
EVALUATING THE EFFECTIVENESS OF IP HOPPING VIA AN ADDRESS

ROUTING GATEWAY

THESIS

Ryan A. Morehart, Second Lieutenant, USAF

AFIT-ENG-13-M-35

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-13-M-35

EVALUATING THE EFFECTIVENESS OF IP HOPPING VIA AN ADDRESS

ROUTING GATEWAY

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science

Ryan A. Morehart, B.S.

Second Lieutenant, USAF

March 2013

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-13-M-35

EVALUATING THE EFFECTIVENESS OF IP HOPPING VIA AN ADDRESS

ROUTING GATEWAY

Ryan A. Morehart, B.S.
Second Lieutenant, USAF

Approved:

AFIT-ENG-13-M-35
Abstract

This thesis explores the viability of using Internet Protocol (IP) address hopping

in front of a network as a defensive measure. Network address space randomization

techniques theoretically provide protection to a network by appearing to randomly change

the addresses of hosts inside, presenting a challenge to an intruder attempting to break in

and map the network. This research presents a custom gateway-based IP hopping solution

called Address Routing Gateway (ARG) that combines previous work in this area.

ARG works as a transparent gateway in front of a network, requiring no changes to the

hosts inside or out. Each ARG gateway is configured with a small amount of knowledge

on one or more other gateways, allowing them to connect and pass fully encrypted and

authenticated traffic amongst themselves. Connections to non-ARG networks or hosts

are handled gracefully, allowing long-lived connections to exist without terminating them

during IP address changes. This thesis tests the overall stability of ARG, the accuracy of

its classifications, the maximum throughput it can support, and the maximum rate at which

it can change IPs and still communicate reliably.

This research is accomplished on a physical test network with nodes representing the

types of hosts found on a typical, corporate-style network. Direct measurement is used to

obtain all results for each factor level. Tests demonstrate ARG classifies traffic correctly,

with no false negatives and less than a 0.15% false positive rate on average. The test

environment conservatively shows this to be true as long as the IP address change interval

exceeds two times the network’s round-trip latency; real-world deployments may allow for

more frequent hopping. Results show ARG capably handles traffic of at least four megabits

per second with no impact on packet loss. Fuzz testing validates the stability of ARG itself,

although additional packet loss of around 23% appears when under attack.

iv

Acknowledgments

I would like to thank my wife for putting up with late nights, missed phone calls, and

many terrible revisions. Her patience has been astounding. Without her support this would

have not been possible. Also, thanks to Dr. Mullins for giving me the freedom to direct my

own work, yet always being willing to provide advice when needed.

Ryan A. Morehart

v

Table of Contents

Page

Abstract . iv

Acknowledgments . v

Table of Contents . vi

List of Figures . ix

List of Tables . x

List of Acronyms . xii

I. Introduction . 1

1.1 Motivation . 1
1.2 Goals and Limitations . 2
1.3 Thesis Overview . 3

II. Background . 4

2.1 Network Routing . 4
2.1.1 Internet Protocol (IP) Routing . 4
2.1.2 Network Address Translation . 6
2.1.3 Ethernet and Address Resolution Protocol (ARP) 8

2.2 IP Hopping in Detail . 9
2.2.1 End Point Hopping . 11
2.2.2 Gateway hopping . 13

2.3 Data Security . 15
2.3.1 Hashing . 15
2.3.2 Encryption . 16
2.3.3 Authentication . 17
2.3.4 Combining for Full Effect . 17

2.4 Time-Based One-Time Password (TOTP) 18
2.5 Previous Implementations . 19

2.5.1 BBN’s Dynamic Network Address Translation (DYNAT) 19
2.5.2 Sandia Dynat . 20
2.5.3 Applications that Participate in their Own Defense (APOD) 20
2.5.4 Network Address Space Randomization (NASR) 21

vi

Page

2.5.5 Network Address Hopping (NAH) 22
2.5.6 Transparent Address Obfuscation (TAO) 23

2.6 Summary . 23

III. Implementation . 24

3.1 Requirements . 24
3.2 Architecture Overview . 25
3.3 Components . 27

3.3.1 Director . 28
3.3.2 Hopper . 30
3.3.3 Network Address Translator . 32

3.4 Address Routing Gateway (ARG) Protocol 33
3.5 Summary . 36

IV. Methodology . 37

4.1 Problem Definition . 37
4.1.1 Goals and Hypothesis . 37
4.1.2 Approach . 38

4.2 System Boundaries . 38
4.3 System Services . 39
4.4 Workload . 41
4.5 System Parameters . 42
4.6 Evaluation Technique . 42
4.7 Performance Metrics . 44
4.8 Experimental Design . 45
4.9 Summary . 48

V. Results and Analysis . 50

5.1 Basic Tests . 50
5.1.1 Valid Packet Loss . 50
5.1.2 Invalid Packet Loss . 54

5.2 Minimum Hop Interval . 56
5.3 Maximum Packet Rate . 61
5.4 Fuzzing Test . 65
5.5 Overall Analysis . 68
5.6 Summary . 69

vii

Page

VI. Conclusions and Recommendations . 70

6.1 Research Conclusions . 70
6.2 Research Impact . 70
6.3 Future Work . 71

6.3.1 IPv6 Support . 71
6.3.2 Fragmentation Support . 71
6.3.3 More Extensive Malicious Testing 71
6.3.4 More Intelligent NAT . 72
6.3.5 Integration with Other Defenses 72
6.3.6 Latency Compensation . 72

6.4 Summary . 73

Appendix A: IP Packet Structure . 74

Appendix B: ARG Protocol . 75

Appendix C: ARG Testing . 80

Appendix D: ARG Building and Configuration . 82

Appendix E: Traffic Generators . 89

Appendix F: Results Processor . 94

Bibliography . 99

viii

List of Figures

Figure Page

2.1 IP routing example network . 5

2.2 ARP exchange example . 9

2.3 IP hopping example network . 10

3.1 ARG conceptual network layout . 26

3.2 Packet sent between gateways when hop interval is half the latency 28

3.3 ARG director flow . 29

3.4 ARG incoming packet validation process . 32

4.1 ARG System Under Test (SUT) diagram . 39

4.2 ARG test network layout overview . 43

4.3 Experiment traffic flow directions and protocols 49

5.1 Basic tests, raw valid packet loss . 51

5.2 Basic tests, valid packet loss means and confidence intervals 52

5.3 Hop interval tests, packet loss of User Datagram Protocol (UDP) and

Transmission Control Protocol (TCP) traffic between ARG networks 56

5.4 Hop interval tests, scaled view of packet loss between ARG networks 57

5.5 Time synchronization process, including ARPs 59

5.6 Hop interval tests, packet loss of TCP traffic between ARG networks 62

5.7 Hop interval tests, packet loss of externally-bound traffic 64

5.8 Packet rate tests, clustered loss verses throughput 66

5.9 Packet rate tests, Tukey test against clustered data 67

ix

List of Tables

Table Page

2.1 IP routing example: Router A table . 5

2.2 Network Address Translation (NAT) table example 7

2.3 Hashing example . 15

3.1 Information hopper module maintains on other ARG gateways 31

3.2 ARG NAT table example . 33

3.3 ARG packet data . 34

3.4 ARG message types . 35

3.5 ARG message security summary . 36

4.1 Factor levels for basic tests . 46

4.2 Factor levels for throughput tests . 46

4.3 Factor levels for minimum hop interval tests 47

4.4 Factor levels for fuzz tests . 47

5.1 Basic tests 1-4 packet rejection reasons . 53

5.2 Basic tests, packet loss of invalid traffic . 54

5.3 Basic tests 5-8 packet rejection reasons . 55

5.4 Hop interval test loss reasons . 63

5.5 Packet rate clusters . 65

A.1 IP packet structure . 74

B.1 Data in ARG WRAPPED message . 75

B.2 Data in ARG PING message . 76

B.3 Data in ARG CONN REQ and CONN RESP messages 76

B.4 Data in ARG TRUST DATA message . 77

C.1 Test run tcpdump calls . 80

x

Table Page

E.1 gen traffic.py command-line parameters . 92

F.1 process run.py command-line parameters 95

xi

List of Acronyms

Acronym Definition

AES Advanced Encryption Standard . 16

APOD Applications that Participate in their Own Defense . 20

ARG Address Routing Gateway . 1

ARP Address Resolution Protocol . 8

CI confidence interval . 50

COTS Commercial Off-The-Shelf .21

CPU Central Processing Unit . 55

CUT Component Under Test . 37

DARPA Defense Advanced Research Projects Agency . 20

DHCP Dynamic Host Configuration Protocol .21

DOS Denial of Service . 55

DYNAT Dynamic Network Address Translation . 19

HMAC Hashed Message Authentication Code . 15

HOTP HMAC-Based One-Time Password . 18

HTTP Hypertext Transport Protocol .19

IDS Intrusion Detection System . 1

IP Internet Protocol . 1

IPsec IP Security . 17

IPv4 IP version 4 . 4

IPv6 IP version 6 . 4

ISP Internet Service Provider .6

IV Initialization Vector . 76

Kbps kilobits per second . 45

xii

Acronym Definition

MAC Media Access Control . 8

Mbps megabits per second . 38

NAH Network Address Hopping . 22

NASR Network Address Space Randomization . 1

NAT Network Address Translation. .6

PCAP Packet Capture . 43

RAM Random Access Memory . 44

RSA Rivest, Shamir, and Adleman. .16

RTT Round-Trip Time . 45

SHA Secure Hash Algorithm . 15

SUT System Under Test . 37

TAO Transparent Address Obfuscation . 23

TCP Transmission Control Protocol . 14

TOTP Time-Based One-Time Password . 4

UDP User Datagram Protocol . 34

VLAN Virtual Local Area Network . 44

VPN Virtual Private Network . 20

WAN Wide Area Network . 60

xiii

EVALUATING THE EFFECTIVENESS OF IP HOPPING VIA AN ADDRESS

ROUTING GATEWAY

I. Introduction

1.1 Motivation

Traditional network defenses consist of largely static tools. Firewalls and Intrusion

Detection Systems (IDSs) form the backbone of protection in most information technology

shops. Despite extensive work and research into these systems, attackers still routinely

break into networks and bring down critical systems, exfiltrate data, and establish footholds

for future actions. In an effort to combat this, interest has increased in more active defense

mechanisms, such as reputation and trust-based security [NV09] and Network Address

Space Randomization (NASR) [APWJ03, SSH05]. This thesis focuses on the latter in a

large corporate network setting.

At a high level, the concept of NASR is simple: rather than a system sitting on a

single Internet Protocol (IP) address, it changes addresses rapidly, hopping amongst a set

of IP addresses assigned to it. Normally an attacker wishing to target a given network

is capable of gaining intelligence through simple scanning, checking each IP inside the

network and then checking each port on the active IPs to see what services are available.

With this knowledge, the attacker can often find an entrance into the network. IP hopping

mitigates this issue by making it difficult to probe the network in the first place and quickly

invalidating any network map that the attacker does manage to generate; even if they do

manage to look a system’s internal IP at one point in time, the address will change moments

later.

1

1.2 Goals and Limitations

This thesis proposes an IP address hopping system called Address Routing Gateway

(ARG). It incorporates many of the features of previous address-hopping schemes, with

an eye on the specific needs of the military and any other large, geographically diverse

corporation. In this context each of the existing systems presents drawbacks that ARG

attempts to avoid. Additionally, the design of ARG is intended to allow its future integration

with a traditional IDS and honeypot, potentially gaining additional insight into an attacker’s

behavior.

The geographically diverse military network demands high availability, reliability, and

security over any network. Additionally, ARG must support transport over the commercial

Internet. In light of these and other requirements, this thesis examines several questions

with regards to IP hopping and ARG.

• Does ARG classify traffic correctly? What percentage of false positives (valid

packets blocked) and false negatives (invalid traffic allowed through) does it

introduce?

• What is the maximum packet rate ARG can support?

• What is the minimum hop interval—the time between ARG’s IP changes—that is

supportable? How does latency affect this?

• Is ARG stable when presented with corrupt, malformed, and/or replayed packets?

Each question is tested in a separate series of experiments. Direct measurement on a

physical network is used for all results. Nodes on the test network represent the types of

hosts found on a typical, corporate-style network. These include trusted hosts inside trusted

networks which communicate freely, internal and external servers that must be accessible

to hosts inside these trusted networks, and malicious hosts outside the networks. ARG sits

2

in front of the trusted networks and provides network address space randomization to the

internal hosts.

1.3 Thesis Overview

This chapter introduces the research, goals, and limitations of the work in this thesis.

Chapter 2 covers foundational background topics, concepts, and research. Chapter 3

discusses the design of ARG, including design requirements, architecture, and the network

protocol. Chapter 4 walks through the test methodology used in this thesis, while Chapter

5 presents results and analysis of these tests. Finally, Chapter 6 provides a concluding

discussion of this research and presents possible areas of future work.

3

II. Background

This chapter provides an introduction to the technology behind IP hopping and many

of the previous efforts in this area. Section 2.1 describes how routing works at various

points in a network. Section 2.2 covers IP address space randomization—referred to

as “IP hopping” in this thesis—and two possible approaches. Sections 2.3 and 2.4

provide descriptions of two critical systems behind the implementation this thesis presents,

encryption and Time-Based One-Time Password (TOTP). Finally, Section 2.5 examines

previous efforts in IP address hopping.

2.1 Network Routing

2.1.1 IP Routing.

This thesis assumes that the reader has a familiarity with how IP works. However,

several aspects of this protocol are critical to the functioning of the system described later

and are detailed here.

IP packets are routed from system to system based on the destination IP address

contained in their header. Appendix A displays the format for both IP version 4 (IPv4)

and IP version 6 (IPv6) packets. IPv4 uses 32-bit addresses to uniquely identify each

system on the public Internet. These addresses are typically represented in a “dotted quad”

format: for example, 74.125.228.36. IPv6 uses 128-bit address, typically represented in

hexadecimal and separated by colons, along the lines of fe80::baf6:b1ff:fe1b:b4a1.

Regardless of which version is in use, high-level routing remains conceptually the

same. Routers maintain a table of IP addresses, masks, and the interfaces associated with

each. When a packet is received, the router consults this table and decides what interface

to send the packet out on based on the most specific entry. For example, in the network

4

shown in Figure 2.1, the laptop with IP 10.5.0.25 wants to send a packet to 172.100.10.3.

When 10.5.0.25 sends its packet, the following sequence of events occurs:

A

C

B

Port 2

Port 1

Port 3
10.5.0.25

172.100.0.3

172.100.10.3

172.100.10.5

Figure 2.1: IP routing example network

1. The packet leaves 10.5.0.25 and Router A receives it on its interface Port 1.

2. Router A compares the packet’s destination IP (172.100.10.3) to its table, which looks

like Table 2.1.

Table 2.1: IP routing example: Router A table

IP Mask Interface

1 10.5.0.25 255.255.0.0 Port 1

2 172.100.10.0 255.255.255.0 Port 2

3 172.100.0.0 255.255.0.0 Port 3

5

3. Router A determines the IP matches best with entry 2, which instructs the router to

forward the packet via Port 2.

4. Router B receives the packet and does a similar lookup, forwarding it out on the port to

172.100.10.3.

5. 172.100.10.3 receives the packet.

This scheme allows a router to direct packets without having to know every individual

IP; they only need to know broad address ranges. In the example, Router A possesses

no knowledge of how to get the packet directly to 172.100.10.3, but it does know which

direction to send it. This becomes exponentially more useful on larger networks. A

corporation’s network, for instance, may contain hundreds or thousands of addresses, but

the routers directing packets to them need only have one entry in their table to correctly

route packets. The internal routers of the corporation are then in charge of further routing.

This limited-knowledge architecture allows IP hopping to work. As long as the tables

of the routers outside the network contain the correct IP ranges, the systems inside are free

to change addresses as frequently as they want and handle internal routing any way they

desire.

2.1.2 Network Address Translation.

Network Address Translation (NAT) is a core technology behind many modern home

and corporate networks, allowing many systems to connect to the Internet yet appear to

come from a single external IP address. A typical home network, for instance, might have

the external IP address 184.58.31.151 assigned to it by their Internet Service Provider (ISP)

yet have five systems—laptops, desktops, phones—inside with IPs like 192.168.0.103,

192.168.0.50, and 192.168.0.1. As these systems send requests out, the router changes

the source IP (and port) for packets to the external IP address. As responses come back

6

from the Internet, the router does the opposite, changing the destination of the packets

from the external IP to the internal IP of the original requester.

To do this, routers must maintain a NAT table. This table consists of the source and

destination information as well as a new port number, allowing the router to consistently

transform traffic in both directions. For example, a router might have a table like the one

shown in Table 2.2.

Table 2.2: NAT table example

Int IP Int Port Remote IP Remote Port Ext Port

1 192.168.0.103 3547 74.125.225.69 443 50003

2 192.168.0.103 8751 207.109.73.34 80 42630

3 192.168.0.112 30452 4.27.2.253 80 53920

This small table shows three different connections in progress. The router created each

entry the first time an internal system sent a packet to the remote (Internet) system, for each

set of internal and remote IPs and ports. In addition, the router assigns an external port for

each connection to allow it to determine the destination of incoming packets.

