

DATAFLOW-BASED IMPLEMENTATION OF LAYERED SENSING
APPLICATIONS ON HIGH-PERFORMANCE EMBEDDED
PROCESSORS

UNIVERSITY OF MARYLAND

MARCH 2013

FINAL TECHNICAL REPORT

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

AFRL-RI-RS-TR-2013-078

 UNITED STATES AIR FORCE  ROME, NY 13441  AIR FORCE MATERIEL COMMAND

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any purpose

other than Government procurement does not in any way obligate the U.S. Government. The fact that

the Government formulated or supplied the drawings, specifications, or other data does not license the

holder or any other person or corporation; or convey any rights or permission to manufacture, use, or

sell any patented invention that may relate to them.

This report is the result of contracted fundamental research deemed exempt from public affairs security

and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and AFRL/CA policy

clarification memorandum dated 16 Jan 09. This report is available to the general public, including

foreign nationals. Copies may be obtained from the Defense Technical Information Center (DTIC)

(http://www.dtic.mil).

AFRL-RI-RS-TR-2013-078 HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION IN

ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

FOR THE DIRECTOR:

 / S / / S /

STANLEY LIS RICHARD MICHALAK

Work Unit Manager Acting Tech Advisor, Computing

 & Communication Division

 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its

publication does not constitute the Government’s approval or disapproval of its ideas or findings.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

MARCH 2013
2. REPORT TYPE

FINAL TECHNICAL REPORT
3. DATES COVERED (From - To)

OCT 2010 – OCT 2012
4. TITLE AND SUBTITLE

DATAFLOW-BASED IMPLEMENTATION OF LAYERED
SENSING APPLICATIONS ON HIGH-PERFORMANCE
EMBEDDED PROCESSORS

5a. CONTRACT NUMBER
FA8750-11-1-0049

5b. GRANT NUMBER
N/A

5c. PROGRAM ELEMENT NUMBER
62788F

6. AUTHOR(S)
Chung-Ching Shen, Shenpei Wu, Lai-Huei Wang, Stephen Won,
Kishan Sudusinghe, and Shuvra Bhattacharyya

5d. PROJECT NUMBER
T2KA

5e. TASK NUMBER
IL

5f. WORK UNIT NUMBER
PP

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland, College Park
7965 Baltimore Ave
College Park, MD 20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory/RITB
525 Brooks Road
Rome NY 13441-4505

10. SPONSOR/MONITOR'S ACRONYM(S)
N/A

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-RI-RS-TR-2013-078
12. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release; Distribution Unlimited. This report is the result of contracted fundamental research deemed
exempt from public affairs security and policy review in accordance with SAF/AQR memorandum dated 10 Dec 08 and
AFRL/CA policy clarification memorandum dated 16 Jan 09.
13. SUPPLEMENTARY NOTES

14. ABSTRACT
Layered Sensing is an emerging paradigm for critical defense technologies in which heterogeneous methods for sensing,
communication, signal processing, and information exploitation must be integrated with high flexibility, reliability and
efficiency. New design methodologies and software tools will be required to handle the complexity of layered sensing
applications, and allow designers to explore trade-offs among alternative sensing and exploitation strategies while
satisfying their stringent performance and power consumption constraints, and exploiting the capabilities of state-of-the
art embedded processing platforms. In this project, we have developed new dataflow-based technology and associated
design tools for high-productivity, high-confidence design and optimization of layered sensing software. These tools are
geared towards systematically exploring and optimizing interactions across application behavior, operational context,
high performance embedded processing architectures, and implementation constraints.
15. SUBJECT TERMS
Layered sensing, signal processing, embedded systems, dataflow.
16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

ABSTRACT

UU

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

STANLEY LIS
a. REPORT

U
b. ABSTRACT

U
c. THIS PAGE

U
19b. TELEPONE NUMBER (Include area code)

N/A

 Standard Form 298 (Rev. 8-98)
 Prescribed by ANSI Std. Z39.18

sanborne
Typewritten Text
33

i

TABLE OF CONTENTS
LIST OF FIGURES II
LIST OF TABLES III
1. SUMMARY ... 1
2. INTRODUCTION ... 2
3. METHODS, ASSUMPTIONS, AND PROCEDURES .. 3
3.1. PARAMETERIZED SCHEDULING USING TOPOLOGICAL PATTERNS .. 3
3.2. SCALABLE SCHEDULE TREES .. 3
3.3. IMPROVED GPU-TARGETED SYNTHESIS TOOL .. 4
3.4. LIBRARY COMPONENTS AND APPLICATION EXAMPLE ... 6

3.4.1. Application: Image Registration ... 6
3.5. EMULAB SOFTWARE TOOL .. 8
3.5.1. NT-SIM CASE STUDY: VISUAL SENSOR NETWORK ... 10
3.6. IMPROVEMENTS TO DIFML ... 13
4. RESULTS AND DISCUSSION ... 15
4.1. CASE STUDY: IMAGE REGISTRATION .. 15
4.1.1. EVALUATION FOR PERFORMANCE ACCELERATION .. 15
4.1.2. EVALUATION IN TERMS OF CODING EFFICIENCY .. 16
4.2. CASE STUDY: VISUAL SENSOR NETWORK.. 17
5. CONCLUSION ... 17
6. PUBLICATIONS ... 17
7. REFERENCES ... 19
A. APPENDIX–PROJECT DELIVERABLES ... 21
A.1. INTRODUCTION TO DELIVERABLE ORGANIZATION .. 21

A.2. Instructions for Deliverable Installation and Startup ... 22
A.3. Instructions for the Demonstrations .. 23
A.3.1. Demo for Image Registration using TDIF .. 23
A.3.2. Demo for SIFT Visual Sensor Network using NT-SIM... 24
A.3.3. Demo for Image Registration using Topological Patterns .. 24
A.3.4. Demo for cascade Gaussian filtering using SST plug-in .. 25
A.3.5. Demo for Image Registration using DIFML .. 25

LIST OF ACRONYMS .. 26

ii

LIST OF FIGURES
Figure 1: TDIF design flow. .. 5
Figure 2: Design flow of the targeted image registration application. ... 6
Figure 3: Cascade Gaussian filtering. ... 7
Figure 4: Illustration of the interaction between dataflow applications and network simulations in NT-

Sim. .. 9
Figure 5: A dataflow graph model of SIFT-based feature detection and image registration across a

network. .. 10
Figure 6: The topology represented by the Tcl script for the SIFT sensor network. 13
Figure 7: LOC evaluation results. ... 15
Figure 8: (Clockwise from top left) Reference image, target image, and registered image from the

simulated SIFT VSN. .. 16

iii

LIST OF TABLES

Table 1: Performance comparison between CPU-targeted and GPU-targeted actors.. 14
Table 2: Performance comparison for the overall application with and without GPU acceleration 14
Table 3: Experiments for comparison with GPU peak performance .. 14

Approved for Public Release; Distribution Unlimited.
1

1. Summary

Below is a summary of accomplishments, listed by project task.

• Application Case Study: Image Registration: Accomplished. A rigorous case study was

developed to demonstrate the impact of dataflow-based design techniques in the domain of

image registration. In our case study, we quantitatively and qualitatively assessed a

comprehensive dataflow-based methodology for developing, encapsulating, and integrating

image registration functional components.

