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1 Summary 

The extraction of relevant information from large-scale data requires an ac­
curate model of the data source. In practice, such a model has to be generic 
enough to encompass data sources of different modality but also mathemati­
cally tractable to allow a fast rate of learning. We have selected exponentially 
embedded family (EEF) of probability density functions (PDFs) for informa­
tion extraction. The EEF belongs to the exponentially family of PDFs, and 
therefore inherits many important properties to allow efficient information ex­
traction and learning from data. First of all, it admits sufficient statistics and 
therefore, provides the means for selecting good models. It also easily allows 
additional sensor statistics to be evaluated and possibly incorporated into the 
model. The exponential family is a reproducible probability density function 
family (a Gaussian is a special case), whose conjugate density is also of the 
exponential family type. For unsupervised scenarios in which unknown param­
eters need to be estimated, the maximization of the likelihood leads to a convex 
optimization problem, and thus can be easily implemented. Furthermore, the 
model is sufficiently general to encompass any real-world situation. The em­
bedded exponential family approach yields a means of on-line assessment of 
performance since the Kullback-Liebler divergence is a part of the model. The 
rate of learning is also readily found since the Kullback-Liebler divergence can 
be used to ascertain distances between PDFs for various hypothesis testing 
scenarios. 

We have focused on the mathematical formalism and stochastic machine 
learning algorithms for extraction of relevant information based on the EEF, 
learning and classification over large-scale stream data, and information fusion 
and integration. In particular, we have proposed a PDF estimation approach 
based on the EEF, and a measure for assessment of information from sensors. 
We have also taken advantage of the model structure information for model 
estimation. Furthermore, we have proved a general Pythagorean theorem for 
the EEF and studied a multipath scenario for sensor selection. Finally, we also 
analyzed and developed a series of machine learning techniques for effective 
data learning, classification, and decision making, including adaptive incre­
mental learning from stream data, information fusion with multiple learning 
models/hypotheses, machine learning with non-stationary imbalanced stream 
data, kernel density estimation based on self-organizing map(SOM), among 
others. These results have been published in peer-reviewed conferences and 
journals, including IEEE Transactions on Neural Networks, IEEE Transac­
tions on Neural Networks and Learning Systems, Neurocomputing (Elsevier), 
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a book chapter with Wiley-IEEE, among others. 

2 EEF for Estimation of PDF 

Consider a problem where we have two sensors (extension is straightforward 
for multiple sensors) as shown in Figure 1. We use the EEF to assess the 
significance of the information contributed by T2 for a decision. 

Sensor 1 

T1(x) 

Decision 
processor 

Detection: 

Sensor2 

Figure 1: Signal Detection Problem Overview 

1. Assume PDF for background (1£0) is known- in practice can measure this 
before event of interest takes place. 

2. Construct best approximation to PDF using PDF under 1{0 and T1 and T2 

data under 1£1. 

3. Produces EEF PDF approximation 

P1]( t) = exp [171ft + 112t2 - K( 111, 172) + ln Pr( t; 1lo)] 

We have to choose the embedding parameters 171, 172. Nate that if we decide 
172 = 0, this is equivalent to ignoring sensor 2 output. 

To minimize the Kullback-Liebler distance (determines prob. of detection 
performance), we choose embedding parameters so that approximate PDF has 
moments matched to true PDF under 1£1 , which are presumed known, i.e., 

(from data under 1£1) 

3 
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This is equivalent to Gram-Schmidt orthogonalization for Gaussian PDFs (see 
Figure 2). 

Pt (true PDF) 

Pr(t; Ho) 

-~- · Prr (best approximation) 

additional information of T2 

Figure 2: Best Approximation 

For one sensor we construct 

and for two sensors we construct 

Prr = Pryi ,7]2 ( t1, t2) 

Information content of T2 (x) is 

D(pryj,IJ2(tl, t2)11Pryj,!J2=0(tl, t2)) = reduction in distance to true PDF 

where D(p1llp2) is Kullback-Liebler distance 

3 Assessment of Information from Sensors for 
the EEF 

We have proposed a measure of information increase for the exponentially em­
bedded family, when new sensors are added. This measure is always greater 
than or equal to zero, which implies that by adding new sensors, we could 
always obtain some information (or at least keep the same information if new 
sensors are redundant). We have proved that the information provided by 

4 
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independent sensors is additive. Based on this measure, we can decide which 
sensor provides the most information and select the best combination of sen­
sors. We can also find redundant sensors if this measure becomes zero. There­
fore, we can perform sensor selection and sensor reduction using this measure 
of information increase. 

Assume that we have only one sensor T 1 ( x), then the EEF is constructed 
as 

P17..(x) =ex~ [11fT1(x)- K1(171) + lnpo(x)] (1) 
• i' 

where K1(171) = ln (J exp, [11fT1(xj]'po(x)dx) = lnEo (exp [17[T1(x)J). Since 
171 are the unknown parameters, we find the MLE of 171 by maximizing p171 (x) 
or equivalently maximizing 17[T1(x) - K1(171). Taking the derivative and 
setting it to zero, the MLE should satisfy 

T1(x) = 8K1("!_1) I 
a171 r, 1 

The KL divergence between the true PDF Pt(x) and the EEF p171 (x) is 

D(PtiiP11 ) = J Pt(x) ln Pt(~)) dx 
1 P171 X 

= J Pt(x) [lnpt(x) -lnpo(x)- (17fT1(x)- K1(171))] dx 

(2) 

= D(PtiiPo)- [17f Et (T1(x))- K1(171)] (3) 

Let 11i
1

)* be the 171 that minimizes D(Pt IIP171 ) or equivalently maximizes 17[ Et (T 1 (x))­

K1(171). Then 11i1)* should satisfy 

Et (T1(x)) = [)K1(171 ) I (4) 
a171 17i1)• 

In the case when we have L liD unobserved samples x1, x 2 , ... , X£ and we 
only observe L liD outputs T1(x1), T 1(x2 ), ... , T 1(xL) from the same sensor, 
( 2) can be extended as 

(5) 

(6) 

5 
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and 

Say we add another sensor T 2 ( x), the EEF becomes 

PTJ~'TJ2 (x) = exp [TJ[Tl(x) + TJfT2(x)- K(TJ1 , TJ2 ) + lnpo(x)] (8) 

whereK(TJ1 ,TJ2) = lnEo (exp [TJ[T1(x) +TJfT2(x)]). NotethatwhenTJ2 = 0, 
the EEF in (10) reduces to the EEF in (1) because 

(9) 

The MLE of 'f/1 and TJ2 are obtained by solving 

(10) 

The KL divergence between the true PDF Pt(x)and the EEF PTJ
1

,TJ
2 
(x) is 

Let TJl2)* and TJ~2)* be the TJ1 and TJ2 that minimize D(pt//PTJp'f/
2

) or equivalently 

maximize TJ[Et(Tl(x)) + TJfEt(T2(x))- K(TJ1 ,TJ2). Then TJl2)* and TJ~2 )* 
satisfy 

Similarly, it can be shown that 

r,l ~ TJl2)* 

,2 ~ .,.,~2)* 

6 

(12) 
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and 

Since 

max [17fEt(T1(x)) +17fEt(T2(x))- K(171,172)] 
171 '172 

2: mrh [ 11f Et (T1 (x)) + 11f Et (T2(x)) - K( 111, 112) 1172=o] 

=max [17f Et (T1(x))- K1(171)] (13) 
171 

where the last equality is from (11). Therefore, from (9) and (14), we conclude 
that KL divergence between the true PDF and the EEF will decrease by adding 
another sensor. The difference 

D(PtiiPnC1)•) - D(PtiiPnC2)• nC2l•) 
'11 '11 ''12 

= max [17f Et (T1(x)) + 11f Et (T2(x))- K(171, 172)] -max [17f Et (T1(x))- K1(171)] 
171'172 171 

(14) 

can be considered as a measure of the information increase by adding another 
sensor. 