In the future, when the router receives an outgoing packet (from the internal host to

the external), it begins by consulting its table to find a match based on the first four values

in the table. Based on the table entry, the router changes the source IP of the packet to the

external IP assigned to it by the ISP and the source port to the external port given in the

table (if it does not find one, it creates a new one). When the router receives a packet from

the Internet, it checks for a match in the table based on the remote IP, remote port, and

external port. If it finds one, it alters the packet’s destination information to the internal IP

and port; if it does not find a match, it drops the packet.

7

This system serves two purposes. First, as the number of systems on the Internet has

increased, IPv4 addresses have become a limited resource, with their 32-bit length limiting

the number of possible addresses to around four billion. NAT allows an organization to

only own a single address yet serve many systems behind it. Second, NAT inherently acts

as a simple stateful firewall [ARMT06]. In order for an outside system to send packets to

an internal host, the internal host must initiate the connection, allowing the router to create

the table entry.

2.1.3 Ethernet and Address Resolution Protocol (ARP).

Many local networks use Ethernet for the first and last leg of network travel to actual

hosts. In a flat network, where local machines are connected together via switches or hubs,

IP routing is not typically used. Instead, packets are directed to the correct recipient via

physical identifiers known as Media Access Control (MAC) addresses. Packets sent on an

Ethernet network are wrapped in an Ethernet frame, which specifies the MAC addresses of

the sender and receiver.

When a packet is first created, however, the host system only knows the destination IP.

Before the packet can be sent out, the sender must determine the destination MAC address.

This is done through an ARP request, a process illustrated in Figure 2.2.

As shown, the sender first asks on the network who has the destination IP. Every host

on the network (typically) hears the request, but only the host with that IP responds, sending

back an ARP response with their MAC address to the requester. With the destination MAC

now in hand, the original sender can construct the Ethernet frame for their IP packet and

send the data on its way. The sender caches the physical address of the other machine for a

short time to avoid repeating the ARP request too frequently.

To send packets beyond the local network, hosts use a gateway system, usually a

router. They transfer the packet to the gateway via Ethernet, then the gateway directs the

8

DestinationSender

ARP Request
Who has 192.168.0.5?
Tell aa:aa:dd:ff:bb:ee

ARP Response
192.168.0.5 is at
bb:bb:cc:dd:ee:ff

Ethernet Frame
Src: aa:aa:dd:ff:bb:ee
Dest: bb:bb:cc:dd:ee:ff

Ti
m

e

Figure 2.2: ARP exchange example

packet further. Ethernet and ARP are not used directly by local hosts to reach hosts beyond

the gateway.

2.2 IP Hopping in Detail

Address hopping is a simple concept at a high level: take the basic identifiers of a

network and mutate them in a way that only authorized systems understand and continue

to use for communication. In this thesis, hopping focuses on changing the IP addresses

the “hopping” systems use. In some ways this is similar to frequency hopping, where

senders and receivers change the frequency in use in a synchronized manner to avoid

interference, jamming, and eavesdropping [MKR+04]. In the same way, changing the

IP addresses of packets makes it difficult for an adversary to correlate sniffed traffic with

individual machines and even more difficult to probe into the network to enumerate hosts.

Other methods of dynamic network reconfiguration exist, but address hopping may have

the greatest potential for obstructing network reconnaissance efforts [Rep08].

9

In trying to actually implement such a system, however, several issues arise. The

network Figure 2.3 illustrates is used to aid the following discussion. There are two main

networks A and B that wish to communicate freely. They are connected via the Internet

and are assigned the displayed IP ranges. Each of these has a few friendly end nodes (A1,

A2, B1, etc.) behind a main router (AR and BR). Additionally, network B has a potentially

rogue client inside it named M1. Outside of those two networks is the friendly C1 node,

who has an interest in at least occasionally communicating with nodes inside networks A

and B, and malicious M2, who wants access to said networks. The details of the routes

between them and A and B are inconsequential.

Note that for the sake of this discussion non-routable IPv4 addresses are used. This

is done merely for convenience and readability, everything applies to IPv6 as well unless

otherwise noted.

C1

M2

A1

A2

B1

M1

B2

AR
10.1.1.0/24

BR
10.2.2.0/24

Internet

Figure 2.3: IP hopping example network layout. Red nodes are malicious.

There are two basic ways to deploy IP address hopping on this network: each end

point hops individually or the network gateways transform incoming and outgoing packets.

Both options and their strengths and weaknesses are discussed.

10

2.2.1 End Point Hopping.

For the example network, end point hopping means that all nodes behind AR and

BR (A1, A2, B1, etc.) change addresses on a periodic basis, independent of one another.

Despite the apparent simplicity of this setup, several questions must be answered.

First, how do the nodes keep track of one another? If every node knows about all the

others, then scalability might become an issue, as every client presumably has to maintain

some amount of data on fellow hopping clients to determine the IP each one possesses at

any given time. It may be possible to devise a scheme where this flaw is mitigated by

having all clients hop using the same secret and they each know just the broad IP ranges

where fellow hoppers reside (i.e., the AR nodes know that 10.2.2.0/24 is a network they talk

to with hopping), but this accentuates the next question: how do clients choose their hops?

Each node must know some secret from which IP addresses are generated, hopefully

in a manner which appears random to outsiders yet is predictable for those with the secret.

The secret combined with the algorithm used to generate IP addresses results in what this

thesis refers to as a “hopping pattern.” The most obvious approach is to share a single secret

amongst all nodes in a give “hopping network.” In the example network, this would mean

A1, A2, B1, and B2 all possess the same secret. While straightforward, this does have the

potential flaw of revealing too much information to an eavesdropper though: with a large

number of nodes all following a hopping pattern based on the same key, it may be easier to

deduce the secret [Sha49].

Giving each node a separate secret would solve this issue. However, each client now

has to maintain even more information on every other client. For a small number of nodes

this is not a problem, but if the intention is to scale to thousands or tens of thousands of

clients problems with processing and key distribution may arise.

Just as importantly, however, is the question of how nodes coordinate their IP address

choices. As discussed in Section 2.1, IP routing requires addresses follow a largely

11

hierarchical setup. Thus, if A owns the network address range 10.1.1.0/24, then all of

its nodes must fall within the address range of 10.1.1.1 through 10.1.1.255. This means

that when each node hops it must remain within the valid range of the network to which it

connects and that the address it chooses must not already be taken by another node. Given

enough nodes in a subnet, a conflict is quite possible, leading to unpredictable network

behavior. For example, in the example network A there are 255 available IP addresses.

As shown by the birthday paradox, there is a 50% chance (on every hop) of having an IP

address conflict with only 20 hosts, assuming uncoordinated random hops [Buc04]. On

a larger network with 65,535 possible IPs (a /16 network), only 302 hosts are needed to

exceed a 50% collision probability.

The easiest solution to this problem is to give each node a unique, non-overlapping

address range in which to hop. This requires no on-going communication with other nodes

to work well and has the distinct advantage of working properly with existing defenses (i.e.,

a firewall with special rules for a host can point to the range for that host, rather than an

individual IP). This setup requires a large enough address space to make hopping beneficial.

If a given node only has five possible addresses in which to hop, for instance, it becomes

trivial for an attacker to just keep trying a single IP address until the node returns to it.

IPv6 would alleviate this problem, as the Internet Engineering Task Force recommends the

allocation of a /64 address space (264 addresses) to every link [SWLX02], but IPv4 with its

more limited address space would not allow this flexibility and, unfortunately, the reality

of current networks mandates support for IPv4 [CGKR].

With enough coordination between nodes everyone could share the same address

space. A fair amount of work would need to be put into an algorithm and protocol to

synchronize the hosts’ address changes, but this is not insurmountable. This does break

most special cases in firewalls unless the firewall is either made aware of the IP hopping

system or hosts that need special rules do not change addresses at all.

12

Despite the negatives given above, end point hopping does have advantages. First,

scalability issues lie more in storage space and key lookup speed than actual computation,

as every node only has to perform packet transformations for their own incoming and

outgoing packets. Additionally, many IP hopping schemes incorporate encryption, which

may consume a relatively large proportion of processing time [KFLD01, MPS+02].

Distributing this load may be beneficial. Second, end point hopping protects clients from

probing no matter where the adversary is in the network. For example, as long as M1 in our

example network lacks the hopping key, they have no more of an advantage in scanning any

of the A or B nodes than M2, who is outside the network. Finally, end point hopping comes

with the ability for individual nodes such as C1 to easily connect to the main hopping

network without the need to develop new software or deploy extra hardware. This is in

distinct contrast to gateway-based hopping, which by definition uses a separate system to

handle hopping, as Section 2.2.2 discusses.

2.2.2 Gateway hopping.

The alternative to end point hopping is to move the hopping to network gateways. In

such a scheme, networks are placed behind gateways that alter all traffic passing through

them appropriately. What “appropriately” means varies with every implementation, but in

one way or another, a gateway outside of the actual end points alters the IP traffic to make

it appear as though the systems inside are changing IP addresses. Referring back to the

example network in Figure 2.3, gateways AR and BR would be in charge of these packet

transformations, altering traffic from the clients inside their networks (e.g., A1, A2, etc.)

to outside hosts. The hopping secrets stored on end points in end point hopping are now

stored at the gateway, with each gateway getting its own unique set of keys; the gateways

typically lack precise knowledge of the end points they protect.

Nodes inside the network may or may not have knowledge of the hopping. In

most instances the hopping occurs with no modification of the end points and is largely

13

transparent [AA06]. The need to only deploy a small number of gateway systems, rather

than altering every client system, gives gateway-based hopping an advantage over end

point-based on larger networks. Applying software and/or hardware changes to every

system is costly in terms of both time and manpower. Even more significantly, legacy

systems running older operating systems might need custom solutions, increasing the cost

of deployment.

The most common observable side effect of gateway hopping (beyond the latency

associated with the additional processing) is Transmission Control Protocol (TCP)

connection dropping. Because TCP depends on IP addresses and ports numbers to

identify on-going connections, any alterations to this information would traditionally kill

the connection [AAMA07]. This is a problem also faced by end point hopping schemes,

but is more easily corrected because the individual machines know the state of connections

and can correct appropriately. With gateway hopping, however, the situation may require

more significant state tracking and packet inspection at the gateway.

Because of this required state tracking and the need for a single system to alter

all traffic in and out of an entire network, gateway-based hopping presents a possible

performance problem. With enough traffic or individual nodes behind a gateway, it may

be possible to overload the gateway, leading to dropped packets and failing connections.

Depending on gateway design this may be avoided; some studies show an additional CPUs

load of around 10% even when encryption is applied, when compared to standard routing

[AA06]. While noticeable, this increase does not cause immediate issues. Additionally,

impact would likely be lower with modern processors, due to the introduction of hardware

encryption on-chip [BBGR09].

Finally, gateway hopping may have more difficulty accommodating individual clients

connecting to the network. In C1’s case, for instance, if it wanted to be able to talk to

A1, it would need to obtain the appropriate hopping information from AR and alter its own

14

traffic accordingly. There are several techniques to make this work, but all of them require

more work than an end-point hopping system would, simply because end-point hopping is

already designed around the concept of individual nodes connecting together.

2.3 Data Security

2.3.1 Hashing.

Cryptographic hash functions take a given sequence of bytes and return a fixed-

length string of bits representing that data. While their output is not unique for every

input, cryptographic hashes attempt to make it infeasible to generate two messages with

the same hash or to modify an input and get the same hash. As illustrated in Table 2.3,

these properties allow the use of hashes to verify data because even small changes result in

different output.

Table 2.3: Hashing example

Input Output (SHA-1)

Original The quick brown fox jumped c950af1b07223c7d8590538189b3bcd9f4e08c6c

Changed The quick brawn fox jumped 97c592d5c0d991b91c68edb3941b1bb075a97f56

Here even a small change (o to a) resulted in a significantly different output. If the

sender gave both the data and the hash to a recipient, the recipient would be able to repeat

the hash on the data and verify that their hash matches the one the sender gave them. Hash

algorithms, like the Secure Hash Algorithm (SHA) family used in this example, are widely

published, so anyone can produce a valid hash of any data they want. This means that

hashes alone do not prevent against malicious modification: an attacker can modify data,

then produce a new hash to match. To counter this problem, either a digital signature or a

Hashed Message Authentication Code (HMAC) must be used, as covered in Section 2.3.3.

15

2.3.2 Encryption.

Encryption is a crucial component of most hopping systems. Additionally, encryption

forms the basis of digital signatures, a means of verifying that a given message—a single

packet, in most contexts here—came from where the receiver believes. It is not important

for the purposes for this thesis to understand the math behind encryption, but a few concepts

are helpful.

Encryption comes in two major flavors, symmetric and asymmetric. Symmetric

encryption uses the same key for encryption and decryption and, in many cases, is relatively

fast. Newer CPUs, such as Intel’s Core processors, include hardware instructions for the

commonly used Advanced Encryption Standard (AES) algorithm, increasing symmetric

encryption’s speed even further [Gue10]. Because anyone with the encryption key can

decrypt the data, participants must establish their shared secret in a secure way.

Asymmetric encryption—also referred to as public-key encryption—provides a way

to exchange secure data without having to establish a secret key in advance. In asymmetric

encryption a public key, known to everyone, and a corresponding private key, known only

to one participant, are used. If a sender wants to transmit data to a specific receiver

securely, they encrypt the data with the receiver’s public key. When the receiver gets

the transmission, they decrypt it with their private key. Because no one else knows the

private key of the receiver, it is impossible for anyone else to decrypt the data, even though

the encryption key is widely known. In exchange for the robustness and openness of this

encryption style, asymmetric encryption algorithms tend to be slow when compared to

symmetric encryption.

Asymmetric and symmetric encryption are typically used together in network

communications. When a connection is first established, a public-key encryption scheme

such as Rivest, Shamir, and Adleman (RSA) determines the shared symmetric key, then

all future data is encrypted with a symmetric algorithm like AES [CS03]. This hybrid

16

approach provides the best of both worlds: no need to establish a shared secret in advance

and speed during longer communications.

2.3.3 Authentication.

Authenticating that a given sequence of bytes actually comes from whom they say

they do can be done through either a HMAC [KBC97] or a digital signature [JK03].

These algorithms are based on symmetric and asymmetric encryption, respectively, and

therefore share the same strengths and weaknesses. Both algorithms are widely used today

in protocols like IP Security (IPsec) [MG98] and user-level data like email [RT10].

HMAC works through a series of multiple hashes with the data and an encryption key.

Both sender and receiver have the same shared symmetric key, allowing them each to do

the HMAC process independently. The sender includes their computation of the HMAC

with the original data, then the receiver calculates their own HMAC and ensures it matches

the one sent with the message. If it does, the receiver knows the message is unchanged and

comes from someone with the correct shared key.

For a digital signature, the sender encrypts the data’s hash with their own private key.

The recipient verifies the authenticity of the message by performing their own hash of the

data and decrypting the signature with the sender’s public key. If the calculated hash and

the decrypted hash match, the sender must be who they claim to be, as only that sender has

access to the correct private key.

2.3.4 Combining for Full Effect.

By combining encryption and authentication, two parties can communication with

confidentiality and integrity. For public key encryption, a sender signs the message with

their own private key, then encrypts the message with the public key of the recipient [An01].

The recipient decrypts the message with their private key, then verifies the signature with

the public key of the sender.

17

For symmetric encryption, the opposite order is used. First the sender encrypts the

data with one symmetric key, then adds an HMAC of the ciphertext [BN00]. The receiver

computes the HMAC of the cipher text and verifies the attached one to ensure the integrity

and authenticity of the message. The receiver then decrypts the data.

2.4 Time-Based One-Time Password (TOTP)

The system discussed in this thesis relies heavily on values that are unpredictable to

an outsider but calculable for anyone with the secret key. The algorithm behind these

values is Time-Based One-Time Password (TOTP) [MMPR11], which in turn relies on

the HMAC-Based One-Time Password (HOTP) algorithm [MBH+05]. Both of these

algorithms are frequently used in two-factor authentication systems employed by banks

and other websites, with a smartphone app or key fob displaying the current password

[AZEH09].

HOTP utilizes a key of at least 128-bits and a “counter” to produce its output. These

are passed to a SHA-based HMAC, which produces a 20-byte string. It then applies a

“truncation” process to the HMAC, returning a four-byte output [MBH+05]. If both sides of

an exchange know the key and the current counter, they are able to independently produce

the same value.

The counter for HOTP is set based on some event determined by the system designer.

In the most literal case, the usage of a given output for authentication causes an internal

counter to be incremented. In a situation like this, both sides of the HOTP (the sender and

the receiver) must keep their counters in-sync or the two will produce differing values and

need to be resynchronized.

To work around the desynchronization problem, time may instead be used as the basis

of the counter. RFC 6238 defines TOTP as a simple extension of HOTP where the counter

becomes the current time divided by a configured time step [MMPR11]. This change allows

18

all parties interested in a given TOTP to produce the same value as long as they keep their

clocks relatively similar (within one time step).

2.5 Previous Implementations

2.5.1 BBN’s Dynamic Network Address Translation (DYNAT).

BBN Technologies’ 2001 paper entitled “Dynamic Approaches to Thwart Adversary

Intelligence Gathering” tests the hypothesis that “dynamic modification of defense

structure improves system assurance” [KFLD01]. In the paper they lay out a custom

address space randomization solution called Dynamic Network Address Translation

(DYNAT).