• Improved Software Synthesis for Optimized Implementation on State-of-the-Art GPUs

(Graphic Processing Units): Accomplished. Based on the experimentation in our proposed

image registration case study, we identified bottlenecks and other areas of improvement in

our GPU-targeted software synthesis tools. We designed, implemented, evaluated and

refined methods to address these limitations and further improve the efficiency of our

dataflow-based software synthesis tools.

• GPU-targeted Dataflow Library for Image Registration: Accomplished. We developed a

collection of dataflow library components for GPU-based image registration. This library

allows designers to experiment with alternative image registration techniques (e.g.,

different registration metrics, preprocessing techniques, and optimization subsystems) in

the context of an enclosing model-based design methodology.

• Formal Models for Representation and Transformation of Performance Optimization

Configurations: Accomplished. To help support a wide range of performance optimization

techniques, and to improve the interoperability of lower level code tuning techniques with

system-level design methodologies, we developed dataflow-based intermediate

representations for encapsulating structures for scheduling. We integrated these

representations in our application case study to demonstrate their efficiency, and tune their

application to the image registration domain.

• Improvements to DIFML (Dataflow Interchange Format Markup Language):

Accomplished. We incorporated our new image registration component library into the

DIFML software package and extended the test suite for the package to provide improved

code coverage.

• Emulab Software Tool: Accomplished. We developed a new software tool that provides

novel capabilities for experimenting with networked signal processing systems. Our tool

integrates our dataflow-based design tool with Emulab-based ns-2 scripts and provides a

flexible environment that allows designers to simulate systems comprehensively at both the

node and network levels.

The organization of project deliverables is summarized in Appendix–Project Deliverable of this

report along with instructions for usage and demonstration of the software deliverables.

Approved for Public Release; Distribution Unlimited.
2

2. Introduction

Layered Sensing is an emerging paradigm for critical defense technologies in which

heterogeneous methods for sensing, communication, signal processing, and information

exploitation must be integrated with high flexibility, reliability and efficiency. New design

methodologies and software tools will be required to handle the complexity of layered sensing

applications, and allow designers to explore trade-offs among alternative sensing and exploitation

strategies while satisfying their stringent performance and power consumption constraints, and

exploiting the capabilities of state-of-the art embedded processing platforms.

The objective of this research is to develop new dataflow-based technology and associated

design tools for high-productivity, high-confidence design and optimization of layered sensing

software. These tools are to be geared towards systematically exploring and optimizing

interactions across application behavior, operational context, high performance embedded

processing architectures, and implementation constraints.

In this project, we have developed an application case study of dataflow-based design in the

domain of image registration. Image registration is an important area of investigation for moving

complex image and video processing techniques "to the edge" (co-located with sensor platforms).

Effective image registration will help to extract key image information close to the imaging

sensor, thereby facilitating faster response and also greatly reducing the amount of data that is

transmitted through the network. This latter benefit will help to reduce power and energy

consumption, and improve security. In our work, we have built on the Dataflow Interchange

Format (DIF) Project [5][9][10], which is a focal point of the Maryland DSPCAD Research

Group at the University of Maryland. The DIF Project provides a valuable infrastructure for

developing, experimenting with, and integrating computer-aided design techniques for embedded

signal processing systems. We have developed new capabilities in the DIF package to

demonstrate the techniques developed in this research, and provide a basis for integrating the

techniques into practical design flows for optimized implementation of embedded signal

processing software. We have also built on our recent work on architectures and acceleration

techniques for medical image registration, which has provided a valuable foundation for the

application case study thrust of this project.

The objective of this research has been to investigate: (a) an application case study on

dataflow based design and implementation of high performance image registration applications;

(b) improvements to software synthesis for graphics processing units (GPUs) to improve the

performance of synthesized implementations; (c) library components for high performance, GPU-

based implementation of image registration functions; (d) intermediate representations for

optimized scheduling techniques and memory management configurations; (e) integration of the

new image registration component library, synthesis tool enhancements, and intermediate

representations into DIFML, which is an Extensible Markup Language (XML) format for

standardized exchange of dataflow graph information; and (f) a novel software tool that enables

Emulab-based experimentation using a user-friendly, formally-rooted, high level, dataflow

language interface.

Approved for Public Release; Distribution Unlimited.
3

3. Methods, Assumptions, and Procedures

3.1. Parameterized Scheduling using Topological Patterns

For dataflow models of large-scale digital signal processing (DSP) applications, the underlying

graph representations often consist of smaller sub-structures that repeat multiple times. We have

demonstrated that Topological patterns (TPs) enable more concise representation and direct

analysis of such substructures in the context of high level DSP specification languages and design

tools [2]. Furthermore, by allowing designers to explicitly identify such repeating structures, use

of TPs provides an efficient alternative to automated detection of such patterns, which entails

costly searching in terms of graph-isomorphism and related forms of computation. A TP is

inherently parameterized and provides a natural interface for parameterized scheduling, which

enables efficient derivation of adaptive schedule structures that adjust symbolically in terms of

design time or run-time variations.

Scheduling is a critical aspect of implementing dataflow graphs (e.g., see [1]).

Parameterized schedules have been studied before (e.g., see [3][4]), and previously, production

and consumption rates were key dataflow graph aspects that were used to generate parameterized

schedules. In this project, we introduced a formal design method for specifying TPs and deriving

parameterized schedules from such patterns based on a novel schedule model called the scalable

schedule tree (SST). Our method ensures deterministic behavior of the system based on compile-

time analysis of its behavior that may contain parameterizable patterns of actor and edge

instantiations.

3.2. Scalable Schedule Trees

The scalable schedule tree data structure is formalized based on the generalized schedule tree

(GST), which is a compact, tree-structured graphical format that can represent a variety of

dataflow graph schedules [12]. In GSTs, each leaf node refers to an actor invocation, and each

internal node n (called a loop node) is configured with an iteration count In for the associated sub-

tree, where execution of the sub-tree rooted at n is repeated In times.

An SST has all of the features of a GST and additionally provides the following new

features.

1. Parameterization. A node within an SST can be parameterized with a parameter set K. The

semantics of how values associated with elements of K change is determined by the model of

computation that is used for application specification in conjunction with the scheduling strategy

that is used to derive the schedule tree. This decoupling from parameter change semantics allows

the SST model to be applied to different kinds of dataflow application models and design

environments.

2. Guarded execution. An SST leaf node, which encapsulates a firing (execution) of an

individual actor, has an optional guarded attribute, which indicates that firing of the

corresponding actor should be preceded by a run-time fireability (enabling) check. Such an

enabling check determines whether or not sufficient input data is available for the actor to fire.

The guarded attribute of SSTs is motivated by the enable-invoke dataflow model of computation,

where guarded executions play a fundamental role.

3. Dynamic iteration counts. Loop nodes can be dynamically parameterized in terms of SST

parameters, which provide capabilities for data- or mode-dependent iteration in schedules. An

SST loop node L can be viewed as a parameterizable form of the constant-iteration-count loop

Approved for Public Release; Distribution Unlimited.
4

nodes in GSTs. An SST loop node L has an associated iteration count evaluation function

 . An implementation of cL takes as arguments zero or more of the parameters in K.

and returns a non-negative integer (zero parameters are used if the iteration count is constant).

Visitation of L begins by calling cL to determine the iteration count, and then executing the

subtree of L successively a number of times equal to this count.

