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ABSTRACT 

Improving the performance of ensemble filters applied to models with many state variables requires reg- 
ularization of the covariance estimates by localizing the impact of observations on state variables. A co- 
variance localization technique based on modeling of the sample covariance with polynomial functions of the 
diffusion operator (DL method) is presented. Performance of the technique is compared with the non- 
adaptive (NAL) and adaptive (AL) ensemble localization schemes in the framework of numerical experi- 
ments with synthetic covariance matrices in a realistically inhomogeneous setting. It is shown that the DL 
approach is comparable in accuracy with the AL method when the ensemble size is less than 100. With larger 
ensembles, the accuracy of the DL approach is limited by the local homogeneity assumption underlying the 
technique. Computationally, the DL method is comparable with the NAL technique if the ratio of the local 
decorrelation scale to the grid step is not too large. 

1. Introduction 

The problem of estimating the background error sta- 
tistics is an important issue in the ensemble filtering and 
hybrid data assimilation algorithms that employ en- 
sembles for error analysis and propagation. Increasing 
the accuracy in estimating the background error statis- 
tics remains a scientific and technical challenge, because 
the (co)variance estimates have to be drawn from a rel- 
atively small number of samples contaminated by the 
noise of diverse origin. 

A particular type of background error covariance (BEC) 
estimation technique employs an ensemble of assimila- 
tions (e.g., Fisher 2003; Berre et al. 2006) to assess the 
covariance structure from the ensemble average. Because 
of computational limitations, ensemble size rarely ex- 
ceeds 100 members in practice, thus limiting the accuracy 
of the straightforward averaging approach because of 
the significant level of sampling noise. The impact of 
sampling noise on the accuracy of the BEC estimates has 
been addressed by Houtekamer and Mitchell (1998) and 
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Hamill et al. (2001) and led to the development of the 
filtering techniques based on the Schur product of the 
sample correlations with the heuristic filters (localization 
operators). This approach tends to localize covariances in 
physical space and suppresses long-range correlations, 
whose accuracy is most affected by the sampling noise 
(e.g., Houtekamer and Mitchell 2001; Buehner 2005). 

In the last decade, the localization techniques have 
been under rapid development in several directions with 
the major objective to relax the spatial homogeneity 
assumption underlying the original scheme. In particu- 
lar, Fisher (2003), Deckmyn and Berre (2005), and 
Pannekoucke et al. (2007) utilized a wavelet approach to 
account for inhomogeneities in the covariance structure; 
Wu et al. (2002) and Purser et al. (2003) employed re- 
cursive filters to localize the covariances; Weaver and 
Courtier (2001), Pannekoucke and Massart (2008), and 
Weaver and Mirouze (2012) used a closely related dif- 
fusion operator approach; and Pannekoucke (2009) ex- 
plored a hybrid scheme, featuring wavelet technique in 
combination with the diffusion method, while Anderson 
(2007) employed a sampling error approach to derive 
localization from multiple ensembles in the framework 
of the hierarchical ensemble filter technique. In the oil 
and gas exploration industry, anisotropic localization 
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functions were derived by combining the regions of sen- 
sitivity of the well data with prior geological models (e.g., 
Emerick and Reynolds 2011; Chen and Oliver 2010). 

Another direction in the localization techniques was 
pioneered by Bishop and Hodyss (2007) who proposed 
to augment the original ensemble by including Schur 
cross products of the spatially smoothed ensemble mem- 
bers. Further development of this approach (Bishop and 
Hodyss 2009a,b; Bishop et al. 2011; Bishop and Hodyss 
2011) demonstrated its flexibility in adapting the co- 
variances to the 4D background flow structures, especially 
in the case of strongly inhomogeneous statistics. A certain 
disadvantage of the adaptive localization (AL) technique 
is a relatively high computational cost, associated with the 
necessity to operate with the expanded ensemble. A good 
review of the filtering/localization techniques was recently 
given by Berre and Desroziers (2010). 

In this study we employ the numerical experimenta- 
tion approach of Weaver and Mirouze (2012) who tested 
various approximations of the ensemble-generated co- 
variance matrix by the exponent of the diffusion oper- 
ator in an idealized configuration. The presented work 
considers four localization techniques applied to three 
different covariance models in a realistically inhomoge- 
neous 2D setting. Our major focus is on comparing non- 
adaptive and adaptive localization methods with the 
techniques based on modeling sample covariance by 
polynomial functions of the diffusion operator. To make 
the comparison, we construct inhomogeneous covariance 
matrices B, generate the respective ensembles, and re- 
trieve B from a limited number of ensemble members 
by the means of considered localization techniques. In 
the next section the four localization methods used are 
briefly overviewed. Methodology of the numerical ex- 
periments is described in section 3. In section 4, the lo- 
calization methods are compared in terms of accuracy 
in approximating B for various ensemble sizes and their 
computational efficiency. The results are summarized 
and discussed in section 5. 

contains spurious correlations at large distances. To 
increase the accuracy in approximation of the BEC ma- 
trix B, Houtekamer and Mitchell (1998) proposed to as- 
sign zero correlations to the components of x separated 
by distances larger than a certain prescribed value d (lo- 
calization scale). Technically, such a "localized" co- 
variance matrix B* is obtained as the elementwise (Schur) 
product o of the raw sample covariance B and the locali- 
zation matrix Wrf, whose off-diagonal elements are set to 
zero if the distance between correlated points exceeds d: 