Also note that if T 1 ( x) and T 2 ( x) are independent under 1{0 , then 

K(171,172) = lnEo (exp [11fT1(x) +17fT2(x)]) 

= ln [Eo (exp [11fT1(x)]) Eo (exp [17fT2(x)])] 

= lnEo (exp [11fT1(x)]) + lnEo (exp [17fT2(x)]) 

= K1(111) + K2(172) (15) 

where K 2 ( 172 ) is the normalizing factor or cumulant generating function of the 
EEF 

P172(x) = exp [17fT2(x)- K2(172) + lnpo(x)] 
constructed using the sensor T 2 (x) only. In this case, 

max [17f Et (T1(x)) + 11f Et (T2(x))- K(171, 172)] 
171'172 

= max [17f Et (T1(x)) + 11f Et (T2(x))- K1(111)- K2(172)] 
171 '172 

=max [17f Et (T1(x))- K1(171)] +max [17f Et (T2(x))- K2(172)] 
171 % 

7 
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and ( 1 7) becomes 

(18) 

4 Model Estimation via Model Structure De­
termination 

In model estimation, we often face problems with unknown parameters in 
the candidate models. This paper proposes the model structure determina­
tion (MSD) for model estimation with unknown parameters. We start with 
the problem of model order selection, and decompose the probability density 
function (PDF) into the information provided by the data about the model 
parameters and that of the model structure. The factor that depends on the 
model parameters is approximated using a minimax procedure, and the MSD 
depends on the model structure only. It is shown that the MSD is equivalent 
to the exponentially embedded family (EEF) for model order selection under 
some conditions. Finally, we apply the MSD to a classification problem where 
we have partial knowledge about the parameters, and simulation results show 
that it outperforms the pseudo-maximum likelihood (pseudo-ML) rule. 

4.1 Model Order Structure 

We start by considering the problem of model order selection, where we have 
a set of candidate models {M 1 , M 2 , ... , MM }. Each model has a set of un­
known parameters which we denote as (}i and which has dimension Pix 1. Based 
on an observation of x = [x[O] x[1] ... x[N- 1]JT, we wish to choose a model 
without knowledge of (}i for each model. The PDF is given as Px(x; (}i, Mi)· 
Furthermore, we assume that a minimal sufficient statistic exists for 8i and is 
given by Ti(x). Dispensing with the particular model notation for the time 
being, note that by the Neyman-Fisher factorization theorem the PDF can be 
written as 

Px(x; 8) = g(t(x), 8)h(x) (19) 

where t(x) is the p x 1 sufficient statistic for 8, which is alsop x 1. We next 
decompose the PDF into the information provided by the data about the model 

8 
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parameters and that of the model structure. To do so we have from (19) that 

Px(x; 8) 
----

Px(x; 8o) 

g(t(x), 8) 
-----
g( t(x), 8o) 

(20) 

where 80 is arbitrary. Next assume that g(t(x), 8) can be normalized to inte­
grate to one or if t = t(x), then 

J g(t, 8)dt = c < 00 

for c a constant, which does not depend on 8. As a result, the PDF of t(x) is 

Pr(t(x);8) = g(t(x),8)jc 

and we can write (20) as 

Pr(t(x); 8) 
Px(x; 8) = Px(x; 8o) ---- - ------

Pr(t(x); 8o) 

and finally this becomes 

Px(x; 8) = 
Px(x; 8o) 

~ Pr(t(x); 8o) 
model parameters -----.......--.d 1 mo e structure 

(21) 

The first factor depends only on the model parameters and since 80 is arbi­
trary the second factor depends only on the model structure (it is functionally 
independent of 8), i.e., the dimensionality of the model. Note that in the con­
ditional model estimator ( CME), only the second factor is used by omitting 
the first factor. Here, we use both factors. To illustrate the ideas we will use 
the linear model, which is important in practice. 

For the linear model x = H8 + w, where H is N x p, w ,......, N(O, (}21) 
with (}2 known, it is well known that the minimal sufficient statistic is t(x) = 
(HTH)-1HT x and furthermore that t(x),......, N(8, (}2 (HTH)-1 ). Thus, 

and by writing 

(x- H8f(x- H8) = (x- Ht(x)f(x- Ht(x)) + (t(x)- 8f(HTH)(t(x)- 8) 

9 
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we have that 

Px(x; 0) 
1 

exp [-
2

1
2 (x- HOf(x- HO)] 

(27r0"2) (} 

1 
N exp [-

2
1

2(x- Ht(x)f(x- Ht(x))] 
(27r0"2) 2 (} 

· exp [ -~(t(x)- O)T (H:2H) (t(x) - 0)] . 

As a result the model structure component of the PDF is 

Px(x; Oo) 
1 

N exp [- / 2 ( x - H t ( x)) T ( x - H t ( x)) J 
(2tra2 )~ a 

-----

Pr(t(x); Oo) (2tr)P/2ia2(HTH) 11112 

(27r0"2)~N-p)/2 exp [- 2~2xTP:ifx] /HT~/1/2. (22) .....____.._... 
Jacobian 

Note that P-if = I-H(HTH)-1HT (the orthogonal projector operator) annihi­
lates the signal HO and hence xTP-ifx does not depend on 0. This again shows 
that the model structure component is functionally independent of 0. When 
x is transformed to t and u, then the Jacobian is needed. More specifically, 
let the N x (N- p) matrix B = [b1 b 2 ... bN-p] consist of columns that are 
orthonormal and span the orthogonal subspace to the columns of H. Hence, 
we have that 

x=Ht+Bu (23) 

where u is (N -p) x 1. Also, we note that BTB = IN-p and BTH = 0. Hence, 
the transformation from x to (t, u) is from (23) 

The Jacobian is 

which cancels the Jacobian term in (22). Also, 

10 
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and noting that Pif H = 0 and Pif B = B, we have that 

xTP~x = [ : r [ :: l [0 B] [ : l = uT u. 

[ ~ ~~-p ] 

Also, since t is a complete sufficient statistic and u does not depend on 0, 
and hence is ancillary, by Basu's theorem t and u are independent. Hence, we 
have finally from (21) and (22) after transformation tot and u that 

and are independent. 

t "' N(O,cr2(HTH)-1
) 

u rv N(O, cr2IN-p) (24) 

For inference on 0 we would generally discard u and make decisions based 
on the sufficient statistic. This assumes that we wish to test within a given 
PDF family. However, when choosing between models, i.e., between PDF 
families, it is just the opposite. The sufficient statistic, indicating information 
about the model parameters, is of no use (when they are unknown). It is 
actually u that is important in choosing between models. The main difficulty 
in just discarding t is that the remaining data vector u changes in dimension 
as the model changes and so any decision is based on various dimensionality 
data sets. This will lead to unacceptable results. In other words, we cannot 
simply compare Pu;(uiiMi)'s for model estimation since u/s may have different 
dimensions. We must maintain the dimensionality of the data by replacing the 
PDF of t by one that is known. We next show how to do this. 