A series of red-team tests against their DYNAT are used to test if the addition of IP

hopping decreases an adversary’s ability to map the network. The experimentation confirms

BBN’s hypothesis: DYNAT does increase system assurance because the adversary’s work

greatly increases in comparison to static networks. Even when the red team receives

detailed knowledge of the DYNAT’s operation, the adversary could not identify a critical

server in an enclave with DYNAT active [KFLD01].

BBN’s implementation focuses on individual clients connecting to a server collection

through a DYNAT gateway on the server end. This gateway transforms incoming and

outgoing packets between “true” host identification information—e.g., the actual IP address

and port number of a server inside the enclave’s network—and values which vary based on

a pre-shared key and time. On the client side, a “DYNAT shim” sits in the network stack

and does the same thing, transparently allowing client applications to work with the server

enclave. Additionally, DYNAT applies encryption to all traffic for confidentiality.

BBN’s experiments also found that encryption of the packets is crucial, as the attackers

can trivially sniff the traffic to find important servers, even if they do not know the real IP

address or port of the target. For example, an attacker might see a packet containing an

Hypertext Transport Protocol (HTTP) response and thus learn an active IP and port for a

19

web server, even if probing for the server is impossible. While this information remains

valid for a limited period, it may give enough time for the attacker to compromise the

internal network.

2.5.2 Sandia Dynat.

Sandia National Labs’ 2001 final report on their extensive work in the “dynat” field

examines virtually every detail in IP hopping systems, from how hopping is synchronized

to where in the network it is implemented [MPS+02]. This paper points to many of the

important issues that must be considered when implementing or deploying an IP hopping

tool.

Of note are Sandia’s recommendations on the location of the deployment of a gateway-

based DYNAT. In order to avoid interference with existing firewall rules—particularly ones

with a stateful firewall—a hopping gateway must be deployed beyond the current system.

Likewise, for gateway-based Virtual Private Networks (VPNs), there is often a static IP

requirement to allow for authentication [MPS+02], so an IP hopping gateway must also lie

beyond the VPN concentrator, closer to the public-facing side of the network. Essentially,

the hopping gateway should be the last system before each network connects to the outside

world [MPS+02].

The Sandia report also provides significant insight into the interaction of a DYNAT

with IPsec and strongly suggests a combination of the two. First, the encryption from IPsec

avoids the ineffectiveness of address space randomization if the packets can be trivially

sniffed for information, as BBN’s work reveals [KFLD01]. Second, a DYNAT strengthens

IPsec, as the hopping gateway can quickly reject invalid packets based on invalid source and

destination identifiers, rather than forcing IPsec to perform expensive HMAC computations

and/or encryption. However, the report also warns that the use of IPsec with a hopping

gateway can reduce some aspects of DYNAT’s access control because more identifiers are

encrypted and unusable.

20

2.5.3 Applications that Participate in their Own Defense (APOD).

BBN continued work in the dynamic network address translation field and proposed

another IP hopping implementation in 2003 as part of the Defense Advanced Research

Projects Agency (DARPA) Applications that Participate in their Own Defense (APOD)

project [APWJ03]. This system is a refinement of their previous DYNAT, featuring a NAT

gateway sitting either on the server host itself or on a gateway into the network.

The primary differences between APOD and the previous DYNAT relates to

implementation. Whereas the BBN DYNAT is a very specialized solution, APOD employs

standard Commercial Off-The-Shelf (COTS) utilities, such as Linux’s iptables, to perform

much of its work. APOD’s researchers propose the use of a NAT gateway on the networks

of both the client and the server, rather than a gateway only at the server side and/or

specialized software on each end point.

2.5.4 Network Address Space Randomization (NASR).

The 2005 Network Address Space Randomization (NASR) project is an IP address

hopping system designed to defeat hitlist-based worms [AAMA07]. These worms spread

to pre-collected lists of IP addresses that are likely vulnerable and typically propagate much

faster than traditional worms that target random IPs. To fight this, NASR causes the pre-

built hitlists to decay by changing IP addresses on a periodic basis. When the addresses

change, the worm’s lists are now inaccurate, giving them fewer exploitable targets.

The most unique aspect of this research is the use of Dynamic Host Configuration

Protocol (DHCP) to force the changes. Through the use of a slightly intelligent DHCP

server that leases IPs for a only a short time frame (on the order of tens of minutes) and

only offers IPs that have not been used recently, most networks already using DHCP can

quickly change to a randomized scheme. This simplicity does come at a cost, however:

TCP connections die whenever the IP change occurs, forcing the hopping period to be

quite long or risk unacceptable connection losses.

21

NASR attempts to reduce this issue by introducing additional intelligence into the

DHCP server to allow it to detect “long-lived” TCP connections (i.e., a download) and give

clients the same IP if they appear busy. Beyond that, they also monitor what services each

client uses, as many are resilient to a connection being torn down [AAMA07]. Despite

those improvements, address changes occur even in the fastest of instances only once an

hour or so. As tests show, this meets the goal of hitlist worm protection, but is likely

inadequate for obfuscating the network from a more intelligent, focused enemy.

2.5.5 Network Address Hopping (NAH).

A 2005 paper by European researchers presents a system they call Network Address

Hopping (NAH) [SSH05]. This system focuses on a client contacting a server as

a negotiable protection measure, rather than an always-on system used between pre-

configured systems.

A protocol employing IPv6 allows a client to tell a server that they supported (and

wish to use) NAH. If the server supports NAH, it replies with its hopping pattern. The

client sends its own hopping pattern, before reconnecting using the pattern the server just

gave it. Hops occur based on packet count per connection, rather than a time-based factor.

Once again, the NAH authors note the importance of encryption in maintaining the

confidentiality of the data stream. However, they also state that without encryption the

system still provides some benefit, as packets bound for “different” addresses might follow

differing network routes due to the different (perceived) destinations. If this occurs, an

attacker needs to either compromise a route fairly close to an endpoint to ensure they see

all traffic or compromise every possible route and collate the traffic together. Even if they

manage to accomplish that, the attacker would still have to collect all traffic passing them

in order to reconstruct the full stream (because they are unable to filter for specific IPs

to identify the connection they are interested in), which poses a storage and computation

problem given enough data [SSH05].

22

As an additional side effect of the variable routing, the researchers noted that such a

system may actually increase the throughput and reliability of a system. If multiple routing

paths are used, the network may avoid congestion and allow traffic to flow more smoothly

[MHCN96]. While this is not an important aspect of this system, the potential does add

support to the employment of address hopping [SSH05].

2.5.6 Transparent Address Obfuscation (TAO).

The 2006 TAO project focuses on protection of the Internet as a whole from hitlist-

based worms and is somewhat based on the previous work in NASR [AAMA07]. It features

gateways on networks that maintain external-to-internal address mappings for all nodes

inside the protected network, with the external addresses changing with a configurable

frequency. To maintain existing connections regardless of mapping changes, TAO includes

a NAT table.

A disadvantage of this design comes in the form of address space overhead, because

each individual box receives a publicly accessible IP and the NAT table claims additional

IPs for on-going connections. Testing shows that around 10% more address space is needed

for three simulations on large-scale networks. However, TAO has the distinct advantage of

only requiring the addition of a single box at the network’s edge and no cooperation from

remote hosts is needed for it to provide its services.

2.6 Summary

This chapter presents background topics used in this thesis, including IP routing,

encryption and authentication, and Time-Based One-Time Passwords. IP hopping and the

two possible approaches to it—end point or gateway—are discussed, along with an analysis

of each of their benefits and challenges. Finally, previous research in network address space

randomization is discussed.

23

III. Implementation

The research this thesis presents relies on a custom IP address hopping solution.

This chapter covers many of the details of this system, from high-level architecture to the

network protocol. Section 3.1 covers the requirements this system strives to meet. Section

3.2 gives an architecture overview, while Section 3.3 covers the details of each component

in the system. Section 3.4 details the network protocol used by the system to coordinate

gateways.

3.1 Requirements

ARG focuses on the needs of military networks. These are essentially the needs of

any geographically-diverse organization: locations throughout the world, high availability

and reliability requirements, and security over any network through which its data travels

[Mal97].

ARG primarily attempts to protect communication outside of military-controlled

networks and prevent external entities from probing internally. This protection includes

privacy, as ARG (like any network address space randomization tool) helps hide

information from adversaries by obfuscating sender and receiver information [SK02]. This

means that the implementation described is intended to be employed for all traffic traveling

between bases, but is unconcerned with internal base traffic. Internal network defense

remains the purview of traditional defenses. Base networks, in this case, include both those

on permanent installations and those in deployed, forward locations.

ARG must operate over the commercial Internet. Some proposals for network address

space randomization require changes to the Internet’s existing routing infrastructure and

protocols [WL03, APWJ03]. Deploying such a solution may be possible and beneficial in

the long run, but a solution that could be deployed today without participation from outside

24

entities is more feasible. This is especially true for forward locations, where traffic is more

likely to utilize infrastructure outside the military’s control.

Like any large, distributed organization, bases can generate huge volumes of traffic,

so ARG must scale well. Due to the importance of networks to command and control,

ARG’s implementation must not introduce significant latency under any foreseeable load.

Likewise, there can never be a brief period where all connections drop. At a minimum,

given the number of nodes inside the network, dropped connections result in a massive

amount of wasted bandwidth as they are reestablished and the data retransmitted.

Military networks contain a wide range of hardware and software. Much of this

software cannot be altered to accommodate ARG, so it must function transparently. Host-

level implementations might be feasible for generic workstation images (i.e., an alteration

to the operating system’s network stack), but the ability to function in another way must

exist to allow legacy equipment to continue operating.

3.2 Architecture Overview

As illustrated in Figure 3.1, ARG functions entirely around standard networks with

hopping gateways. This matches the “gateway hopping” scheme discussed in Section

2.2.2. As with [AA06], these gateways are standalone systems, not intended for use

with other tasks. Individual hosts inside these networks have no knowledge of the traffic

transformations the gateways perform, whether their connections are routing to a host

inside the local network, to a host inside another associated hopping network (hereafter

referred to as an “ARG network”), or to an external network. The implementation of ARG

allows the deployment of standard passive defense technologies like firewalls inside the

network without reconfiguration. Each gateway maintains a NAT-like table to ensure that

existing connections are maintained across hops (essentially temporarily leaving the old IP

active for just those connections using it already).

25

ARG Gateway A
Subnet: 172.100.0.0/16

Pub Key: BB
Priv Key: AA

Hop Interval: 250 ms

Client 1

External Host
Internet

Client 3

ARG Gateway B
Subnet: 172.200.0.0/16

Pub Key: XX
Priv Key: YY

Hop Interval: 500 ms

Client 2

Figure 3.1: ARG conceptual network layout

Each gateway is given what subnet it is permitted to hop within, a private/public key

pair, and time it should wait between IP address changes (frequently referred to as its “hop

interval”). For example, ARG Gateway A in Figure 3.1 uses subnet 172.100.0.0/16, has

the specified public and private keys, and hops every 250 milliseconds. Additionally, each

gateway is pre-configured with knowledge of at least one other gateway. The configured

information consists solely of the subnet the other gateway is handling and a public key to

use for authentication with it. In the figure, this would mean that Gateway A knows that

Gateway B sits in the 172.200.0.0/16 subnet and has the public key XX, but nothing else.

The gateways transfer additional information during the connection process.

At startup, each gateway generates a random symmetric encryption key and a “hop

key.” They then attempt to connect to all other gateways for which they have configuration

files through a series of data and time synchronization packets. Once two gateways fully

connect, they exchange data about all other gateways they have configured, allowing ARG

26

nodes to connect to gateways for which they do not have physical configuration files.

Periodically gateways re-send time synchronization information, ensuring that changing

network conditions do not kill communication. Section 3.4 and Appendix B cover each of

these packet exchanges in more detail.

Once connected, packets between ARG networks are encapsulated, encrypted, and

authenticated by the originating network’s gateway, with each packet given the destination

network’s current IP address. On receipt, a gateway checks that the IPs match what they

expect (both its own IP and the source’s IP), then validates the authentication information

(signature/HMAC) before forwarding the original packet into their network. Packets to

external hosts flow through the NAT-style system covered in Section 3.3.3.

During the evaluation of IPs, gateways allow packets to match either the current

address or the previous one. This allows packets sent just before an IP change to still be

accepted. If a gateway’s hop interval is shorter than twice the one-way latency, packets will

never be accepted, as illustrated in Figure 3.2. In this figure, Gate A sends a packet to Gate

B with the destination addresses set to the current IP at that time (172.200.210.85). The

packet takes 50 milliseconds to travel across the network, during which time the gateways

change addresses twice. When the packet reaches Gate B it is rejected, because the packet’s

destination IP does not match the current (172.200.38.138) or previous (172.200.60.97) IPs.

3.3 Components

The handling of packets within ARG is distinctly different if they are to an external

(non-ARG network) host or to an ARG network. These processes are handled by two

separate components, the hopper and the NAT. A high-level director decides which of these

two receives each incoming packets. All of these components run as separate threads on

the same gateway, closely coordinating their work. Because it is in charge of overall system

operation, this section begins by discussing the director.

27

IP
 A

dd
re

ss
 C

ha
ng

es
25

 m
s

25
 m

s
25

 m
s

Gate A

172.100.52.127

172.100.87.47

172.100.23.12

Gate B

172.200.60.97

172.200.38.138

172.200.210.85

Valid IP
upon packet

arrival

O
ne

-W
ay

 L
at

en
cy

50
 m

sPacket
Source: 172.100.52.127

Dest: 172.200.210.85

Figure 3.2: Packet sent between gateways when hop interval is half the latency

3.3.1 Director.

The director is in charge of receiving packets on the internal and external interfaces of

the gateway. Upon receipt of a packet, the director parses the packet and decides how to

handle it. The director’s decision tree is illustrated in Figure 3.3 and discussed below.

In the case of ARP requests on either interface, the director replies with the gateway’s

MAC address. This feature of ARG allows its use without any changes to the network it is

placed in, as hosts continue to send to the “same” gateway IP as before and ARG responds,

28

Is ARP Request?

ARP Response

Yes

Direction?

No

Packet

From ARG Network?

Incoming

To ARG Network?

Outgoing

Admin?

Yes

NAT, incoming

No

Hopper, outgoing

Yes

NAT, outgoing

No

Hopper, admin

Yes

Valid Source IP?

No

Valid Dest IP?

Yes

Drop

No

Hopper, incoming

Yes No

Figure 3.3: ARG director flow

despite not technically possessing an internal IP of its own. For example, the inside hosts

send out an ARP request for their normal IP gateway (as Section 2.1.3 discusses) and

29

the ARG gateway sends an ARP response, allowing it to grab all traffic and process it

appropriately. More details on Ethernet and IP routing can be found in Sections 2.1.3 and

2.1.1.

For outgoing packets (packets that are sent from within the protected network that

are intended to leave the network), the director checks the destination IP of the packet.

If the IP is unknown, it is passed to the NAT module. If the IP is within another ARG

network the director knows, the packet is handed off to the hopper module to be wrapped

and transmitted.

For incoming packets (packets hitting the external interface), the director first checks

if the source IP is another ARG network. If it is not, the director quickly hands the packet

off to the NAT inbound handler.

If the packet is from another ARG network, the director checks if the packet type

indicates it is an administrative packet and hands it off to the hopper’s administrative

processor. If it is not an administrative packet, the director confirms the gateway which sent

the packet is actually connected. Which gateway is determined by matching the source IP

to the base IP and mask in the local gateway’s configuration. Assuming that the gateway is

connected, the local gateway checks that the source and destination IPs are correct, based

on the data the hopper has on the other gateway. Assuming all checks pass, the packet is

handed off to the hopper to be unwrapped and forwarded into the network. If any fail, the

packet is silently dropped.

3.3.2 Hopper.

The hopping module is the heart of ARG. It maintains the state of the gateways (e.g.,

keys, hop intervals, times) it knows about and transfers packets to and from the network it

is protecting. The other two components (director and NAT) talk to the hopper to obtain

current IP information and if a given gateway is connected or not.

30

When the hopper first starts, it initializes a list of gateways with data from

configuration files. The information maintained in this structure is shown in Table 3.1.

Table 3.1: Information hopper module maintains on other ARG gateways

Data Information Source

IP Range (IP and mask) Configuration file (see Appendix D)

RSA Public Key Configuration file

Hop Interval Transferred during connection (see Section 3.4)

Symmetric Key Transferred during connection

Hop Key Transferred during connection

Time Base Calculated based on latency (see Appendix B)

An administrative thread is started at the same time. This thread attempts to connect

to each gateway in its list periodically and, if it does not hear from a given gateway for

several minutes, marks gateways as disconnected. In addition, it sends periodic time

synchronization requests to connected gateways, especially if it sees a large percentage

of packets being rejected due to incorrect IP addresses.

Beyond the administrative thread, actions occur in the hopper only when the director

passes packets off to it. Outgoing packets are always wrapped, encrypted, and signed, as

covered under the “route packet” process in Section B.2.4. Incoming packets go through

the validation process shown in Figure 3.4 before being handled. Note that IP checking

is done in the director before control reaches the hopper. After validation exact handling

depends on the packet type, but is generally covered in Section 3.4 as part of the protocol

discussion.

