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1. Introduction   
 

Historically, cognitive load has been measured using subjective self-rating scales (e.g. NASA 
TLX) and by performance scores, however these methods are post-hoc, are not feasible in 

all applications and are either subjective (self-rating) or not indicative of spare mental 

capacity (performance). There is a need for objective measures of cognitive load that are 
non-intrusive and objective, and have the potential to be determined in real time, i.e. 

measured continuously through the task. 
 

This project has focused on three main modalities, namely electroencephalogram (EEG), eye 
activity, and linguistic features, for automatic cognitive load measurement. 

  

2. Updated Literature Review 
 

We carried out a further literature review on physiological measures of cognitive workload. 
The further investigation was focused on the recent advances of physiological measures of 

cognitive workload: eye movement, skin temperature, linguistic features, speech signals, 

EEG, Galvanic Skin Response (GSR), and pen input features. 
 

3. EEG Based CLM 
 

EEG is a noninvasive neuroimaging technique widely used for measuring cognitive workload, 

which offers high temporal resolution, ease of use, and a comparably low cost. We 
investigated different analysis method of electroencephalogram (EEG) signals to examine 

changes in working memory load during the performance of a cognitive task with varying 
difficulty levels. 

 

3.1 Non-Linear Analysis of EEG Signals for CLM 
 

Experiment: EEG signals were recorded during an arithmetic task while the induced load 
was varying in seven levels from very easy to extremely difficult. We studied six male 

participants, between the ages of 24-30 years. They were right-handed and had normal or 
corrected to normal eyesight and gave written informed consent, in accordance with human 

research ethics guidelines. We designed an addition task with seven levels of difficulty, 

starting from one digit addition (very low) to multi-digit addition (extremely difficult) as 
shown in Table I. 

 
 

The EEG signals were recorded from 32 channels mounted in an elastic cap, according to the 

extended international 10-20 system using an Active Two acquisition system. The 
experiment was conducted under controlled conditions in an electrically isolated laboratory, 

with a minimum distance of five meters from power sources to the experiment desk and 
under natural illumination.The EEG signals were analyzed using three different 
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non-linear/dynamic measures. They were correlation dimension (CD), Hurst exponent (HE) 
and approximate entropy (ApEn).  

 

 
 

Figure 1. The source maps of two load levels for subject 1; (a) the lowest load (L1), and (b) 

the most difficult load (L7). Both load levels influence the similar regions more or less but 
the degree of activation increased as the load level increased. 

 
Results and Discussion: Experimental results show that the values of the measures 

extracted from the delta frequency band of signals acquired from the frontal and occipital 
lobes of the brain vary in accordance with the task difficulty level induced (see Figure 1). 

The values of the correlation dimension increased as the task difficulty increased, showing a 

rise in complexity of the EEG signals, while the values of the Hurst exponent and 
approximate entropy decreased as task difficulty increased, indicating more regularity and 

predictability in the signals. 
 

3.2 Wavelet Complexity Features of EEG Signals for CLM 

 
Experiment: In this study, the use of wavelet-based complexity measures of EEG signals 

were investigated to evaluate changes in working memory load during the performance of a 
cognitive task with varying difficulty/load levels. EEG signals were acquired from twelve 

healthy male subjects; postgraduate students aged between 24-30 years. In the experiment, 
the participants were asked to do an arithmetic task (an addition task with varying difficulty 

level, see Table I). 

 
The subjects’ EEG signals were recorded using an Active Two system. Each recording 

contained 32 EEG channels mounted in an elastic cap, according to the extended 
international 10 - 20 system. A linked earlobe reference was used and impedance was kept 

under 5 kΩ. The EEG signals were passed through a band-pass filter with cut-off frequencies 

of 0.1 - 100 Hz and were recorded at an fs =256 Hz sampling rate. To select the epochs 
which contained minimal EMG artifact, each recording was judged by visual inspection. As a 

result, 70 seconds (out of 90 seconds of each task level recording) for each subject was 
considered. This portion of the recordings included EOG and ECG artifacts, which were not 

removed. 
 

Extracted signals were analyzed using wavelet based complexity measures. The wavelet 

complexity measures associate with four entropic measures: that is Shannon, Tsallis, 
Escort-Tsallis and Renyi entropies.   

(a) (b) 
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Figure 2. The Renyi entropy variations for (a) q=0.9, (b) q=0.1 with the load levels, for 

channel F7 of subject 1. On each box, the red mark is the median; the edges of the box are 
the 25th and the 75th percentiles. 

 
Results and Discussion: As an example, Figure 2 shows the median of the extracted HRE 

from the frontal channels in scale 5, for channel F7 of subject 1, for two extreme values of q 

(entropic index); (a) q= 0.9, (b) q= 0.1, in the delta frequency band. As shown, the median 
of the extracted HRE are able to distinguish the seven task loads better with q closer to 1, as 

it consistently reveals a decreasing median with increasing task load. 
 

The experimental results demonstrated good discrimination among seven load levels 
imposed on the working memory with a classification rate of up to 96% using signals 

recorded from the frontal lobe of the brain. The extracted measures’ values show a 

consistent decrease in the selected channels in two frontal and occipital lobes, as the 
memory load increases, indicating the EEGs disorder declines while the complexity grows. 

This illustrates that the brain behaves in a more organized manner characterized by more 
order and maximal complexity when dealing with higher load levels. The growing complexity 

can also reflect the higher activation of neural networks involved, as the task load increases. 

 
3.3 Entropy Based Features of EEG Signals for CLM 

 
Experiment: In this study, we investigated the use of entropy-based features (spectral and 

approximate entropies) of recorded EEG signals to characterize mental load when 
performing a cognitive task. The participants’ EEG signals were recorded using the same 

method as in the study of Non-Linear Analysis of EEG Signals for CLM and Wavelet 

Complexity Features of EEG Signals for CLM (six participants were involved in the 
experiment).  

 
The recorded EEG signals were analysed using following methods: 1) EEG signal source 

localization using the minimum norm estimate algorithm, 2) sub-band filtering by Discrete 

Wavelet Transform (DWT), 3) entropy-based feature extraction from the EEG signals. 
 