4. Arrayed children. In addition to leaf nodes and SST loop nodes, a third kind of internal node,

called an arrayed children node (ACN), is introduced to represent schedule structures related to

TPs. An ACN z has an associated array childernz which represents an ordered list of candidate

children nodes during any execution of the SST subtree rooted at z. For simplicity, we assume

that childernz is a one-dimensional array, but the associated formulations can easily be extended

to handle multi-dimensional arrays of candidate children. The array childernz has a positive

integer size sizez, which gives the number of elements in the array. It is assumed that the array is

indexed starting at 0. Each element in childernz represents a schedule tree leaf node (i.e., an

encapsulation of an actor in the enclosing dataflow graph), an SST loop node, or another SST ---

i.e., a "nested'' SST. An ACN z also has three functions associated with it, which we denote as

cinitz, cstepz, and climitz, that determine how childernz is traversed during a given execution of the

enclosing subtree. These functions take as arguments pre-specified subsets of the parameters of z,

and return, respectively, a non-negative, positive, and non-negative integer. One or more of these

functions can be constant-valued - dependence on parameter settings is not essential but rather a

feature that is provided for enhanced flexibility.

When an ACN z is visited during traversal (execution) of the enclosing schedule tree, the

following sequence of steps, called the SST traversal process, is carried out. (1) The parameter

settings for z are updated by applying the evaluation function fp for each parameter . (2)

The values of cinitz, cstepz, and climitz are evaluated in terms of the updated parameter settings.

These values are stored in temporary variables, which we denote as I, s, and L, respectively. (3)

The computation outlined by the pseudocode shown below is carried out, where A represents the

array childrenz; count represents the iteration count evaluation function of the associated SST

loop node; and K represents the set of parameters for the enclosing SST.

for (i = I; i <= L; i += s) {

 if A[i] is a leaf node {

 execute the actor encapsulated by A[i]

 } else if A[i] is an SST loop node {

 Z = count(K)

 execute the loop node subtree Z times

 } else { // A[i] is a nested SST

 recursively apply the SST traversal process to A[i]

 }

}

3.3. Improved GPU-targeted Synthesis Tool

Approved for Public Release; Distribution Unlimited.
5

Figure 1: TDIF design flow.

Figure 1 shows the design flow using the targeted dataflow interchange format (TDIF)

[5]. By following this methodology, the designer can focus on design, implementation and

optimization for dataflow actors and experiment with alternative task scheduling strategies and

instrumentation techniques for the targeted platforms based on programming interfaces that are

automatically generated from the TDIF tool. These automatically-generated interfaces provide

well-defined, structured design templates for the designer to follow in order to generate dataflow-

based actors that are formally integrated into the overall synthesis tool. The TDIF environment

currently supports C- and GPU-based implementations (i.e., for Central Processing Unit [CPU]

and GPU platforms). The GPU-based capabilities of TDIF are currently oriented towards

NVIDIA GPUs, based on the Compute Unified Device Architecture (CUDA) programming

framework [11]. Since CUDA is a C-like programming language, CUDA can be viewed as a

variant of C with NVIDIA extensions and certain restrictions, a C- or CUDA-based actor can be

implemented as an abstract data type (ADT) to enable efficient and convenient reuse of the actor

across arbitrary applications. In typical C implementations, ADT components include header files

to represent definitions that are exported to application developers and implementation files that

contain implementation-specific definitions.

We implemented a new plug-in to the DIF framework that extends the DIF language (TDL) to

incorporate support for TPs and allows designers to construct SSTs for schedules associated with

dataflow graphs that are specified in TDL. This plug-in integrates the SST formulations as a new

internal representation format and associated set of manipulations within the DIF framework. TPs

that are currently supported by TDL and defined as pattern keywords in the language include

chain, ring, merge, broadcast, parallel, and butterfly. We have also developed

an SST plug-in from which SSTs can be specified programmatically using graph construction

Application Programming Interfaces (APIs) associated with the SST internal representation. For

details on formal definitions for topological patterns in DIF and APIs defined for the SST plug-in

for constructing SSTs, we refer the reader to [18] and [19], respectively.

Approved for Public Release; Distribution Unlimited.
6

Figure 2: Design flow of the targeted image registration application.

3.4. Library Components and Application Example

3.4.1. Application: Image Registration

In this project, we used an image registration application to demonstrate our TDIF-based design

and synthesis approach. Image registration is a process of geometrically aligning two or more

images of the same scene so that they can be overlaid [6]. Here, one of the images is referred to as

the reference image and the second image is referred to as the target image. Image registration

algorithms can be classified into two types: feature-based and intensity-based. In feature-based

algorithms, image features, such as points, lines, and contours, need to be identified and matched

between the target and reference images. In intensity-based algorithms, intensity patterns are

compared using correlation metrics.

Once corresponding features or intensity patterns have been found, a transformation

method is applied to align the target image with the reference image. Generally, there are two

types of transformation algorithms: rigid transformation and non-rigid transformation. Rigid

transformation only consists of and rotation, translation scaling, while non-rigid transformation

allows locally warping the target image.

We model a non-rigid image registration application based on the Scale Invariant Feature

Transform (SIFT) [7] algorithm using dataflow graphs. Figure 2 shows the design flow for such

an image registration system in terms of a dataflow graph. The overall system is composed of

Approved for Public Release; Distribution Unlimited.
7

Figure 3: Cascade Gaussian Filtering.

subsystems for SIFT, the Key Points Matching technique, Matching Refinement, and Target

Image Transformation. The SIFT algorithm is a method to extract scale and rotation invariant

features from images. It can be used to perform feature matching between images that are taken

from different views of the same scene. In our dataflow-based design, as shown in Figure 2, the

SIFT algorithm is divided into five actors: Cascade Gaussian Filtering, Difference of Gaussian,

Local Extrema Detection, Post Processing, and Descriptor Assignment. We implemented these

actors using C for checking functional correctness. Here, parallelism can be achieved in the

computations of Cascade Gaussian Filtering, Difference of Gaussian, and Local Extrema

Detection. Therefore, in addition to implementing these actors using C, we also implemented the

parallelizable actors in SIFT using CUDA for performance acceleration.

For the computation of key points matching as shown, in Figure 2, the input of the

associated actor includes a descriptor array, produced from the SIFT algorithm, for the referenced

image and a descriptor array, also produced from the SIFT algorithm, for the target image. This

computation is annotated with a parameter for the matching threshold. A key point i in a

descriptor D1 is matched to a key point j in a descriptor D2 only if the Euclidean distance dij

between i and j multiplied by the matching threshold is not greater than the Euclidean distance of

i in D1 to all other key points in D2. The output of this actor is an array that contains the

matching information, i.e., matched index pairs from D1 and D2.

Since key points matching may generate incorrect matches between the reference image

and the target image, a refinement step is needed in order to eliminate such incorrect matches. For

the computation of matching refinement, we applied the Random Sample Consensus (RANSAC)

algorithm for this refinement step [8]. RANSAC is an iterative method to estimate parameters of

a mathematical model from a set of observed data consisting of both inliers and outliers. In our

case, inliers are correct matches and outliers are incorrect matches.

As shown in Figure 2, the target image transformation takes inputs from the refined

matching result and the target image and produces the resulting registered image. For the

computation of the target image transformation, we divide the rigid transformation of the image

into three basic components: translation, rotation, and scaling.

TDIF specifications and associated C and CUDA implementations of the targeted image

registration application are provided in the project deliverables. Evaluation results of performance

are provided and discussed in Section 4.1.1.

