REPORT DOCUMENTATION PAGE Form Approved OMB NO. 0704-0188

The public reporting burden for this collection of information is estimated to average 1hour per response, including the time for reviewing instructions,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments
regarding this burden estimate or any other aspect of this collection of information, including suggesstions for reducing this burden, to Washington
Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA, 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any oenalty for failing to comply with a collection of
information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)
New Reprint -

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Percolating contact subnetworks on the edge of isostaticity WOI11INF-11-1-0175

5b. GRANT NUMBER

5¢c. PROGRAM ELEMENT NUMBER

611102
6. AUTHORS 5d. PROJECT NUMBER
Antoinette Tordesillas, Colin Thornton, Robert P. Behringer, Jie Zhang,
John F. Peters, David M. Walker Se. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES AND ADDRESSES 8. PERFORMING ORGANIZATION REPORT

University of Melbourne NUMBER

Melbourne Research

Swanston Street

9. SPONSORING/MONITORING AGENCY NAME(S) AND 10. SPONSOR/MONITOR'S ACRONYM(S)
ADDRESS(ES) ARO

U.S. Army Research Office 11. SPONSOR/MONITOR'S REPORT

P.O. Box 12211 NUMBER(S)

Research Triangle Park, NC 27709-2211 58763-EG.6

12. DISTRIBUTION AVAILIBILITY STATEMENT

Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not contrued as an official Department
of the Army position, policy or decision, unless so designated by other documentation.

14. ABSTRACT

We search for a percolating, strong subnetwork of contacts in a quasi-statically deforming, frictional granular
material. Of specific interest in this study is that subnetwork which contributes to the majority of the total deviator
stress and is, or is on the edge of being, isostatic. We argue that a subnetwork derived from the minimal spanning
trees of a graph—optimized to include as many elastic contacts as possible and which bear normal contact forces
above a given threshold delivers such a network. Moreover adding the strong 3-force-cycles to the spanning tree

15. SUBJECT TERMS

Complex networks, Spanning trees, Force chains, Force cycles, Isostatic

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 15. NUMBER [19a. NAME OF RESPONSIBLE PERSON
a. REPORT |b. ABSTRACT |c. THIS PAGE ABSTRACT OF PAGES Antoinette Tordesillas

uu uu uu uu 19b. TELEPHONE NUMBER
038-344-9685

Standard Form 298 (Rev 8/98)
Prescribed by ANSI Std. Z39.18



Report Title
Percolating contact subnetworks on the edge of isostaticity

ABSTRACT

We search for a percolating, strong subnetwork of contacts in a quasi-statically deforming, frictional granular material.
Of specific interest in this study is that subnetwork which contributes to the majority of the total deviator stress and is,
or is on the edge of being, isostatic. We argue that a subnetwork derived from the minimal spanning trees of a
graph—optimized to include as many elastic contacts as possible and which bear normal contact forces above a given
threshold delivers such a network. Moreover adding the strong 3-force-cycles to the spanning tree introduces a level of
redundancy required to achieve a network that is almost if not isostatic. Results are shown for assemblies of
non-uniformly sized circular particles under biaxial compression, in two-dimensions: a discrete element (DEM)
simulation of monotonic loading under constant confining pressure, and cyclic loading of photoelastic disks under
constant volume.






REPORT DOCUMENTATION PAGE (SF298)
(Continuation Sheet)

Continuation for Block 13

ARO Report Number 58763.6-EG
Percolating contact subnetworks on the edge of

Block 13: Supplementary Note

© 2011 . Published in Granular Matter, Vol. Ed. 0 13, (3) (2011), (, (3). DoD Components reserve a royalty-free, nonexclusive
and irrevocable right to reproduce, publish, or otherwise use the work for Federal purposes, and to authroize others to do so
(DODGARS §32.36). The views, opinions and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of the Army position, policy or decision, unless so designated by other documentation.

Approved for public release; distribution is unlimited.