Results and Discussion: The experimental results demonstrated that the spectral entropy 
is a good discriminator of mental load level and decreases consistently in accordance with 

the increased load. The extracted approximate entropy quantifies the irregularity of the 
EEGs, indicating a decrease in irregularity as the load increases. We also perform EEG 

source estimation to choose a smaller subset of EEG channels which make the most 

contribution in the load level discrimination. We conclude that the entropy-based features 
are capable of measuring the imposed mental load from the selected channels in two brain 

regions. This may demonstrate that the brain behaves in a more regular or focused manner 
when dealing with higher task loads. The efficacy of entropy-based features across 
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frequency subbands was also analyzed in this study. 
 

4. Eye Activity for CLM with Emotion Interference 

 
Eye activity has advantages in CLM. For example, eye activity is more ubiquitous than other 

modalities; pupillary response and eye blink have been shown to correlate with both visual 
and aural cognitive tasks; eye activity data collection is less intrusive than other physiological 

signal data collection. Eye-based CLM is a popular physiological index of cognitive workload 

that can be used for design and evaluation of adaptive interface in various areas of 
human-computer interaction (HCI) research.  

 
Eye-based automatic CLM was studied in our research. Three types of eye activity were 

investigated: pupillary response, blink, and eye movement (fixation and saccade). Eye 

activity features were investigated in the presence of emotion interference, which is a source 
of undesirable variability, to determine the susceptibility of CLM systems to other factors.  

 
Experiment: In this study, cognitive load was induced using arithmetic tasks, and the 

difficulty level was controlled by the number of carries and digits. Emotional interference 
corresponding to different arousal and valence levels was induced by showing International 

Affective Picture System (IAPS) images in the task background. The experiment was 

adapted from those using pupillary response for measuring cognitive load with arithmetic 
tasks and for measuring arousal with IAPS images.  

 
The participants comprised seven females and eight males, aged 20–48. A total of 82 

recordings were obtained from each participant, including 60 samples with both cognitive 

load and emotion factors, 10 samples with only the cognitive load factor and 12 samples 
with only the emotion factor. The signal length of each sample was 14 s, during which four 

task stimuli were systematically presented and time stamped. Figure 3 shows the time line 
for each task. 

 

 
Figure 3. Time line for each task. Each task comprises focusing, image viewing, reading and 

calculating four addends sequentially, selecting an answer and subjective rating of both task 
difficulty and emotion. 

 
Results and Discussion: ANOVA test results and multiple regression results revealed 

important implications for using eye activity for CLM. Pupil size and blink number increased 

with more difficult tasks, which perfectly matches the literature. Pupil size also increased 
with higher arousal images regardless of valence, which is also consistent with studies of 

pupil dilation using visual and auditory stimuli. However, pupil size increased with images of 
positive valence when a task goal was presented in this study, as the p value was close to 

0.05. 
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The new finding here was that some eye activity feature patterns (notably pupil dilation and 
blink) for the cognitive load levels were not significantly altered with or without arousal 

factor in the task-goal driven situation. In contrast, the patterns of features for the arousal 

level seemed weakened in the pupillary response when cognitive load was induced and there 
was no arousal effect on the features of blink, fixation and saccade. This result suggests the 

dominance of cognitive load over emotion in eye features during task performance. 
 

5. Linguistic and Grammatical Features for CLM 
 

Linguistic and grammatical features may be extracted from users’ spoken language and 

analysed for patterns indicating high cognitive load. These features may include speech 
pauses, self-corrections, repetitions, response latency, and language usage, for example, 

use of different word categories and parts of speech, such as nouns and pronouns, and 
grammatical structures. Such features may be collected from users’ spoken or written 

language and are highly unobtrusive. Linguistic features have been regarded as indices of 

high cognitive load. 
 

Experiment: This research studied 33 members of bushfire management teams working 
collaboratively in computerized incident control rooms and involved in complex bushfire 

management tasks. The team members carried out 10 tasks, each about 5 hr in duration, in 
four states of Australia, including New South Wales, Victoria, Tasmania, and Queensland. 

 

The participants’ communication was analyzed for some novel linguistic features as potential 
indices of cognitive load, which included sentence length, use of agreement and 

disagreement phrases, and use of personal pronouns, including both singular and plural 
pronoun types. 

 

Results and Discussion: The experimental results confirmed that while working 
collaboratively and performing high-cognitive load tasks, people speak more with other team 

members to manage and share the high task complexity. The results showed that 
participants, especially those working in a collaborative team environment, consistently use 

singular pronouns and plural pronouns differently in different task load situations. 
Specifically, they used significantly more singular pronouns for low-load tasks than for 

high-load tasks; that is, the lower the cognitive demand, the greater use of singular 

pronouns. In contrast, they used significantly more plural pronouns for highload tasks than 
for low-load tasks; that is, the higher the cognitive load, the greater use of plural pronouns. 

These results support the notion that people actually collaborate and coordinate tasks more 
with each other during highly complex real-world tasks. 

 

6. Conclusions and Future Work 
 

This research carried out CLM study of three unobtrusive modalities: EEG, eye activity, and 
linguistic feature based CLM. 

 
In the EEG based CLM, we examined the use of various features (e.g. spectral and 

approximate entropies, wavelet-based complexity measures, correlation dimension, Hurst 

exponent) of EEG signals to evaluate changes in working memory load during the 
performance of a cognitive task with varying difficulty/load levels. Experimental results 

showed that EEG may be more reliable than self-rating, and capable of distinguishing seven 
load levels induced under controlled conditions with accuracies exceeding 94%.  

 

In the eye based CLM, three types of eye activity were investigated: pupillary response, 
blink, and eye movement (fixation and saccade). Results from experiments combining 

arithmetic-based tasks and affective image stimuli demonstrated that arousal effects were 
dominated by cognitive load during task execution. 
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The linguistic feature based CLM was also investigated in this study. Some novel linguistic 

features were analyzed as potential indices of cognitive load. Results showed that with high 

load, people spoke more and used longer sentences, used more words that indicated 
disagreement with other team members, and exhibited increased use of plural personal 

pronouns and decreased use of singular pronouns. 
 