To demonstrate our methods and associated new SST plug-in for representation of and

code generation from schedules for dataflow graphs that employ TPs , we use the Cascade

Gaussian Filtering (CGF) subsystem in the SIFT algorithm.

The CGF subsystem contains a number of Gaussian filters with different standard

deviations. These filters produce a series of Gaussian filtered images. CGF is a relevant case

Approved for Public Release; Distribution Unlimited.
8

study for experimenting with TPs and SSTs because it can be modeled naturally in terms of

parameterized topologies. As shown in Figure 3(a), CGF can be modeled as a dataflow graph

consisting of actors that perform Gaussian filtering and downsampling computations. These

computations can be divided into a set of o groups, such that each group involves s filtering steps.

Both o and s are parameters that can be configured by the designer (e.g., to explore trade-offs

between processing complexity and image processing accuracy).

In the CGF process illustrated in Figure 3(a), the original image is convolved with the

first filter. The filtered image is saved and then convolved with the next filter, and so on. After

one group of filtering operations is carried out, s different blurred Gaussian images are labeled as

a separate octave. The next step is to downsample the last image of the previous octave by a

factor of two. This process, as shown in Figure 3(a), repeats until o octaves of images are

produced.

The TP underlying the CGF application is a chain (linear arrangement of actors), which

can be specified in TDL. Figure 3(b) shows the TDL specification with o=6 and s=6. Here, an

array of 40 edges is instantiated by connecting 41 specified nodes (six groups of six nodes each

that are interleaved with five individual nodes) in a chain.

In this CGF example, since both o and s are parameters that can be configured, one can

naturally derive a nested SST as shown in Figure 3(c). Such a representation provides a formal,

target-language-independent model of schedule structure that can be applied to coordinate

execution for this subsystem in a manner that is parameterized across two dimensions.

As shown in Figure 3(c)., the cascade Gaussian filter ACN has 11 children

nodes, which include 6 nested ACNs, each labeled as filter, and 5 downsampler actors

encapsulated as leaf nodes, which are labeled as D[0], D[1], …, D[4]. Each of these leaf

nodes represents an encapsulation of a downsampler actor in the CGF application. Each

internal node labeled filter is an ACN that contains 6 children nodes, where each of these

children nodes represents an encapsulation of a Gaussian filter actor in the application.

TP specifications using DIF for the targeted image registration application and an example

using our SST plug-in for the cascade Gaussian filtering application are provided in the project

deliverables. Evaluation results of coding efficiency are provided and discussed in Section 4.1.2.

3.5. Emulab Software Tool

Dataflow-based modeling is typically not applied to networking aspects of networked signal

processing applications such as the ones developed in Emulab. Network simulations involve link

conditions and data protocols that are usually not represented using dataflow techniques.

Network/application co-simulators address the issue of simulating the network conditions and the

application at each node. However, most co-simulators today do not utilize dataflow-based

modeling of the application (i.e., the intra-node functionality). As the range of network and

distributed applications expands, it becomes increasingly important to develop methods to

simulate the intra-node network conditions together with the dataflow models at the node level.

Such a method would provide complete system analysis of networked signal processing

applications without giving up the benefits of dataflow-based design practices at the level of

individual nodes.

Approved for Public Release; Distribution Unlimited.
9

Figure 4: Illustration of the interaction between dataflow applications and network

simulations in NT-Sim.

To bridge the gap described above, we have developed a co-simulation tool called NT-

SIM (NS-2–TDIF Simulation Environment) that combines TDIF with the popular Network

Simulator (ns-2) to provide novel capabilities for experimentation with networked signal

processing systems. NT-SIM is a flexible environment that allows designers to completely

simulate systems at both the node and network levels. Dataflow-based design tools are available

to assist in the development of layered sensing applications and other kinds of signal processing

applications for which dataflow models can be applied to derive efficient placement and

scheduling solutions. At the same time, ns-2 allows for detailed analysis of network properties

and their effect on node information sharing. This allows designers to understand and validate the

operation of network nodes as well as their interactions in the network.

Figure 4 illustrates the execution order and interactions among components in the NT-

SIM framework. Application behavior is specified based on dataflow modeling principles using

the TDIF framework. To interface with the end system dataflow simulation and traffic generation

for the network, the network behavior and protocols used by the nodes are defined by Object Tool

Command Language (OTcl) scripts, and simulated by the NSE (NS Internal Emulator)

framework.

In NT-SIM, special dataflow actors called IAs (Interface Actors) are developed to allow

the sending and receiving of information between NSE and TDIF. In contrast to conventional

dataflow actors, which represent functional components from the application specification, IAs

are responsible for traffic generation from TDIF-based modeling subsystems, and injection of this

generated traffic into the NSE framework. IAs are also responsible for time synchronization

between the cooperating TDIF- and NSE-based simulation environments. This collection of IAs

in a TDIF-based dataflow subsystem makes the subsystem appear as a single node within an

enclosing ns-2 network topology.

The architecture of NT-SIM is designed to preserve the dataflow principles provided by

the TDIF environment throughout all TDIF-based subsystems, including the interactions that

occur at the interfaces of these subsystems (i.e., at the IAs). The designer is responsible for

specifying the distribution of actors to the nodes in the network graph. In the NT-SIM framework,

the designer develops the system in a hierarchical manner: actor design using TDIF, dataflow

graph design at each network node using DIF, and network graph design using ns-2. The First-in-

first-out (FIFO) communication channels in DIF act as bridges between actors in the dataflow

graph. Correspondingly, the IAs act as bridges between dataflow graphs that are placed on

different network nodes. In NT-SIM, dataflow subsystems can be suspended (e.g., as they wait

for data) and resumed arbitrary numbers of times while the overall network is being simulated,

thus allowing for simulation of complex and tightly-coupled feedback behaviors across the

network.

Thus, NT-SIM provides designers with a hierarchical, modular process for modeling and

experimenting with networked signal processing systems. NT-SIM also provides a useful target

for incorporating additional levels of automation in the design and simulation processes. For

example, protocol configurations and associated implementation details can be determined and

Approved for Public Release; Distribution Unlimited.
10

Figure 5: A dataflow graph model of SIFT-based feature detection and image registration

across a network.

optimized automatically by incorporating associated IA synthesis capabilities within the TDIF

synthesis engine.

The processes of design and experimentation using NT-SIM are demonstrated more

concretely in the next section.

3.5.1. NT-SIM Case Study: Visual Sensor Network

We demonstrate the utility of NT-SIM with a case study of simulating a visual sensor network

designed to perform image registration on different views of the same object.

Visual sensor networks (VSNs) are comprised of groups of networked visual sensors with

image capture, computation, and wireless communication capabilities. To maximize the

effectiveness of a VSN, collaboration among the sensors can take place with the exchange or

fusing of visual information from similar or different perspectives of an area [14]. This allows

the information to be used in tracking, panoramas, and registration.

Each sensor node in a VSN has to fulfill application requirements while running under

constraints involving memory, performance, data rates, and energy [15]. By distributing actors

appropriately across the network, more processing-intensive tasks can be performed at one or

more stationary systems that are connected to power sources, while simpler tasks are handled by

the sensor nodes. This allows energy on the sensor nodes to be conserved while the

computationally-intensive task of image registration is carried out, and also helps to improve the

performance of image registration by allowing use of more powerful (less power constrained)

platforms for the registration tasks.