Granular Matter (2011) 13:233-240
DOI 10.1007/s10035-011-0250-y

ORIGINAL PAPER

Percolating contact subnetworks on the edge of isostaticity

David M. Walker - Antoinette Tordesillas -
Colin Thornton - Robert P. Behringer - Jie Zhang -
John F. Peters

Received: 18 September 2010 / Published online: 16 February 2011
© Springer-Verlag 2011

Abstract We search for a percolating, strong subnetwork
of contacts in a quasi-statically deforming, frictional granu-
lar material. Of specific interest in this study is that subnet-
work which contributes to the majority of the total deviator
stress and is, or is on the edge of being, isostatic. We argue
that a subnetwork derived from the minimal spanning trees
of a graph—optimized to include as many elastic contacts
as possible and which bear normal contact forces above a
given threshold delivers such a network. Moreover adding
the strong 3-force-cycles to the spanning tree introduces a
level of redundancy required to achieve a network that is
almost if not isostatic. Results are shown for assemblies of
non-uniformly sized circular particles under biaxial compres-
sion, in two-dimensions: a discrete element (DEM) simula-
tion of monotonic loading under constant confining pressure,
and cyclic loading of photoelastic disks under constant vol-
ume.
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1 Introduction

Ioannis Vardoulakis and his collaborators brought soil
mechanics to a level comparable to other disciplines of con-
tinuum mechanics and as a result enriched both. His studies
of shear bands (strain localization), Cosserat theory, and sta-
bility brought those subjects into the mainstream at a time
when the numerical analysis community was struggling with
the validity of constitutive theories for frictional media viz.
a viz. the mathematical well-posedness of associated initial
and boundary value problems. The intense interest seen today
in micropolar theory is a direct result of his work. AT’s last
face-to-face conversation with Ioannis was on micropolar
constitutive models that explicitly accounted for force chain
evolution [1]. In this discussion, Ioannis raised a model that
he developed in the late 80s in which he envisaged the gran-
ular medium to be a ‘two-fractions mixture’—comprising
‘weak or frail’ and ‘strong or competent’ grains [2]. This
study was inspired by that paper. Using a complex networks
approach, we explore other properties exhibited by these two
fractions in connection with the macroscopic stress and the
structural mechanics concept of redundancy. As this study
integrates several key concepts and developments in the
physics and mechanics of granular systems, we provide first
an exposition of these to put into context this effort before
presenting our findings.

Features that have both orientation and spatial extent,
exemplified by the so-called force chains (the strong grains
in [2]), dominate the micromechanics of granular media
yet fall outside the domain of traditional ‘local’ continuum
mechanics. In devising alternative continuum theories based
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on non-local and micropolar formalisms one must reckon
with the general lack of empirical evidence to account for
structural evolution, boundary conditions and geometric con-
figuration of the material domain. Data extracted from dis-
crete element method (DEM) simulations and photoelastic
disk experiments [3-8], provide a wealth of information to
support non-traditional theories. Details on force chain evo-
lution form a key outcome that has profound implications
for the broad science of granular materials and especially for
constitutive theory.

One of us, CT, notes that in the 90s there was much interest
in ‘strong force chains’ of particles and their contribution to
the macroscopic stress that quantifies the load-bearing capac-
ity of the material. However, the stress tensor is a function of
the contact information, forces and local coordinates, rather
than the particles themselves. In this context, Radjai et al. [9]
showed that, for 2D systems of rigid disks, the deviatoric
stress was entirely due to the strong subnetwork of con-
tacts transmitting larger than average contact forces. This
was confirmed in [10] from 3D DEM simulations of ‘soft’
spheres, irrespective of the elastic properties of the parti-
cles. Thornton [11] also showed that the tangential contact
forces only provided a small (typically ~ 15%) contribu-
tion to the deviator stress. The same was found in triaxial
compression tests for various granular assemblies compris-
ing irregularly-shaped particles [12]. Moreover, for general
states of stress (0] # 02 # 03), it was demonstrated in [13]
that any deviation from the isotropic stress state, i.e. the
deviatoric stress, was almost entirely due to the strong sub-
network of contacts each transmitting larger than the global
average force. A review of studies focussed on exploring
the connection between the strong subnetwork of contacts
and the macroscopic stress for various loading conditions is
given in [14]. Overall, these observations suggest the possi-
bility that the strong contact network, described by Radjai
and co-workers as the “solid-like backbone” of the mate-
rial [9]—may be isostatic but is embedded within the overall
redundantly constrained (hyperstatic or statically indetermi-
nate) particle system. Indeed man-made structures depend
crucially on redundant supports to maintain stability [15].