We keep the part of the PDF of (t, u) that is associated with u and attempt 
to replace the part associated with t since without knowledge of 0, it is of no 
use for model estimation as discussed at the end of the previous section. Hence, 
the problem now reduces to finding a suitable approximation or estimate of 
pr(t; 0) = N(O, cr2 (HTH)-1

) = N(O, Ct). In order to arrive at a meaningful 
solution we will need to constrain the space of 0. Otherwise, our approach 
is not viable, as will be shown later. Hence, we assume that oT C-;10 = 

OT ~~HO ~ e' which is the interior and boundary of an ellipsoid in RN' so that 

the possible values of 0 lie within e = { 0 : OT ~~HO ::::.:; e}. In many cases of 
model estimation we may already have some idea as to the possible limits of the 
parameters. For example, 8 can be considered as a weighted energy constraint 

11 
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which is often encountered in practice such as communications. Hence, such 
a constraint may also make practical sense. With this restriction we let the 
approximating PDF be N(J-t, C) and choose 1-' and C to best approximate 
the original PDF N(O, 0"2(HTH)-1 ). To do so we adopt the Kullback-Liebler 
(KL) measure between PDFs and use a minimax approach. We will see that it 
admits a simple and very intuitive solution and one that under some conditions 
coincides with the EEF for model order selection. The KL measure (also called 
the divergence) is defined as 

D(pr(t;O)IIfir(t;J-t,C)) = jpr(t;O)ln Aptt;Ob)dt. (25) 
PT t, J-t, 

For the case of two multivariate Gaussian PDFs with t ,......, N(J-£1, Cl) and 
t ,......, N(J-£2, C2) it is shown to be 

(N( ) IN( 1 I C21 1 [ -1 -1 ] 1 T -1 
D l-'1, C1 I 1-£2, C2)) = 21n IC

1
I + 2tr C1 ( C 2 - C 1 ) + 2 (J-£1 -J-£2) C 2 (J-£2-J-£1) 

(26) 
The next theorem shows that the minimax approximating PDF toN(O, 0"2 (HTH)-1) 
is given as N(O, (1 + e jp)0"2(HTHt 1 ). It is interesting to note that the same 
result is obtained in the Bayesian case if we were to assume Zellner's g-prior 
for 0 . In this case the prior PDF for 0 is N(O, (e/p)0"2 (HTH)-1). This 
is undoubtedly due to the close connection between minimax and Bayesian 
decision theories. 

Theorem 1 (Minimax approximation to PDF). Assume a px 1 random vector 
T is distributed according to PT = N(O, Ct) where the mean 0 is unknown but 
lies within a constraint set 8 = { (;} : (;}T Cf: 1 

(;} ~ e}, and the covariance 
matrix Ct is known. We approximate the PDF ofT in a minimax sense using 
PT = N(J-t, C) for some J-t, C, which is equivalent to solving the problem 

minmaxD(N(O, Ct)IIN(J-t, C)) 
J-t,C BEe 

The solution of {27) is J-t* = 0, C* = ( 1 +~)Ct. 
Proof. See Appendix A. 

(27) 

Having obtained a suitable replacement for the PDF of the sufficient statis­
tic of 0, which does not depend on 0, we can finally obtain the approximating 
PDF for the original data x. From (24) we now have 

t ,......, N(o, (1 + e /p)0"2 (HTH)-1
) 

u ,......, N(o, 0"2IN-p) 

12 
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and noting that PifH = 0 and PifB = B, we have that 

xTP~x = [ : r [ :: l [0 Bj [ : l = uT u. 

[ ~ 1:-p ] 

Also, since t is a complete sufficient statistic and u does not depend on (}, 
and hence is ancillary, by Basu's theorem t and u are independent. Hence, we 
have finally from (21) and (22) after transformation tot and u that 

t f'V N(e, 0'2 (HTH)-1) 

u N(o, 0'
21N-p) (24) 

and are independent. 
For inference on (} we would generally discard u and make decisions based 

on the sufficient statistic. This assumes that we wish to test within a given 
PDF family. However, when choosing between models, i.e., between PDF 
families, it is just the opposite. The sufficient statistic, indicating information 
about the model parameters, is of no use (when they are unknown). It is 
actually u that is important in choosing between models. The main difficulty 
in just discarding t is that the remaining data vector u changes in dimension 
as the model changes and so any decision is based on various dimensionality 
data sets. This will lead to unacceptable results. In other words, we cannot 
simply compare Pu; ( Ui IMi) 's for model estimation since Ui 's may have different 
dimensions. We must maintain the dimensionality of the data by replacing the 
PDF of t by one that is known. We next show how to do this. 

We keep the part of the PDF of (t, u) that is associated with u and attempt 
to replace the part associated with t since without knowledge of (}, it is of no 
use for model estimation as discussed at the end of the previous section. Hence, 
the problem now reduces to finding a suitable approximation or estimate of 
PT(t; (}) = N(e, 0'

2 (HTH)-1
) = N(e, Ct)· In order to arrive at a meaningful 

solution we will need to constrain the space of (}. Otherwise, our approach 
is not viable, as will be shown later. Hence, we assume that (JTG; 1

(} = 
(Jr ~~H(J :S ~2 , which is the interior and boundary of an ellipsoid in RN, so that 

the possible values of (} lie within e = { 9 : (JT ~~H(J :S e}. In many cases of 
model estimation we may already have some idea as to the possible limits of the 
parameters. For example, 8 can be considered as a weighted energy constraint 
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which is often encountered in practice such as communications. Hence, such 
a constraint may also make practical sense. With this restriction we let the 
approximating PDF be N(J-t, C) and choose 1-t and C to best approximate 
the original PDF N(9, CT2(HTH)-1). To do so we adopt the Kullback-Liebler 
(KL) measure between PDFs and use a minimax approach. We will see that it 
admits a simple and very intuitive solution and one that under some conditions 
coincides with the EEF for model order selection. The KL measure (also called 
the divergence) is defined as 

D(pr(t;9)llfir(t;J-t,C)) = JPT(t;9)1n AP(~t;fJb)dt. (25) 
PT t, J-t, 

For the case of two multivariate Gaussian PDFs with t ,....., N(~-t1 , CI) and 
t ,....., N(J-£2 , Cz) it is shown to be 

N N 1 ICzl 1 [ -1 -1 ] 1 T -1 
D( (1-t1' C1) II (J-tz, Cz)) = 2ln IC11 +2tr c1 ( c2 - c1 ) +2 (J-t1-1-t2) Cz (J-tz-J-t1) 

(26) 
The next theorem shows that the minimax approximating PDF toN(9, CT2(HTHt1) 
is given as N(O, (1 +e jp)CT2 (HTH)- 1 

). It is interesting to note that the same 
result is obtained in the Bayesian case if we were to assume Zellner's g-prior 
for 9 . In this case the prior PDF for 9 is N(O, (e jp)CT2 (HTH)- 1 ). This 
is undoubtedly due to the close connection between minimax and Bayesian 
decision theories. 