B, = BoWd. (2) 

This method simultaneously suppresses spurious ensem- 
ble correlations located far from the diagonal and shrinks 
the null space of B, whose "raw" dimension N - K + 1 is 
very large, and thus likely inconsistent with the rank of the 
true BEC matrix. A disadvantage of the technique is that 
it relics on a heuristic matrix Wd, which does not explicitly 
take into account inhomogeneity and anisotropy of the 
background flow which affects the BEC evolution. 

b. Adaptive methods 

Recently, Bishop and Hodyss (2007, 2009a,b, 2011) 
developed a family of AL schemes. The idea is to compute 
W as the sample correlation matrix generated by Schur 
cross products *# of the spatially smoothed (modulated) 
members of the original ensemble (e.g., Bishop and Hodyss 
2009a, 2011): 

ii/ = (Sx/)-(Sx;.);   i = l,...,K;   j = i,...,K,   (3) 

where S is a suitably chosen smoothing operator while 
J = K(K + l)/2 is the size of the modulated ensemble. 
Assuming that the columns of the J X N matrix X list 
perturbations {i#} of the modulated ensemble about 
their mean that are normalized to have unit variance 
and divided by vT-T, the adaptively localized BEC 
matrix is 

2. Methods of covariance localization 

a. Traditional scheme 

Given an ensemble {xk}/\/K- 1 e RN of K normal- 
ized error perturbations about the ensemble mean listed 
as columns of the K X N matrix X, their sample co- 
variance B is estimated by 

B = cov{xJ = XXT 
(1) 

In practice, the dimension of the model state N is much 
larger than K, and the sample estimate (1) always 

B7 = B°W* = Bo(XXT). (4) 

To further increase stability and computational effi- 
ciency of the AL technique, Bishop and Hodyss (2011) 
supplemented the method with additional multiplica- 
tion by Wd: 

BJ = B°W*°W (i- (5) 

Recent experiments with this improved AL scheme 
have shown its good localization properties and rea- 
sonable numerical performance (Bishop and Hodyss 2011). 
A certain disadvantage of the method is the numerical cost 
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apart from the necessity to smooth ensemble members, 
multiplication by B? requires computing a convolution 
with a KJN X N matrix, whose columns are x*ox,;,own, 
where w„ are the columns of the square root of Wd. 

c. Modeling sample covariance 

Another way of estimating the true covariance is to 
create its full-rank covariance model using the low-rank 
ensemble approximation (1). In recent years this ap- 
proach, fueled by the developments in covariance model- 
ing with the diffusion operator (e.g., Weaver and Courtier 
2001; Xu 2005; Yaremchuk and Smith 2011; Yaremchuk 
and Sentchev 2012), has been studied by many authors 
(e.g., Belo Pereira and Berre 2006; Pannekoucke and 
Massart 2008; Pannekoucke 2009; Sato et al. 2009; 
Weaver and Mirouze 2012). 

The idea of the approach is to parameterize the 
structure of the true BEC matrix by the diffusion tensor 
field iyp(x), which defines the positive-definite diffu- 
sion operator D = -\aDaßVß. 

To avoid confusion with notations, vectors and ma- 
trices in state space RN are denoted by the boldface 
roman and boldface san serif fonts, respectively. In the 
2D physical space R2 we adopt tensor notation, where 
vectors and matrices are boldface and italicized, Greek 
indices enumerate coordinates, take the values 1 and 2, 
and summation is assumed over repeating indices. 

The operator D is used to construct the B-approximating 
covariance model that is specified by a positive func- 
tion F of D in order to meet the positive-definiteness 
property of B. Furthermore, for computational reasons 
it is desirable that F could be computed recursively and 
at the same time it should invert the spectrum of D (i.e., 
the largest eigenvalues of F{ D} should correspond to the 
smallest eigenvalues of D). The latter requirement en- 
sures the smoothing property of the BEC model, which 
is important in applications. 

Among the functions satisfying these requirements 
are the exponent and its «th-order binomial (spline) 
approximations: 

F,{D} = exp(-|), 

'.w-('+I)"*- 

(6) 

(7) 

The functional forms in (6)-(7) are used to define the 
correlation matrix C, which can be easily transformed 
into B by the renormalization formula B = VCV, where 
V = diag(v), and v € RN is the vector of rms error var- 
iances (square roots of the diagonal of B). The elements 
v(x) of v are relatively well known from the ensemble 
statistics as they suffer less from sampling errors than 

ensemble estimates of the correlations. In its turn, the 
correlation matrix C can be obtained from F{D} by 
setting its diagonal elements to unity: 

v-l/2 C = diag(f)-lwF{D}diag(f) -1/2 
(«) 

if a good approximation to the diagonal elements f of 
F{D} is available (Purser et al. 2003; Yaremchuk and 
Carrier 2012). 

This study employs functions Fe and Fn for approxi- 
mating the BEC matrix by selecting D°*(x) in a way that 
the matrix B = VCV given by (6)-(8) fits the structure of 
the sample covariance (1) for small distances and pro- 
duces negligible correlations at large distances. The 
latter property is satisfied by the functions (6)-(7). 