31

Packet

Sequence Number Valid?

Type == Wrapped?

yes

Drop

no

HMAC ok?

yes

Signature ok?

no

Type == Wrapped or Trust?

yes

Drop

no yes

Drop

no

Decrypt with
RSA private key

no

Decrypt with
AES shared key

yes

Unencrypted packet

Figure 3.4: ARG incoming packet validation process

3.3.3 Network Address Translator.

The NAT component of ARG maintains a list of on-going connections to external

hosts. For instance, if a client inside a protected network connects to 72.246.189.120, the

32

NAT creates an entry in an internal table and allows packets from the external host back in

to the network and to the client. This is almost identical to the operation of the basic NAT

discussed in Section 2.1.2. The only difference from a normal NAT system is the addition

of an extra field in the NAT table for the IP at the time the connection was first established.

The new version of the table with example data is shown in Table 3.2 with the new column

in italics.

Table 3.2: ARG NAT table example

Int IP Int Port Remote IP Remote Port Ext IP Ext Port

1 192.168.0.103 3547 74.125.225.69 443 172.1.123.35 50003

2 192.168.0.103 8751 207.109.73.34 80 172.1.73.1 42630

3 192.168.0.112 30452 4.27.2.253 80 172.1.86.173 53920

The traditional NAT processing and logic is supplemented with this additional

information. When a packet goes out, the table is checked and the packet has its source

IP address and port changed to the external values. If this is the first packet in a connection,

the external IP is filled from the current IP of the gateway. When an incoming packet is

encountered, the external IP and port are both checked to determine the correct internal

host. The addition of the external IP to the table allows connections to survive across

hops; many connections last longer than ARG’s intended hop rate and severing connections

frequently is unacceptable for many applications.

3.4 ARG Protocol

The ARG protocol is designed to be fairly stateless, simplifying the implementation

and lowering the likelihood of an exploit forcing the gateway into an unexpected state.

ARG sends data between gateways as the direct payload of the IP packet; transport-layer

33

protocols such as User Datagram Protocol (UDP) and TCP are not used. If needed, the

protocol could be adapted easily to work as a UDP payload. ARG packets are identified by

IP protocol 253, a protocol reserved for experimentation [Nar04]. All packets sent between

ARG gateways use the header structure shown in Table 3.3.

Table 3.3: ARG packet data

Data Size Data Type

Version 1 byte Unsigned Integer

Message Type 1 byte Enumeration, see Table 3.4

Message Length 2 bytes Unsigned Integer

Sequence Number 4 bytes Unsigned Integer

Signature 128 bytes Raw

Payload 0-32,629 bytes Message-type specific, see Appendix B

For this research, the protocol version field is set to 1 at all times. The type field

tells the receiving gateway how to process the data contained in the message. Possible

values are shown in Table 3.4. More details on the format of each message type are given

in Appendix B. Length is the network-order size in bytes of the data from the version to

the end of the data; given the size of the message header, the minimum for this is 136.

The sequence number is a monotonically increasing unsigned integer value used to prevent

replay attacks.

The signature field may actually contain two possible values: a true RSA digital

signature of the packet or an HMAC of the packet, depending on the message type. Packets

of type PING or CONN REQ/CONN RESP are encrypted with the public key of the receiver

and signed with the private key of the sender. All other packets—types WRAPPED and

TRUST DATA—are encrypted with the symmetric key of the receiver and include an HMAC

34

Table 3.4: ARG message types

Mnemonic Value Description

WRAPPED 1 Encapsulated packet from protected client to protected client

PING 2 Time synchronization message

CONN RESP 3 Connection data response message

CONN REQ 4 Connection data and request for other gateway’s data

TRUST DATA 5 Configuration information

of the encrypted data using with the symmetric key of the sender, following standard

encrypt-then-MAC practice [BN00]. The encryption and signing combinations used for

each message type as well as whether or not the source and destination IP addresses are

strictly checked are summarized in Table 3.5.

As a side note, the encrypt-then-sign order used by ARG (when using a digital

signature rather than an HMAC) is backwards according to best-practice RSA and should

be corrected to sign-then-encrypt [AN95]. It may also be wise to add the name of the

sending gateway to each message to help prevent similar mistakes in the future [AN94].

The order ARG uses allows an attacker to sign a message and claim it as their own

[Ram99]. However, ARG gateways will still reject these falsified messages because the

receiving gateway will not have a public key for the signer. A gateway could successfully

sign another gateway’s message, but this indicates a compromised of the gateway itself, at

which point the attacker has full access to the entire network anyway.

There are four basic exchanges that happen between ARG gateways: connect, time

synchronization, trust data exchange, and packet transfer. In order for gateways to begin

exchanging packets between the networks they are protecting (via the “route packet”

process), they must first fully connect by completing the connect and time synchronization

35

Table 3.5: ARG message security summary

Type Encryption Signing IPs checked?

WRAPPED AES, remote key HMAC, local key Yes

PING RSA, remote public key Signature, local private key No

CONN RESP RSA, remote public key Signature, local private key No

CONN REQ RSA, remote public key Signature, local private key No

TRUST DATA AES, remote key HMAC, local key No

processes. The trust data exchange step is optional, although it allows gateways to connect

to others without configuration files. The precise requests, receives, and verifications for

each exchange are given in Appendix B.

3.5 Summary

This chapter discusses the implementation of ARG. It begins with the requirements

ARG fulfills, then covers the high-level architecture of the system. The chapter then

examines each component and the protocol ARG uses between gateways.

36

IV. Methodology

This chapter discusses the methodology used to measure the effectiveness of ARG at

correctly classifying valid and invalid traffic, the shortest supportable hop interval at various

network latencies, the maximum packet rate ARG can handle, and the overall stability of

the system under test. Section 4.1 discusses the problem this research seeks to answer.

Section 4.2 defines the System Under Test (SUT), and Section 4.3 goes into detail on the

possible outcomes of the Component Under Test (CUT). Section 4.4 covers the workload

presented to the SUT, Section 4.5 covers the configurable parameters of the SUT, and

Section 4.7 covers the metrics collected. Sections 4.6 and 4.8 detail the actual tests and the

purpose of each.

4.1 Problem Definition

4.1.1 Goals and Hypothesis.

This research tests whether network address space randomization as discussed in

Chapter 3 is suitable for deployment on a corporate or military network. Tests against

this system are designed to answer four basic questions:

1. Does ARG classify traffic correctly? What percentage of false positives (valid

packets blocked) and false negatives (invalid traffic allowed through) does it

introduce?

2. What is the maximum packet rate and throughput ARG can support?

3. What is the minimum supportable time between hops? How does latency affect this?

4. Is ARG stable when presented with corrupt, malformed, or replayed packets?

It is hypothesized that ARG correctly classifies 99% of traffic it encounters when

operating with a hop interval appropriate for the network latency. In addition, this thesis

37

hypothesizes that packet loss becomes acceptable when the hop interval matches or exceeds

the one-way network latency, where acceptable loss is defined as less than 2%. This

percentage is based on the loss seen on Massachusetts Institute of Technology’s wireless

networks [Tal12]. The other two questions are informational as the results apply only to

this specific hopping gateway implementation, but it is believed that ARG is stable in the

face of malformed traffic and it can handle at least 10 megabits per second (Mbps) of traffic.

4.1.2 Approach.

This research is accomplished on a test network with nodes representing the types

of hosts found on a typical, corporate-style network. These include trusted hosts inside

trusted networks which communicate freely, internal and external servers that must be

accessible to hosts inside these trusted networks, and malicious hosts outside the networks.

A configurable custom hopping gateway sits in front of the trusted networks.

Traffic generators and collectors run on the test network, determining which traffic

flows successfully make it to their intended destination. This includes examining both false

positive and false negative rates, determining why ARG rejects packets that should get

through and why it allows packets that should be rejected. After a given test, logs and

traffic captures are collated to form a complete picture of the traffic on the network before

determining statistics.

4.2 System Boundaries

The SUT is ARG, the custom IP hopping gateway developed specifically for this effort.

The basic components of this system, the various inputs into the system, possible outputs,

and the metrics provided are illustrated in Figure 4.1. The sections following cover aspects

of this diagram in more detail, with Section 4.3 discussing the possible outcomes, Section

4.4 covering the workload, Section 4.5 detailing the parameters in use, and Section 4.7

covering the metrics collected.

38

Address Routing Gateway (SUT)

Director

Hopper
(Primary CUT)

Network Address
Translator

System Parameters

C
o

n
fi

g

Hop Rate

M
et

ri
cs

% Invalid
Packets Lost

Rejection
Reasons

Packet Rate

W
o

rk
lo

ad

Packet Size

Traffic
Direction

Protocols

P
h

ys
ic

a
l

Latency

Packets/Sec.

Kilobits/Sec.

Accepted –
Rewritten

Rejected –
Wrong IP

OS Level
Error

Rejected –
Bad Signature

Rejected –
Bad Seq. Num

Rejected –
No NAT Entry

Accepted –
Unwrapped

Example Possible Outcomes

% Valid
Packets Lost

Figure 4.1: ARG SUT diagram

4.3 System Services

This thesis tests three components of ARG. Most important is the hopper module,

which provides a rapidly-changing external IP address and details on connected ARG

networks. Using this information, it transports packets between ARG-protected networks.

Packets to and from external hosts—hosts that are not part of an ARG network—go through

the NAT module. Finally, the director module hands packets off to each of the other

modules and collects the results back to be logged and potentially acted upon. More details

on these components are in Chapter 3.

39

The potential outcomes of the director are shown below, broken into separate sections

based on incoming or outgoing packets. Other services do not directly offer outcomes

relevant to this research.

• Director - Incoming

– Accepted: Rewritten and forwarded - Packet is from non-ARG network and is

rewritten via NAT table before forwarding.

– Accepted: Unwrapped and forwarded - Packet is from ARG network and passes

validation checks. Contents are extracted and forwarded internally.

– Rejected: Incorrect source IP - Packet is coming from an ARG network but

does not have what the local gateway believes is the current source IP for the

other gateway.

– Rejected: Incorrect destination IP - Packet is coming from an ARG network but

does not have the current local gateway IP as the destination.

– Rejected: Incorrect message size - The message length does not match the

message type.

– Rejected: Incorrect sequence number - The message’s sequence number is not

monotonically increasing.

– Rejected: Unable to verify signature/HMAC - Packet signature invalid/nonex-

istent (if coming from an ARG network).

– Rejected: No NAT bucket/entry - Packet is coming from a non-ARG network

but does not have a valid entry in the NAT table.

– Rejected: Misc - Some operating system-level errors may occur, resulting in

rare errors in sending or receiving packets.

40

• Director - Outgoing

– Accepted: Rewritten and forwarded - Packet is destined for non-ARG network.

An entry is made/retrieved from the NAT table and used to rewrite packet.

– Rejected: Gateway not connected - Packet was intended for an ARG network

the gateway is aware of but not yet connected to.

– Rejected: Wrapped and forwarded - Packet is destined for an ARG network.

Wrapped and placed on the external network.

– Rejected: Misc - Some operating system-level errors may occur, resulting in

rare errors in sending or receiving packets.

4.4 Workload

Workload to the system is the traffic flowing through the ARG gateways. Standard

network traffic parameters like packet rate, packet size, protocol types, number of

simultaneous ongoing connections, and lifetime of connections play a role. For the

purposes of this thesis, however, packet rate is the primary factor. Each test involves traffic

generators, all of which may be instructed to wait a given amount of time between each

sent packet. The lower the packet delay, the higher the packet rate.

It is important to note that network performance itself is not a large concern of this

research. Packet rate does provide useful information about the performance of ARG, but

the numbers apply only to this specific implementation. ARG’s development does not

focus on performance in this first iteration, leaving many possible areas for improvement.

Previous research has shown that similar solutions have minimal impact on performance

[SSH05].

All traffic generators in the tests create randomly-sized packets of either UDP or TCP

traffic. The protocol used depends on the test being run at the time; Section 4.8 discusses

each test series and the traffic flows they utilize.

41

4.5 System Parameters

As a network application, ARG is affected by both the machine on which it runs and

the network over which it communicates. ARG’s local performance is most affected by

processor and memory speeds, with encryption potentially consuming a fair amount of

processor time and memory speeds impacting virtually all aspects of operation.

The primary physical network parameter that affects ARG is latency. To ensure that

two ARG gateways are able to communicate reliably, packets sent from one gateway to

the other must arrive before the IP addresses used in the send are no longer current. If

hops occur too frequently, a high one-way latency will cause sent packets to frequently

arrive after the receiving gateway has hopped to a different IP address. (Adapting to

latency is an area of potential improvement, as Section 6.3 discusses.) The test environment

inherently introduces less than one millisecond of latency, but artificial latency can be added

to simulate a more realistic range of network conditions.

The primary configuration setting for ARG is the hop interval. ARG allows the

time between hops to be customized from several times a second to minutes apart with

millisecond precision. Each gateway may be configured to hop at different rates, but for

the sake of this thesis the hop intervals for each gateway are identical in a given test.

4.6 Evaluation Technique

Measurement is used to obtain results for each factor level. Due to the fairly complex

interactions needed between ARG gateways and the processing needed to decide how to

handle packets, simulating the system would likely require an equal amount of work with

little benefit.

Setup of the test environment involves a basic seven-node network: three gateways

running ARG, one system on the network protected by each gateway, and one host outside

the network. Figure 4.2 shows the network and the names given to the various systems.

42

172.1.0.0/16
GateA

172.1.1.11
ProtA1

172.2.0.0/16
GateB

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.0.0/16
GateC

172.3.1.11
ProtC1

Switch

Figure 4.2: ARG test network layout overview

Protected clients behind the gateways (ProtA1, ProtB1, and ProtC1) may commu-

nicate freely. The protected clients may also talk out to the external host (Ext1), and the

external hosts must then—once that connection is established—be able to talk back into the

network. There is additional administrative traffic directly between the gateways (GateA,

GateB, and GateC). These three basic traffic flows are “valid” traffic.

All traffic beyond what is described above is “invalid.” For example, Ext1 is not

allowed to send traffic in to the protected clients or the gateways without them first initiating

the connection. Malformed traffic sent by any host is also considered invalid. In either case,

invalid traffic should be stopped at the earliest possible opportunity (i.e., the gateway rejects

the packet and keeps it from reaching the internal host) and the gateway must remain stable.

To collect data, each system runs the traffic collection program tcpdump to capture

traffic sent and received into Packet Capture (PCAP) files. The test execution script then

spawns traffic generators on the correct systems in the network, based on what test is being

run. Section 4.8 details the types of traffic each test establishes. Each traffic generator logs

their sends and receives to text log files (one per generator), independent of the tcpdump

traffic captures. After a given trial, the PCAP files and traffic generator logs are collated

and processed with custom scripts to determine the metrics described in Section 4.7. More

43

details on the traffic generators and test run sequence can be found in Appendixes C and E.

Appendix F covers the custom results processor.

All trials run on a network of seven physical servers. Each server runs Ubuntu 12.04.1

Server Edition with four gigabytes of Random Access Memory (RAM) and a 2.6 gigahertz

quad-core Intel Xeon. A single switch with four Virtual Local Area Networks (VLANs)

connects each system at 100 Mbps.

4.7 Performance Metrics

As previously stated, this research primarily focuses on the classification accuracy of

ARG and the interaction of the hop interval and latency. Measurements on ARG therefore

concentrate on the outcomes from the director. However, basic statistics on network

performance are collected. The metrics of interest include:

• Percentage of invalid packets accepted

If a packet that should have been rejected is accepted by ARG, it is possible for an

attacker to sneak into the network regardless of the gateway’s existence. This is the

true measure of whether or not ARG is protecting the network. If ARG functions

correctly, this number should remain at zero for all experiments with ARG enabled.

• Percentage of valid packets rejected

In ideal circumstances, this will also be zero. However, network conditions may

result in failures here, which on a real-world network might result in a disruption of

service.

• Number of each type of rejection (each possible outcome from the director)

This reveals where in the processing stage packets are typically caught. If packets get

caught in the later stages of validation—e.g., signature checking—then processing

time has been wasted.

44

• Packets per second and kilobits per second (Kbps)

An easy check on ARG’s performance is comparing the amount of traffic it is

handling against the packet loss it shows. Information about both the number of

packets and the raw number of bits it processes may reveal slightly different results,

so both are collected.

4.8 Experimental Design

Based on the system and workload parameters given in Sections 4.4 and 4.5 and the

goals of this research (as presented in Section 4.1.1), there are eight traffic flows of interest.

Each consists of different types of traffic and flow destinations. These are most easily

visualized in Figure 4.3 on page 49.

These possible traffic flows are used in four sets of experiments, given below. Each

experiment set answers a different research goal and utilizes different factor levels, as

shown in their respective tables.

• Basic tests

Table 4.1 displays the factor levels used for this series of tests. This sequence of tests

verifies that ARG classifies traffic correctly by running every test shown in Figure 4.3

against ARG. Latency is set to 20 milliseconds (Round-Trip Time (RTT)) for all tests

and traffic generators produce packets around every 0.3 seconds. To determine if the

time between hops has a statistically significant impact on certain types of traffic,

every test runs twice, once with a long hop interval of 500 milliseconds and once

with a shorter interval of 50 milliseconds, which is just slightly more than double the

round-trip latency.