Theorem 1 (Minimax approximation to PDF). Assume a p x 1 random vector 
T is distributed according to PT = N(9, Ct) where the mean 9 is unknown but 
lies within a constraint set 8 = { fJ : 9T Ct 19 :S e}, and the covariance 
matrix Ct is known. We approximate the PDF ofT in a minimax sense using 
PT = N(J-t, C) for some J-t, C, which is equivalent to solving the problem 

minmaxD(N(fJ, Ct)IIN(J-t, C)) 
J-t,C BEe 

The solution of {27} is J-t* = 0, C* = ( 1 +~)Ct. 
Proof. See Appendix A. 

(27) 

Having obtained a suitable replacement for the PDF of the sufficient statis­
tic of 9, which does not depend on 9, we can finally obtain the approximating 
PDF for the original data x. From (24) we now have 

t rv N(O, (1 + e jp)CT2 (HTH)- 1
) 

U rv N(O, 0"
21N-p) 
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where t and u are independent, and upon transforming back to x via x = 
Ht + Bu we have that x is multivariate Gaussian with a zero mean vector and 
covariance matrix 

C - HCtHT + BCuBT 
H(1 + e jp)a-2(HTH)-1HT + Ba-21N-pBT 

(1 + e jp)a-2PH + a-2BBT. 

But note that BBT = E!? bibf is the orthogonal projection operator and 
so 

The covariance matrix becomes 

and is seen to be an "inflated" covariance. With the above analysis, we con­
clude this section with the following theorem: 

Theorem 2 (Minimax PDF of x for the linear model). For the linear model, 
the minimax PDF of x is N(O,a-2IN + (e/p)a-2PH), where the condition 

fF ~~HO ::; e determines e. 
We then consider a signal duration estimation problem and compare the 

performance of the MSD, EEF and MDL. Consider a model estimation prob­
lem with 

MP: x[n] = {s[n] + w[n] for n: 0, 1, ... ,p- 1 _ 
w[n] for n- p,p+ 1, ... ,N 1 

where s[n]'s are unknown but satisfy E~:~ s2 [n]/a-2 
::; pe = ~; with known 

e, and w[n] is the white Gaussian noise (WGN) with known variance a-2 . 

Here, the constraint can be written as E~:~ s2 [n]/p ::; a-2e, which is a power 
constraint on the signal and makes physical sense. Note that for Mp, the 
signal length is p, and therefore, this is a signal duration estimation problem. 
It can be written as the linear model with 

H _ [ IP ] 
P- Q(N-p)xp 
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and OP = [s[O] s[1] ... s[p- 1Jf with constraint 

p-1 

IIHpOpll
2 /a2 = I:S2 [n]/a2 ~Pe 

n=O 

The MSD criterion can be simplified as 

1 e p-1 

MSD(p) = -2 ----n L x2[n]- E ln (1 +e) 
2a 1 +., n=O 2 

Let the number of samples be N = 10, the largest candidate model order be 
M = 3, and each model has equal prior probabilities. We fix a2~2 = 1 so 
that the size of the constraint balls is fixed. We plot the probability of correct 
selection Pc versus 1/a2 in Figure 3 (note that for different a 2

, ~2 is different, 
since a2~2 is fixed). For each a 2

, the experiment is repeated 50000 times. For 
each run, Sp is uniform randomly distributed within l::~:t s2 [n] ~ pa2t,2 = p. 
The EEF and the MDL are also simulated for comparison. The EEF and MDL 
rules choose the model order that maximizes the following respectively: 

EEF(p) = { ~ ln Lcp(x)- p [ln (2ln Lcp(x)jp) + 1] 

- MDL(p) = 2lnLcp(x)- plnN 

2ln Lcp (x) ?. p 
2lnLcp(x)<p 

for p = 1 2 . . . M where 2ln Lc (x) = 2ln (Px(x;iJp)) = I:~=t x2
[nJ. Here iJP 

' ' ' ' P Px(x;O) a2 

is the MLE for OP = {s[O], s[1], ... , s[p- 1]}. We can see in Figure 3 that the 
MSD outperforms the EEF and MDL for all SNR. 

4.2 An Application to Classification 

To use the MSD for this classification problem, we first need to generalize 
Theorem 1 to the next corollary. 

Corollary 1. If we change the constraint set to 8 = {0: (0- O*fG;1(0-
0*) ~ t,2} with 0* known, then the solution of the minimax problem 

minmaxD(N(O, Ct)IIN(JL, C)) 
JL,C 0E6 
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Figure 3: Performance of the MSD, EEF, and MDL for estimation of signal 
duration when E}'s are known. 

Note that the constraint 8 = {9 : (9 - 9*fCi1 (9 - 9*) ::; e} also 
makes practical sense. For example, in radar systems, we may have some 
prior knowledge that the possible targets are within a certain region. 

Now, let us consider a classification problem where we have two models (it 
easily extends to multiple-model case): 

M 1 :x = 8 1 +w 
M2 :x= 82 +w 

where xis N x 1, w rv N(O, a 21) with a 2 known, and 81 and 82 are unknown 
but with some partial knowledge that they satisfy ll81 - 8i 11 2 I a 2 ::; ~i and 
1182 -82Wia2 ::; ~~· 8i, 82, ~i and~~ are assumed to be known. Let S 1 = {81 : 
1181 - 8i 11 2 I a 2 ::; ~n and s2 = { 82 : 1182 - 82 w I a 2 ::; ~n. We also assume 
that S 1 and S2 do not overlap. It follows from Corollary 1 that the minimax 
approximating PDFs of N(81, a 21) and N(82, a 21) are p1(x) = N(8i, (1 + 
~i/N)a21) and p2 (x) = N(82, (1 + ~VN)a21), respectively. As a result, we 
decide M 1 if 

lnp1 (x) > lnp2(x) 

15 
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or equivalently if 

2 (x- sif(x- si) 2 (x- s;f(x- s;) 
-Nln(1+~1 IN)- ( 1 +~?/N)o-2 >-Nln(1+~2 IN)- ( 1 +~§/N)o-2 · 

Note that if~~ = ~~, it is the usual ML rule for si = s;. In order for comparison, 
we next derive the pseudo-ML rule for this case. The pseudo-ML rule decides 
M1 if 

or equivalently 
llx- 81ll < llx- s2ll 

Note that §i minimizes the norm II x - si II· Therefore, if II x - s; 11 2 I o-2 
::; ~l for 

i = 1 or 2 (since 81 and 82 do not overlap), then §i = x, llx-sill = 0, and the 
pseudo-ML rule decides Mi if x is within the ith ball. If llx - s; 11

2 I o-2 > ~[ 
fori = 1, 2, §i must be at the intersection of the line connecting x and s; and 
the boundary of the ball Si for i = 1, 2 as illustrated in Figure 4. Therefore, 

X .... 
\ 

\ 

~ 
\Y 

Figure 4: Solution of Si if llx- srll 2 I o-2 > ~; (xis outside the ball) fori = 1, 2. 

llx- sill= llx- sri I- ~iO" fori= 1, 2. The pseudo-ML rule decides Ml if 

llx- s~ll- 6o- < llx- s;ll- 6o-

Finally, we simulate the classification problem considered in this subsection. 
Let N = 10, si = [1 1 ... 1JT, s; = [-1 - 1 ... - 1]r, 6 = 0.8, 6 = 1.2, 

16 
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and M 1 and M 2 have equal prior probability. We plot the probability of 
correct classification Pc versus a 2. For each a 2, the experiment is repeated 
50000 times. For each run, 81 or 82 are uniform randomly distributed within 
{ 81 : 1181- 8r w I a 2 ::; ~n and { 82 : 1182-82112 I CJ

2 ::; ~n' respectively. In Figure 
5, we can see that the MSD outperforms the pseudo-ML rule, especially when 
a 2 is large. 