A standard method of finding D for the functional 
forms (6)-(7) is to use analytic relationships between the 
derivatives of F{ D \ in the vicinity of the diagonal (i.e., at 
small separations between correlated points) and the 
diffusion tensor (e.g., Belo Pereira and Berre 2006; Sato 
et al. 2009; Weaver and Mirouze 2012). These relation- 
ships are derived under the assumption that local de- 
correlation scales are much smaller than the typical scale 
of spatial variability of D. In that case, the correlation 
matrix elements C(jr, y) are locally homogeneous (LH); 
that is, they depend only on the relative position r-x-y 
of the correlated points JC, y, and can be written down 
explicitly (e.g., Yaremchuk and Smith 2011): 

Ce(r) = exp (4). 
»»-i 

C„(') - 
_(v/2^r)"  X-itv^'") 

where 

2"-2(n - 2)! 

t-SD^, 

(9) 

(10) 

(11) 

is the squared distance measured in terms of the local 
decorrelation scales defined by the eigenvalues of D and 
K is the Bessel function of the second kind. Dependence 
of the correlation matrix elements on the distance r from 
the diagonal is shown in Fig. 1. 

Direct differentiation of (9)-(10) at zero distance 
(r = 0), yields the following relationships, useful for 
estimation of the diffusion tensor for the models (9)-(10), 
respectively: 

^(*) = -[We], 

n-2. 
i>3(*)«-—IV^C«! 

(12) 

(13) 
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0 12 3 
r 

FIG. 1. Correlation functions of the Gaussian and second-order 
spline models described by (9)-(10). 

Here square brackets denote extracting the diagonal 
values from a matrix. This approach requires C to be 
twice differentiable at the diagonal, which is not the case 
for spline models with n < 3. Expressions (12)—(13) were 
obtained in the 2D Cartesian coordinates by Weaver 
and Mirouze (2012). Similar relationships hold for an 
arbitrary correlation model satisfying the conditions of 
local homogeneity and appropriate differentiability of 
the correlation function at r = 0 (appendix A). 

Taking into account the commutativity of the ensem- 
ble averaging and ( ) differentiation operators renders 
the rhs of (12)—(13) in the form involving correlations 
of the first derivatives of the ensemble members (see 
Belo Pereira and Berre 2006; Weaver and Mirouze 2012; 
appendix B): 

IW1 J(v>HV))-(VHV) 
v>v 

(14) 

This expression together with relationships (12)—(13) is 
more convenient for numerical estimation of D via 
sample correlations because it is formulated in terms of 
the ensemble perturbations and does not involve second 
derivatives. Weaver and Mirouze (2012) have shown re- 
cently that the method is capable of delivering rms ac- 
curacies of 20%-80% in reconstructing D~x in idealized 
2D setting. The approach has a few drawbacks. First, the 
gradient computation tends to amplify sampling noise 
in the estimate of D~l. The inversion of D_1 is also prone 
to error amplification. For these reasons, the technique is 
often supplemented by additional smoothing (Raynaud 
et al. 2009; Berre and Desroziers 2010; Weaver and 

Mirouze 2012). Second, the relationship (14) cannot be 
applied to the BEC models that are not differentiable 
at the diagonal, such as the second-order (n = 2) spline 
model (7) in 3D, which is characterized by the expo- 
nential correlation function. 

An alternative approach is to estimate the diffusion 
tensor directly by minimizing the difference between 
the ensemble estimate of the correlations in the vicinity 
of the diagonal and its local analytic approximations 
(9)-(10). This approach is likely to be more robust, as it 
does not involve differentiation and matrix inversion 
and can be formulated as a least squares problem in the 
space of the unknown elements of D. 

In the following sections we compare efficiency of the 
four localization methods: nonadaptive (section 2a), 
adaptive (section 2b), and the two described above 
methods of retrieving the diffusion tensor from the en- 
semble covariances. For brevity, we will refer to the 
latter two methods as "differential" and "integral" 
diffusion localization (DL) schemes. 

To explore the efficiency, we adopt the following ex- 
perimentation strategy: after specifying the "true" co- 
variance matrices B, the respective ensembles are 
generated and then the obtained ensemble members are 
used to retrieve the approximate structure of B by a 
given localization method. 

3. Methodology 

a. Experimental setting 

Numerical experiments with simulated ensembles were 
performed as follows. First, the true BEC matrix was 
specified together with the ensemble by selecting a vari- 
ance distribution v(x) and a correlation model (6)-(7) in 
a real oceanic domain shown in Fig. 2. The variance dis- 
tribution was chosen to simulate surface temperature 
variations in the northern Gulf of Mexico near the mouth 
of Mississippi. The true distribution of D (Fig. 2) was 
specified to mimic the background error dynamics driven 
by near-coastal topographically controlled circulation. 
We assumed that the corresponding background currents 
followed the depth contours and the larger eigenvector 
of D was oriented in that direction and was proportional 
to the magnitude of the local bathymetry gradient. In the 
regions where bottom slope was less than 20% of its rms 
value over the domain, the diffusion was set to be iso- 
tropic with the decorrelation scale of 15 km (see appen- 
dix C for more details). 