• Maximum Throughput

Table 4.2 displays the factor levels used for this series of tests. This sequence gives

an indication of what throughput and packet rate ARG is capable of handling. Packet

45

Table 4.1: Factor levels for basic tests

Factor Possible Levels

Hop interval (ms) 500, 50

Round-trip latency (ms) 20

Packet delay (s) 0.3

Traffic direction and type Flows 0–8 (See Figure 4.3)

delay goes through all levels shown, which leads to roughly corresponding increases

in the throughput the gateways must handle. As with the basic tests, the hop interval

alternates between 500 ms and 50 ms to see if the additional IP calculation load

impacts the maximum rate. Flow 4 is used across all runs to because it utilizes both

TCP and UDP traffic flowing in all valid directions. RTT is set to 20 ms.

Table 4.2: Factor levels for throughput tests

Factor Possible Levels

Hop interval (ms) 500, 50

Round-trip latency (ms) 20

Packet delay (s) 0.2, 0.1, 0.05, 0.01, 0.005, 0.001

Traffic direction and type Flow 4 (See Figure 4.3)

• Minimum hop interval

Table 4.3 displays the factor levels used for this series of tests. This sequence

determines the minimum time between IP address changes at various latencies. The

hop interval and latency go through the levels shown in a full factorial fashion (every

46

latency-hop interval combination). Packet rate is fixed at 0.3 seconds. Flow 4 is used

throughout.

Table 4.3: Factor levels for minimum hop interval tests

Factor Possible Levels

Hop interval (ms) 1000, 500, 300, 200, 100, 75, 60, 50, 40, 30, 15, 10, 5

Round-trip latency (ms) 0, 30, 100, 500

Packet delay (s) 0.3

Traffic direction and type Flow 4 (See Figure 4.3)

• Fuzzer

Table 4.4 displays the factor levels used for this series of tests. This sequence

is not tested rigorously for traffic flow success and failure, but ensures that ARG

remains stable despite malformed traffic. Traffic Flow 8 is used, with additional

traffic coming from fuzzers running that replay and/or alter all gateway traffic they

see. Hop intervals vary between 500 ms and 50 ms, latency is fixed at 20 ms, and

packets are sent at 0.3 second intervals.

Table 4.4: Factor levels for fuzz tests

Factor Possible Levels

Hop interval (ms) 500, 50

Round-trip latency (ms) 20

Packet delay (s) 0.3

Traffic direction and type Flow 8 (See Figure 4.3)

47

A 95% confidence interval is used for all experiments. Experiments are each run for

five minutes, sufficient time for the system to stabilize (pilot studies show that ARG fully

connects in under 10 seconds on the test network). Some variation is possible in the actual

traffic seen in a single run, so a minimum of 10 replications are used for each experiment.

4.9 Summary

This chapter discusses the goals of this research and defines the SUT and its relevant

factors. The methodology in use is covered, with details on the test network and the exact

tests run on this network. Finally, this chapter enumerates the metrics the tests collect and

analyze.

48

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

UDP

UDP

UDP

(a) Flow 0

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

UDP
UDP

UDP

(b) Flow 1

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

TCP

TCP

TCP

(c) Flow 2

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

TCP
TCP

TCP

(d) Flow 3

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

UDP/TCP

UDP/TCP

UDP/TCP
UDP/TCP

UDP/TCP

(e) Flow 4

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

UDP
UDP

UDP

(f) Flow 5

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

TCP
TCP

TCP

(g) Flow 6

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

UDP/TCP
UDP/TCP

UDP/TCP

(h) Flow 7

172.2.1.11
ProtB1

172.100.0.1
Ext1

172.3.1.11
ProtC1

172.1.1.11
ProtA1

UDP/TCP

UDP/TCP

UDP/TCP UDP/TCP

UDP/TCP

UDP/TCP

UDP/TCP

UDP/TCP

(i) Flow 8

Figure 4.3: Experiment traffic flow directions and protocols. Black solid lines indicate

valid traffic, red dashed lines are invalid.

49

V. Results and Analysis

This chapter presents and analyzes the experimental results. Section 5.1 covers the

basic functionality tests, Section 5.2 determines the effects of hop interval and latency,

and Section 5.3 discusses ARG’s performance. Section 5.4 covers the results of running

a fuzzer against ARG. Finally, Section 5.5 revisits the research questions Chapter 4 poses

and summarizes the results with respect to each of them.

5.1 Basic Tests

The first set of experiments test the basic functionality of ARG, as Section 4.8

discusses. These tests are intended to verify the basic functionality of ARG and determine

if it classifies traffic correctly, per the expected traffic flow. Given that stressing the system

is not a goal of this series of tests, packet delay is set to a high value of 0.3 seconds, resulting

in a slow packet rate. (Packet rate stressing is left until the throughput tests in Section 5.3.)

Hop intervals vary between 50 milliseconds and 500 milliseconds, with a RTT fixed at 20

milliseconds.

5.1.1 Valid Packet Loss.

The raw results for the loss of valid packets on each test are shown in Figure 5.1.

Figure 5.2 shows the mean and confidence intervals (CIs) of each test, using a 95%

confidence level. Due to a lack of normality in the experimental results, these numbers

are calculated via bootstrapping with 1000 replicates.

These figures reveal low packet loss across all test scenarios. At worst, Flow 3—

TCP traffic between ARG protected clients only—lost between 0.0588% and 0.7544% of

packets, with 95% confidence. Across all tests, valid packet loss averaged 0.1123%, with a

CI of (0.0659%, 0.1478%), again with 95% confidence. These results confirm Chapter 4’s

hypothesis that ARG causes packet loss less than 2%, at least under normal conditions.

50

●

●

● ●
●

●

●

●●

●

●

●●

●

●●●

●

●

●
●

●

●
●

●

●

●●

● ●

●

●

●● ●● ●

●
●

●

● ●

●

●
●

●●

●

●

●● ●●●●

● ●
●

● ●

●

●

●
●
●

● ●

●

●

●
●

●●●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●● ●

●

●●

●●●

●● ●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●

●●

●●

●●

●

●●●

● ●
●

●

●

●

●

●

●●

●●● ● ●

●

●● ●●

●

●●

● ●

●●

●

●●

●●

●

●
●

●●

● ● ●

●

●

● ●

● ●

● ●

●●

● ●

●● ●● ●

●

●

●

●● ●

●●

●●● ●
●

●●●● ●

●

●

● ●●●

●

●●

●●

●●●●

●● ●

●● ● ●

●

●●

●● ●

●

●

● ● ●

●
●

●

●

●

●●●

●●

●

● ●●

●

●

●

●

●

Traffic Flow Number

V
al

id
 P

ac
ke

t L
os

s

0 1 2 3 4 5 6 7 8

0%
0.

5%
1%

1.
5%

2%
2.

5%
3%

3.
5%

Figure 5.1: Basic tests, raw valid packet loss. Traffic flow numbers correspond to the flows

in Figure 4.3.

Figure 5.1 displays two outliers on Flow 3. Examining the data reveals the dropped

packets exceeded the maximum size of a packet ARG can pass between gateways. As

Chapter 3 covers, ARG wraps packets between gateways in its own headers, increasing the

size of the packet. Ethernet II has a default maximum transmission unit of 1500 bytes, so

51

Traffic Flow Number

M
ea

n
V

al
id

 P
ac

ke
t L

os
s

0 1 2 3 4 5 6 7 8

0%
0.

1%
0.

2%
0.

3%
0.

4%
0.

5%
0.

6%
0.

7%

●

●

●

●

●

● ● ●

●

●

●

●

●

●

● ● ●

●

Figure 5.2: Basic tests, valid packet loss means and confidence intervals. Traffic flow

numbers correspond to the flows in Figure 4.3

ARG drops packets that pass this limit after being wrapped (ARG is unable to fragment

packets or inform the sender that fragmentation is needed, as Section 6.3 mentions). In

fact, the maximum packet size issue is the most common reason for packet rejection in

the basic set of tests (in tests with only valid traffic), as shown in Table 5.1. While test

52

traffic is controlled for size, an oversight in the test traffic generators fails to account for

TCP options, which can increase the size of the packet beyond the limit. TCP options here

refers to the optional header data after the main TCP headers [Pos81].

Table 5.1: Basic tests 1-4 packet rejection reasons. 143 tests with 2,312,228 total packets

represented.

Reason Count % of Total Packets

Outbound message too long 949 0.04104%

Outbound sequence number incorrect 596 0.02578%

Inbound unwrapped 578 0.025%

Unknown 518 0.0224%

Outbound gateway not connected 393 0.017%

Inbound NAT bucket not found 173 0.007482%

Inbound gateway not connected 78 0.003373%

Inbound bad protocol 57 0.002465%

Inbound source IP incorrect 30 0.001297%

Inbound destination IP incorrect 6 0.0002595%

Inbound ping accepted 3 0.0001297%

Lost on wire 2 0.0000865%

Outbound rewrite 1 0.00004325%

Other entries in this table deserve some discussion. The next most common reason,

incorrect sequence numbers, indicates that ARG’s replay protection mechanism blocked

packets. This commonly occurs at initialization, resulting in an average of 4 sequence

number issues per test over the course of 143 tests, one for each gateway. The third entry

on the list, “Inbound Unwrapped,” occurs at the end of a test, where the receiver of a packet

53

is shutdown before the sender. The results processor traces packets through the network

using a combination of packet captures and text log files of actions on each host. When a

test run ends, these utilities shutdown sequentially. If a host sends a packet to a gateway

that is still recording packet captures but has already shutdown its application-level receiver

script (which creates the text log files), the test processor returns the last message it saw

regarding the packet, which is typically whatever action the gateway took. Appendix F

covers the test processor in more detail. The end-of-test issues are also the case for the

“outbound rewrite,” “ping accepted,” and “unknown” entries. The remainder of the reasons

are self explanatory.

A resampling of the data between the two hop intervals used in the basic tests gives

a p-value of 0.639, indicating little significant difference between the two hop intervals.

This confirms that hop interval in and of itself does not affect losses on the network, an

important fact when considering the minimum hop interval in Section 5.2.

5.1.2 Invalid Packet Loss.

Traffic Flows 5 through 8 include invalid traffic that ARG should reject and hence

should be “lost.” Table 5.2 displays the percentage of invalid traffic rejected (with 95%

CIs), clearly revealing ARG has an extremely low false negative rate. As shown, over the

course of 28 repetitions only one test appears to have allowed a single packet through.

Table 5.2: Basic tests, packet loss of invalid traffic

Flow Mean CI Replications

Flow 5 100% (100%, 100%) 28

Flow 6 100% (100%, 100%) 28

Flow 7 100% (100%, 100%) 28

Flow 8 100% (99.99%, 99.99%) 28

54

Flow 8 shows a small deviation from the expected 100% packet rejection, as 1 of

746 packets made it through, but further examination of this number shows a rare post-

processing problem. If two identical packets are sent at the same time, the test run processor

leaves the second one unmarked, which is interpreted later as successfully received. The

problem lies with the log analyzer, not ARG itself, which did in fact reject every packet.

This result offers convincing evidence that ARG effectively blocks unexpected inbound

traffic, but it gives no indication of its suitability against more focused attacks.

Table 5.3: Basic tests 5-8 packet rejection reasons. 112 tests with 1,268,746 total packets

represented.

Reason Count % of Total Packets

Inbound NAT bucket not found 60,884 4.799%

Inbound unwrapped 687 0.05415%

Outbound message too long 486 0.03831%

Unknown 340 0.0268%

Outbound sequence number incorrect 242 0.01907%

Inbound source IP incorrect 14 0.001103%

Inbound ping accepted 5 0.0003941%

Additionally, Table 5.3 illustrates that packets are rejected via the NAT table quite

frequently over the 112 test runs with invalid traffic. This operation costs the gateway

minimal processing time, as it can reject after a single hash table lookup. Fast decisions on

packets lower the possibility of an effective Denial of Service (DOS) attack, as the Central

Processing Unit (CPU) can continue to transform valid traffic. Section 5.1.1 discusses the

meaning of the remainder of this table.

55

5.2 Minimum Hop Interval

The minimum hop interval sequence of tests measures the change in packet loss at

specific latencies as the time between hops decreases. For these tests, a fixed packet rate

and Flow 4 are always used. Section 4.8 covers the specifics of these tests. The figures

below document the results of the tests, broken up by traffic type and direction.

Hop Interval (ms)

P
ac

ke
t L

os
s

5 10 15 30 40 50 60 75 100 200 300 500 1000

0%
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%

● ●
●

●

●

●
● ● ● ● ● ● ●

●

One−way Latency

0 ms

15 ms

50 ms

250 ms
Acceptable
Loss: 2%

Figure 5.3: Hop interval tests, packet loss of UDP and TCP traffic between ARG networks.

Note: X axis is not linear.

56

Hop Interval (ms)

P
ac

ke
t L

os
s

5 10 15 30 40 50 60 75 100 200 300 500 1000

0%
0.

5%
1%

1.
5%

2%
2.

5%
3%

3.
5%

4%
4.

5%
5%

●

●
● ● ● ● ● ●

●

One−way Latency

0 ms

15 ms

50 ms

250 ms
Acceptable
Loss: 2%

Figure 5.4: Hop interval tests, scaled view of packet loss between ARG networks

Figure 5.3 displays the results of the hop interval tests, separated by network latency.

Figure 5.4 displays the same numbers, but with a much tighter Y scale to reveal differences

at large hop intervals. The numbers shown here only include packets sent between ARG-

protected clients; traffic to the external host and administrative packets between gateways

are not included (packets to external hosts are considered separately later). The highest

57

standard deviation in any of the hop interval-latency groups is 2.2238, implying the

potential for significant (but still potentially acceptable) variation in network performance.

Interestingly, the zero millisecond latency trials exhibit a noticeably different decline

than the others, with zero milliseconds giving a relatively steady decline in packet loss and

the others remaining relatively flat before a rapid drop. The 15 millisecond latency curve

gives a hint the shapes may not be as different as they appear, as it shows two or three

mid-way data points on the way down to acceptable packet loss. With tests against more

hop intervals, these curves would likely show a more gradual (although still rapid) decline.

Chapter 4 hypothesizes that packet loss reaches acceptable levels when the time

between hops is equal to (or exceeds) the one-way network latency. Theoretically, this

time frame should allow a packet to cross the network from one gateway to another before

the receiver changes IP addresses twice, even if the packet is sent just before the receiver

hops the first time (as mentioned in Chapter 3, gateways accept packets at the current

and previous IP). Any shorter hop interval results in a period of time before each hop

that guarantees sent packets arrive too late. Figure 5.4, however, shows that loss drops

below 2% when the hop interval is around four times the latency. This difference from the

anticipated behavior is likely the result of the test environment.

As Section 2.1.3 discusses, Ethernet uses ARP requests and responses to determine

the source and destination for packets on the local network. In the test environment, the

gateways and the external host are all on the same local network. This results in extra

Ethernet ARP requests and responses, when compared to operation over the Internet. On a

normal Ethernet segment with minimal latency (the zero millisecond test), the ARP process

takes minimal time and has little impact on operation. To speed the process even further,

ARP data is cached, so when a system wants to send to the same IP again, it references the

ARP cache table and does not have to go through the request-response process again. With

short hop intervals, however, gateways frequently need to send to different IP addresses and

58

therefore must send and receive the requisite ARPs very frequently (generally, once every

hop). When the network latency is not zero, these additional frames can cause significant

delays. Figure 5.5 illustrates what happens when a time synchronization between gateways

occurs with a five millisecond one-way latency.

DestinationSender

ARP Request

ARP Response

Time Sync
Request

Ti
m

e,
 3

0m
s

to
ta

l

ARP Request

ARP Response

Time Sync
Response

5m
s

5m
s

5m
s

5m
s

5m
s

5m
s

(a) With 5 millisecond one-way universal latency, including

ARPs, as occurs on the test network.

DestinationSender

Time Sync
Request

Ti
m

e,
 1

0m
s

to
ta

l

Time Sync
Response

5m
s

5m
s

(b) With 5 millisecond latency across the network and

insignificant ARPs (not shown), as might occur in real

operation across the Internet.

Figure 5.5: Time synchronization process, including ARPs

59

If there is no need for these ARP requests (or they were negligible, time-wise),

the entire time synchronization process completes in 10 milliseconds. Because ARPs

on the test network experience the same delay as UDP and TCP packets, however, it

takes 30 milliseconds to synchronize times. The time base for the other gateway is

calculated correctly despite the extra delay because the latency of that particular packet

is taken into account. Later packets may take a wide variety of latencies, however,

because they may not require any ARPs, only one direction might require it, or both

directions may require it. For a 5 millisecond one-way latency, this leads to variations

of 5, 10, or 15 milliseconds, an acceptable and tolerable range. By the time tests get to

set latencies of 250 milliseconds, one-way latencies range from 250 to 750 milliseconds,

with RTTs of up to 1500 milliseconds. This degree of variation is difficult to compensate

for, leading to significant packet loss until the hop interval exceeds three times the set

latency. Additionally, at shorter hop intervals the triple-latency problem is encountered

more frequently, as the ARP cache must be refreshed more often.