0.98 

0.96 

0.94 

0.92 

o':; 0.9 

0.88 

I 

0~8: ~..._,'~-~. . [~-~-~~~_do_-~l 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

l/a2 

Figure 5: Classification performance of the MSD and the pseudo-ML rule. 

5 The General Pythagorean Theorem for the 
EEF 

With one sensor T1(x), we construct the EEF as 

Pm (x) = exp [771T1(x)- K(1l(ryl) + lnpo(x)] 

The true PDF Pt(x) is unknown, but the moments Et (li(x)) = Ai are known. 
In order to find ry1, we minimizeD (PtiiPm) = ry1Et (T1(x))- K(ll(ryl) which is 
equivalent to solving Et (T1(x)) = E,11 (T1(x)). Let the solution be ry?l*, and 
it satisfies 

Et (T1(x)) = E (ll• (T1(x)) = >.1 
1h 

(28) 

Next, with two sensors T1(x) and T2 (x), the EEF is 

p~::172 (x) = exp [771T1(x) + "72T2(x)- K(2l(ry1, 772) + lnpo(x)] 
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Let the solution be 7]~2 )* and 77~2)*, and similarly, they satisfy 

Then we have the following theorem: 

Theorem 3 (General Pythagorean theorem for the EEF.). 

(29) 

(30) 

D(pt//po) = D (Pt//p C2J• C2l•) +D (P (2)• C2l•//p C1l•) +D (P C1l•//Po) (31) 
1h ,1)2 7)1 ,7)2 7)1 7)1 

Proof. See Appendix B. 

6 Sensor Selection for a Multipath Scenario 

Assume that we transmit a signal s[n] for 0 ~ n ~ N -1. Due to the multipath 
propagation, the received signal is modeled as 

x[n] = s[n] * h[n] + w[n] (32) 

where h[n] is the impulse response of the multipath model, and w[n] "'N(O, 0"2 ) 

is white Gaussian noise. Here we assume that h[n] is nonzero for 0 ~ n ~ 
M -1, and therefore, we collect the received signal x[n] for 0 ~ n ~ N +M-2. 

Let si = [~s[O] ... s[N- 1] 0 ... o] T be an (N + M -1) x 1 vector 
i O's 

fori = 0, M- 1. Then the received signal model in (32) can be written as 

M-1 

x = L h[i]si + w = [ so s1 
i=1 ----8----

SM-1 ] 

Note that Sh is a linear combination of s/s. 

h[O] 
h[1] 

h[M-1] 
h 

Assume that we have M sensors whose outputs are 

18 
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fori= 0, 1, ... , M- 1. We also assume that the means of the sensor outputs 
are known, i.e., E [7i(x)] = sfSh is known fori= 0, 1, ... , M- 1. 

Procedure: 
In step 1, we choose the sensor with the smallest KL divergence D(pt //p1pl) or 
equivalently the longest projection of Sh onto the subspace generated by si. 
Denote this sensor as T(ll(x) and corresponding vector as s(ll. 

In step 2, we choose from the remaining sensors with the smallest KL 
divergence D(pti/P11c2J) or equivalently the longest projection of Sh onto the 
subspace generated by { s(l), si}. Denote this sensor as T(2l(x) and corre­
sponding vector as s(2l. The selected set of sensors is denoted as T(2 l = 
{T(1l(x), T(2l(x) }, and the corresponding set of vectors is denoted as S(2) = 
{s(ll,s(2l}. 

In step i, we choose from the remaining sensors with the smallest KL 
divergence D(pt//p11ciJ) or equivalently the longest projection of Sh onto the 
subspace generated by {s(i-t), si}, and so on. 

Simulation Results: 
Let s[n] = cos(21r(f0n + ~kn2 )) for 0:::; n:::; N- 1 where fo = 0.1, k = 0.002, 
and N = 100. Let M = 20 and the impulse response of the multipath model is 
plotted in Figure 6. Note that h[3], h[9], and h[14] has the largest magnitudes, 

20 

Figure 6: Impulse response of the multipath model. 

and therefore, we expect to select s3 , s9 , s14 in the first 3 steps. The resulting 

19 
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order of the selected sensors is 

3,9,14,1,18,0,19, 16,5,7,2,12, 10,4,17,15,8,6,13,11 

We plot the KL divergence between the true PDF and the EEF in the ith step 
in Figure 7. We can see that the KL divergence is close to zero at step 10, 
which implies that we may only need the first 10 of selected sensors to have 
the same performance as using all sensors. 
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-100 
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Figure 7: KL divergence between the true PDF and the EEF in the ith step. 

7 Decision Combination with Multiple Learn­
ing Models /Hypotheses 

We consider the combination methods that are based on estimates of posterior 
probabilities. Consider a training data set Dtr with m instances, which can 
be represented as { Xq, Yq}, q = 1, ... , m, where Xq is an instance in the n di­
mensional feature space X, and Yq E Y = {1, ... , C} is the class identity label 
associated with Xq· Through a training procedure, such as bootstrap sampling 
or subspace methods, one can develop L classifiers, hi, j = 1, ... , L. There­
fore, for each testing instance Xt in the testing data set Dte, each classifier can 
vote an estimate of the posterior probability across all the possible class la­
bels, P1(Y;\xt), j = 1, ... , LandY;= 1, ... , C. Based on the Bayesian theory, 

20 

21 
Approved for public release; distribution unlimited.



given the measurements Pj(Yilxt), where j = 1, ... , L and Yi = 1, ... , C, the 
testing instance Xt is assigned to Yi provided that the posterior probability is 
maximum. The Bayesian decision rule illustrates that it is critical to compute 
the probabilities of various classifiers with the consideration of all measure­
ments simultaneously in order to fully utilize all available information to reach 
a prediction. The most commonly adopted combining rules in the literature 
include geometric average rule (GA-rule), arithmetic average rule (AA-rule), 
median value rule (MY-rule), majority voting rule (MajV-rule), Borda count 
rule (BC-rule), max and min rule, weighted average rule (Weighted AA-rule) 
and weighted majority voting rule (Weighted MajV-rule). The objective of 
our research on this is to find a combining rule for an improved estimation 
of the final posterior probability, P(Yilxt), based on the individual Pj(Yilxt) 
from each classifier hj. 

In this work, we consider a general ensemble learning scenario as illustrated 
in Fig. 8. We consider the ensemble system including L hypotheses (i.e., 
classifiers in our current work), each associated with a signal strength Sj as a 
criterion related to the posterior probability Pj(Yilxt). We also introduce a 
related concept, uncertainty degree nj, j = 1, ... , L. For instance, in a two­
class classification problem, Pj = 0.5 represents the lowest certainty, meaning 
that out of the two classes each one is equally likely. On the other hand, Pj = 0 
or Pj = 1 represents full certainty, meaning that the hypothesis is certain about 
the class identity label. In multiclass classification problems, given a class label 
Yi, the predicted label Yt of any testing instance Xt can be represented as a 
Boolean type: Yt = Yi or Yt E Yi, where Yi = {Yk, k =1- i}. In this way, the 
multiclass classification problem can also be transformed analogous to a two­
class problem. To this end, the signal strength can be represented as IP1 -0.51, 
whereas the uncertainty degree is 0.5- IP1 - 0.51. 