Approved for Public Release; Distribution Unlimited.
11

In this case study, we experiment with this approach of heterogeneous computing and

distribution-based optimization of energy and performance for the SIFT application in a VSN.

This experimentation is carried out through mapping of the dataflow graphs for distributed signal

processing onto separate network nodes, configuration of IAs in TDIF for appropriate

communication among the nodes, and simulation using NT-SIM. Figure 5 shows a dataflow

graph model of the SIFT algorithm being applied across a network. Here, the SIFT algorithm is

used to register two images with different views of the same object.

Each of the actors in the SIFT algorithm is modeled using the TDIF environment. For this

purpose, the SIFT algorithm is broken into smaller procedural units to be modeled with actors. At

this level of NT-SIM, the actors are not assigned to any particular nodes in a network. The focus

at the actor design level of NT-SIM is to create actors that are represented by the TDIF language.

In this phase of the design process, designers specify the target language of each actor, along with

the inputs, outputs, required parameters, and possible execution modes for the actor. The TDIF

file for the SIFT descriptor actor, which passes the SIFT descriptor to the keypoints matching,

RANSAC, and rigid transformation actors, is shown below. Here, we show the SIFT descriptor

actor specified as a CUDA-targeted actor for GPU-based implementation:

module CUDA sift_descriptor_r

output output1 sift token

output output2 sift token

output output3 sift token

input input1 oframes

input input2 gss

mode init

mode exe

As another example, TDIF code is shown below for an actor that sends an image from the

actor representing the capture of the target image to the network simulated by ns-2. For simplicity

and clarity in the illustration, we design the network to follow the User Datagram Protocol

(UDP). As a result, such an image-sending actor takes in the address and port number as

character-string parameters, and these parameters are employed by the actor in addition to any

inputs coming from other actors in the enclosing dataflow graph subsystem.

module C send_udp_sift_t_img

input input image image token*

param send addr char*

param send port char*

mode init

mode send

Approved for Public Release; Distribution Unlimited.
12

In NT-SIM, the application that runs on each network node is represented by a

specification in the DIF language. To optimize the energy and performance of the SIFT VSN,

actors are split onto different network nodes depending on their roles in the overall application

graph. In this case study, actors are distributed across network nodes depending on whether they

perform feature detection or image registration. This results in multiple dataflow graph

subsystems with each subsystem corresponding to a single network node. Each of these

subsystems can be specified using a DIF file that defines the actors as vertices and the

connections between them as edges in the associated dataflow graph.

The current version of NT-SIM systematically integrates designer-provided tests and

schedules into the overall network simulation, and automates the execution of this simulation

across the entire network. Thus, NT-SIM bridges the gap between network- and dataflow-graph-

level simulation in networked signal processing systems, and provides novel capabilities into

which existing and newly developed dataflow scheduling techniques can be integrated to further

enhance simulation automation and design space exploration.

When using NT-SIM, the designer creates a Tool Command Language (Tcl) script that

models the network topology on NSE to simulate the network. In order to use NSE on ns-2, the

RealTime scheduler has to be used with the simulator. Nodes are declared along with the

network objects and agents. When using the UDP protocol, each of the network objects has to

declare the Internet Protocol (IP) address and port number in the script. These network objects are

attached to their corresponding agents. Afterwards, the connections between nodes can be

defined, along with the bandwidth, delay, and queue behavior for each connection. Each agent is

attached to a node. If the nodes share a common link, then the agents are also connected.

Afterwards, NSE can be run. Figure 6 illustrates the network topology used in our SIFT VSN

case study.

Approved for Public Release; Distribution Unlimited.
13

Figure 6: The topology represented by the Tcl script for the SIFT sensor network.

After the actors, dataflow graph subsystems (the portions of the dataflow graph that are

mapped onto individual network nodes), and the network have been specified, the overall system

can be simulated using NT-SIM. The Tcl script for the network is run using NSE. This allows

network connections to be made between the TDIF and ns-2 environments. Separate test and DIF

files are required for each VSN node. After the executables have been generated for each VSN

node, they can be run --- concurrently with simulation of the resulting network traffic --- to send

and receive data to and from NSE, respectively.

3.6. Improvements to DIFML

DIFML is a software package developed under our previous contract that provides an XML-based

format for exchanging information between DIF and other tools and languages, and more

generally, between arbitrary pairs of dataflow environments.

Approved for Public Release; Distribution Unlimited.
14

In this project, we used a Java code coverage tool called EMMA to analyze and provide

feedback for enhancing the rigor of tests that have been created for the DIFML package.

Intuitively, code coverage reports the percentage of source code components that are exercised by

one or more tests in a given test suite. EMMA is a free code coverage tool that can measure code

coverage results and report for a Java program [17]. Based on the results reported by EMMA, we

enhanced testing for parts of the DIFML package whose code coverage results were found to be

under a target threshold of 90%. As a result, our DIFML package is now validated with a test

suite having at least 90% overall code coverage, which is generally considered a high level of

testing rigor.

In the project deliverables, we provide an upgraded DIFML package with assocaited new

tests. We also provide example code for the new library components involved in our targeted

image registration application.

Table 1: Performance comparison between CPU-targeted and GPU-targeted actors.

Actors CPU (seconds) GPU (seconds) Speedup

Cascade Gaussian

filter
11.896 0.416 28.60

Difference of

Gaussian
0.584 0.012 48.67

Target image

transformation
0.614 0.017 36.12

Table 2: Performance comparison for the overall application with and without GPU

acceleration.

CPU (seconds) GPU (seconds) Speedup

55.575 30.523 1.82

Table 3: Experiments for comparison with GPU peak performance.

Actor name
Execution time

(milliseconds)
GFlops

Comparison to GPU

peak performance

(%)

Cascade Gaussian

Filtering
13 45.19 6.3

Difference of

Gaussian
0.512 152 21.3

Target Image

Transformation
0.988 89.6 12.5

Approved for Public Release; Distribution Unlimited.
15

Figure 7: LOC evaluation results.

4. Results and Discussion

4.1. Case Study: Image Registration

4.1.1. Evaluation for Performance Acceleration

Table shows a performance comparison for the CPU-targeted actors (implemented using C) and

GPU-targeted actors (implemented using CUDA) in the targeted image registration application.

Table shows a performance comparison between two versions of the overall application --- in

one version all of the actors are CPU-targeted, and in the other version, the most computationally

intensive actors are GPU-targeted. As shown in Table and Table , the CUDA implement- ations

have superior performance compared to the corresponding C implementations for these

experiments. However, the application-level speedups, while still significant, are consistently

less than the corresponding actor-level speedups. We believe that this is due to factors such as

context switch overhead and communication cost for memory movement, which are associated

with overall schedule coordination in the application implementations. The input for these

experiments is a 1200x900 gray-scale bitmap image, and the implementations are executed on a

3 Gigahertz (GHz) PC with an Intel CPU, 4 Gigabyte (GB) Random Access Memory (RAM), and

an NVIDIA GTX260 GPU.

In addition to the real-time performance comparisons that have been shown above for the

GPU-targeted and non-GPU-targeted actor implementations of our targeted image registration

application, we have also calculated peak performance values for the GPU-targeted actor

implementations in terms of Giga Floating Point Operations Per Second (GFLOPS). Our

GFLOPS calculation for an actor is based on the number of floating point operations that will be

launched in the CUDA kernel for the actor divided by the execution time of the CUDA kernel. In

this experiment, we measured the execution time and manually counted the number of floating

point operations implemented in the CUDA kernels. The results for GFLOPS are provided in

Table . The actors were implemented on an NVIDIA GTX260 GPU, which provides 715

GFLOPS as peak performance.