On the Internet, the triple-latency problem does not occur. An ARG gateway sending

a packet to another gateway uses ARP requests to get the hardware address of the local

router, a process which takes under a millisecond on most Ethernet networks. Once the

ARG gateway has the hardware address of the router, it sends the data packet out to the

other gateway. After the packet leaves the local network, IP address hopping does not

affect network operation at all, resulting in the packets between gateways experiencing

same latency as any other data on the network. A 30 millisecond one-way latency across the

Internet (or other Wide Area Network (WAN)) means packets genuinely take (on average)

30 milliseconds to reach their destination, whereas a 30 millisecond latency on the test

network often means packets take 90 milliseconds.

Despite having no latency, the zero millisecond test exhibits high loss until around

75 milliseconds hops, similar to when the 15 millisecond latency test indicates a usable

60

connection. This may indicate that hopping more frequently than every 50-75 milliseconds

is impractical regardless of network conditions with the current implementation. It may

be possible for the sender of a packet to calculate “future” IP addresses to use for each

packet sent, so that the addresses are current when they arrive at the destination. This is

an area for future research, as Section 6.3 discusses. Previous research into address space

randomization and IP hopping limit themselves to hopping on the order of minutes or hours

and never explore the maximum rate possible.

ARG appears to have little additional impact on TCP, when compared to UDP.

Figure 5.6 displays losses associated with only TCP packets travelling between gateways.

Compared to Figure 5.3 (which includes UDP and TCP packets), trends appear similar.

Table 5.4 shows the packet rejection reasons for all hop interval tests. As expected, far

and away the most common rejection reason for this set of tests is incorrect source and/or

destination IPs. Other entries in this table are discussed in Section 5.1.1.

Finally, Figure 5.7 demonstrates there is little correlation between the hop interval and

the flow of traffic to external hosts. Over all 612 hop interval test runs, packet loss to and

from the external host never exceeds 0.059%. This makes sense, as the changing IP is only

referenced when the NAT module first creates a table entry. Later packets on the same

connection consult the table information and are unaware of any IP address changes.

5.3 Maximum Packet Rate

The final numerical test performed against ARG measures the maximum packet rate

it is capable of supporting. For these tests, latency is set to 20 milliseconds and Flow 4 is

used. Hop intervals vary between 50 ms and 500 ms to check if this has an effect on the

supported packet rate. Most importantly, traffic generators are run with steadily increasing

send rates. Section 4.8 contains more details. Because throughput varies somewhat on each

run, the data is clustered into the groupings listed in Table 5.5 and colored in Figure 5.8.

61

Hop Interval (ms)

P
ac

ke
t L

os
s

5 10 15 30 40 50 60 75 100 200 300 500 1000

0%
10

%
20

%
30

%
40

%
50

%
60

%
70

%
80

%
90

%
● ●

●

●

●

●
● ● ● ● ● ● ●

●

One−way Latency

0 ms

15 ms

50 ms

250 ms
Acceptable
Loss: 2%

Figure 5.6: Hop interval tests, packet loss of TCP traffic between ARG networks

Figure 5.8 shows the raw data from these tests, with colors indicating the 7 K-

means clusters, grouped by bit-wise throughput. Clusters are chosen via the Hartigan and

Wong algorithm, with 500 random starts. This graph includes all packets on the network.

Visually, the plot reveals fairly similar loss in each cluster, although some clusters exhibit

62

Table 5.4: Hop interval test loss reasons. 612 tests with 15,387,651 total packets

represented.

Reason Count % of Total Packets

Inbound destination IP incorrect 506,075 3.289%

Inbound source IP incorrect 165,656 1.077%

Inbound unwrapped 4,935 0.03207%

Unknown 4,235 0.02752%

Outbound message too long 4,106 0.02668%

Outbound sequence number incorrect 2,180 0.01417%

Outbound gateway not connected 1,000 0.006499%

Inbound NAT bucket not found 110 0.0007149%

Inbound bad protocol 94 0.0006109%

Inbound gateway not connected 14 0.00009098%

Outbound wrapped 12 0.00007798%

Inbound ping accepted 10 0.00006499%

Inbound connection data received 1 0.000006499%

a fair amount of variation. A Tukey test with each cluster confirms this result, as shown in

Figure 5.9.

On Figure 5.9, numbers along the side correspond to the cluster numbers shown in

Table 5.5 and Figure 5.8. Six means stand out as being distinctly different: 1-4, 2-4, 3-

4, 4-5, 4-6, and 4-7. Cluster 4 is statistically different from all other clusters, with 95%

confidence. However, the other data gives reason to believe that throughput was not the

cause of loss increase and variation. No changing trend is seen in any of the surrounding

throughputs’ losses (either up or down) and faster throughputs (Clusters 5 through 7) show

63

Hop Interval (ms)

P
ac

ke
t L

os
s

5 10 15 30 40 50 60 75 100 200 300 500 1000

0%
0.

00
5%

0.
01

%
0.

01
5%

0.
02

%
0.

02
5%

●
●

●

●

●

●

●

●

●

●

●

●

●

●

One−way Latency

0 ms

15 ms

50 ms

250 ms
Acceptable
Loss: 2%

Figure 5.7: Hop interval tests, packet loss of externally-bound traffic

loss comparable to the slower throughputs (Clusters 1 through 3). While the precise cause

of the increased loss in some of these tests is unknown, the amount of data the gateways

handle is not believed to be the cause.

The results of these tests are limited to just the implementation of ARG and imply

only a minimally possible throughput. Despite these limitations, ARG performs well with

64

Table 5.5: Packet rate clusters

Clust Mean (Kbps) Min (Kbps) Max (Kbps)

1 485.1 300.3 573.7

2 854.5 782 980.3

3 1401 1190 1581

4 2223 1969 2421

5 3250 3243 3264

6 3796 3778 3814

7 4374 4351 4389

reasonably rapid traffic of over four Mbps, giving no reason to believe it is not capable of

higher rates. Time constraints prohibit more rapid throughput tests.

5.4 Fuzzing Test

The final series of tests run on ARG consist of sending invalid and replayed traffic to

the gateways. The primary objective is to verify that ARG remains stable and able to pass

valid traffic while under attack.

The custom run-processing tool this thesis uses to generate packet loss statistics is

unable to process the logs from the malicious traffic generators, making it difficult to

determine precisely what occurs in each run. This calls into question the accuracy of the

results from the run processor. Nonetheless, the tool reports a mean packet loss between

21.8% and 23.5% (with 95% confidence), which indicates ARG experiences significant

difficulty when faced with malicious traffic. A manual examination of log files does seem

to indicate this is the case, with some traffic successfully traversing the network but a huge

amount being rejected.

65

●

●●

●
●●

●
●

●
●

●

●

●
●

●

●●

●

●●

●●
●
●●
●

●

1000 2000 3000 4000

Colors indicate clustering
Throughput (Kbps)

V
al

id
 P

ac
ke

t L
os

s

1 2 3 4 5 6 70%
0.

05
%

0.
1%

0.
15

%
0.

2%
0.

25
%

0.
3%

0.
35

%
0.

4%

Figure 5.8: Packet rate tests, clustered loss verses throughput

Despite the high losses, ARG does appear to remain stable throughout the barrage.

In all cases, ARG never crashes and maintains around the same ability to handle valid

traffic (that is, although the losses appear high, they remain consistent throughout). Further

research is needed to identify the causes behind the high losses, but the problem likely lies

66

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

7−
6

7−
5

6−
5

7−
4

6−
4

5−
4

7−
3

6−
3

5−
3

4−
3

7−
2

6−
2

5−
2

4−
2

3−
2

7−
1

6−
1

5−
1

4−
1

3−
1

2−
1

95% family−wise confidence level

Differences in mean levels of factor(bps.clust)

Figure 5.9: Packet rate tests, Tukey test against clustered data

in implementation and not architecture. Even if ARG crashes, traffic flow entirely stops,

preventing the attacker from penetrating the network.

67

5.5 Overall Analysis

Chapter 4 presents several questions that this research attempts to answer. Each is

revisited below along with an accompanying conclusion. More details on each answer may

be found in earlier sections of this chapter.

1. Does ARG classify traffic correctly?

Overall, ARG does classify traffic correctly. Throughout the testing, no actual false

negatives occurred, indicating ARG’s NAT system is robust and provides a solid way

to classify invalid inbound traffic. However, the traffic used to test this system is

fairly benign and does not intentionally attempt to circumvent ARG. Testing needs

to be done with a more intelligent threat.

For expected traffic on the network, whether it is between ARG-protected networks

or to external hosts, ARG is reasonably accurate. In basic tests involving a range of

traffic types, ARG averaged less than 0.1123% loss of valid, expected traffic. This

falls well below Chapter 4’s definition of “acceptable loss” of 2%. Based on this,

ARG accurately classifies traffic.

2. What is the maximum packet rate ARG can handle?

The testing done for this research did not find an upper limit on the amount of traffic

ARG could handle, with the gateways showing the capability of handling over 4.3

Mbps with no statistically significant change in packet loss.

3. What is the minimum supportable time between hops? How does latency affect this?

When ARG operates on a network with a one-way latency less than 15 milliseconds,

hops may occur every 50 to 75 milliseconds and still maintain a viable communi-

cation channel (losses are less than 2%). Beyond this point, packets begin flowing

smoothly when the time between hops exceeds four times the latency. However,

68

there is reason to believe hops could be faster in a real-world deployment, due to the

test network factors Section 5.2 discusses. This is a significant contribution because

previous research focuses on address changes on the order of minutes or hours, rather

than multiple times a second.

Realistically, network latencies vary wildly. However, ARG allows flexibility in

setting the hop interval for every gateway separately and could be easily expanded

to allow gateways to change the hop intervals they use between each other while

leaving the rate used for others alone. Section 6.3 discusses this in more depth.

This flexibility allows networks with low-latency networks to hop frequently and

high-latency networks to hop more slowly. The results here provide guidance on the

maximum hop interval to chose based on network conditions.

4. Is ARG stable when presented with corrupt, malformed, or replayed packets?

ARG is stable in the face of bad traffic. Long-running fuzz tests do not cause ARG to

crash, nor do they permanently break traffic flow. However, malformed traffic does

appear to have an impact on valid packet loss, based on both automated analysis and

a manual inspection. The cause of this needs exploration to determine the correct fix.

5.6 Summary

This chapter analyzes the results for each test (Figure 4.3) sequence, each broken out

into its own section. An overall analysis in context of the original research questions is then

presented, summarizing the findings of this thesis.

69

VI. Conclusions and Recommendations

This chapter summarizes the work and findings of this research. Section 6.1

summarizes the conclusions reached. Section 6.2 discusses the impact of this research.

Section 6.3 provides recommendations for future work in the network address space

randomization area in general and on ARG itself.

6.1 Research Conclusions

This research demonstrates that IP hopping is a suitable method of blocking

unexpected external traffic while maintaining a minimal false-positive rate. This can be

done completely transparently from the perspective of the internal and external hosts; the

tool this thesis presents works with no configuration changes to any host other than the

gateway.

In addition, ARG proves rapid IP address changes are possible, with network latency

as the primary limiter. Tests demonstrate that—under this implementation—IP addresses

may change around 15 times per second (changes every 50 to 75 milliseconds) and still

allow for reliable communication.

ARG also demonstrates good throughput, a critical aspect of usability to a real

network. Test rates reach four Mbps with no indication that ARG is unable to handle greater

rates. Running a fuzzer against ARG found that, while gateways themselves remain stable

in the face of malformed traffic, the attack may have an impact on connectivity and valid

packet loss.

6.2 Research Impact

This thesis presents a new IP address hopping tool that combines features of previous

efforts in this area. Through a gateway-based solution, ARG avoids requiring changes to

existing network architecture or any clients inside. ARG applies IP address changes to all

70

packets entering and leaving the network and packets between ARG-protected networks

include full encryption and authentication.

Of primary importance to this field of research is the demonstration that IP address

changes may occur multiple times per second. Previous research focuses on changes on

the order of minutes or hours and may kill on-going connections when address changes

occur. ARG’s design allows for connections to persist across hops without participation of

either end of the stream, ultimately allowing for much more frequent address changes and

a potential amplification of the benefits of address space randomization.

6.3 Future Work

6.3.1 IPv6 Support.

IPv6 support is slowly becoming a requirement for any network system. For an IP

hopping system, IPv6 offers the benefit of a greatly increased address space, allowing

systems to hop in a much broader range of addresses. ARG is entirely IPv4 in its current

implementation and cannot transport IPv6 packets to external hosts or to other gateways.

6.3.2 Fragmentation Support.

ARG currently has neither support for fragmenting packets as they pass through

the gateway nor for notifying the sender that fragmentation is needed. Packets to and

from external hosts pose no problem, as the original sender will handle this themselves.

However, packets between gateways/ARG-protected networks have additional data added,

potentially exceeding the maximum transmission unit of the network. In this case, ARG

has no way to recover and the packet is permanently dropped without notice. A more

complete implementation should notify the sender that fragmentation is needed.

6.3.3 More Extensive Malicious Testing.

Due to time constraints, a full battery of robust malicious tests could not be performed

against ARG. As demonstrated by the basic fuzz testing, ARG handles errors without

becoming unstable, but may lose additional packets. The reasons behind this potential

71

issue needs more exploration to determine the root cause and what should be done to fix it.

More extensive work in both undirected (i.e., fuzz testing) and directed attacks is needed.

For example, malicious hosts might attempt to falsely connect to a gateway or perform

replay attacks in a more intelligent manner.

6.3.4 More Intelligent NAT.

ARG currently blindly opens holes in the NAT when it sees outbound packets and

closes them after seeing no activity for a fixed amount of time. A transport layer

examination would allow more fine-grained NAT work, by watching for actual connection

establishment and teardown packets.

6.3.5 Integration with Other Defenses.

Network defenses often perform better when working in tandem. ARG has the

potential to detect certain types of probes into the network. If this information can be

passed off to an IDS, it might alert an operator or take other defense actions on the network.

In an even more active approach, ARG might work with a honeypot to present a fake view

of the network to an attacker. By examining what systems an attacker probes, it might be

possible to determine the identity of the adversary, their goals, and their intended target in

the network, all valuable information to those defending the network.

6.3.6 Latency Compensation.

The current design of ARG exhibits problems transferring packets when the hop

interval is less than four times the latency. This situation is easy to detect, as latency

between the gateways is already being calculated. To enable more flexibility with varying

network conditions, gateways could change their hop interval on an individual basis to

match the network conditions to every other gateway with which they connect. For

example, say there are gateways GateA, GateB, and GateC. The latency between GateA

and GateB is 50 ms, the latency between GateB and GateC is 40 ms, and the latency

between GateA and GateC is 200 ms. By default, they each hop every 200 ms. When they

72

perform time synchronization, GateA and GateC would detect the high latency and change

the hop interval for just each other to 600 ms, but leave their hop interval at 200 ms for

GateB.

Alternatively (or perhaps in addition), it would be possible to send packets with IP

addresses “in the future,” so that when they arrive at their destination the addresses would

be current. That is, when a gateway is about to send a packet to another gateway, it

calculates the addresses based on the current time + latency, rather than just the current

time. This relies on network latency being relatively stable, as sudden drops in the latency

would cause packets to contain future addresses when they arrive at the receiver.

6.4 Summary

This chapter reviews the work and findings of this thesis. The impact of the research

is discussed and recommendations for future work are given.

73

Appendix A: IP Packet Structure

Table A.1: IP packet structure

P
a
ck

e
t
S
tr
u
c
tu

re
(3

2
b
it
s
w
id
e
)

0
1

2
3

4
5

6
7

8
9

10
1
1

12
13

14
1
5

16
1
7

18
19

2
0

21
22

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

IPv4

V
er

si
on

H
ea

d
er

L
en

gt
h

T
y
p

e
of

S
er

v
ic

e
L

en
gt

h
P

ac
k
et

id
en

ti
fi
er

n
u
m

b
er

F
ra

g
F

la
g
s

F
ra

gm
en

t
O

ff
se

t
T

im
e-

to
-l

iv
e

P
ro

to
co

l
H

ea
d
er

C
h
ec

k
su

m
S
ou

rc
e

IP
D

es
ti

n
at

io
n

IP
O

p
ti

o
n
s

(o
p
ti

on
al

,
sp

ec
ifi

ed
b
y

h
ea

d
er

le
n
gt

h
)

IPv6

V
er

si
on

P
ri

or
it

y
F

lo
w

la
b

el
P

ay
lo

ad
le

n
gt

h
N

ex
t

h
ea

d
er

H
o
p

li
m

it

S
o
u
rc

e
a
d
d
re

ss

D
es

ti
n
at

io
n

a
d
d
re

ss

1

74

Appendix B: ARG Protocol

This appendix details the format of each ARG message type. Section B.1 presents the

structure of each message type. Section B.2 gives the steps of each exchange type and their

effect on the gateway’s state.

B.1 Message Formats

The base header for the ARG protocol is given in Table 3.4. Four possible payloads

are delivered under this header: WRAPPED, PING, CONN REQ/CONN RESP, and TRUST DATA.

The format for each is shown in individual sections below.

B.1.1 WRAPPED.

Use: Transfer packets between ARG-protected networks.