Two BEC models used in the experiments were the 
Gaussian (6) and the second-order spline model (7). The 
corresponding true correlation matrices Ce and C2 were 
computed explicitly: first, all the columns of F(D) were 
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29N 

FiC. 2. True distribution of the longer principal axis of the diffusion 
tensor (km). Labeled contours show depth in meters. 

computed as convolutions of the operators (9)-(10) with 
the S functions located in every grid point of the domain. 
The resulting matrices were then renormalized by their 
diagonal elements using (8), and the true BEC matrices 
were then obtained by 

B, = VC,V; B2 = VC2V. (15) 

Sums of eight columns of Ce and C2 are shown in Fig. 3. 
The maximum anisotropy is observed in the southeast 
corner of the domain characterized by the steepest to- 
pography. The total number of matrix elements was 
46032 ~ 2 X 107. 

The simulated ensembles X« and X„, were generated 
by 

- «0I/2« X, = VC^R;   X^VC^R, (16) 

where R is the K X N matrix, whose columns are the 
random vectors with N = 4603 S-correlated components 
evenly distributed with unit variance and the square root 
is defined by C = C1/2(C1/2)T. The value of K was 20 000. 

The ensembles X^ and Xm were then used to estimate 
the true covariances B, and B2 with the four localization 
techniques described in the previous section. The only 
exception is the differential method, which was not used 
with the spline model (7) because the corresponding cor- 
relation function (10) is not differentiable at the origin. 
In all the experiments the localization matrix Wrf was 
Gaussian (9) with the isotropic diffusion tensor D = <fl, 
where / is the 2 X 2 identity matrix and d is a tuning 
parameter defined in the next section. 

Numerically, the action of Fe{D} on a state vector x 
was approximated by the recursive scheme: 

29N 

29N 

FIG. 3. True correlations for the (a) Cr and (b) C2 models plotted 
for eight different points. Locations of the points are shown by 
white circles. 

exp (-!>*(-£)", <n> 
which can be interpreted as "time integration" of the 
diffusion equation with the integration period defined 
by the maximum eigenvalue A of D/2 over the domain 
and the "time step" of kin. Similarly, FzjDJx was com- 
puted by iterativcly solving the system of equations, 

H)W (18) 

with the minimum residual algorithm (Paige et al. 1995). 
Computing the action of the operators C\a and C\n, 

which appear in the relationships in (16) requires an 
algorithm for F{D}1/2, which was obtained by halving 
the number of time steps n in (17) and removing the 
square in the lhs of (18). 
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With the simulated ensembles in (16) at hand, the 
sample covariance matrices B* were computed via (1) 
by varying the number of samples xk randomly picked 
from these ensembles. Using the same samples, rms 
error variance fields v(x) and the correlation matrices C 
were also computed. 

Given these ensemble statistics, the localized esti- 
mates of the true covariance matrix were computed with 
four localization techniques described in the previous 
section [(2), (5), and (9)-(14) for the DL estimates]. 

Technically, the DL estimates were obtained by fitting 
the diffusion tensor field to the structure of C with two 
techniques: the first one utilizes the approach based on 
differentiating the ensemble members [(12)-(14)], whereas 
the second one extracts D(x) from sample correlations C 
by minimization of the cost functions: 

/(*)=[ [C(x-y)-C(x,y))2dy 
Jut 

nun . 
D(x) 

(19) 

where C is given by (9)-(10) and w is a small vicinity of %. 
Similar approach was tested in a less general formulation 
by Pannekoucke and Massart (2008) for the 2D Gaussian 
correlations. To minimize (19) we used the M1QN3 al- 
gorithm of Gilbert and Lemarechal (1989) that reduced 
the L2 norm of the cost function gradient by three orders of 
magnitude in 3-6 iterations. 

To distinguish between the two DL schemes, the 
corresponding estimates will be labeled by the super- 
scripts ' and ° for the differential [(12)-(14)] and integral 
[(9)—(11), (19)] approaches, respectively. 

After the diffusion tensor estimates were obtained using 
either the first or the second method, the localized estimates 
C and C° of C were computed using (6)-(8). Equation (8) 
contains the diagonal elements of F{D}, whose direct 
computation is numerically prohibitive in practice. For that 
reason, approximate formulas were used: 

t = (2ny1F{yO}d, (20) 

where d = (detZ))"1/2 and ye = 0.33; y2 = 0.28 for the Fe 

and F2 models, respectively (Yaremchuk and Carrier 
2012). 

Performance of the four localization techniques was 
measured in terms of the distance between the ensemble- 
estimated localized covariances Bt,B^,B'(,B°t and the 
true covariance B: 

„m m- /|B'~B| (21) 

were measured by the following relationship (Herdin 
et al. 2005): 

o(C  tt-    1    Tr(C'C) (22) 

where | | denotes the Frobenius norm. Relative dis- 
tances between the respective correlation matrices 

b. Numerical implementation 

In addition to comparing the skills of the localization 
methods, their computational efficiencies are also com- 
pared. In practical applications, Bf and BJ are never 
computed directly, but represented in the "square root" 
form B, = Bj/2(Bj/2)T to speed up computations. By vir- 
tue of the "square root theorem" (Bishop et al. 2011), 
Bja and B?a are the KN X N and KJN X N matrices, 
whose columns are x*°w„ and Xi°Xy°w„, respectively 
(section 2b). The elements of localization matrix Wrf were 
computed explicitly with the analytic equation (9). At 
distances exceeding several localization scales the ele- 
ments were set to zero to avoid senseless multiplications 
by the tails of the Gaussian exponent. In the numerical 
experiments this "cutoff distance was set to 3d. The 
nonzero elements of the columns w„ of W^ were com- 
puted by reducing \fl times the localization scale in (11). 