Future work will include analyzing the cognitive workload based on pupillary response under 
luminance and emotional changes. Furthermore, understanding the contextual task 

characteristics and user behavior in interaction can benefit the measurement of cognitive 

load and development of intelligent systems to aid user task management. The direct and 
continuous observations of individual tasks via eye activity will be investigated in the future 

work.  
 

 



Literature Review on Physiological Measures of 

Cognitive Workload 

Yang Wang, Jianlong Zhou 

January 2013 

Machine Learning Research Group 

NICTA 

Attachment A
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1 Introduction 

 
Cognitive (mental) workload is an important issue in various application areas such as 

human computer interaction, adaptive automation and training, traffic control, 

performance prediction, driving safety, and military command and control (Byrne and 

Parasuraman, 1996; Coyne et al., 2009; Grootjen et al., 2007; Wilson and Russel, 

2006; Kerick and Allender, 2004). Although numerous approaches have been 

developed to study cognitive workload or understand how hard the brain is working 

under various situations, it is still difficult to examine the cognitive workload of a 

person: “workload is a multidimensional, multifaceted concept that is difficult to 

define. It is generally agreed that attempts to measure workload relying on a single 

representative measure are unlikely to be of use” (Gopher and Donchin, 1986). Both 

theories and models have been proposed to explain cognitive workload. The multiple 

resource theory models cognitive resource of a person with three different dimensions: 

perceptual modality, information code, and processing stage (Wickens, 2002). On the 

other hand, the cognitive load theory models the interaction between limited working 

memory and relatively unlimited long term memory during the learning process 

(Sweller, 1988). The theory distinguishes between three types of cognitive workload: 

intrinsic load, extraneous load, and germane load. The first type is associated with the 

nature of learning material, while the latter two are influenced by instructional design 

(Paas et al., 2003). 

 

When a subject or operator is required to perform a given task, cognitive workload 

could be viewed as the interaction between the demands of the task and the capacity 

of the subject (Cain, 2007). Such point of view highlights two key issues of mental 

workload, the subject’s capacity and the task demands. The mental workload of a 

subject tends to increase when the cognitive capacity becomes low, and it tends to 

increase when the task demands become high. It should be noticed that both subject’s 

capacity and task demands are not necessarily constant values and they may change 

over time. The capacity of an operator may increase or decrease due to various factors 

such as training, fatigue, and environment. During a task, an operator can also 

experience varying levels of workload according to the task difficulty at different 

stages. 

 

 
Figure 1. The relationship between task demands, performance, and workload 

(Veltman and Jansen, 2006). 
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In recent decades, a great variety of measuring techniques, from simple ones such as 

questionnaires to complex ones such as functional braining imaging, have been 

developed to study cognitive workload (Gingell, 2003; Just et al., 2003; Wierwille 

and Eggemeier, 1993). Generally, these measuring techniques can be divided into 

three categories: subjective rating, performance measure, and physiological measure 

(Hart and Staveland, 1988; O’Donnell and Eggemeier, 1986; Wilson et al., 2004). 

Comparing with subjective rating, the latter two categories provide approaches to 

assess mental workload in an objective way. One main advantage of objective 

measurement is that it will not disturb the operation of the subject during the task 

execution. For performance based measure, the relationship between workload and 

performance is shown in Figure 1. An operator’s performance could be maximized if 

the task just requires normal mental workload. Meanwhile the performance tends to 

decline when the task demands become high or even exceed the capacity of the 

operator. The performance is also influenced by various factors such as attention, 

expertise, experience, stress, and motivation. 

 

With the advance of modern sensor technologies, more and more physiological 

measures have been developed for the assessment of cognitive workload. Popular 

physiological measures used in workload studies include brain wave, eye activity, 

respiration, heart rate, and speech, etc (Fournier et al., 1999; Scerbo et al., 2001; Yin 

et al., 2008). Among these techniques, video based workload measures, especially the 

ones through remote sensing, have attracted increasing attention since they can 

provide physiological evaluation of cognitive state in a non-intrusive and non-

obtrusive way. 

 

Although various studies exhibit the effects of mental workload on physiological 

measures, no single physiological measure will be sufficient to comprehensively 

characterize the workload, especially in the case of multidimensional task and/or 

dynamic circumstances. On the other hand, changes in physiological measures may 

take place due to a lot of other aspects, such as engagement, fatigue, stress, and 

environment. Mental workload is just one of these factors influencing physiological 

measures. 

 

2 Video Based Workload Measures 

 
For the convenience of cognitive workload measurement in different experiments, 

sensors are selected by the following three usability criteria (Voskamp and Urban, 

2009): non-intrusiveness, non-obtrusiveness, and simplicity. Usually a subject does 

not prefer a device that may invade the human body in any way. Ideally, the applied 

sensor will not interrupt the operator during the task execution. Moreover, it should 

not require much effort or training to gather the measurement data. 

 

For the effectiveness of mental workload measures in various cognitive tasks, sensors 

should also meet the following three technology criteria: sensitivity, efficiency, and 

compatibility. The selected sensor is required to provide data that is highly correlated 

to cognitive workload. For online or interactive systems, the collected data needs to 
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be transferred and processed in real-time. When multiple sensors are applied, the 

sensors should be easily combined with each other. 

 

2.1 Imaging sensors for workload studies 

 

Based on the sensor selection criteria for cognitive workload study, video camera or 

imaging sensors have attracted increasing interests during the development of 

workload measurement techniques. One valuable type of physiological measure 

involves workload effects on activities of human eye (Sirevaag and Stern, 2000). 

Especially, video based eye tracker becomes a popular approach for cognitive 

workload evaluation due to its sensitivity and convenience. Eye tracking data provides 

important information about human brain activity and autonomic nervous system, and 

it is highly correlated with subject’s mental workload. The visual information is 

acquired in a non-intrusive (particularly with remote systems, see Figure 2) and 

continuous way without interfering user’s activity during the task performance. 

Moreover, the video sequences of eye tracking data can be captured with high frame 

rate (more than 30 frames per second) and processed in real-time. Currently, various 

eye tracking hardware platforms are commercially available. Bartels and Marshall 

compared various eye tracking hardware platforms for the measurement of cognitive 

workload from different manufacturers, such as SR Research, Seeing Machines, 

SensoMotoric Instruments and Tobii Technology. They found that the pupil recording 

of each system was precise enough to effectively utilize the Index of Cognitive 

Activity, one of validated cognitive workload metrics (Bartels and Marshall, 2012). 