Approved for Public Release; Distribution Unlimited.
16

Figure 8: (Clockwise from top left) Reference image, target image, and registered image

from the simulated SIFT VSN.

4.1.2. Evaluation in Terms of Coding Efficiency

We also apply an evaluation metric called the lines of code (LOC), which is the number of

lines of code required for an application. We use this LOC metric to help quantify the benefits of

the concise and scalable representation of DSP applications using TPs. Unless otherwise

specified, the LOC cost refers to code that the designer needs to manually provide (e.g., in

contrast to code that is automatically generated or reused from some other part of an

implementation). We apply this metric on various applications, including the CGF application,

that are specified with and without use of TPs.

We first compare LOC evaluation results, as shown in Figure 7(a), for different

applications by using TDL with and without the support of TPs. For the specifications in this

comparison, each node and edge declaration occupies a separate line of code. We also compare

the LOC cost of CGF implementation that uses code generation and the LOC cost of the

generated code in the TDIF environment. This gives a comparison of the complexity of the

complete implementation generated using TDIF compared to the complexity of the code that the

designer has to write and maintain as source code.

Figure 7(b) summarizes the LOC costs for different implementation components for the

CGF application when code generation is used --- i.e., these are the costs for the designer-written

code that can be viewed as input to the TDIF toolset. These costs are listed as functions of the

numbers of dataflow graph actors n and edges e in the scalable application, and the total LOC

costs c in the designer-written component of the actor implementations.

Approved for Public Release; Distribution Unlimited.
17

On the other hand, Figure 7(c) shows the LOC costs of the complete generated

implementation --- i.e., the generated code together with the designer-written TDIF input code

that is used directly (without translation) in the implementation. In the CGF application, the

underlying TP is a chain, and the number of edges is of the same order as the number of nodes.

Thus, comparing the LOC listings in Figure 7(b) and Figure 7(c), we see that as the number of

nodes n in the application is increased, the ratio of the designer-written LOC cost to the complete

implementation LOC cost decreases. This helps to quantify the utility of the TDIF tool in terms of

LOC costs as a function of graph complexity. This comparison incorporates the use of TPs,

which help to reduce the LOC cost for the top-level DIF specification.

4.2. Case Study: Visual Sensor Network

The SIFT sensor network is simulated on a 3GHz PC with two Intel Xeon CPUs, 3GB RAM, and

an NVIDIA GTX260 GPU. The gcc version 3.4.4 and nvcc version 3.2 compilers

are used in the back end of the implementation process. The functional accuracy of NT-SIM was

verified through simulation of the SIFT VSN case study. End systems (network nodes)

representing reference and target image sensors that can perform feature detection were supplied

with only the reference and target image shown in Figure 8. Functional accuracy was validated

by the match between the produced, registered image and a ground-truth, registered image

provided by the simulation of the single-node SIFT algorithm.

5. Conclusion

In this project, we developed and delivered improved software tools and application

examples for demonstrating layered sensing and signal processing systems on high performance

embedded processors such as GPUs. We created GPU-enhanced dataflow components and

applied our DIF/TDIF tool to demonstrate an application case study on high performance image

registration applications. We also integrated the targeted image registration application into our

DIFML package, which provides an XML format for standardized exchange of dataflow graph

information. We introduced a formal design method for specifying topological patterns for signal

processing applications and deriving parameterized schedules from such patterns based on a

novel intermediate schedule representation called the scalable schedule tree (SST). We also

developed a novel software tool called the NS-2–TDIF simulation environment (NT-SIM), which

enables Emulab-based experimentation for networked signal processing systems. In the project

deliverables, we have included the developments in TDIF, NT-SIM, and DIFML that have been

supported in this project, as well as the developments in DIF with the TP plug-in and associated

SST functionality demonstrated for a selected application example based on cascade Gaussian

filtering.

6. Publications

The following is a list of publications that were produced as outcomes of this project.

[1] Z. Zhou, C. Shen, W. Plishker, and S. S. Bhattacharyya. Dataflow-based, cross-platform

design flow for DSP applications. In A. Sangiovanni-Vincentelli, H. Zeng, M. Di Natale, and P.

Marwedel, editors, Embedded Systems Development: From Functional Models to

Implementations. Springer, 2013. To appear.

Approved for Public Release; Distribution Unlimited.
18

[2] C. Shen, S. Wu, N. Sane, H. Wu, W. Plishker, and S. S. Bhattacharyya. Design and synthesis

for multimedia systems using the targeted dataflow interchange format. IEEE Transactions on

Multimedia, 14(3):630-640, June 2012.

[3] L. Wang, C. Shen, G. Seetharaman, K. Palaniappan, and S. S. Bhattacharyya.

Multidimensional dataflow graph modeling and mapping for efficient GPU implementation. In

Proceedings of the IEEE Workshop on Signal Processing Systems, Québec City, Canada, October

2012.

[4] L. Wang, C.-C. Shen, S. Wu, and S. S. Bhattacharyya. Parameterized scheduling of

topological patterns in signal processing dataflow graphs. Journal of Signal Processing Systems,

pages 1-12, 2012. DOI:10.1007/s11265-012-0719-x.

[5] S. Won. A networked dataflow simulation environment for signal processing and data mining

applications. Master's thesis, Department of Electrical and Computer Engineering, University of

Maryland, College Park, 2012.

[6] S. Won, C. Shen, and S. S. Bhattacharyya. NT-SIM: A co-simulator for networked signal

processing applications. In Proceedings of the European Signal Processing Conference,

Bucharest, Romania, August 2012.

[7] S. Wu, C. Shen, N. Sane, K. Davis, and S. Bhattacharyya. Parameterized scheduling for signal

processing systems using topological patterns. In Proceedings of the International Conference on

Acoustics, Speech, and Signal Processing, pages 1561-1564, Kyoto, Japan, March 2012.

[8] N. Sane. Rapid Prototyping of High Performance Signal Processing Applications. PhD thesis,

Department of Electrical and Computer Engineering, University of Maryland, College Park,

2011.

[9] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya. Topological patterns for scalable

representation and analysis of dataflow graphs. Journal of Signal Processing Systems, 65(2):229-

244, 2011.

[10] C. Shen, H. Wu, N. Sane, W. Plishker, and S. S. Bhattacharyya. A design tool for efficient

mapping of multimedia applications onto heterogeneous platforms. In Proceedings of the IEEE

International Conference on Multimedia and Expo, Barcelona, Spain, July 2011. 6 pages in online

proceedings.

[11] S. Wu. Representation and scheduling of scalable dataflow graph topologies. Master's thesis,

Department of Electrical and Computer Engineering, University of Maryland, College Park,

2011.

[12] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya. Scalable representation of

dataflow graph structures using topological patterns. In Proceedings of the IEEE Workshop on

Signal Processing Systems, pages 13-18, San Francisco Bay Area, USA, October 2010.

Approved for Public Release; Distribution Unlimited.
19

7. References

[1] S. S. Bhattacharyya, E. Deprettere, R. Leupers, and J. Takala, Eds., Handbook of Signal

Processing Systems. Springer, 2010.