While the force chain network by themselves might be
close to if not isostatic, structural mechanics dictates that
contacts from laterally confining neighbors are needed to pro-
vide these columnar load-bearing force chains with the nec-
essary redundancies to maintain stability. In past analyses of
2D and 3D systems, columnar force chains have been found
to consistently reside in self-organized local contact topolo-
gies with a relatively higher level of connectivity [6—8]. This
is evident in force chain particles having a higher average
number of contacts as well as stabilizing 3-cycles (i.e. con-
tacts with neighbors which are themselves in mutual contact)
when compared to other particles in the system. The process
of self-organization in these dense granular systems seems to

@ Springer

follow ‘rules’ resembling those employed in the construction
of man-made structures. Specifically, the system in the sta-
ble regime (e.g. during strain-hardening in the biaxial tests
in [6]) evolves to form a macroscopically redundant struc-
ture comprising, at the mesoscopic scale, axial load bearing
column-like force chains which are laterally supported by
truss-like 3-cyles. However, as shown in [6], the bulk redun-
dancy of the system degrades with dilatation, following the
loss of contacts in the direction of extension, with the greatest
rate of decrease in the average number of contacts per par-
ticle recorded during the unstable strain-softening regime.
Evidence that redundancy aids material stability can be seen
during the initial force chain buckling event: although this
may involve the collapse of multiple force chains, this crit-
ical event occurs just prior to peak shear stress when the
material is globally stable [6]. That the material holds post-
critical strength or load-carrying capacity amidst collapse of
some of its major load bearing members—is due to its capa-
bility to redistribute its internal forces and moments to other
contacts. This is often seen in engineering structures that are
commonly endowed with sufficient redundancies for stabil-
ity and safety as highlighted in [15]: “For example, when a
single column of a large frame buckles, the entire frame need
not collapse, since the axial force from this column can be
transferred to the adjacent columns.”

In experiments and other DEM simulations, isostatic,
hyperstatic and hypostatic regimes have been observed to
co-exist simultaneously in different spatial regions [7].
Specifically, in experiments on photoelastic disks subjected
to multiple cycles of pure quasi-static shear at constant
volume [5,7], shearbands form, and force chains develop,
strengthen and buckle, all accompanied by fluctuations of
local packing densities. During the start of this process, the
system evolves from a stress-free initial state to an interme-
diate hypostatic regime below jamming, then to an isostatic
regime near jamming, and finally arrives at a hyperstatic
state. Under shear reversal after reaching some maximum
strain, force networks change adaptively to the switch in the
shear direction: the original force network melts away, in
part through loss of contacts in the direction perpendicular
to the applied compression, and a new force network forms
with force chains aligned along the direction of the applied
compression.

The nature of jamming has been the focus of several
recent reviews [16—18] with the key concepts revolving
around states which can be described as hypostatic, iso-
static, or hyperstatic. Here, the number of contacts per par-
ticle (denoted typically by Z), plays an important role in
distinguishing stability. States with too few contacts, such
that there are so-called floppy modes which allow deforma-
tion within the system without energy cost, are hypostatic.
States where there are no such floppy modes are hyperstatic,
and isostaticity separates hyperstatic and hypostatic states.
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Granular materials near isostatic states can show critical-like
behavior in terms of the particle rearrangement to exter-
nal perturbations [19], divergence of a characteristic length
scale to a point force response [20,21], an enhancement of
the number of normal modes at zero frequency [22], and
anomalous behaviors near the special jamming transition
point, J [17,23]. By applying coarse graining, Blumenfeld
has been able to demonstrate that in isostatic systems, the
governing system of equations on large scales may be hyper-
bolic: this leads to a natural association between force chains
and the characteristics of the system of equations for such
media [24,25]. In the same paper [24], Blumenfeld also pro-
posed that systems that are close to but not identically iso-
static, may be treated as a mixture of two phases with one
phase being isostatic and the other consisting of a connected,
hyperstatic, regime. However, it is not clear how those two
phases should be identified in different spatial regions.

In this study, we explore the extent to which a percolating
strong subnetwork of contacts satisfies the isostatic condi-
tion in a DEM simulation of monotonic biaxial loading and
in an experimental cyclic shear test. Previous studies have
assumed a contact force threshold f, = F/(F) = 1 to iden-
tify the ‘strong’ network, where (F') is the global average
force. Arevalo et al. [26] have investigated the contact topol-
ogy of highly packed, jammed configurations with respect
to the f. force threshold (see, also [27]). Here we also relax
this constraint and, in addition, search for an isostatic per-
colating subnetwork that maximizes the contribution to the
deviator stress. The algorithm we propose allows us to sep-
arate the contact networks into two parts—a strong network
and a weak supporting network. To do so, we use two meth-
ods: one based on the value of R defined in (2) of Methods
(and elsewhere [7]) and the other using the average force as
the threshold. The former produces a subnetwork which is
exactly at the isostatic state at R = 1. However, we empha-
size here that our method is general; it can be applied to any
hyperstatic system, whether the system itself is near isostatic
state or far from the isostatic state.