 

   
Figure 2. Eye tracker and eye tracking data. 

 

Another type of imaging data, facial skin temperature, has been utilized as a 

physiological measure in mental workload studies as well. Facial skin temperature 

shows significant correlation to changes of mental status (Veltman and Vos, 2005). 

During the task execution, the autonomic nervous system of the subject causes the 

redistribution of blood flow. Consequently, it will result in the change of local skin 

temperature. With the use of thermal infrared camera (see Figure 3), the remote 

sensing of skin temperature can be achieved through measuring the infrared emitted 

from human body. 

 

On the other hand, advanced brain imaging techniques, such as functional magnetic 

resonance imaging (fMRI) and near-infrared (NIR) neuroimaging, have also been 

employed to detect changes in cognitive workload (Callicott et al., 1999; He et al., 

2007; Izzetoglu et al., 2005; Sammer 2006). However, due to the constraint of sensing 
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technology and device, in practice it is hard for those sensors to capture the imaging 

data in a convenient and non-obtrusive way, which limits their usability as 

physiological measures of mental workload. 

 

  
Figure 3. Infrared camera and thermal imaging data. 

 

2.2 Video based measures in cognitive tasks 

 

Eye tracking data provides rich information for cognitive workload assessment. 

Physiological workload features related to eye activity can be categorized into three 

classes: eye blink based measures, eye movement (saccade and fixation) based 

measures, and pupillary response based measures. 

 

In addition to eye activity and facial skin temperature, physical features of human 

behaviour such as head movement, hand gesture, and facial expression, which can be 

detected in a non-contact way using video camera, also provide useful information 

about changes in mental states (Grootjen et al., 2006). Since such physical behaviour 

measures are relatively less sensitive to cognitive workload, they are usually 

integrated with other physiological measures to achieve satisfactory performance. 

Table 1 lists popular video based measures that have been used in cognitive workload 

studies. Workload research groups working on video based physiological measures 

include Air Force Research Laboratory, Naval Health Research Center, Human 

Factors Group of Federal Aviation Administration, TNO Human Factors Research 

Institute, etc. 

 

To study the effects of mental workload on physiological measures, various cognitive 

tasks have been designed and tested in both laboratory and real world. The performed 

tasks include visual, auditory, arithmetic, executive, and complex ones such as driving, 

traffic control, and flight. Sometimes dual tasks are performed in the workload 

experiments. It should be noted that multitasking is common for human activities 

under laboratory and real world environment. For example, even a simple auditory 

addition task will involve both verbal processing and arithmetic processing; a driving 

task can be decomposed into at least two subtasks (visual and memory) that require 

the driver to keep the vehicle on the road and remember the route to the destination. 

When multiple physiological measures are available, it will be sensible to consider the 

embedded multimodal information with a composite index for mental workload 

evaluation (Sciarini and Nicholson, 2009). 
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Table 1. Video based workload measures 
Category Measure Explanation 

Eye blink based Blink frequency The rate of blink times over a 

time period 

Blink duration The time interval during the 

closure of eye 

Blink interval The time interval between 

two successive eye blinks 

Eye movement 

based 

Fixation number The times of fixation 

 

Fixation frequency The rate of fixation times 

over a time period 

Fixation duration The time interval during a 

fixation 

Saccade rate The rate of saccade times 

over a time period 

Saccade extent The angular distance within a 

saccade 

Saccade duration The time interval during a 

saccade 

Saccade velocity The angular velocity within a 

saccade 

Scan path The trajectory of eye gaze 

 

Vergence angle The gaze difference between 

left eye and right eye 

Pupillary response 

based 

Pupil dilation The increase of pupil size 

comparing with baseline 

Percentage change in 

pupil size 

The rate of pupil dilation 

over baseline pupil size 

Index of cognitive 

activity 

Based on changes in pupil 

dilation (Marshall, 2002) 

Power spectrum  The power spectrum of pupil 

size data 

Skin temperature 

based 

Nose temperature 

 

 

Forehead temperature 

 

 

Physical behaviour 

based 

Head movement 

 

 

Facial expression 

 

 

Hand movement 

 

 



 6 

 

3 Pupillary response based measures 

 
The correlation between pupillary response and changes in mental workload has been 

observed for decades (Beatty, 1982). It is known that human eye is regulated by the 

autonomic nervous system, and pupil diameter will decrease or increase based on 

autonomic response. Increased pupil diameter is usually observed with an increase in 

workload demand. Generally, pupil dilation is an important physiological measure of 

mental efforts and has been widely applied as an effective indicator of cognitive 

workload. 

 

3.1 Correlation to workload in visual task 

 

Backs and Walrath (1992) evaluated the changes in mental workload when utilizing 

colour coding for symbolic tactical display in a visual search task. Participants were 

required to abstract different types of information from the display with varying 

symbol density. Two pupillary response measures, pupil dilation and constriction-

dilation difference, were collected as physiological indices of visual workload. It was 

found that pupillary response was not only affected by display parameters such as 

colour coding and symbol density, but also sensitive to the information processing 

demands of the visual task. 

 

In the experiment of a visuospatial task with varying target density (Van Orden et al., 

2001), changes in eye activity based physiological measures were examined during 

the task. Pupil diameter, together with blink frequency and fixation frequency, were 

found to be the most relevant eye activity features regarding the target density. 

Moreover, in the experiment of cognitive task and visual search task (Recarte et al., 

2008), the analysis results exhibited that pupil dilation could effectively measure the 

mental efforts during the cognitive tasks, and it could be used as a physiological 

predictor of visual impairment as well. 

 

Verney et al. (2001) investigated task-evoked pupillary response in the experiment of 

a visual backward masking task. The experimental results showed that pupil dilation 

response became significantly greater during the task condition than during the 

passive condition of stimulus viewing. Comparing with the non-mask condition, the 

pupil dilation exhibited significantly increase under the masking condition, especially 

when the interval between target and mask stimuli was prolonged. As pupillary 

dilation increased when resource allocation became intensive in the visual task, the 

experiment demonstrated that the mask could demand extra processing resources 

when it followed the target by prolonged interval. 