The signal strength s1 and the uncertainty degree n1 can be used to repre­
sent the knowledge level of the hypothesis j. In our approach, higher weights 
are assigned to the classifiers that have higher signal strengths and lower uncer­
tainty degrees, i.e., are more certain on their decisions, whereas lower weights 
are assigned to those classifiers that have lower signal strengths and higher 
uncertainty degrees, i.e., are less certain on their decisions. To do so, the 
weights w1 should be proportional to the signal strength to uncertainty degree 
ratio {31 as 

(33) 

where s1 = IP1 - 0.51, and nj = 0.5- sj. This provides the foundation of our 
proposed sse approach. 
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Figure 8: An ensemble learning system with multiple classifiers. 

Fig. 9 gives an example of an ensemble system with four classifiers for dif­
ferent combining rules. Assume that we have obtained the weight coefficients 
(for weighted AA rule and weighted MajV rule) and the decision profile for the 
testing example Xt. From Fig. 9 one can see, in this particular example, the 
MajV-rule and weighted MajV-rule vote this testing instance, Xt, as a class 2 
label. For the MY-rule, because the votes for class 1 and 2 are the same, the 
final predicted label can be randomly selected from these two classes. For the 
BC rule, the final predicted label can be randomly selected from classes 1, 2, 
and 3. All other methods vote this testing instance as a class 1 label. 

To analyze the characteristics of our approach, we adopted the margin 
analysis to investigate the classifier decision-making process. 

Definition 1: Consider a classification problem, the classification margin 
on an instance is the difference between the weight assigned to the correct 
label and the maximal weight assigned to any single incorrect label, i.e., for 
an instance { x, y} , 

margin(x) = wh(a:)=y- max{wh(a:)h} (34) 

Definition 2: Given a data distribution D, the margin distribution graph 
is defined as the fraction of instances whose margin is at most >. as a function 
of >. E [ -1, 1]: 

ID.xl 
F(>.) = IDI '). E [-1, 1] (35) 
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Figure 9: Exemplary comparison of the SSe and other combining methods. 

where D>. = { x : margin( x) :S: ,\}, I • I stands for the size operation and 
F(.A) E [0, 1]. 

Based on this, we conducted the margin analysis for the sse method in 
comparison with several other method. Fig. 10 shows an example of the margin 
distribution graph for the proposed method with respect to the AA-rule and 
MV-rule. It is clearly shown that the proposed SSe method can achieve a high 
margin in this case. For instance, as illustrated by the dash-dotted line, for 
the proposed method, there are 72.06% of the testing data with margin less 
than 0.5, whereas for the MV-rule and AA-rule, there are 97.47% and 99.64% 
of the testing data with a margin less than 0.5, respectively. 
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Figure 10: Margin distribution graph analysis. 

8 PDF Estimation over Data sStream by Se­
quences of Self-Organizing Maps (SOM) 

The main idea of the work is to build a series of SOMs over the data streams via 
two operations, i.e., creating and merging the SOM sequences. The creation 
phase produces SOM sequence entries for windows of the data, which obtains 
clustering information of the incoming data streams. The size of the SOM 
sequences can be further reduced by combining the consecutive entries in the 
sequence based on the measure of Kullback-Leibler divergence. Finally, the 
probability density functions (pdfs) over arbitrary time periods along the data 
streams can be estimated using such SOM sequences. We have developed the 
system-level architecture, learning and estimation algorithm, and simulated 
the approach in Matlab. We have also compared our approach with two other 
KDE methods for data streams, theM-kernel approach and the cluster kernel 
approach, in terms of accuracy and processing time for various stationary data 
streams, including non-stationary data streams. 

The system level architecture is illustrated in the Fig. 11. 
Given a d-dimensional data, xi = ( x}, x7, ... , xf) E X 1 C ?Rd, each neuron 

ni in the SOM is associated with a d-dimensional feature vector or weight, 
Wi = ( wl, wf, ... , wf). SO M learning include three states: 

Competition stage: determining the winning neuron as the neuron nw(t) 
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Figure 11: SOMKE: system architecture of the SOM based KDE method. 

with the smallest distance (maximum similarity) to the input vector 

Ww(t) = argmin llxt- will, i = 1, 2, ... , £ (36) 
Wi 

Cooperation stage: a topological neighborhood function around the win­
ning neuron. Example: Gaussian function hi(t): 

d2 
hi(t) = exp(- 2a2~(t) ), i = 1, 2, ... , £ (37) 

where d; is the squared distance on the grid of nodes between nw and ni' 
and cr(t) is the effective width of the topological neighborhood with the initial 
value a0 . 

Adaptation stage: Weight-updating rule: 

wi(t + 1) = wi(t) + ry(t)hi(t)(xt- wi(t)) 

where ry(t) is the learning rate: 

t 
ry(t) = rto exp(- ), t = 0, 1, 2, ... 

72 

where 72 is a time constant. 

25 

(38) 

(39) 
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Once the SOM sequences are developed along the stream data, one can 
merge them based on estimated KL divergence (minimal KL divergence): 

DKL(PIIQ) = { p(x) log ~((x)) dx. 
}fRd q X 

Fig. 12 illustrates an example of the combination of two SOMs, 
SOMJ and SOMJ+l combine to SOMe. 

SO\f :r, =fJ,J+I) 

oo(w.~ 

h·:M '"·/y;'O~, ':)51~<•: 
n:=(w;.c,=5) ll.,=~a(,.C:.,=4) n'. n1

, 1 

' . 
':,. I •• \ t "'•• I,,.,, ... · ,'', : .. 
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', •• I • L •• 

• • , •• ! •• t 
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\ 0 
I 0 

0 0 ' 

Figure 12: An example of combination of two SOM sequence entries. 

Two merging strategies are developed: 

(40) 

z.e., 

- Fixed Memory Strategy: Fix the total amount of memory allocated to 
store the SOM sequence; 

- Fixed Threshold Strategy: Minimize the overall KL divergence of all 
consecutive pairs of entries in the SOM sequence based on a threshold a. 

9 EEF for Gaussian Distribution Classifica­
tion 

Based on the EEF theory that the team developed, we also analyzed and de­
veloped specific classification techniques based on the EEF during this project 
period. For the constructed joint PDF PT(t, 'TJ), we define l(rJ) as the log­
likelihood function 

l ( 'TJ) = ln fiT ( t, 'TJ) (41) 
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Given a set of training data, we can estimate the natural parameter vector r, 
with MLE algorithm 

fJ = arg max l( 'TJ) 
'TJ 

(42) 

Then, we can write the constructed joint PDF of measurements under 1-li as 

Since the constructed joint PDF is parameterized by the natural parameter 
vector TJ in EEF, we consider the PT(t, iji) equal to the estimation of PT(t, 1-li) 
under 1-li. 