2 Methods

An assembly of granular particles can be represented by a
mathematical graph or complex network, where the network
nodes correspond to particles and the links to contacts. The
rheological response of the material to loading is encoded in
evolving properties of this contact network [28]. The strong
(weak) contacts of a network are those contacts that carry
a normal contact force magnitude above (below) a given
threshold, where traditionally, the dividing point between
strong and weak is taken to be the global mean, or in nor-
malized form, f, = 1. The stress is given (here for circular
particles) by

6 = 55 O mSRN + R M

ceNE

where N, is the set of particles in the network, V7 is the local
void volume of a particle, N represents the number of con-
tacts in the subnetwork L, f /AC is the contact force between

particle A and particle B, nl‘f“ is the unit branch vector of the
contact and RA¢ and RZ¢ are the radii of the contacting par-
ticles. Equation (1) gives the stress for the solid phase of the
assembly rather than the whole volume, the two differing by
a multiplicative factor equal to the solids fraction. The per-
colating subnetwork shares the same physical space as the
whole assembly, thus for purposes of comparison, we sim-
plify our computation by using solid fraction stresses. The
deviator stress (i.e. second invariant of the deviatoric stress
tensor) is thus given by the difference in the eigenvalues of
the stress tensor, i.e. D = %[max(k,-) — min(A;)], where A;
are the eigenvalues of 6;;.

An assembly of grains in equilibrium is isostatic if there
is exactly enough contacts for force and torque, or moment,
balance: i.e. the number of unknown independent forces and
moments is equal to the number of equilibrium equations.
If the assembly is under-constrained (over-constrained), i.e.
the number of unknown independent forces and moments is
less (greater) than the number of equilibrium equations, then
the network is hypostatic (hyperstatic). The redundancy of a
granular assembly can be quantified using a procedure dis-
cussed in detail in [7] but key elements are repeated here for
the benefit of the reader. A scalar ratio R can be defined where
R < 1 corresponds to a hypostatic system, R = 1 to an iso-
static system, and R > 1 indicates a hyperstatic system. The
definition of R accounts for the number and types/modes of

Force chain

Dual support provided by 3-cycles

Fig. 1 An example of the dual supporting role to force chains that 3-
cycles provide (i.e. resistance to relative rotations at contact and lateral
support to ‘prop-up’ force chains). If the normal contact force carried
at each edge of the triangle is above average (or a prescribed force
threshold) then the cycle is a 3-force-cycle. If both 3-cycles above are
3-force-cycles then the union of contacts in each cycle constitutes the
3-force-cycle network
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contact in a network. The contacts are classified according to
whether they are elastic or plastic with a further distinction
accounting for rolling resistance (contact moment) in assem-
blies of circular disks. In particular, a stick contact is such
that both the tangential force and contact moment are elastic
and independent of the normal force; by contrast, a sliding
contact is such that the tangential force is at the Coulomb
threshold and thus coupled to the normal force and a rolling
contact is such that the contact moment is at its analogous
Coulomb plastic threshold and thus also coupled to the nor-
mal force. A sliding and rolling contact has both tangential
force and contact moment at their respective Coulomb plas-
tic thresholds. Specifically, in 2D R, the ratio of the number
of independent forces and moments to the number of equi-
librium equations, is given by

R = 3N, stick + 2N, slide + 2N, roll + N, shde+roll (2)

3N particles

DEM: Span+3FC, fc=1
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where Ngick, Nslides Nroll and Nglideroll are the number of
stick, sliding, rolling, and sliding+rolling contacts in the sub-
network. Nparticles 1 the number of particles in the subnet-
work. The pre-factors in (2) represent the number of degrees
of freedom needed to define each type of contact. For exam-
ple, a stick contact is below the limiting state for all modes
of deformation which requires three degrees of freedom in
2D. In contrast if the contact is sliding (rolling), a degree
of freedom is removed because the tangential component of
the contact force (contact moment) is coupled to the normal
force, thus the multiple is two [7].