This message type contains no additional information. After the original packet is

encrypted, it is used as the payload to the ARG header as-is.

Table B.1: Data in ARG WRAPPED message

Data Size Data Type

Packet Data - Raw, encrypted packet

75

B.1.2 PING.

Use: Time synchronization between two gateways. See Section B.2.2.

Table B.2: Data in ARG PING message

Data Size Data Type

Request ID 4 bytes Unsigned Integer

Response ID 4 bytes Unsigned Integer

Time Offset 4 bytes Unsigned Integer

B.1.3 CONN REQ/CONN RESP.

Use: Connect to other gateways.

Note that these message types are formatted identically. The only difference is the

message type number used, as this allows gateways to determine when it is a request for

new data or just a response to a previous request.

Table B.3: Data in ARG CONN REQ and CONN RESP messages

Data Size Data Type

Symmetric Key 32 bytes Raw

Initialization Vector (IV) 32 bytes Raw

Hop Key 16 bytes Raw

Hop Interval 4 bytes Unsigned Integer

76

B.1.4 TRUST DATA.

Use: Allow on-the-fly addition of new gateways.

Table B.4: Data in ARG TRUST DATA message

Data Size Data Type

Gate Name 10 bytes Null-padded String

Base IP 4 bytes Unsigned Integer

Mask 4 bytes Unsigned Integer

N 130 bytes Raw

E 10 bytes Raw

B.2 Protocol Exchanges

The steps for each exchange are given in the sections below. In the following

descriptions, local is the initiating gateway in a given exchange and remote is another

gateway with which it is communicating.

B.2.1 Connect process.

1. Local sends CONN REQ containing its hop key, hop interval, and symmetric key.

2. After validating the packet, remote saves the connection data. If time synchronization

data is available for local, then remote marks it as connected. If it is not available,

remote schedules a time synchronization request.

3. Remote sends CONN RESP acknowledgment back, containing its own hop key, hop

interval, and symmetric key.

4. Local receives, validates, and saves the data from remote.

77

5. Local marks the remote gateway as having connection data and marks remote as

connected or schedules a time sync, as appropriate.

B.2.2 Time synchronization.

1. Local sends PING containing random 4-byte unsigned integer in the Request ID

field (see Table B.2), null (0) in Response ID, and its time offset in Time Offset,

which is the difference between the current time and its base time.

2. Local notes the time it sent the request.

3. Remote validates the message and responds with a new PING, giving a new random

request integer, the received response int (from local) set to the request int, and its

own time offset.

4. Local ensures received response integer matches the request integer it sent.

5. Local determines the connection’s round-trip latency from the send time, then

remote’s time base is calculated based on half of this. That is,

remote time base = received time offset −
latency

2

This value is saved and used in IP calculations for the remote gateway in the future.

6. Local marks the remote gateway as having time sync data available and, if connection

data is available, remote is marked as connected. If connection data is not available,

local schedules a connect process.

7. Local sends a response to remote, with Request ID set to 0, Response ID set to

the value remote sent in its request, and Time Offset set as in step 1. This second

PING send from local is necessary because remote does not know the latency of the

initial request.

78

8. Remote receives and validates the final response, saves the data, and marks local

as connected if connection data is already available (or schedules a connection data

request if needed).

B.2.3 Trust Data Exchange.

1. For each gateway it knows about, local sends a TRUST DATA packet to remote,

containing the gateway name, base IP, IP mask, and public key to the remote gateway.

Each packet covers one gateway, with no data about the local or remote gateways

included.

2. Remote validates the message, then adds the data in each TRUST DATA packet to their

list of gateways (if they do not already have it). At this point the new gateway appears

just like one read in from a configuration file.

3. Within two seconds, remote attempts to connect to the new gateway, just as they

would any other gateway they had not yet successfully contacted.

B.2.4 Route packet.

1. Local receives a packet on its internal interface.

2. Local takes the outbound packet and encrypts with with remote symmetric key. Local

determines the destination gateway based on IP range.

3. Local sends WRAPPED message to remote current IP with the encrypted packet

included. An HMAC of the packet (encrypted data and headers) is included in the

header.

4. Remote receives and validates the message.

5. Remote sends the original, decrypted packet into the internal network.

79

Appendix C: ARG Testing

This appendix covers the steps used to run a test. The events shown below occur in

order for each test.

1. Set time on all hosts to be the as similar as possible (used for post-processing only).

2. Set artificial network latency on external interfaces of gates.

3. Start tcpdump on each host. Gateways have two instances started, one for each

interface. The exact commands with the appropriate traffic filters appear in Table

C.1.

Table C.1: Test run tcpdump calls

Host Command

Gateway sudo tcpdump -i eth2 -w gateX-inner.pcap -n ip and not arp

sudo tcpdump -i eth1 -w gateX-outer.pcap -n ip and not arp

Prot/Ext sudo tcpdump -i eth1 -w clientX.pcap -n ip and not arp

4. Set ARP cache size on gateways and external host to allow for 65,536 entries. This

is needed at short hop intervals only because all systems are on the same network

segment.

5. Push configuration files for ARG. ProtA1 and ProtC1 each know about ProtB1,

but not about each other. ProtB1 is given configuration files for both ProtA1 and

ProtC1.

6. Start ARG on the gateways.

80

7. Start traffic generators on hosts, as appropriate for the test being run. See Section 4.8

for general flow of traffic for each test type.

8. Wait for the test to finish. For all tests discussed in this thesis, tests run for five

minutes.

9. Stop traffic generators.

10. Stop ARG.

11. Stop traffic collectors (tcpdump).

12. Retrieve log and pcap files from every host into a directory.

After the logs are collected together, the run is processed by a separate script,

process run.py. See Appendix F for details on its use.

81

Appendix D: ARG Building and Configuration

This appendix documents everything needed to use ARG. Section D.1 covers the build

environment needed to build ARG from source. Section D.2 documents calling ARG and

creating the necessary configuration files.

D.1 Building

ARG runs on Ubuntu 12.04 and 12.10. Other versions and distributions are untested,

although they may work if the below requirements are met.

D.1.1 Required Packages.
• gcc >=4

• linux-headers 3.5.0

• Autoconf >=2.69

• Automake >=1.11

• libtool >=2.4.2

• libpcap-dev >=1.3.0

• libpolarssl-dev >=1.1.4

• libpthread-dev >= 1.1.1

In Ubuntu:

1 $ sudo apt-get install automake autoconf build-essential \

libtool libpcap-dev libpolarssl -dev

D.1.2 Compilation.

From the ARG source directory:

1 $./autogen.sh

2 $ make

This should produce two executables, arg and gen gate config.

82

D.2 Usage

D.2.1 Command Line.

ARG must be run as root. Usage is straightforward:

$ sudo ./arg <conf file>

A path to a configuration file is required. The path should point to the main

configuration file, with supporting files in the same directory as the main one. See Section

D.2.2 for more details.

ARG will start up and configure itself, then after a brief delay attempt to connect to

other gateways for which it has configuration information. To end ARG’s execution at any

time, press ctrl-c to cleanly kill it or send it SIGTERM via kill (i.e. sudo killall \

-SIGTERM arg) to end it without cleaning up.

D.2.2 Configuration Files.

ARG requires at least three separate configuration files on start up, plus one for every

gateway it should have initial knowledge about. The main configuration file may be called

anything and contains four lines:

Listing D.1: main.conf

1 gateA

2 eth2

3 eth1

4 1000ms

In order, these are: gate name, internal network interface, external network interface,

and hop interval. Hop interval must be given in milliseconds.

In the same directory as the main configuration file must be two files giving details on

the local gateway called <gatename>.pub and <gatename>.priv. The private file (.priv)

gives the full private key of a gateway, while the public file (.pub) contains the public key,

83

the base IP address of the gate, and the corresponding netmask. Examples of each are given

in Listings D.2 and D.3.

Listing D.2: gate.pub

172.1.0.1

255.255.0.0

N = 9F6BA2C9BD3717D591B1E52256ACFB43DB2EDF010E0312611273\

D4D327B215CFF87A1F04882559C49E61CA2D35E93B71D3950E4D\

FA64A0F80D2B670D83C555D24E25EA38CD9BED14A8BD0FF05A36\

649EDD64486E18521ABF695FA278A28303C50C89A91A4860A685\

F961C45A4BE2CE3011F1B78C741FE9508595254DE336AF43

E = 010001

Listing D.3: gate.priv

N = 9F6BA2C9BD3717D591B1E52256ACFB43DB2EDF010E0312611273\

D4D327B215CFF87A1F04882559C49E61CA2D35E93B71D3950E4D\

FA64A0F80D2B670D83C555D24E25EA38CD9BED14A8BD0FF05A36\

649EDD64486E18521ABF695FA278A28303C50C89A91A4860A685\

F961C45A4BE2CE3011F1B78C741FE9508595254DE336AF43

E = 010001

D = 4C2A31A12ECC768FABC7115101962D89B2DB46E20B1EBE963029\

B5019912854752508E272D20A32DC3F9B68D3917903606BF4D11\

4652F370EF61D01F6DD846F2AC0137C22A0C33014860AC68F7DF\

FC7F524B5D70FDA37530B06DFA518DCEDCF08537D4AB6DE5969C\

13E143E6DF2C6DD3145B4E4FF9306BDCD209A3F66C5C3F81

P = E154E78FFFC51AAABA4BE0B5F9123366962612EBB8AB17008A0A\

6367AB9C7A33ECEFCD807C8414CC56AC7678BE14604F13F9D66A\

B754C26E91ED30B18EE76283

Q = B51E3A12CED999F234DEF316888AC624D65DFDCFA93DC40FABCF\

84

70784057ADF27751A1B0103049AA0C4C89C92A081C774425F440\

D5C4A4B18CE984E8B93EE441

DP = D159C9FECEDA78E93046F912F8C3014089B5FC1447B1A5A059A\

04734F58B5F3A49238F6195CE3D68900A91D3A27E59F07E95BBB\

1D07D0E5C1E7629AC7E21DA33

DQ = 9421B9BBA24464DDAD125FDD2125E7333FC4B60EFECB8EAC868\

7EDE3DC341A07C24118ADE83FA63017490E34625529FAFDD8D0F\

1AA24DFD27B7E8E7ECCEBBC41

QP = AA199F9F8C0EB3FEA2DB83EA22134576E9B9C8DD7C4B78D8CE4\

2011E56EFAECF8A4C8AFE19F2F6E76B5B41C73D0B7F90B8FA1D0\

04C2539060FAE762019D6F990

The first two lines of the public key file are, in order, the base IP address and mask for

the gateway. The remainder of the parameters are hexadecimal integer values matching to

parts of the RSA equations. The library used for encryption in ARG (PolarSSL) provides

a straightforward way of reading these into the internal key structures. The exact details of

each value are not overly important, as the public and private key files files can be produced

quickly through the included gen gate config utility. This tool is built alongside arg,

see Section D.1. Usage is:

1 $./gen_gate_config <name> <base ip> <mask>

This will produce a <name>.pub and <name>.priv file with the information given

and a random public and private key.

For reference, N and E in both of configuration files come from the RSA encryption

equation c ≡ me(mod n). The values D, P, and Q in the private key file represent the original

key generation values, as shown in the equations n = pq and d ≡ e−1(mod φ(n)). The

remainder of the values are multiplied forms of the the previous values (e.g., DP is D × P).

85

For every gateway that this gate should know about, another <othegatename>.pub

should be placed in the directory. For instance, if gateA knows about gateB, then a

gateB.pub file must exist. The information inside is the same format as its own .pub

file. Look at Section D.3 for an example of the file structure and expected output.

D.3 ARG Execution Example

In this example ARG is being run on gateA and only knows about gateB.

Listing D.4: ARG Execution Example

1 $ ls

2 arg conf

3 $ ls conf

4 gateA.pub gateA.priv gateB.pub main-gateA.conf

5 $ sudo ./arg conf/main-gateA.conf

6 1355979615.731 LOG4 Starting at 20 Dec 2012 00:00:15

7 1355979615.731 LOG4 Reading from configuration file \

conf/main-gateA.conf

8 1355979615.731 LOG4 Found public key for gate gateA

9 1355979615.731 LOG4 Found public key for gate gateB

10 1355979615.731 LOG4 Hopper init

11 1355979615.731 LOG4 Locating configuration for gateA

12 1355979615.731 LOG4 Configured as gateA

13 1355979615.731 LOG4 Generating hop and symmetric encryption \

keys

14 1355979615.731 LOG4 Hop rate set to 1000ms

15 1355979615.733 LOG4 Hopper initialized

16 1355979615.733 LOG4 NAT init

17 1355979615.733 LOG4 NAT initialized

18 1355979615.733 LOG4 Director init

86

19 1355979615.733 LOG2 Internal device is eth2, external is eth1

20 1355979615.733 LOG4 NAT cleanup thread running

21 1355979615.733 LOG4 NAT Table empty

22 1355979615.735 LOG4 Using filter '(arp and not dst net \

172.1.0.0 mask 255.255.0.0) or (not arp and src net \

172.1.0.0 mask 255.255.0.0)' on eth2

23 1355979615.739 LOG4 Using filter '(arp and not src net \

172.1.0.0 mask 255.255.0.0 and dst net 172.1.0.0 mask \

255.255.0.0) or (not arp and dst net 172.1.0.0 mask \

255.255.0.0)' on eth1

24 1355979615.739 LOG2 Internal IP: 172.1.0.0, external IP: \

172.1.0.0, external mask: 255.255.0.0

25 1355979615.739 LOG4 Director initialized

26 1355979615.739 LOG4 Running

27 1355979615.739 LOG4 Starting connection/gateway auth thread

28 1355979615.739 LOG4 Connect thread running

29 1355979615.742 LOG4 Ready to receive packets on eth2

30 1355979615.765 LOG4 Ready to receive packets on eth1

31 1355979618.739 LOG4 Sending connect information to gateB

32 1355979618.740 LOG0 Outbound: Accept: Admin: connection data \

sent: /p:253 s:172.1.194.123:0 d:172.2.151.79:0 \

hash:8fb3b019948229847cd9e3adcd55fd90

33 ...

34 ˆC

35 1355979940.504 LOG4 Director uninit

36 1355979940.541 LOG4 Director finished

37 1355979940.541 LOG4 Shutting down

38 1355979940.541 LOG4 NAT uninit

87

39 1355979940.542 LOG4 NAT finished

40 1355979940.542 LOG4 Hopper uninit

41 1355979940.542 LOG4 Removing all associated ARG networks

42 1355979940.542 LOG4 Hopper finished

43 1355979940.542 LOG4 Finished

88

Appendix E: Traffic Generators

This appendix covers the required environment for the two traffic generators and their

usage. Section E.1 lists the required utilities to run the generators. Section E.2 discusses

usage of each generator and the available command line parameters.

E.1 Environment

The traffic generators run on Ubuntu 12.04, Ubuntu 12.10, and Mac OSX 10.8. Other

versions and distributions are untested, although they may work if the below requirements

are met.

The following packages must be available for gen traffic.py and malicious traffic.py

to run:

• Python 2.7

• python-scapy >=2.2.0

In Ubuntu:

1 $ sudo apt-get install python-libpcap python-scapy

E.2 Usage

E.2.1 Normal Traffic Generator.

gen traffic.py generates random TCP and UDP packets with the given character-

istics and rates. Table E.1 shows all the available options and the defaults where applicable.

The generator can be stopped by pressing Ctrl-c or sending it SIGTERM via kill.

E.2.2 Validation.

Validation is done manually on this tool by capturing the generated traffic on both the

sending and receiving hosts. Full packet logging may be done by the generator directly

(raw packets bytes were dumped), so a simple comparison between the sent traffic, the

89

traffic it believes it generated, and the assigned settings ensure all parts of the tool operate

as expected.

E.2.2.1 Examples.

Send UDP traffic to 192.168.1.5:2000 twice a second:

1 $./gen_traffic.py -t udp -p 2000 -h 192.168.1.5 -d .5

2 1356728008.79 LOG4 START: Starting at 28 Dec 2012 15:53:28

3 1356728008.79 LOG4 Starting a valid UDP sender to \

192.168.1.5:2000

4 1356728008.79 LOG4 LOCAL ADDRESS: 192.168.1.115:2000

5 1356728009.29 LOG4 Sent valid \

17:dae8053de4050a230b106d763665f058 to 192.168.1.5:2000

6 1356728009.29 LOG4 Received valid \

17:f537a893140dbcc3b911cb69eae34b46 from 192.168.1.5:2000

7 1356728009.79 LOG4 Sent valid \

17:500b1c56df2e3d17ce50bda4e9be03c9 to 192.168.1.5:2000

8 ...

9 1356728011.81 LOG4 Sent valid \

17:f31dd5564b658e956fe74cc35c0f603f to 192.168.1.5:2000

10 1356728011.81 LOG4 Received valid \

17:ed8104a0ab9835fab38cc453362e8894 from 192.168.1.5:2000

11 ˆC1356728012.25 LOG4 User requested we stop

12 1356728012.25 LOG4 UDP sender to 192.168.1.5:2000 dying

Receive that UDP traffic:

1 $./gen_traffic.py -t udp -l -p 2000

2 1356727988.4 LOG4 START: Starting at 28 Dec 2012 15:53:08

3 1356727988.4 LOG4 Starting a UDP receiver on port 2000

4 1356727988.4 LOG4 LOCAL ADDRESS: 192.168.1.5:2000

90

5 1356728009.29 LOG4 Received valid \

17:dae8053de4050a230b106d763665f058 from \

192.168.1.115:49958

6 1356728009.29 LOG4 Sent valid \

17:f537a893140dbcc3b911cb69eae34b46 to 192.168.1.115:49958

7 ...