[2] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya, “Scalable representation of

dataflow graph structures using topological patterns,” in Proceedings of the IEEE Workshop

on Signal Processing Systems, October 2010.

[3] B. Bhattacharya and S. S. Bhattacharyya, “Parameterized dataflow modeling for DSP

systems,” IEEE Transactions on Signal Processing, October 2001.

[4] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kienhuis, and E. Deprettere,

“Parameterized looped schedules for compact representation of execution sequences in DSP

hardware and software implementation,” IEEE Transactions on Signal Processing, June 2007.

[5] C. Shen, H.Wu, N. Sane,W. Plishker, and S. S. Bhattacharyya, “A design tool for efficient

mapping of multimedia applications onto heterogeneous platforms,” in Proceedings of the

IEEE International Conference on Multimedia and Expo, July 2011.

[6] B. Zitova and J. Flusser. Image registration methods: a survey. Image and Vision Computing,

21:977–1000, 2003.

[7] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal

of Computer Vision, pages 91–110, 2004.

[8] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting

with applications to image analysis and automated cartography. Communications of the ACM,

24(6):381–395, June 1981.

[9] C. Hsu, M. Ko, and S. S. Bhattacharyya, “Software synthesis from the dataflow interchange

format,” in Proceedings of the International Workshop on Software and Compilers for

Embedded Systems, Dallas, Texas, September 2005, pp. 37–49.

[10] W. Plishker, N. Sane, M. Kiemb, K. Anand, and S. S. Bhattacharyya, “Functional DIF for

rapid prototyping,” in Proceedings of the International Symposium on Rapid System

Prototyping, Monterey, California, June 2008, pp. 17–23.

[11] NVIDIA CUDA Compute Unified Device Architecture - Programming Guide, 2007.

[Online]. Available:

http://developer.download.nvidia.com/compute/cuda/1_0/NVIDIA_CUDA_Programming_Gu

ide_1.0.pdf

[12] M. Ko, C. Zissulescu, S. Puthenpurayil, S. S. Bhattacharyya, B. Kienhuis, and

E. Deprettere, “Parameterized looped schedules for compact representation of execution

sequences in DSP hardware and software implementation,” IEEE Transactions on Signal

Processing, vol. 55, no. 6, pp. 3126–3138, June 2007.

[13] S. S. Bhattacharyya, S. Kedilaya, W. Plishker, N. Sane, C. Shen, and G. Zaki, “The

DSPCAD integrative command line environment: Introduction to DICE version 1,” Institute

for Advanced Computer Studies, University of Maryland at College Park, Tech. Rep.

UMIACS-TR-2009-13, August 2009.

[14] K.Fall and K.Varadhan, “The ns Manual (formerly ns Notes and Documentation)”,

November 2011.

[15] Y. Bai and H. Qi, “Feature-based image comparison for semantic neighbor selection in

resource-constrained visual sensor networks,” EURASIP Journal on Image and Video

Processing, 2010.

Approved for Public Release; Distribution Unlimited.
20

[16] I. F. Akyildiz, T.Melodia, and K. R. Chowdhury, “Wireless multimedia sensor networks:

Applications and testbeds,” Proceedings of the IEEE, vol. 96, no. 10, pp. 1588–1605, October

2008.

[17] V. Roubtsov. EMMA Reference Manual, 2006.

[18] N. Sane, H. Kee, G. Seetharaman, and S. S. Bhattacharyya. Topological patterns for

scalable representation and analysis of dataflow graphs. Journal of Signal Processing

Systems, 65(2):229-244, 2011.

[19] S. Wu. Representation and scheduling of scalable dataflow graph topologies. Master's

thesis, Department of Electrical and Computer Engineering, University of Maryland, College

Park, 2011.

Approved for Public Release; Distribution Unlimited.
21

A. Appendix–Project Deliverables

A.1. Introduction to Deliverable Organization

The project deliverables are stored as sub-packages in the afrl-dspcad-cete-

installation package and delivered as a compressed file called afrl-dspcad-cete-

installation.tar.gz. The sub-packages in the project deliverables are 1) DIF with the

topological patterns plug-in, 2) the TDIF plug-in to DIF, 3) the DIFML plug-in to DIF, 4) the

SST plug-in to DIF, and 5) demo examples for items 1-4, which are labeled as dif-demo,

tdif-demo, difml-demo, and sst-demo, respectively.

The afrl-dspcad-cete-installation package is an IDICE package. IDICE

provides tutorial/instructional extensions to the DICE (the DSPCAD Integrative Command Line

Environment) package [13] for streamlined and configurable use of DICE. DICE is a package of

utilities that facilitates efficient management of software projects. Use of IDICE and DICE

provides a unified framework for introducing and applying important software engineering

methods and practices, such as script-based automation, design for cross-platform operation, unit

testing, and incremental project development.

The TDIF sub-package stores the APIs for the delivered GPU software modules, run-time

libraries, and GPU-targeted software synthesis tools. The associated deliverables are stored in the

following directory:

afrl-dspcad-cete-installation/idice/idice-set/libs/tdifgen

The DIFML sub-package stores the DIFML software. The associated deliverables are stored in

the following directory:

afrl-dspcad-cete-installation/idice/idice-set/libs/difmlgen

DIF with the topological patterns plug-in and SST plug-in are stored in the following directory:

afrl-dspcad-cete-installation/idice/idice-set/libs

The dif-demo, tdif-demo, difml-demo, and sst-demo directories store demonstration

examples that are implemented using the DIF pakcage with the topological pattern plug-in, the

TDIF package for the targeted image registration application, the TDIF package with the

assocaited NT-SIM plug-in, the DIFML package, and the SST package, respectively. The

associated deliverables are stored in the following directory:

afrl-dspcad-cete-installation/idice/idice-set-adm/dist

All deliverables in the afrl-dspcad-cete-installation package are built under the

Ubuntu Linux platform with NVIDIA’s GPU, CUDA, and ns-2 enabled.

Approved for Public Release; Distribution Unlimited.
22

A.2. Instructions for Deliverable Installation and Startup

To install the deliverables using IDICE, follow these steps:

1. Copy the file afrl-dspcad-cete-installation.tar.gz to the user’s home

directory.

2. Extract the afrl-dspcad-cete-installation directory from the tar.gz archive

in which it is packaged.

For example:

cd ~

tar xvf afrl-dspcad-cete-installation.tar.gz

3. Create the afrl-dspcad-cete-user directory in the user’s home directory.

For example:

cd ~

mkdir afrl-dspcad-cete-user

4. Create a directory named startup in the afrl-dspcad-cete-user directory.

 For example:

 cd ~/afrl-dspcad-cete-user

 mkdir startup

5. Copy the IDICE startup file from the afrl-dspcad-cete-installation directory

to the afrl-dspcad-cete-user/startup directory.

That is (all on a single line of input):

cp ~/afrl-dspcad-cete-installation/idice/idice-set-

adm/setup/idice_set_startup

~/afrl-dspcad-cete-user/startup

To start up the software using IDICE, follow these steps:

1. Start a bash shell.

2. cd to the afrl-dspcad-cete-user directory --- e.g., run:

 cd ~/afrl-dspcad-cete-user

3. Run

 bash -norc

source startup/idice_set_startup

Approved for Public Release; Distribution Unlimited.
23

A.3. Instructions for the Demonstrations

After the startup of IDICE, a set of utilities is provided as a companion to DICE for convenient

interaction with the project deliverable environment. These include:

idxget <file>

This allows the user to get a local copy (e.g., a C file example) of a distributed file from the

deliverable set.

idxupdate <directory>

This allows the user to get a local copy (e.g., a C file example) of a distributed directory from the

deliverable set.

idxlist <no arguments>

This lists the current set of distributed files and directories along with their associated

modification dates.