A subnetwork percolates the material domain if its constit-
uent set of contacts extend from one boundary of the domain
to the other. A spanning tree of a contact network is an acy-
clic subset of contacts that connects all the nodes. A minimal
spanning tree is a spanning tree with minimum total path
length or contacts. If we assign a weight to each contact or

DEM: Span+3FC, R=1
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Fig. 2 Color online. Snapshots of the percolating minimal spanning trees and 3-force-cycle subnetworks (Span+3FC) for DEM at axial strain 0.04
(upper) and for cyclic shear system at strain step 417 (lower). Contacts are blue, 3-force-cycles contacts are red triangles and force chain nodes are

green
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link, it is a spanning tree with minimum sum of contact
weights. We weight the contact matrix according to contact
mode: 1 for a stick contact, 2 for arolling contact, 3 for a slid-
ing contact, and 4 for the sliding+rolling contacts. Thus we
bias the search for a minimal spanning tree towards finding
stick and rolling contacts—the typical contact modes within
the force chain network [1,29].

The 3-force-cycles within a network are the ‘strong’
3-cycle motifs: the force (or, here, its normal component)
at each contact of a 3-force-cycle has a magnitude that is at
least the prescribed threshold. In [6] the 3-force cycles were
introduced and discovered to play an important supporting
role to force chains during and in the location of shear band-
ing. As illustrated in Fig. 1, the 3-force cycles provide dual
resistance to force chain buckling by: (1) frustrating particle
rotations crucial for buckling and (2) propping-up the force
chain particles. The 3-force-cycle network is the collection

fc=1

— Total
Span+3FC

ZMMMWMNNWM«W

o
1 ."-Wm
O L L
0 0.05 0.1
Stress
Total
150 | Span+3FC, fc=1 ]
—  Span+3FC, R=1
100
)
50 E
0 1 1
0 0.05 0.1

Axial strain

of all such 3-cycles (see, the red triangle contacts within the
subnetworks of Fig. 2 for examples of such networks).

Our algorithm for finding a percolating and isostatic sub-
network proceeds in the following sequence:

1. Set the normal contact force magnitude threshold (e.g.
Jfe=1D.

2. Prune all contacts bearing a normal force magnitude less
than f,.

3. From the remaining contact subnetworks of step 2

(a) Find the 3-force-cycle network.

(b) Find the minimal spanning trees with the contacts
weighted by contact type.

(c) Construct the subnetwork comprising the union of
contacts in the 3-force-cycle network and all the
minimal spanning trees

R=1
1.2 : :
——— Span+3FC
1 Vh n
L
0.8t
0.6
0 0.05 0.1
Ratio

02} — Span+3FC, fc=1
Span+3FC, R=1

0 1 1
0 0.05 0.1

Axial strain

Fig. 3 Color online. DEM system—T7op left: The redundancy of the networks at f. = 1. Top right: the force threshold required such that the sub-
network (Span+3FC) is isostatic. Bottom left: the deviator stress f. = 1 and R = 1. Bottom right: contribution to deviator stress of the subnetworks
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4. If we require a force threshold such that the subnetwork
is isostatic, i.e. R = 1, update the force threshold and
return to step 2. The threshold can be updated using the
Nelder-Mead simplex method to minimize the cost func-
tion (R — 1)%.

For the resulting subnetwork of contacts, we compute the
redundancy and its contribution to the total deviator stress.
Almost all of the force chain particles, as determined from
the algorithm used in [30], will be nodes for a force threshold
of f, = 1 or less. Note that some particles may be missed
as the force chain algorithm of [30] considers only particles
with above-average particle load vector magnitude and not
above-average normal contact force. That is, the algorithm
to find force chains within a granular assembly in equilib-
rium identifies groups of three or more contacting particles

fc=1
3 . .
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) Wtwﬂmmmm
M/MW

0 1 1
0 200 400
Stress
2 T T
Total
Span+3FC, fc=1
15} 1
Span+3FC, R=1
n 1
05
0 X
0 200 400

Strain step

whose particle load vectors are: (1) in quasi-linear arrange-
ment (i.e. consecutive vectors align to within a prescribed
tolerance angle), and (2) each with a magnitude that is above
the global average (see [30] for full details).