8 1356728011.81 LOG4 Received valid \

17:f31dd5564b658e956fe74cc35c0f603f from \

192.168.1.115:49958

9 1356728011.81 LOG4 Sent valid \

17:ed8104a0ab9835fab38cc453362e8894 to 192.168.1.115:49958

10 ˆC1356728015.71 LOG4 User requested we stop

11 1356728015.71 LOG4 UDP listener on port 2000 dying

E.2.3 Malicious Traffic Generator.

malicious traffic.py generates malicious ARG traffic by replaying ARG pro-

tocol traffic with randomly chosen modifications. The possible modifications are shown

below. Each may be chosen with a 10% probability.

• Zero ARG signature/HMAC

• Change message type

• Zero data

• Remove the data

• Changed sequence number

• Changed source IP address

• Changed destination IP address

The only option available for malicious traffic.py is --output option. This has

the same effect as gen traffic.py’s and is covered in Table E.1.

91

Table E.1: gen traffic.py command-line parameters

Parameter Description Possible Values Default

--type Type of traffic to work with tcp, udp

--is-invalid Log traffic as invalid. No

effect on actual traffic.

false

--host Host to send to IP or domain name

--port Port to send to/listen on Port number 0-65535

--listen Listen on given port rather

than initiating connection

false

--delay Delay in seconds between

sends

>=0.0s 1.0

--echo Echo received packet data

back to sender rather than ran-

dom

false

--size Size of packet data to send Number of bytes to send Random

--output Log to given file file name stdout

E.2.3.1 Validation.

Validation is done manually on this tool by capturing the generated traffic on both

the sending and receiving hosts. The generator logs the modification(s) it makes to each

packet, so a comparison between the received packet and the replayed packet quickly

confirms each modification works as expected. Modifications are checked individually

and in combination.

92

E.2.3.2 Limitations.

Due to the design of the test network, with a switch connecting the hosts, it is

difficult for this tool to reliably sniff traffic (it does not attempt to ARP spoof or otherwise

redirect traffic flow). To compensate for this the malicious generators are run on the

gateways themselves, allowing them to see all of the traffic passing the gateway. A more

realistic solution would be to use a true hub (the test network’s switch did not allow this

configuration) or sniff on a spanning port and send via a separate port.

93

Appendix F: Results Processor

After every test run, a custom utility processes the pcap and log files into a single

database and extracts statistics from there. This appendix documents the usage of this tool

and its operation. Section F.2 covers the required packages to process runs. Section F.3

covers usage of the results processor. Section F.4 documents the operation of the processor.

F.1 Validation

Validation is done manually on this tool via short, extremely low-traffic test runs. By

performing tests with only a few packets in each direction, it is possible to manually ensure

that all results the processor produces are accurate. These validation tests are done on

everything from single-flow tests (one direction between just two hosts) and many-flow,

multi-protocol tests.

F.2 Environment

The test processor runs on Ubuntu 12.04, Ubuntu 12.10, and Mac OSX 10.8. Other

versions and distributions are untested, although they may work if the below requirements

are met.

The following packages must be available for process run.py to run:

• Python 2.7

• python-scapy >=2.2.0

• python-libpcap >=0.6.2

In Ubuntu:

1 $ sudo apt-get install python-libpcap python-scapy

94

F.3 Usage

process run.py supports a variety of parameters, all of which are optional. The full

parameter list and defaults are given in Table F.1. Full descriptions of each are given in the

list below.

Table F.1: process run.py command-line parameters

Parameter Short Default

--help -h

--logdir -l ‘.’

--database -db In-memory

--empty-database false

--skip-processing false

--skip-stats false

--offset 0

--start-offset 0

--end-offset 0

--show-cycles false

--finish-indicator none

• --help - Display usage message.

• --logdir, -l - Path of directory with log and pcap files.

• --database, -db - Path to database of processed run data. Will be created if needed,

otherwise existing data will be used. If the database is only partially processed,

process run.py will complete it. If not given, defaults to an entirely in-memory

database.

95

• --empty-database - If given, all existing data in database is removed.

• --skip-processing - Do not attempt to process data, only produce results. If the

database is incomplete, nothing will happen.

• --skip-stats - Do not calculate statistics after processing run data.

• --offset - Number of seconds to ignore at the beginning and end of a run.

• --start-offset - Number of seconds to ignore at beginning of run. Overrides

value of --offset.

• --end-offset - Number of seconds to ignore at end of run. Overrides value of

--offset.

• --show-cycles - If processing errors occur and the processor generates loops in

the packet chains (i.e., following the next hop for each packet eventually would lead

back around), show cycles may reveal the problem packet(s). Mostly obsolete.

• --finish-indicator - File to create after processing is complete. Intended for

automation.

F.3.1 Example.

The most common use case, when the caller wants to process the run data in the current

directory and create a database named run.db with the results:

1 ˜/results/basic-t0-l20-hr500ms -2012-11-24-08:54:21$ \

process_run.py -db run.db

If a run takes several seconds to enter a steady state, it may be beneficial to ignore

the first 30 seconds of the run. In addition, this example does its work from a different

directory but leaves the results in the same location as the previous example:

96

1 ˜/results$ process_run.py -l \

basic-t0-l20-hr500ms -2012-11-24-08:54:21 -db \

basic-t0-l20-hr500ms -2012-11-24-08:54:21/run.db \

--start-offset 30

F.4 Processor Execution

Run processing follows the steps below. It makes assumptions about the test network

to determine where packets are headed and what hosts actually send and receive them, so

logs must come from a network set up as documented in Figure 4.2.

1. Create database.

2. Read run settings from log files and file names.

3. Check settings for test setup problems, such as missing hosts.

4. Read through each PCAP file, entering every packet into the database with a hash of

its data.

5. Read through each log file. For each send/receive/transformation (gateways passing

a packet to/from their inside network) line:

(a) Determine the single-hop source and destination of the packet (who sent it and

which system should see it next).

(b) Determine the true sender and receiver of packet. That is, who originally sent

the packet and for whom it is intended.

(c) Determine if it is intended to be a “valid” packet (i.e., should it reach its

destination or not?).

(d) Locate the packet in the database via hash and record the log information in the

record.

97

(e) If it is a transformation packet (at a gateway), locate the send and receive

packets and link them together.

6. Trace packets through the network, creating a chain of sends and receives. Packets

that pass through the gateway follow the transformation through. That is, if the

gateway receives a packet, alters it, and sends it out the other side, the packet

sequence continues unbroken.

7. Check for packet cycles, which would indicate a tracing problem.

8. Copy true source and destination of each packet chain into all packets in the

sequence. When a host sends a packet, it has an intended recipient. This information

is copied into each packet in the chain, making it easier to look up.

9. Locate packet chain terminations. Each packet in a chain is given the ID number of

the packet that ends the chain, allowing the processor to tell where each packet ended

and if it reached the intended destination.

10. Produce statistics by querying the database for packets matching various criteria,

such as packets that terminate at a different destination than intended.

98

Bibliography

[AA06] S. Antonatos and K. G. Anagnostakis. TAO: protecting against hitlist worms
using transparent address obfuscation. In Communications and Multimedia
Security, 10th IPIP TC-6 TC-11 International Conference, pages 12–21,
Crete, Greece, Dec 2006.

[AAMA07] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis. Defending
against hitlist worms using network address space randomization. Computer
Networking, 51:3471–3490, August 2007.

[AN94] M. Abadi and R. Needham. Prudent engineering practice for cryptographic
protocols. In Proceedings of the 1994 IEEE Computer Society Symposium on
Research in Security and Privacy, pages 122–136, May 1994.

[AN95] R. Anderson and R. Needham. Robustness principles for public key protocols.
In Don Coppersmith, editor, Advances in Cryptology–CRYPT0 95, volume
963 of Lecture Notes in Computer Science, pages 236–247. Springer Berlin
Heidelberg, 1995.

[An01] J.H. An. Authenticated encryption in the public-key setting: Security notions
and analyses. http://eprint.iacr.org/2001/079, 2001.

[APWJ03] M. Atighetchi, P. Pal, F. Webber, and C. Jones. Adaptive use of
network-centric mechanisms in cyber-defense. In Proceedings of the Sixth
IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, ISORC ’03, Washington DC, 2003. IEEE Computer Society.

[ARMT06] M. Abu Rajab, F. Monrose, and A. Terzis. On the impact of dynamic
addressing on malware propagation. In Proceedings of the 4th ACM workshop
on Recurring malcode, WORM ’06, pages 51–56, New York, NY, USA, 2006.
ACM.

[AZEH09] F. Aloul, S. Zahidi, and W. El-Hajj. Two factor authentication using mobile
phones. In Computer Systems and Application. AICCSA 2009. IEEE/ACS
International Conference on, pages 641–644, may 2009.

[BBGR09] R. Benadjila, O. Billet, S. Gueron, and M. Robshaw. The Intel AES
Instructions Set and the SHA-3 Candidates. In Mitsuru Matsui, editor,
Advances in Cryptology–ASIACRYPT 2009, volume 5912 of Lecture Notes
in Computer Science, pages 162–178. Springer Berlin Heidelberg, 2009.

[BN00] M. Bellare and C. Namprempre. Authenticated encryption: Relations among
notions and analysis of the generic composition paradigm. Advances in
Cryptology–ASIACRYPT 2000, pages 531–545, 2000.

99

[Buc04] J.A. Buchmann. Cryptographic hash functions. Introduction to Cryptography,
pages 235–248, 2004.

[CGKR] L. Colitti, S. H. Gunderson, E. Kline, and T. Refice. Evaluating IPv6 adoption
in the Internet. In PAM 2010.

[CS03] R. Cramer and V. Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack. pages
37–44, Aug 2003.

[Gue10] S. Gueron. Intel advanced encryption standard new instructions set. May
2010.

[JK03] J. Jonsson and B. Kaliski. Public-Key Cryptography Standards (PKCS) #1:
RSA Cryptography Specifications Version 2.1. RFC 3447 (Informational),
February 2003.

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104 (Informational), February 1997. Updated
by RFC 6151.

[KFLD01] D. Kewley, R. Fink, J. Lowry, and M. Dean. Dynamic approaches to
thwart adversary intelligence gathering. In DARPA Information Survivability
Conference Exposition II, 2001. DISCEX ’01. Proceedings, volume 1, pages
176–185, 2001.

[Mal97] G.S. Malkin. Dial-in virtual private networks using layer 3 tunneling. In Local
Computer Networks, 1997. Proceedings., 22nd Annual Conference on, pages
555–561, 2-5 1997.

[MBH+05] D. M’Raihi, M. Bellare, F. Hoornaert, D. Naccache, and O. Ranen. HOTP:
An HMAC-Based One-Time Password Algorithm. RFC 4226 (Informational),
December 2005.

[MG98] C. Madson and R. Glenn. The Use of HMAC-SHA-1-96 within ESP and AH.
RFC 2404 (Proposed Standard), November 1998.

[MHCN96] A. Mauthe, D. Hutchison, G. Coulson, and S. Namuye. Multimedia group
communications: towards new services. Distributed Systems Engineering,
3(3):197, 1996.

[MKR+04] G. Miklós, F. Kubinszky, A. Rácz, Z. Turányi, A. Valkó, M. A. Rónai,
and S. Molnár. A novel scheme to interconnect multiple frequency
hopping channels into an ad hoc network. SIGMOBILE Mobile Computer
Communication Rev., 8:109–124, January 2004.

[MMPR11] D. M’Raihi, S. Machani, M. Pei, and J. Rydell. TOTP: Time-Based One-Time
Password Algorithm. RFC 6238 (Informational), May 2011.

100

[MPS+02] J. Michalski, C. Price, E. Stanton, E. Lee, CHUA, K. Seah, Yip Heng, TAN,
and C. Pheng. Final report for the network security mechanisms utilizing
network address translation ldrd project. Technical Report SAND2002-3613,
Sandia National Laboratories, Albuquerque, New Mexico, 11 2002.

[Nar04] T. Narten. Assigning Experimental and Testing Numbers Considered Useful.
RFC 3692 (Best Current Practice), January 2004.

[NV09] A.A. Neto and M. Vieira. Untrustworthiness: A trust-based security
metric. In Risks and Security of Internet and Systems (CRiSIS), 2009 Fourth
International Conference on, pages 123–126, Oct. 2009.

[Pos81] J. Postel. Transmission Control Protocol. RFC 793 (Standard), September
1981. Updated by RFCs 1122, 3168, 6093, 6528.

[Ram99] B. Ramsdell. S/MIME Version 3 Message Specification. RFC 2633 (Proposed
Standard), June 1999. Obsoleted by RFC 3851.

[Rep08] K. A. Repik. Defeating Adversary Network Intelligence Efforts with Active
Cyber Defense Techniques. Master’s thesis, Air Force Institute of Technology,
Fairborn, OH, June 2008.

[RT10] B. Ramsdell and S. Turner. Secure/Multipurpose Internet Mail Extensions
(S/MIME) Version 3.2 Message Specification. RFC 5751 (Proposed
Standard), January 2010.

[Sha49] C.E. Shannon. Communication theory of secrecy systems. Bell system
technical journal, 28(4):656–715, 1949.

[SK02] R. Song and L. Korba. Review of network-based approaches for privacy. In
Proceedings of the 14th Annual Canadian Information Technology Security
Symposium. National Research Council Canada, May 2002.

[SSH05] M. Sifalakis, S. Schmid, and D. Hutchison. Network address hopping: a
mechanism to enhance data protection for packet communications. In ICC
2005. IEEE International Conference on Communications, volume 3, pages
1518–152, May 2005.

[SWLX02] J. Sjoberg, M. Westerlund, A. Lakaniemi, and Q. Xie. Real-Time Transport
Protocol (RTP) Payload Format and File Storage Format for the Adaptive
Multi-Rate (AMR) and Adaptive Multi-Rate Wideband (AMR-WB) Audio
Codecs. RFC 3267 (Proposed Standard), June 2002. Obsoleted by RFC 4867.

[Tal12] D. Talbot. A bandwidth breakthrough. MIT Technology Review, Oct 2012.

[WL03] W. Weinstein and J. Lepanto. Camouflage of network traffic to resist attack
(CONTRA). In DARPA Information Survivability Conference and Exposition,
2003. Proceedings, volume 2, pages 126–127, april 2003.

101

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

27–03–2013 Master’s Thesis Oct 2011–Mar 2013

Evaluating the Effectiveness of IP Hopping via an Address Routing
Gateway

Morehart, Ryan A., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-13-M-35

INTENTIONALLY LEFT BLANK

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

This thesis explores the viability of using Internet Protocol (IP) address hopping in front of a network as a defensive
measure. This research presents a custom gateway-based IP hopping solution called Address Routing Gateway (ARG)
that acts as a transparent IP address hopping gateway. This thesis tests the overall stability of ARG, the accuracy of
its classifications, the maximum throughput it can support, and the maximum rate at which it can change IPs and still
communicate reliably.
This research is accomplished on a physical test network with nodes representing the types of hosts found on a typical,
corporate-style network. Direct measurement is used to obtain all results for each factor level. Tests demonstrate
ARG classifies traffic correctly, with no false negatives and less than a 0.15% false positive rate on average. The test
environment conservatively shows this to be true as long as the IP address change interval exceeds two times the
network’s round-trip latency; real-world deployments may allow for more frequent hopping. Results show ARG capably
handles traffic of at least four megabits per second with no impact on packet loss. Fuzz testing validates the stability of
ARG itself, although additional packet loss of around 23% appears when under attack.

15. SUBJECT TERMS

Networks, address space randomization, IP hopping, routing

U U U UU 116

Dr. Barry E. Mullins

(937) 255-3636 ext. 7979

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Goals and Limitations
	Thesis Overview

	Background
	Network Routing
	IP Hopping in Detail
	Data Security
	Time-Based One-Time Password (TOTP)
	Previous Implementations
	Summary

	Implementation
	Requirements
	Architecture Overview
	Components
	ARG Protocol
	Summary

	Methodology
	Problem Definition
	System Boundaries
	System Services
	Workload
	System Parameters
	Evaluation Technique
	Performance Metrics
	Experimental Design
	Summary

	Results and Analysis
	Basic Tests
	Minimum Hop Interval
	Maximum Packet Rate
	Fuzzing Test
	Overall Analysis
	Summary

	Conclusions and Recommendations
	Research Conclusions
	Research Impact
	Future Work
	Summary

	Appendix A: IP Packet Structure
	Appendix B: ARG Protocol
	Message Formats
	Protocol Exchanges

	Appendix C: ARG Testing
	Appendix D: ARG Building and Configuration
	Building
	Usage
	ARG Execution Example

	Appendix E: Traffic Generators
	Environment
	Usage

	Appendix F: Results Processor
	Validation
	Environment
	Usage
	Processor Execution

	Bibliography