Given unknown testing data ts to be classified, similar to the MAP estima­
tor, we assign the class 1-li to t 8 if l(TJi) + lnp(TJi) is maximized over i, where 
p( TJi) which equals to p(1-li) describes the prior probability of M candidate 
hypotheses. Under the assumption of equal prior probability of M candidate 
hypotheses, such that 

the target function of our classifier rule is built, written as 

ln ET(!si_rht =< r,i, ts > -Ko(fJi) 
PT(ts; 1-lo) 

(44) 

(45) 

Thus, in the training process of our new classifier rule, the natural param­
eters of constructed joint PDF are firstly estimated with MLE from the sets 
of training data under each hypothesis. Then, the constructed joint PDF for 
each hypothesis is available with the estimated natural parameter vectors r,. 
In the testing process, the unknown testing data can be classified according to 
the target function built in Eq. (45), which is very similar to the MAP rule. 

9.1 Hypothesis 

We analyze and apply our EEF based method to Gaussian process classifica­
tion. Compared to the classic expectation maximum (EM) rule for classifica­
tion, our new classification rule constructs one new joint PDF PT(t, TJ) with 
exponential form based on EEF and builds new target function for classifica­
tion. 

Considering the following hypotheses for Gaussian process classification 
with unknown expected mean vector and unknown covariance matrix: 

1-lo: x =so +wo (46) 
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X= Si + Wo (47) 

where the 1-lo is the reference hypothesis and w0 denotes Gaussian noise i.e. 
w 0 "'-' N(O, :E0 ). The data s0 is named as reference data which satisfies 
s0 "'-' N(O, I) where I is identity matrix. The meaning of s0 is shown later 
in this section. The joint PDFs of M candidate hypotheses satisfy Gaussian 
models i.e. we have si "'-' N(J-ti, :Ei), i = 1, 2, · · · , M where both J-ti and :Ei are 
unknown. The vector of x denoted as [x1 , ... , xvJT is one data with p features 
or attributes. s0 , si and w 0 are all p x 1 vectors. 

In our approach, the new joint PDF with EEF is constructed based on 
the joint PDF under reference hypothesis. Here, we firstly assume that the 
covariance matrix of noise :E0 is reasonable measured and then the joint PDF 
of noise could be known. To simplify our derivation, we also assume that the 
Gaussian process is one i.i.d. process, and that all the feature variables are 
conditional independent with each other. By introducing the reference data s0 , 

we have 1-li = 1-lo by choosing J-ti = 0 and :Ei = I. Hence, all distributions of 
hypotheses could be embedded into one exponential family distribution, that 
is the underlying idea of EEF. 

9.2 Joint PDF Construction with EEF 

For multivariate Gaussian process distribution, since the mean vector and co­
variance matrix are unknown, there is one pair of minimal sufficient statistic 
which are the estimation of mean vector and covariance matrix with MLE. Un­
der the assumption that all the feature variables are conditional independent 
with each other, the pair of minimal sufficient statistic is written as: 

T = t(x) = [ ~] (48) 

where X: and v are the mean vector xk = L:~1 xd N and the diagonal vector 
of covariance matrix :E = L:{:1 (xi- x)(xi- x:)T / N respectively. Also both X: 
and v are the p x 1 vectors, i.e. X:= [x1 , x2 , · · · , xvJT and v = [si, s§, · · · , s;JT. 
N denotes the number of samples in the Gaussian process. Since all the feature 
variables x = [x1 , x2 , · · · , xvJT satisfy Gaussian distribution, it is easily shown 
that X:, v are independent and their joint PDFs for 11.0 are 

(49) 
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which satisfies Gaussian distribution, and 

- (~Y(N-1)/2 P (sk)N-3 [- N P s%] 
p(v)- r { !Y=l Y IT a-2 exp 2 L a-2 

2 k=1 k k=1 k 

(50) 

respectively, where :E~ = :E0 +I and a-~ is the k-th element of diagonal matrix 
:E~. 

Thus, according to the Eq. (43), the constructed joint PDF with EEF for 
Gaussian process is stated as: 

PT(t, 17) = exp [< 17, t > -Ko( 17) + lnpo(t)] (51) 

where 17 = [17f, 17rf in which both 171 and 172 are p x 1 vectors, and t(x) is 
shown in Eq. (48). Also, it is shown in Appendix that 

P 'r/2 a-2 N- 3 P 

Ko(17) = L ~~ k + Ao- -
2

- L ln (N- 2a-Z'f/2,k) (52) 
k=1 k=1 

where A0 is constant term. 
Therefore, the natural parameter vector 17i under each hypothesis 1/.i, i = 

1, 2, · · · , M can be estimated. We have 

and 

8Ko(171, 172 ) _ 
-----'-=X 

0171 
8Ko(171, 172) 

----=--------":-- = v 
0172 

~ Nxk 
171 ,k = --;'2 

k 

(53) 

~ N N-3 
172,k = 2a-2 - 2T (54) 

k k 

Given one testing process x 1, · · · , XN to be classified, We decide 1/.i for which 
the following is maximum over i: 

l PT(t,~) _ ~ (~ __ f/t,ka-~) + 
n (t) - ~ 'r/1,kXk 2N 

Po . k=O 

t, ( fi;,ks~ + N; 
3

In (N- 2<>ifii,k)) (55) 

where the constant term is omitted. 
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9.3 Simulation for Gaussian Process Classification 

In this part, we compare the classification performance of our rule with Pseudo­
MAP for Gaussian process classification problem. Besides that, both of results 
are also compared with the MAP rule in which the true parameters are as­
sumed to be known. For the models shown in Eq. (46) and Eq. (47), the 
Pseudo-MAP method estimates the source parameters J.Li as P,i and ~i as :Ei 
with MLE algorithm under each hypothesis 1li, i = 1, 2, · · · , M from training 
data, and assumes PT(t, P,i, :Ei) is equal to the estimation of PT(t, 1li). Hence, 
in the Pseudo-MAP method, the testing data x is assigned the class label when 
the following target function is maximum over i: 

lnpx(x, P,i, :Ei) = -~(x- P,if:E-;1(x- P,i) 

- ~ ln [ det ( 21r:Ei) J (56) 

We choose Eq. (56) and Eq. (55) as the target functions for Pseudo-MAP 
rule and our classifier rule respectively. There are M = 3 classes with p = 5 
attributes, and N 8 = 1000 training processes for each class. Each process has 
N = 25 samples. Let si "'N(J-Li, ~i) and w "'N(O, IT21), we have 

/-Ll = [5, 5, 5, 5, 5] 

/-L2 = [5, 6, 6, 5, 5] 

/-L3 = [5, 5, 5, 6, 6] 

~1 = 201 

~2 = 211 

~3 = 221 (57) 

where IT2 is known, but the source parameters J-Li, ~i, i = 1, 2, · · · , Min Gaus­
sian distributions are all unknown. The probabilities of correct classification 
(Poe) of both rules versus 1T2 are shown in Fig. 13. Monte Carlo method is used 
in this simulation in which each result is averaged over 2000 experiments for 
every IT2 . It is shown that the classification performance of our classifier rule 
is very close to the performance of MAP rule. Since the construction of joint 
PDF EEF in our classifier rule is based on the joint PDF under the reference 
hypothesis and needn't the same information of training data as MAP rule, 
we evaluate the influence of insufficient training data for both rules. Fig. 14 
shows the simulation results, in which we compare the classification perfor­
mances of our classifier rule and the MAP rule versus the number of training 
data. It states that our rule has much better classification performance than 
the MAP rule as the number of training data decreased. That means, for the 
case of insufficient training data, our classifier rule reduces significantly the 
severity of decreased classification performance. 
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A Proof of Theorem 1 

In this Appendix, we prove that J-t* = 0, C* = ( 1 + ~) Ct is the solution of 

the following minimax problem: 

minmaxD(N(6, Ct)IIN(J-t, C)) 
J-t,C lhe 

where the p x 1 mean 6 is unknown but lies within a constraint set 8 = { 6 : 
6TG;16::; e}, and the covariance matrix Ct is known. 