It is very difficult to find a force threshold such that the
collection of minimal spanning trees is isostatic. The redun-
dancy R from (2) for f. = 1 and almost all other values
above f. = 1 are below 1.0. We must therefore add some
contacts to the spanning trees to increase the redundancy.
Recent studies of the topology of laterally supporting con-
tacts around force chains from DEM simulations and physi-
cal experiment show, on average, that force chains not only
have a higher number of contacts but also a higher number
of 3-cycles per particle [6,7]. Accordingly, we consider the
union of the spanning trees and the subnetwork of 3-force-
cycles, the strong 3-cycles, for the given threshold.
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Fig. 4 Color online. Cyclic shear system—7op left: The redundancy of the networks at f. = 1. Top right: the force threshold required such that
the subnetwork (Span+3FC) is isostatic. Botfom left: the deviator stress f. = 1 and R = 1. Bottom right: contribution to deviator stress of the

subnetworks
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3 Results

We present results of applying the above algorithm to two
data sets, both 2D systems of polydisperse frictional circular
particles, discussed extensively elsewhere. The first is from
a DEM simulation of biaxial compression with constant con-
fining pressure [1,6,7,28]. The second is from experiments
using photoelastic disks subject to cyclic shear under con-
stant volume [5,7]. Figure 2 (top row) shows the percolat-
ing subnetworks, i.e. union of minimal spanning trees and
3-force-cycles, for f = 1 and R = 1 in the DEM; the
bottom row is for one strain step of the cyclic shear experi-
ment. Quantities of interest for the subnetworks in the DEM
simulation are shown in Fig. 3. We see for f. = 1, the redun-
dancy is typically less than 1.0 throughout loading and that
the force threshold required for R = 1 leads to normalized
values less than 1.0. The proportion of force chain parti-
cles in these networks at f. = 1 and the isostatic threshold
are above 99% throughout loading (not shown). Also, the
deviator stresses of the subnetworks are highly correlated
with, and are responsible for, a majority (typically >80%)
of the total deviator stress. Figure 4 shows results for the
experimental cyclic shear system. Due to the larger errors
of determining contacts and contact forces, it is not always
possible to find a rich enough starting network for all strain
steps, and some are left blank. Furthermore, distinguishing
stick, sliding, rolling and sliding and rolling modes of con-
tact is slightly more involved than checking contact force and
contact moment magnitudes. For surviving contacts between
two disks across a strain step we track the position of the
contact on each disk and the rotation of each disk. If either
disk shows a non-zero rotation the contact is either a roll-
ing or a sliding and rolling mode. If the change in position
of the contact on either disk is only due to relative motion
then the contact is rolling otherwise it is classed as slid-
ing and rolling. If neither disk rotates but there is a change
in position of contact then the mode of contact is sliding.
A contact is classified as stick if none of the conditions for
slide, roll, slide and roll is met [7]. The resulting subnet-
works capture about 70% of the force chain particles for
fe = 1. This rises to an average of 92% for the isostatic
subnetworks. The force threshold needed for the isostatic
condition of R = 1, if it exists, can be very low, but can also
be above the usual force threshold f. = 1. Again throughout
the loading, the deviator stress of the subnetworks are highly
correlated with and can capture 60% (for f. = 1) and 80%
(for R = 1) of the macroscopic deviator stress.

4 Conclusion

We have presented a method for finding a percolating, strong
subnetwork of contacts in a quasi-statically deforming granu-

lar material that contributes to the majority of the total devia-
tor stress and is isostatic in the sense of R defined in (2) being
equal to one. By a process of optimization that considers all
contacts bearing a normal contact force magnitude above a
given global force threshold, we find that the union of the
3-force-cycles and all the minimal spanning trees, optimized
to include as many elastic contacts as possible, delivers such
a subnetwork. If the threshold is set to the global average
normal contact force, the resulting subnetwork will typically
percolate across the system, include the majority of the force
chain particles, and contribute to the majority of, as well as
being highly correlated with, the total deviator stress. How-
ever, this subnetwork is just below the isostatic condition of
R = 1. If the isostatic condition of R = 1 is used as a con-
straint, then the force threshold required to achieve this is less
than f. = 1 for the DEM but could be above f. = 1 for stages
of the deformation in the experimental system. The finding
that granular materials are inherently bimodal, by which a
percolating isostatic subnetwork of the material can be dis-
tinguished from the milieu of more lightly loaded particles,
opens new avenues for future study. In particular, this has
demonstrated how we can extract new insights from DEM
and experiments to directly facilitate the continued develop-
ment of structural mechanics models of force chain evolution
such as that in [1], and of predictive continuum models such
as those proposed for isostatic systems in [24,25] and for the
more general case in [31].
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