To explore the impact of the ensemble size on accu- 
racy of the localization schemes, experiments were 
performed with five ensemble sizes: k = 4, 10, 50, 200, 
and 1000. The respective modulated ensembles (section 
2b) were computed in a different manner for various k. 
For k = 4 and 10 both double and triple Schur products 
of the raw ensemble members were used, thus creating 
j4 = (4 x 5)/2 + (4 X 4 X 5)/2 = 50 and/10 = (10 X 11)/ 
2 + (10 X 10 X ll)/2 = 605 members. For k = 50 and 200 
only the double products were used. The respective 
ensemble sizes were 1275 and 20 100. With k = 1000 
only 20 000 randomly selected pairs were used to create 
{%j}. The smoothing operator S [(3)] was also isotropic 
Gaussian, but its scale ds was different from d. Both 
d and d, were optimized in every experiment to mini- 
mize the distance (21) from the true covariance. 

The DL algorithms had additional specific features. 
Estimates of Ü obtained from (12)-{14) were first 
smoothed with the scale of / = 30 km, then symmetrized 
and checked for the positive definiteness. In the case of 
a negative eigenvalue (a common situation for k = 4, 
10), the tensor was discarded. The resulting gaps were 
filled with horizontal interpolation and smoothed again 
with the same scale. 

When computing D°, the lengths of principal axes and 
orientation of the larger axis were chosen as control 
parameters. This approach eliminated violation of posi- 
tive definiteness and improved stability of the algorithm. 
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10" 

FIG. 4. Relative errors between the true covariance matrix 
(Gaussian model) and its ensemble estimates for various localiza- 
tion techniques as a function of the ensemble size k. Thick dashed 
line shows the error of the nonlocalized estimate B [(1)]. Thin 
dashed line is the error of the variance estimate. Errors of the N AL 
B, (thin line) and AL B? (thick line) methods are shown in gray. 
Solid black lines correspond to the differential B'f (thin line) and 
integral B° (thick line) DL methods. 

The fitting domain w was a square four grid steps in size. 
Tensor parameters were smoothed with the same scale as 
has been used in the computations of D 

4. Results 

a. Skill comparison 

Figure 4 compares skills [(21)] of the four localization 
techniques for the Gaussian covariance model as a func- 
tion of the number of ensemble members k. The straight 
dashed lines provide errors for the raw variance and co- 
variance estimates without localization. As expected, 
both p(B) and p([B]) closely follow the law l/Vk with the 
variance estimate p([B]) being approximately 20 times 
more accurate than the estimate of the covariance. 

For A: = 4, the difference between p(Be) and p(Bf) 
appears negligible because of the extremely large sam- 
pling errors, which cannot be reduced by updating the 
ensemble with modulated members. In the "practical" 
range of 10 < k < 500, the adaptive scheme delivers a 2- 
3 times better estimate than the nonadaptive localiza- 
tion (NAL) technique, but this advantage disappears at 
A: > 500 because of the increase of raw ensemble skill. 
This type of behavior has been also observed in the 
experiments where we kept both localization scale d and 
the smoothing scale d, constant and equal to 100 km 
(i.e., did not optimize their values for a given k). In that 

case the error curves converged at slightly larger k ~ 
1200-1500. 

The DL schemes demonstrate a significantly better 
performance at k < 20, although p(B',) is 20%-30% 
larger than p(B?) starting from n = 10. Flattening of the 
curves for B^, B? at large k can be explained by two 
factors. The first one is a certain inconsistency of the true 
covariance structure with the LH assumption used in the 
derivation of (9)-(14): Fig. 2 shows that the typical scale 
of variability of the diffusion tensor's axes is compatible 
with their magnitude throughout the domain, and in some 
places (e.g., steep bottom regions in the southwest) it 
is even smaller than the local decorrelation scales. The 
second factor is associated with the violation of the LH 
assumption in computing the normalization factors with 
(20). Although (20) is capable of approximating the di- 
agonal elements at the error level of 5%—10%, its con- 
tribution to the asymptotic error of 0.4 (Fig. 4) is not 
negligible. Similar observations are reported in the ide- 
alized experiments of Weaver and Mirouze (2012). 

Figure 5 shows the absolute difference between the 
eight columns of Ct, C°e and the respective columns of 
the true correlation matrix for the Gaussian model 
shown in Fig. 2a. It is seen that the difference is not zero 
even in the diagonal points (shown by black circles) 
where both correlation estimates are supposed to be 
equal to one by definition. This difference can be vir- 
tually embedded as an additional error in the variance 
estimate V, which is primarily defined by the size of the 
ensemble. In the reported experiments this diagonal 
approximation error ranged within 5%-8%, and started 
to contribute significantly at k > 30 (i.e., when the var- 
iance estimation error falls below 10%; lower dashed 
line in Fig. 4). The impact of the diagonal approximation 
error is less visible when comparing covariance matrices 
in terms of (22), which is more sensitive to the errors in 
the off-diagonal elements (Fig. 6). 