 

Both time domain and frequency domain of physiological data provide useful 

information for mental workload estimation. The power spectrum of pupillography, 

especially the band of lower frequency, could be employed as a physiological 

measure of mental activity as well. Nakayama and Shimizu (2004) studied the 

frequency information from the task-evoked pupillary response. In the experiment, 

participants performed visual following task together with/without oral calculation 
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task under different difficulty levels. Pupil size was recorded as physiological 

measurement during the task performance. It was found that for the oral calculation 

task, the power spectrum density of pupil size data increased with higher task 

difficulty level in the band of 0.1-0.5 Hz and 1.6-3.5Hz, which was consistent with 

the changes in average pupil size. 

 

Pupil dilation is known to exhibit effects of both the illumination condition of the 

visual field and the cognitive workload of the person while performing a visual task. 

Pomplun and Sunkara (2003) investigated effects of cognitive workload and display 

brightness on pupil dilation and their interaction in the experiment of a gaze-

controlled human-computer interaction task. During the visual task, three levels of 

task difficulty were combined with two levels of background brightness (black and 

white). The experimental results showed that under both black and white background 

conditions, the pupil area exhibited significant increase when workload demands 

became higher. However, under bright background even the pupil area corresponding 

to high level of task difficulty was significantly smaller than the pupil area 

corresponding to low level of difficulty under black background. Hence comparing 

with the task difficulty, the background brightness actually resulted in greater 

variation of pupil area. 

 

Klingner et al. (2011) investigated the effect of aural vs. visual task presentation on 

pupil dilation for cognitive load. Three tasks spanning from mental multiplication, 

digit sequence recall to vigilance were performed in the study. It was found that the 

patterns of pupil dilation were similar for both aural and visual presentation for all 

three tasks, but the magnitudes of pupil response were greater for aural presentation. 

Accuracy was higher for visual presentation for mental arithmetic and digit recall. 

The findings suggest that cognitive load is lower for visual than for aural presentation. 

 

3.2 Correlation to workload in driving task 

 

Marshall (2002) proposed a physiological measure of cognitive workload, index of 

cognitive activity (ICA), from changes in pupil dilation. ICA would measure abrupt 

discontinuities in pupil diameter and try to separate pupil’s reflex reaction to changes 

in light from the reflex reaction to changes in workload. In the cognitive workload 

study with a simulated driving task (Schwalm et al., 2008), the experimental results 

showed that ICA increased when workload demands became high, which was induced 

by performing lane change manoeuvre or additional secondary task. The study 

exhibited the feasibility of ICA as a physiological measure of mental workload while 

driving. 

 

In a dual task experiment, Tsai et al. (2007) examined pupillary response when 

subjects performed driving task and auditory addition task simultaneously. It was 

found that pupil dilation was significantly greater when subjects were performing well 

in the auditory task than when subjects were performing poorly. 

 

In another experiment of dual task, Palinko et al. (2010) also studied the pupillary 

response with remote eye tracker. The subjects performed simulated vehicle driving 
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as well as spoken dialogues. In the experiment, pupil size data acquired from remote 

eye tracker was used for the evaluation of the driver’s cognitive load. During the task, 

the physiological measure based on pupillary response exhibited significant 

correlation to those measures based on driving performance. A pupillary response 

based measure of cognitive load, mean pupil diameter change rate, was proposed to 

analyse workload changes with small time scales. The experimental results 

demonstrated the reliability of physiological measures obtained through remote eye 

tracking for cognitive load estimation. 

 

3.3 Correlation to workload in arithmetic/memory task 

 

Murata and Iwase (1998) assessed mental workload based on the fluctuation of pupil 

area. In the experiment, a mental division task and a Sternberg memory search task 

were carried out with the controlling of respiration. During the task, the number of 

digits and the size of memory set were used to manipulate the mental workload level 

induced by task demands. For each subject, the autoregressive power spectrum of 

pupil area was used for cognitive workload assessment. It was found that the ratio of 

power at low frequency band (0.05-0.15Hz) over power at high frequency band (0.35-

0.4Hz) increased with higher level of task difficulty for both the arithmetic task and 

the memory task. The experimental results indicated that the fluctuation rhythm of the 

pupil area could be used as an effective physiological index to evaluate mental 

workload. 

 

Klingner et al. (2008) examined the pupil measuring capability of video based eye 

tracker for cognitive workload evaluation. In the experiment of several tasks including 

arithmetic and memory ones, subtle changes of pupil size in the task-evoked pupillary 

response were detected using remote eye tracker. Comparing with the results in earlier 

studies, it was found that cognitive workload could be effectively measured through 

remote eye tracking. Moreover, the experimental results exhibited the feasibility of 

analysing the timing and magnitude of short-term pupillary response based on the 

collected eye tracking data, which could provide more details about changes in 

cognitive workload. 

 

Xu et al. (Xu et al., 2011a; Xu et al., 2011b) studied the characteristics of pupillary 

responses at different stages of cognitive process when performing arithmetic tasks 

under luminance changes. The arithmetic tasks in the study have 4 levels of difficulty, 

and each level of task difficulty is combined with 4 levels of background brightness, 

which results in 16 different trial types in total. The results showed that a small pupil 

diameter is usually observed under brighter background, and the pupil diameter often 

increases when the task difficulty level becomes high for each background brightness 

level. The further fine-grained analysis for the experimental results showed that the 

measurement values of the pupil diameter increase as the task difficulty increases 

under the influence of luminance changes. 

 

3.4 Correlation to workload in other tasks 
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In an early study, Beatty (1982) investigated task-evoked pupillary response in the 

experiments of various tasks such as language processing, reasoning, and perception. 

Pupil dilation was exhibited as a reliable physiological measure of mental state or 

processing load during the task performance. Similarly, in the recent experiment of a 

combat management task involving target identification (Greef et al., 2009), pupil 

dilation also increased when cognitive workload became high. 

 

In the experiment of air traffic controller task (Ahlstrom and Friedman-Berg, 2006), 

mean pupil diameter was employed as the physiological measure of mental workload. 

It was found that comparing to when using a dynamic forecast tool, the mean pupil 

diameter became significantly larger when using a static forecast tool. The 

experimental results indicated that the use of static tool led to higher cognitive 

workload. In another experiment of a video game task (Lin and Imamiya, 2006), it 

was also found that pupil size increased when task difficulty changes from low level 

to high level. 

