Concepts and Applications of Voronoi
Diagrams.
Hoboken, NJ: Wiley, 1992.

[19] Polycarpou, M. M., Yang, Y., and Passino, K. M.
A cooperative search framework for distributed agents.
In Proceedings of the IEEE International Symposium on
Intelligent Control, 2001.

[20] Raven UAV
http://www.globalsecurity.org/intell/systems/raven.htm.

[21] Riehl, J. R. and Hespanha, J. P.
Fractal graph optimization algorithms.
In Proceedings of the 44th Conference on Decision and
Control, 2005.

[22] Schlecht, J., et al.
Decentralized search by unmanned air vehicles using
local communication.
In Proceedings of the International Conference on Artificial
Intelligence, Las Vegas, NV, 2003, 757—762.

[23] Stone, L. D.
Theory of Optimal Search.
New York: Academic Press, 1975.

[24] Chung, T. H. and Burdick, J. W.
A decision-making framework for control strategies in
probabilistic search.
Presented at the International Conference on Robotics and
Automation (ICRA), Apr. 2007.

[25] Tisdale, J., et al.
A multiple UAV system for vision-based search and
localization.
In Proceedings of the American Control Conference, 2008.

[26] Trummel, K. E. and Weisinger, J. R.
The complexity of the optimal searcher path problem.
Operations Research, 34, 2 (1986), 324—327.

[27] Unicorn Flying Wing
http://unicornwings.stores.yahoo.net/.

[28] Virtual Cockpit
http://procerusuav.com/productsGroundControl.php.

RIEHL ET AL.: COOPERATIVE SEARCH BY UAV TEAMS: A MODEL PREDICTIVE APPROACH 2655

James Riehl received a B.S. degree in engineering from Harvey Mudd College,

Claremont, CA in 2002. He received his M.S. degree in 2004 and Ph.D. in 2008

from the Department of Electrical and Computer Engineering, University of

California, Santa Barbara (UCSB).

While at UCSB, he consulted with Toyon Research Corporation on

cooperative search by UAV teams and helped implement and test the algorithms.

Since the Fall of 2007, Dr. Riehl has worked for AT&T Government Solutions

where he has conducted research in fields ranging from network optimization to

machine learning.

Gaemus Collins received a B.S degree in mathematics from Salisbury University,

Salisbury, MD in 1996, and subsequently received M.S. and Ph.D. degrees in

mathematics from the University of California, Santa Barbara (UCSB) in 1999

and 2002, respectively.

Following his Ph.D., Dr. Collins held a two-year post-doctorate position at

University of California, San Diego (UCSD). He is now a senior analyst at Toyon

Research Corporation, where he is an algorithm designer and program manager

for several government-funded programs developing cooperative multi-agent,

multi-sensor UAV search and tracking systems.

João P. Hespanha (M’95–SM’02–F’08)
He received the Licenciatura in electrical and computer engineering from

the Instituto Superior Técnico, Lisbon, Portugal in 1991 and the Ph.D. degree in

electrical engineering and applied science from Yale University, New Haven, CT

in 1998.

From 1999 to 2001, he was assistant professor at the University of Southern

California, Los Angeles. He moved to the University of California, Santa Barbara

in 2002, where he currently holds a professor position with the Department of

Electrical and Computer Engineering. He is associate director for the Center

for Control, Dynamical-systems, and Computation (CCDC), Vice-Chair of

the Department of Electrical and Computer Engineering, and a member of the

Executive Committee for the Institute for Collaborative Biotechnologies (ICB).

His current research interests include hybrid and switched systems, the modeling

and control of communication networks, distributed control over communication

networks (also known as networked control systems), the use of vision in

feedback control, and stochastic modeling in biology.

Dr. Hespanha is the recipient of the Yale University’s Henry Prentiss Becton

Graduate Prize for exceptional achievement in research in Engineering and

Applied Science, a National Science Foundation CAREER Award, the 2005

best paper award at the 2nd International Conference on Intelligent Sensing

and Information Processing, the 2005 Automatica Theory/Methodology best

paper prize, the 2006 George S. Axelby Outstanding Paper Award, and the 2009

Ruberti Young Researcher Prize. From 2004—2007 he was an associate editor for

the IEEE Transactions on Automatic Control. He is an IEEE distinguished lecturer

since 2007.

2656 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 47, NO. 4 OCTOBER 2011

	55012.465.pdf
	55012.465 - SF 298
	55012.465 - sf298cont