The degree of inhomogeneity of the true covariance 
can, in principle, be assessed from asymmetry of the 
local correlations derived from the ensemble when k is 
large enough to suppress sampling noise. When the LH 
assumption is satisfied with high accuracy, the correla- 
tion matrix elements satisfy (9)-(10), and therefore 
should be nearly invariant under the mirror transfor- 
mations r -> -r in the vicinity of the diagonal. We 
checked this property for the true correlation matrices 
and found relatively high degrees of asymmetry (0.24 and 
0.28 for Ce and C2, respectively). In combination with 
5%-8% diagonal errors, these figures may explain the 
asymptotic error level in approximating the true co- 
variances by the DL schemes (Fig. 4). 

Another feature observed in the experiments, is a 
persistently better performance of the DL methods at 
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FIG. S. Absolute difference between eight columns of the 
true correlation matrix for the Gaussian model (Fig. 3a) and its 
DL approximations (a) C1, and (b) C,' obtained with SO en- 
semble members. Filled circles show locations of the diagonal 
elements. 
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FIG. 6. Relative errors p\ between the true covariance matrix 
(spline model, Fig. 2b) and its ensemble estimates for various 
localization techniques as a function of the ensemble size k. Thick 
dashed line shows the error of the nonlocalized estimate B [(1)]. 
Thin dashed line is the error of the variance estimate. Errors of 
the NAL B, (thin line) and AL Bf (thick line) methods are shown 
in gray. Solid black line gives the error of the integral B,' DL 
method. 

smoothed and renormalized to have the same variance V 
as the original models B,. and B2. 

Figure 8 demonstrates that in the case of B„ model 
the approximation errors of the DL schemes are still 
below the errors of the AL scheme when n < 30-40. 
Furthermore, the DL schemes keep being competitive 
in the entire range of the practical ensemble sizes (up to 

250 

200 

150 

5- 100 

small ensemble sizes A: (Figs. 4 and 6). One may assume 
that this property could be attributed to the fact that 
the DL schemes have an a priori advantage because the 
structure of the true covariances is already embedded 
into the underlying diffusion models used for approxi- 
mation. To check this, we generated an alternative true 
covariance matrix B„, which was far enough from both 
B, and B2 to eliminate this advantage (Fig. 7). 

To do this, we randomly picked 1000 members from 
each of the ensembles X, and X2, and then generated 
additional 20 000 members using the adaptive technique 
described in section 2b. Pairs for Schur cross products 
were composed by randomly picking members from the 
two ensembles and never from one. The resulting 
22 000-member ensemble was used to compute B„ with 
(1). After that the columns of B„ were additionally    corresponding matrices are shown. 

-50 

FIG. 7. Difference between the 300 largest eigenvalues of B2 and 
B,. (gray line) and of B„ and B,.. (top right) Distances between the 
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FlO. 8. As in Fig. 4, but for the true covariance B„. 

n = 150-200). We therefore may assume that better 
performance at small ensemble sizes in an intrinsic 
property of the DL method, which could possibly be 
explained by its enhanced ability to better capture near- 
diagonal structure of the correlations. However, only 
experiments with real assimilation systems can confirm 
this hypothesis. 

One can notice a relatively weak performance of the 
AL scheme (thick gray line in Fig. 8) as compared to 
the case of true covariance described by the B, model 
(Fig. 4). Such a behavior can be explained by the fact 
that the smoothing scale ds was the same as was used 
for generation of the modulated ensembles in the ex- 
periments with B,,. In general, adjustment of the locali- 
zation scales significantly improved the approximation 
accuracy of B^ and BJ, especially at low k for the stan- 
dard localization scheme whose optimal values of d(k) 
changed in a wide range from d(4) = 30 to d(1000) = 
500 km. For the adaptive scheme variations of d were 
significantly smaller: d(4) = 100 to d(4) - 500 km. 

These figures shed some light on the role near-diagonal 
elements play in the overall structure of the considered 
covariance matrices. It appears that accurate estimation 
of these elements eliminates a larger portion of the error 
in approximation of the true covariance. To support this 
idea, we computed distances between the three consid- 
ered covariances B,.. B2, and B„ and their approximations 
obtained by setting to zero all the off-diagonal elements, 
located farther than a certain distance r (measured in 
physical space) from the diagonal. As expected, the major 

portion of the error is eliminated when elements within 
the mean decorrelation scale are accounted for. This 
feature of the considered covariances partly explains the 
better skill of the DL schemes that are "more focused" on 
accurate representation of the near-diagonal structure of 
the covariance matrices. In addition, DL models are ca- 
pable to deliver better smoothness away from the di- 
agonal, which is essential for elimination the imbalance 
problems that may arise when prediction models are used 
with the resulting analysis (e.g., Kepert 2011). 

b. Computational efficiency 

In the previous section we have shown that DL schemes 
appear to be competitive in accuracy with both NAL and 
AL techniques when the number of ensemble members 
k is relatively small. When k > 70 - 100, the AL scheme 
provides better accuracy (Figs. 4-8), but the DL method 
may still remain competitive up to k ~ 100. On the other 
hand, it is much less computationally expensive, because 
it does not require generation of the costly modulated 
ensemble. 