 

In a study of anaesthetists’ workload fluctuations during full-scale simulator sessions 

(Schulz et al., 2011), pupil diameter was used as one of the physiological measures of 

workload. It is found that pupil diameter and heart rate increased simultaneously as 

the severity of the simulated critical incident increased. 

 

For interruption management in interactive systems, notifications delivered during the 

period of lower mental workload would become less interruptive (Iqbal et al., 2004). 

Bailey and Iqbal (2008) empirically examined changes in mental workload during 

goal-directed interactive tasks including reading comprehension, mathematical 

reasoning, product searching, and object manipulation. Percentage change in pupil 

size was used as the task-evoked pupillary response for continuous workload 

measurement. The experimental results showed that workload would decrease at 

subtask boundaries, and the decrement would be greater at boundaries when the 

operators accomplished large chunks of the interactive task. For operators of 

interactive systems, pupillary response was exhibited to be a meaningful index of 

mental workload during the execution of a hierarchical task. 

 

Although mental workload has been exhibited to decrease at subtask boundaries, it 

has not been examined for subtasks requiring different devices such as notebook 

computer and mobile phone. Tungare and Perez-Quinones (2009) proposed to study 

the changes in mental workload for multi-device personal information management. 

In an ongoing experiment, participants would perform information collection tasks 

using different devices. Pupil diameter would be monitored to provide continuous 

measurement of workload. 

 

Existing software analysis tools usually can generate the graph of pupillary response 

over time and playback the video of user’s screen interaction, but may not allow the 

response data to be interactively explored with regard to the task execution model. To 

facilitate analysis of pupillary response data in relation to the hierarchical structure of 

the task, Bailey et al. (2007) developed an interactive analysis tool to analyse mental 

workload if the task could be decomposed into hierarchical subtasks. The workload 



 10 

data was precisely aligned to the corresponding task execution model during the 

analysis. 

 

4 Eye blink based measures 

 
Pervious research work has exhibited that eye blink is a useful measure of mental 

workload (Fogarty and Stern, 1989), especially for workload demands associated with 

visual tasks. In several experiments using either electro-oculogram (EOG) or video 

eye tracker, blink rate decreases with an increase in cognitive workload; increase of 

blink interval is observed with increased mental workload; meanwhile blink duration 

tends to decrease against more intense processing load. Such blink based 

physiological response help human eye to save more time to handle visual 

information during the task performance. 

 

4.1 Correlation to workload in visual task 

 

Van Orden et al. (2001) investigated changes in various eye activity based measures 

in a visuospatial memory task with varying target density. Two eye blink based 

measures, blink frequency and blink duration were monitored during the task. In the 

experiment, subjects were required to recognize and remember each target’s 

identification (friend or enemy) on the display for appropriate action (fire or not) 

when the targets were approaching. It was demonstrated that both blink frequency and 

blink duration declined with increasing target density during the visuospatial memory 

task. 

 

Recarte et al. (2008) examined the concurrent validity of eye activity based 

physiological measures for mental workload evaluation. The participants performed 

single cognitive task and dual task (cognitive task and visual search) in the 

experiment. Under single task condition, blink rate and pupil dilation showed 

concurrent validity for mental workload assessment. However, the blink rate exhibited 

opposite effects under the dual task condition. The blink rate increased when the 

mental workload of cognitive task became high, meanwhile the blink rate deceased 

when visual demands became high. 

 

Startle eye blink reflex is also affected by workload demands during visual task. 

Neumann (2002) studied changes in startle blink during a continuous visual task with 

different levels of mental workload. In the experiment, subjects performed a single 

task of visual horizontal tracking or a dual task of both visual horizontal tracking and 

visual gauge monitoring. The startle blink reflex was evoked by a noise burst during 

the task execution. Experimental results exhibited that compared with pre-task and 

post-task conditions, startle blink was suppressed during the task performance. 

Moreover, compared with the single task condition, the suppression became more 

significant under the dual task condition. The startle blink rate and other measures 

such as subjective rating and heart period showed concurrent validity for different 

workload levels, which indicated that startle blink could be a useful physiological 

measure of mental workload during the visual task. 
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4.2 Correlation to workload in flight task 

 

Veltman and Gaillard (1998) investigated the sensitivity of various physiological 

indices, including eye blinks, in simulated flight tasks. In the experiment, subjects 

simultaneously performed a continuous memory task during the flight. Eye blink 

based measures including blink interval, blink duration, closing time and amplitude 

were monitored during the experiment. Comparing with the measurement data during 

rest status, blink interval increased and blink duration decreased when subjects 

performed flight tasks. In addition, blink interval increased and blink duration 

decreased when subjects were processing more visual information during the flight. 

On the other hand, the experimental results also showed that the blink interval 

decreased with increasing difficulty level of the memory task. The decrement was 

probably due to sub-vocal activity that stimulated the muscles of eyelid and resulted 

in increased eye blinks. 

 

Similar results were found by Wilson (2002) in the experiment of real flight task. For 

each pilot, eye blink was recorded as one physiological measure during a flight with 

both visual rule and instrument rule conditions. The results showed that blink rate 

decreased when the segments of flight became more visually demanding. In the 

experiment, each pilot repeated the same task to examine the reliability of the 

physiological measures, and similar response data was obtained for the two rounds. 

 

4.3 Correlation to workload in traffic control task 

 

Brookings et al. (1996) examined the sensitivity of physiological response to changes 

in cognitive workload during simulated air traffic control task. In the experiment, eye 

blink rate exhibited significant effects of task difficulty. The level of task difficulty 

was manipulated by varying traffic volume and traffic complexity. Eye activity based 

physiological measures including blink rate were monitored during the traffic control 

task. The experimental results showed that blink rate decreased with increasing 

cognitive load. 

 

Ahlstrom and Friedman-Berg (2006) investigated the effect on cognitive workload 

with/without the use of weather display during air traffic controller task. In the 

experiment, blink frequency and blink duration were used as two of the physiological 

workload measures. It was found blink duration became significantly shorter when 

controllers operated without using weather display, corresponding to a higher level of 

controller workload. The experimental results also indicated that comparing with 

subject rating, eye activity based features was relatively sensitive to the variation of 

mental workload at system interaction stages. 