Note that idxget and idxupdate overwrite any previous version of the file/directory in

your current working directory. Distributed directories are generally distributed as tar.gz

archives, so use idxupdate for entries that show up (with idxlist) with .tar.gz endings,

and use idxget for other (non-archive) entries.

To learn about more useful DICE commands, please refer to [13].

The demo examples --- dif-demo.tar.gz, tdif-demo.tar.gz, sst-

demo.tar.gz and difml-demo.tar.gz --- are stored in the distribution directory of the

afrl-dspcad-cete-installation package. These archives can be listed by using the

idxlist command, and the user can use the idxupdate command to copy the demo

examples into the afrl-dscpad-cete-user directory by following these steps:

cd ~/afrl-dspcad-cete-user

idxupdate tdif-demo

idxupdate dif-demo

idxupdate sst-demo

idxupdate difml-demo

A.3.1. Demo for Image Registration using TDIF

The demonstrated image registration application using TDIF is stored in tdif-demo/ir. In

both tdif-demo/ir/src and tdif-demo/ir/test, a makeme script contains commands

to performs all necessary compilation steps that are needed for the test. Here, three compilation

steps are needed. The first step is to parse actor-specific TDIF files and generate APIs for the

corresponding actors. Actor designers can then provide the associated implementation code (in C

or CUDA) based on the provided APIs. The second step is to parse the DIF files, which are

specified in the DIF language, extract the overall dataflow graph structure, generate a

corresponding top-level C file that implements the input dataflow graph, and generate a header

file for designers to implement schedulers. The third step is to use the NVCC (NVIDIA CUDA

Compiler) to compile all of the implementation files (i.e., *.c and *.cu files) and generate the final

executables. That is, by linking with the TDIF run-time library, the associated actor object code

(compiled from C or CUDA), and scheduler object code, the generated top-level C file can be

Approved for Public Release; Distribution Unlimited.
24

compiled using NVIDIA’s NVCC compiler. The resulting executable can then be run on the

targeted NVIDIA GPU platform. To perform all the compilation steps in tdif-demo/ir/src,

use the following command:

makeme

In tdif-demo/test, a script called runme contains a command to run the resulting

executable, which takes an input reference and target BMP files, respectively, and produces a

registered bitmap image file (BMP) after performing image registration tasks, as described in

Section 3.4.1, on the NVIDIA GPU platform.

A.3.2. Demo for SIFT Visual Sensor Network using NT-SIM

The demonstrated visual sensor network simulation (described in Section 3.5.1), which simulates

the targeted, SIFT-based image registration application using NT-SIM, is stored in tdif-

demo/vsn. In tdif-demo/vsn/src, a makeme script contains commands to performs the

three compilation steps for all the required dataflow components specified using TDIF. To run a

network simulation using NT-SIM in this demo, four terminal sessions (bash sessions) need to be

used, and each session should have IDICE enabled. Then users need to follow the steps below in

each session:

1. In terminal session 1, go to the tdif-demo/vsn/test/test-network and use

NSE to launch a localhost network specified using ns-2 script. That is,
nse network.tcl

2. In terminal session 2, go to the tdif-demo/vsn/test/test-receiver. Execute

the makeme and runme scripts, repectively, to compile the code needed for the receiver

node and listen to the designated port for the arrival of packets. The receiver node will

wait util it receives packets from the refenerce node and target node, respectively, to start

processing and generate a registered image.

3. In terminal session 3, go to the tdif-demo/vsn/test/test-sender-

reference. Execute the makeme and runme scripts, repectively, to compile the code

needed for the reference node and transmit the packets for the processed reference image

to the localhost with the designated port.

4. In terminal session 4, go to the tdif-demo/vsn/test/test-sender-target.

Execute the makeme and runme scripts, repectively, to compile the code needed for the

target node and transmit the packets for the processed target image to the localhost with

designated port.

5. A registered image will be produced on the receiver node (i.e., from terminal session 2).

A.3.3. Demo for Image Registration using Topological Patterns

The demonstrated image registration application using DIF that incorporates support for

topological patterns is stored in dif-demo/tp/ir. In dif-demo/tp/ir/test, users

should execute the makeme script to compile a driver program that takes a DIF file as input. This

input DIF file specifies the targeted image registration application using topological patterns.

After executing the makeme script, users should execute the runme script to construct a

dataflow graph for the targeted image registration application, and produce the graphical result

Approved for Public Release; Distribution Unlimited.
25

(i.e., a rendering of the constructed dataflow graph), which is stored in Portable Network

Graphics (PNG) format.

A.3.4. Demo for cascade Gaussian filtering using SST plug-in

The demonstrated scalable schedule tree (SST) representation for scheduling the cascade

Gaussian filtering (CGF) application is stored in sst-demo/cgf. In sst-

demo/cgf/test, users should execute the makeme script to compile a driver program that

constructs an SST for CGF as shown in Figure 3(c) using the SST plug-in. After executing the

makeme script, users should execute the runme script to construct an SST and produce relevant

information about the constructed schedule tree to standard output.

A.3.5. Demo for Image Registration using DIFML

The difml-demo directory contains demo examples, including the targeted image registation

application, that use the DIFML tool to transform files between the DIF and DIFML formats. In

each example, a runme script contains a command to run the DIFML parser, which takes an

input file in either DIF or DIFML format and produces an output file in either DIFML or DIF

format, respectively. After running each runme script, the corresponding output file will be

generated automatically.

The contents of the tdif-demo directory includes the following subdirectories.

• src: stores the source code that has been written for the demo, i.e., the Gaussian filtering

application.

• bin: stores executable programs resulting from the source code after compilation.

• test: stores tests for the demo.

Approved for Public Release; Distribution Unlimited.
26

LIST OF ACRONYMS

ACN Arrayed Children Node

ADT Abstract Data Type

API Application Programming Interface

BMP Bitmap Image File

CGF Cascade Gaussian Filtering

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DICE DSPCAD Integrative Command Line Environment

DIF Dataflow Interchange Format

DIFML Dataflow Interchange Format Markup Language

DSP Digital Signal Processing

FIFO First-in-first-out

GB Gigabyte

GFLOPS Giga Floating Point Operations Per Second.

GHz Gigahertz

GPU Graphics Processing Unit

GST Generalized Schedule Tree

IDICE Instructional DSPCAD Integrative Command Line Environment

JPEG Joint Photographic Experts Group

Approved for Public Release; Distribution Unlimited.
27

LOC Lines of Code

NSE NS Internal Emulator

NT-SIM NS-2–TDIF simulation environment

NVCC NVIDIA CUDA Compiler

PNG Portable Network Graphics

RAM Random Access Memory

RANSAC Random Sample Consensus

SIFT Scale-Invariant Feature Transform

SST Scalable Schedule Tree

TP Topological Pattern

TDIF Targeted DIF

TDIFSyn TDIF Synthesis

TDL The DIF Language

TDP The DIF Package

UDP User Datagram Protocol

XML Extensible Markup Language