The cost of localization is defined by the multiplica- 
tion of the square root of the localized covariance matrix 
by a state vector. In the case of the NAL scheme, this 
product involves M ~ kNnd multiplications, where nd is 
the number of nonzero elements in the column of Wd

a. 
For the AL scheme [(5)] this number is J times larger 
and may require significant computational resources. 

The cost of implementing the DL schemes consists of 
two components: estimation of the diffusion tensor and 
multiplication by the square root of the localization 
matrix. The number of multiplications required to com- 
pute D' at a grid point is approximately proportional 
to 9k, because local correlations have to be computed 
only in the nearest neighborhood of the diagonal and 
each computation involves k products of the ensem- 
ble members. Differentiation, inversion [(12)—(13)], and 
smoothing adds approximately 50 operations for a grid 
point thus giving the estimate of M' ~ (9k -I- 50)N for the 
overall cost of computing D'. The cost of multiplication 
by the square root of B'f is proportional to Nn,m, where 
n. = 9 is the number of elements in the (2D) stencil of 
Df, and m ~ 102 is the number of either "time steps" in 
case of C, or the number of iterations in solving the re- 
spective linear system in the case of C2 localization 
model. This brings the estimate of the total number of 
operations to M' ~ 9(k + m + 5)N. 

Computing D° is somewhat more expensive than D7 

because it involves solving a minimization problem at 
every grid point. In the 2D case considered, estimation 
of D° required approximately 25(A: + 20no) operations 
per grid point where n0 = 5 is the average number of 
iterations required for convergence of the minimization 
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routine and 25 is the number of grid points occupied by 
the optimization subdomain w [(19)]. 

Taking the typical value of nd = 49 for the number of 
grid points in the localization stencil, the following es- 
timates can be obtained: 

M ~ SQkN, 

M* ~ 50kNJ, 

M' ~ 50kN 

M° ~ 50kN 

Assuming that A:» 1 and taking the N AL cost M = 50kN 
as a benchmark, the following estimates of the (normal- 
ized by A/) localization costs M can be obtained: 

M*=J\   M'= 0.2(l+j\   Af° = 0.2(2.5 + ^). 

(23) 

In the reported experiments the typical value of m ranged 
between 120-180 for the Gaussian model and 150-300 for 
the spline model. Thus, for the ensemble size of k = 50 
both DL models appear to be computationally competitive 
with the NAL technique (M'e ~ 0.7 - 0.9, M°e ~ 1.0 - 1.2). 
Similar CPU time ratios were observed in the reported 
experiments. As is seen from (23) the computational 
advantage of the DL schemes improves with the growth 
of the ensemble size k, although their accuracy tends to 
stagnate (Figs. 4, 6, and 8). 

5. Conclusions 

Numerical experiments with the DL schemes in a re- 
alistically inhomogeneous 2D setting have shown their 
competitiveness with the NAL and AL methods in 
terms of accuracy within the range of ensemble sizes k ~ 
20-100 used in the data assimilation practice. For larger 
ensemble sizes the DL method does not give any error 
improvement as it reaches the limits imposed by the 
assumption of local homogeneity. 

From the computational point of view, the DL 
method appears to be compatible with the NAL tech- 
nique, which is in turn less expensive than the adaptive 
algorithms proposed by Bishop and Hodyss (2007, 
2009a,b). Conducted experiments also indicate that the 
AL method is significantly more accurate than NAL in 
the case of strongly inhomogeneous covariances when 
the ensemble size is less than several hundred. 

Comparison of the differential and integral DL schemes 
have shown that the differential method is 20%-50% less 

computationally expensive, although it appears to be 
somewhat less robust and accurate when applied in re- 
alistically inhomogeneous environment. An advantage of 
the integral approach is that it can be utilized with cor- 
relation models that are not differential at the origin. 

It should be also noted that the computational efficiency 
of the DL schemes strongly depends on the number of 
iterations m needed to compute the action of the locali- 
zation operator on a state vector. This number is con- 
trolled by the ratio of the local decorrelation scale (length 
of the largest principal axis of D) to the grid step, which 
never exceeded 7 in the reported experiments. Therefore, 
the DL methods may lose computational efficiency when 
the model is capable to describe motions at scales well 
below those resolved by observations. This restriction 
can be bypassed if the covariances are localized on a 
grid compatible with the decorrelation scale, a technique 
suggested by Bishop et al. (2011) to speed up the locali- 
zation algorithms. 

The DL algorithms have enough room for further 
development along several directions. In particular, the 
degree of local inhomogeneity of the target covariance 
could possibly be assessed by monitoring dependence of 
spatial asymmetry of the local correlations on the 
number of ensemble members used for their evaluation. 
This information could then be blended in the cost 
function (19) to prevent overfitting sample correlations 
by the analytic model. Efficient higher-order approxi- 
mations to the diagonal elements of F{ D} could also be 
thought out to improve the accuracy in estimating the 
DL correlation matrix. Finally, the overall accuracy of 
the DL covariance estimates could also be improved 
through their renormalization by the optimally filtered 
(e.g., Raynaud et al. 2009; Berre and Desroziers 2010) 
diagonal elements of f • v. This approach can simulta- 
neously reduce sampling errors in the variance field v 
estimates and errors associated with the LH assumption 
in computing the diagonal elements of F{D}. 