 

4.4 Correlation to workload in other tasks 

 

In an experiment of dual task, Tsai et al. (2007) investigated changes in eye activities 

while subjects performed driving task and paced auditory serial addition task. In the 

experiment, two eye blink based physiological measures, blink frequency and blink 

duration were recorded. Experimental results exhibited that comparing with the 
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measurement data in the single task of driving, blink frequency increased in the dual 

task of both driving and auditory addition. In another experiment of complex decision 

making task (Boehm-Davis et al., 2006), the results exhibited that eye blinks would be 

suppressed during cognitive processing comparing to when the processing was 

accomplished. 

 

Ryu and Myung (2005) employed multiple physiological measures to evaluate the 

mental workload in a dual task with different difficulty levels. In the experiment, the 

subjects simultaneously performed a tracking task of simulated instrument landing 

and mental arithmetic task of adding pairs of numbers. Eye blink interval was 

employed as one physiological measure for mental effort assessment in both tasks. It 

was found that the blink interval revealed sensitivity to the changes in mental 

workload for the tracking task, but not for the arithmetic task. 

 

Zheng et al. (2012) utilized a paper assessment instrument (National Aeronautics and 

Space Administration Task Load Index, NASA TLX) to evaluate surgeons’ mental 

workload through examining their eye blinks. Surgeons’ eye blinks were video-

recorded using a head-mounted eye-tracker while the surgeons performed a 

laparoscopic procedure on a virtual reality trainer. It shows that surgeons who blinked 

infrequently reported a higher level of frustration (46 vs. 34, P = 0.047) and higher 

overall level of workload (57 vs. 47, P = 0.045) than those who blinked more 

frequently. 

 

5 Eye movement based measures 

 
Eye movement mainly consists of two forms of activity: fixation and saccade. During 

the visual scan, human eyes are directed to interesting areas where fixations occur. A 

fixation is a steady focus of the eye, inputting detailed information of the visual 

stimulus into human vision system. The movement from one fixation stimulus to 

another is defined as a saccade. Previous studies revealed correlations between 

changes in mental workload and properties of eye movement (May et al., 1990). For 

example, the increase in fixation time has been observed with the increase of mental 

workload. In several experiments saccade based measures such as saccade speed also 

exhibited sensitivity to changes in mental workload. 

 

5.1 Correlation to workload in visual task 

 

In the task of visual search of symbolic displays (Backs and Walrath, 1992), number 

of eye fixation, fixation duration, and fixation frequency were employed as eye 

movement based physiological indices. It was found that the number of eye fixations 

was affected by both colour coding and symbol density. In the experiment participants 

made fewer fixations to search colour-coded displays than monochrome displays, and 

fewer fixations to search low-density displays than high-density displays. Moreover, 

compared to when searching monochrome displays, fixation duration became shorter 

and fixation frequency became higher when searching colour-coded displays. 
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In the visuospatial memory task of target identification (Van Orden et al., 2001), the 

task difficulty was manipulated by varying the number of targets presented on the 

display. Physiological measures including fixation frequency, dwell time, and saccade 

extent were recorded for each participant in the experiment. It was found through 

nonlinear regression analysis that among the eye movement based measures, fixation 

frequency revealed significant correlativity to the target density in the visuospatial 

task. 

 

Frequency information of eye movement also provides a useful physiological index of 

mental workload. Nakayama and Schimizu (2004) performed frequency analysis of 

eye movement data in both single task of ocular following and dual task of ocular 

following and oral calculation. After correcting the artefacts of eye blinks in saccadic 

eye movement, cross spectrum density, which exhibits relationship between 

horizontal and vertical eye movement, was employed as a workload measure. Given 

the eye movement data of different task difficulty levels, the cross spectrum density 

exhibited significant differences between them in the frequency band of 0.6-1.5Hz. 

 

5.2 Correlation to workload in driving/riding task 

 

In the experiment with a dual task of driving and auditory addition (Tsai et al., 2007), 

three physiological measures of eye movement, including fixation frequency, fixation 

duration, and horizontal vergence, were assessed as the indicator of cognitive 

workload. Comparing to when the subjects performed poorly in the auditory task, the 

horizontal vergence increased when subjects performed well. Although there was no 

significant change in fixation frequency, it was found that fixation duration before 

incorrect responses of auditory addition were significantly shorter than fixation 

duration before correct responses in the dual task. The experimental results indicated 

that eye movement based measures could be utilized to both evaluate cognitive load 

and predict task performance in real-time. 

 

In the experiment of motorbike riding task, Di Stasi et al. (2009) studied the 

relationship between cognitive workload and risk behaviour. Eye movement based 

measures including saccadic number, saccadic amplitude, saccadic duration, peak 

saccadic velocity, fixation number, fixation duration were used as physiological 

indices of mental workload. The experimental results showed that comparing with 

low-risky participants, the cognitive workload became higher for high-risky 

participants, meanwhile the peak saccadic velocity could be used as a reliable 

physiological index of risk behaviour. 

 

5.3 Correlation to workload in traffic control task 

 

In an experiment of air traffic control task (Brookings et al., 1996), subjects 

performed simulated traffic control tasks with varying traffic volume and traffic 

complexity. Two eye movement based workload measures, saccade rate and 

amplitude, were recorded together with other physiological measures during the 

control task. However, the saccade measures did not demonstrate significant effects of 

task difficulty or traffic complexity in the experiment. 
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Di Stasi et al. (2010) studied the effects of mental workload on eye movement based 

indices in simulated air traffic control task. In the experiment, participants performed 

multitasks with three levels of task difficulty according to the cognitive resource 

requirement. Three eye movement based physiological measures, saccadic amplitude, 

saccadic duration, and saccadic peak velocity, were recorded using video eye tracker. 

Experimental results showed that the peak velocity decreased with increasing task 

difficulty, indicating the sensitivity of saccadic movement to changes in mental 

workload. 