Proof. From (26), we have 

D(N(6, Ct)IIN(J-t, C)) = ~ ln i~tll + ~ tr [Ct(C-1
- C;1

)] +~(6-~-tfC- 1 (6-J-t) 
(58) 
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Assuming that C and Ct are positive definite so that the eigenvalues Ai(C) > 0 
and Ai(Ct) > 0 fori= 1, 2, ... ,p. It is well known that there exists a full rank 
p x p matrix V such that 

vrctv = 1 

vrcv =A 
(59) 

(60) 

where A is a diagonal matrix with positive elements, and V depends on C 
(since Ct is known) but not IL· Now since C = (VT) - 1 A v-1, it follows that 
c-1 =VA - 1yT and therefore, 

D(N(O, Ct)IIN(/.L, C))=-~ ln ICtl + ~ ln I(VT)-1AV-1
1 

+ ttr[Ct(VA-1VT- Ci1)] 

+ t(() -~L)TVA - 1VT((J -IL) (61) 

Nate that it follows from (59) that 

Ct = (VT)-1V-1 (62) 

ln ICtl = ln I(VT)-1V-1
1 (63) 

and 

- t ln ICtl + ~ ln I(VT)-1 AV-1
1 

1 1 1 
= --ln ICtl + -ln I (VT)-1V-1

1 + -ln IAI 
2 2 _______., 2 

Ct 

Also, 
tr(CtVA-1VT) = tr(VTCtVA-1) = tr(A-1) (64) _____...... 

I 

Now let ()' = yr(), IL' = yr IL· Note that ()' and IL' depend on C since V 
depends on C. The KL divergence can be written as 

D(N(O, Ct)IIN(/.L, C))= t ln IAI + ttr(A - 1)- ~ + t(o' -,_,'fA - 1(9' -~-L') 

= ~ ~lnAi + ~ ~ ..!:_- p_ + ~ ~ (B~- J-LD
2 

(65) 
2 L- 2 L-A· 2 2 L- A· i=1 i=1 t i=1 t 
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where ,\i 's are the diagonal elements of A. 
Note that C enters into the KL divergence via ,\i 's and implicitly in()' and 

~-t'. For a fixed C, however, we can optimize over ()' and ~-t'· To simplify the 
optimization, let ai = 1/ Ai > 0 fori = 1, 2, ... , p. The KL divergence is 

D(N(O,Ct)I/N(~-t,C)) = J(O',~-t',a) 

= -~ + ~ I)ai -lnai) + ~ tai(~- /1~)2 (66) 
i=1 i=1 

Now we determine 
minmaxJ(O',~-t',a) (67) 
a,J-t' ()' 

subject to oT c-;10 :::; e. Since c;-1 = yyT' in the ()' space the equivalent 
constraint is ()IT()' :::; e. 

First consider maximizing 
p 

g1 ( o') = 2: ai ( e: - /1~) 2 (68) 
i=1 

over ()'. But 
(69) 

with equality holds for (}~ = -sgn(f1DIB~I where sgn(·) is the sign function. 
Therefore, we can equivalently maximize 

p 

g2(IO'I) = L ai(IB:I + 111~1) 2 (70) 
i=1 

over IO'J. For fixed a, note that 

(71) 
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where amax = max { a1, a2, ... , ap}. Equality holds if and only if J-t1 = 0, 
()' = [0 · · · 0 ~ 0 · · · OjT where the position of the only non-zero element 
~ corresponds to that of amax. As a result, for fixed a, 

p 

minmaxJ(()' ,-'a)=_!!_+~ "'(a· -lna·) +~a t 2 (72) 
I I ' ,..., ' 2 2 ~ t t 2 max<, 

J-t () i=1 

It only remains to minimize f (a) = l:f=1 ( ai -ln ai) + amaxe over a with ai > 0 
for all i. 

First note that ai - ln ai is a strictly convex function in ai and hence 
l:f=1 ( ai - ln ai) is strictly convex in a. Also amax = max { a1, a2, ... , ap} 
is convex. Thus, f(a) is strictly convex and a symmetric function of the 
ai 's. If a minimum exists, it is unique. Hence, the minimum must be at 
a1 = a2 = · · · = aP, since otherwise any permutation will produce the same 
value, violating uniqueness. Letting a = a1 = a2 = · · · = ap, the objective 
function is 

f(a) = p(a -lna) + ae (73) 

Taking the derivative with respect to a and setting it to zero, a satisfies 

p-E+e=o 
a 

producing a* = 1+12/P. From (72}, we have 

~jp, m;,x 1 ( o', ~-t', a) = - ~ + ~ ( 1 + ~2 I P + ln( 1 + e 1 P)) + ~ 1 + ~;2 I P = ~ ln( 1 +e 1 P) 

(74) 
which is the minimax KL divergence between N(O, Ct) and N(J-t, C). 

Finally, we need to find the minimax solution of J-t and C. First, note that 

(75) 

Also, A.i = 1la* = 1 +eiP for all i and thus A*= (1 +elp)l. It follows that 

C* = (VT)-1 A*V-1 

= (VT)-1(1 + e lp)IV-1 

= (1 + e IP) (VT)-1y-1 _________.. 

36 

(76) 

37 
Approved for public release; distribution unlimited.



B Proof of Theorem 3 

Proof. We have that 

D (Pti/P71i2)·, 71~2)•) = Et (lnpt(x)- [77~2)*T1(x) + 77~2)*T2(x)- K(2)(ryi2)*, 7]~2)*) + lnp0(x)J) 

= D (Pti/Po) - Et ( 77~2)*Tl (x) + 77~2)*T2(x) - K(2) ( ryi2)*, 7]~2)*)) 

= D (Pt//Po) - ( 77i2)* >.1 + 77~2 )* >.2 - KC2) ( 77i2)*, 77~2)*)) (77) 

It follows from (29) and {30) that 

D (P (2)• (2)•//p (1)•) = E (2)• (2)• (77~2)*Tl (x) + 77~2)*T2(x) - K(2) ( rJi2)*, 77~2)*)) 711 '712 711 711 '712 

- E (2)• (2)• (77il)*Tl(x)- K(1)(77P)*)) 
711 '712 

= 77~2 )* >.1 + 77~2)* >.2 - KC2) ( 77i2)*, 77~2)*) - [ 77i1)* >.1 - K(l) ( 77?)*)] 

(78) 

From (28), we have that 

D (P71i1)• 1/Po) = E 71i1)• ( 77F)*Tl(x)- K(1)(rJi1)*)) = rJP)* >.1- K(1)(7JP)*) (79) 

Summing {77), (78), and (79) results in the general Pythagorean theorem in 
(31). 
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