One should also keep in mind that ensembles en- 
countered in large geophysical DA problems are likely 
to have more complicated structure than the simulated 
ensembles described by (16). In particular, real-life en- 
sembles are often biased and they do not normally 
demonstrate k~ia error scaling for realistic ensemble 
sizes. On the other hand, the "true" covariance matrices 
are never known and can hardly be computed for real 
applications in the nearest future. As a consequence, the 
only way to compare localization techniques is to esti- 
mate their forecast skill and computational efficiency 
within the real DA problems. Presented results give only 
an indication that further studies of the DL methods are 
worth pursuing as they seem to be competitive with 
other localization techniques. A definite answer could 
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be given only by the aforementioned experiments with 
real ensembles, which will be the subject of our future 
research. 
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APPENDIX A 

Differentiation of the Correlation Functions 

To simplify the notations, denote derivatives of a cor- 
relation function C(r) by the subscript r and the inverse 
of the diffusion tensor by Raß. The second derivative of 
a correlation function C(r) is 

VaVßC(r) = C„( V)( V) + C'V« V-     <A1> 

Taking the first and second derivatives of (11) under the 
assumption of local homogeneity yields 

V = 7Äa/=     W = 7[*afl-ra«],      (A2) 

where 

V
aß--^R

a^
Rßv

r" 

is bounded at r -» 0. 
After substituting (A2) into (Al) and rearranging the 

terms, (Al) takes the form: 

\VßC~Kaß 
+ (crr-^yaß.        (A3) 

Substitution of the expression in the rhs of (9) into (A3) 
and taking the limit r -* 0 yields (12). Similar operation 
with the rhs of (10) shows that the second term in the rhs 
of (A3) is zero if n > 2, whereas the first term is equal to 
nl(2 — n). Note that constraint n > 2 is imposed by the 
condition of differentiability of the correlation function 
(10) at r = 0. 

More generally, by using Fourier representation of 
the covariance function [e.g., Eq. (11) in Yaremchuk 
and Smith (2011)] it is easy to show that the relationship 

holds for arbitrary correlation functions twice differen- 
tiable at r = 0 and satisfying the local homogeneity 
condition. Therefore, the differential method that is based 
on the relationship 

=(^oc^r WßC (A5) 

JI^-T) 0 (A4) 

could be applied to a much broader class of correlation 
models than those described by (6)-{7). 

APPENDIX B 

Estimating Second Derivatives of the Correlation 
Function from Ensemble Perturbations 

By definition, the tensor of second derivatives of the 
BEC matrix B(x, y) = Bxy can be represented in two 
ways: 

v«VypBxy = {(V'axx)(Vßxy)) = Va Vß(WxCxyyy),       (Bl) 

where bold italicized superscripts denote the variables of 
differentiation and the subscripts enumerate the corre- 
sponding coordinates in physical space. The rhs of (Bl) 
can be rewritten as 

WßOiAyV = (TO(V* V,)^ 

+ vy(v*vj.v^y 

(B2) 

Taking the value of (B2) at the diagonal (x = y) under 
the assumption of local homogeneity Cxy = Cx-y im- 
plies that y = x in all the expressions involving V and 
its derivatives and V'V^C,-,, = -Vr

aV
r

ßCr = -[VaVpC]. 
Assuming that the correlation function is differentiable 
at r = 0 also implies that its gradients at r = 0 are zero 
and, therefore, two middle terms in the rhs of (B2) 
vanish. After taking into account the right equality in 
(Bl) and the definition C« = 1, (B2) transforms into 

«VWV» = (VWV) - V°V°[VaVpC]'        (B3) 

which yields (14) after rearrangement of the terms. 

APPENDIX C 

Diffusion Tensor Model 

Numerically, the diffusion operator is defined by 

D = (*V)T(i>V), 
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where V is the first-order finite-difference representa- 
tion of the gradient in 2D and v is the square root of the 
local diffusion tensor (vTv = D) represented by 

/«   0\/cosy     siny\ 

\0   l/V-sin?    cosy/ ° 

Here üQ = 15 km is the background decorrelation scale, 
aa0 is the square root of the larger eigenvalue of D, 
and y is the direction of the eigenvector, corre- 
sponding to this eigenvalue. The larger principal axis 
of D is aligned along the depth h(x, v) contours and 
its magnitude is proportional to the bottom slope 
s = (h\ + h2

y)
m. Specifically, the parameters a and y 

are defined by 

a = 0(J-sc)(v/Q^-l)+l, (C2) 

y = d(s-sc)tan-l(-hx/h), (C3) 

where 6 stands for the step function. With this definition, 
the diffusion is isotropic (v = fl</) when the slope is 
below the critical value sc, which is chosen to be s = 
0.0003. In this case, only 20% of points in the domain 
were characterized by isotropic diffusion. 
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