 

5.4 Correlation to workload in other tasks 

 

Lin and Imamiya (2006) explored the multimodal information of workload measures 

for usability evaluation. Multiple physiological measures, including fixation number, 

fixation duration, scan path length, are recorded to estimate cognitive workload when 

subjects were performing a video based action-puzzle game task. In the experiment, 

eye movement data exhibited correlation to mental workload level. It was found that 

mean values of three eye movement based workload measures increased when the 

task difficulty changed from low level to high level. Saccade speed also exhibited 

correlation with heart rate variability during the game task. Moreover, a composite 

physiological measure combining eye fixations with hand movement (mouse clicks) 

was proposed to improve the evaluation of task performance. 

 

In the experiment of a combat management task requiring target identification and 

weapon engagement, Greef et al. (2009) investigated three aspects of eye movement, 

fixation time, saccade distance, and saccade speed, for objective assessment of mental 

workload. To examine their correlativity with changes in workload, these features of 

eye activity were monitored by video eye tracker under different levels of mental 

workload. The experiment results exhibited that fixation time significantly increased 

when the mental workload became high. Meanwhile saccade distance and saccade 

speed did not exhibit any significant effects. 

 

6 Skin temperature based measures 

 
Facial skin temperature can be employed as a type of non-intrusive, non-obtrusive, 

and real-time physiological measure for mental workload assessment. It has received 

increasing attention in cognitive workload studies as the cost of thermal infrared 

camera decreased in recent years. Especially, the skin temperature drop of nose area 

with increased mental workload has been observed in a few studies. 

 

Veltman and Vos (2005) examined the variation of subject’s facial skin temperature 

in a continuous memory task with two difficulty levels. The experimental results 

demonstrated the correlation between nose skin temperature and changes in mental 

workload. To enhance the sensitivity and accuracy, the facial skin temperature could 

be integrated with other physiological measures for cognitive workload evaluation. 
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Or and Duffy (2007) also studied changes in facial skin temperature for automated 

mental workload assessment. In the experiment, subjects performed driving test under 

different traffic conditions (city/highway) in simulator or real vehicle. Mental 

arithmetic test was used as a secondary task. Both forehead temperature and nose 

temperature were monitored during the experiment. It was found that under all 

simulator test conditions, nose skin temperature dropped significantly after the driving. 

The dual task of driving and arithmetic resulted in a greater nose temperature drop 

than the driving only task. In addition, the experimental results exhibited a significant 

correlativity between the nose skin temperature and the subjective rating of mental 

workload. Comparing with the real driving task, the simulated driving task had a 

higher subjective rating and it was observed with a greater change of nose skin 

temperature. 

 

Previous research work on facial skin temperature has revealed its correlation to the 

variation of mental workload. However, it has also been noticed that the skin 

temperature based measures may not achieve sufficient sensitivity, especially for 

complex tasks or practical applications. Consequently, the combination of skin 

temperature and various other measures has been proposed to improve the 

performance of workload assessment. Wang et al. (2007) presented a composite 

workload index using three video based physiological measures, facial skin 

temperature, eye blinks, and pupil dilation. All the measures could be unobtrusively 

captured in real-time for workload evaluation. 

 

7 Linguistic feature based measures  

 
Besides the easy understandable behavior measures for cognitive load such as eye 

blinking and movement, linguistic and grammatical features may also be extracted 

from users’ spoken language and analyzed for patterns indicating high cognitive load. 

These features may include speech pauses, self-corrections, repetitions, response 

latency, and language usage. Such features can be collected from users’ spoken or 

written language and are highly unobtrusive (Khawaja et al., 2012).  

 

Various linguistic features are examined as indices of high cognitive load. Some 

researches (Berthold and Jameson, 1999; Mueller et al., 2001; Jameson et al., 2006: 

Khawaja et al., 2008) showed that some speech features are related to a person’s 

cognitive load levels, such as filled pauses and the number of sentence fragments, and 

tried to recognize cognitive load levels from a number of high level features by using 

Bayesian network (Mueller et al., 2001; Jameson et al., 2006). Word frequency and 

use of first-person plurals (Sexton and Helmreich, 2000) are also used to estimate 

cognitive load. 

 

Demberg and Sayeed (2011) used linguistic cognitive load in a speech-driven user 

interfaces for automotive drivers. In this work, measures of language complexity for 

cognitive load are used to modulate the complexity of driver’s user interface with 

ongoing driving conditions.  
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Khawaja et al. (Khawaja et al., 2009; Khawaja et al., 2012) investigated linguistic 

features for measurement of cognitive load in complex bushfire management tasks. In 

these tasks, bushfire management teams working collaboratively in computerized 

incident control rooms. The participants’ communication was analyzed for linguistic 

features as potential indices of cognitive load, which included sentence length, use of 

agreement and disagreement phrases, and use of personal pronouns, including both 

singular and plural pronoun types. The study showed that with high cognitive load, 

people spoke more and used longer sentences, used more words that indicated 

disagreement with other team members, and exhibited increased use of plural personal 

pronouns and decreased use of singular pronouns. 

 

Linguistic feature based measures are usually speaker-dependent and need manually 

labelled data, which limits the automatic measurement of cognitive workload. 

 

8 Speech signal based measures  

 
Similar to video based cognitive workload measures, speech spectral/temporal 

patterns can also be employed as a type of non-intrusive, non-obtrusive, and real-time 

physiological measure for mental workload assessment. 

 

Yin et al. (2008) investigated speaker-independent approaches by utilizing speech 

signal process and classification techniques. Speech features such as Mel-Frequency 

Cepstral Coefficients (MFCC) and temporal information are employed to 

automatically monitor a person’s cognitive workload. To capture the temporal 

information of speech features, three different approaches are used: Delta cepstrum, 

Acceleration and shifted Delta Cepstra. The investigation  achieved 71.1% and 77.5% 

accuracy on two different tasks. 

 

As MFCCs (Yin et al., 2008) do not prove with any insight into how cognitive load 

affects the speech spectrum, glottal features were then investigated to link cognitive 

load to the speck production system (Yap et al., 2010; Le et al., 2010).  

 

Yap et al. (2011a) employed acoustic voice source features extracted from the speech 

spectrum (or cepstrum) for cognitive load classification. Pre and post-processing 

techniques were used to improve the estimation of the cepstral peak prominence 

(CPP). The results showed that CPP is a promising cognitive load classification 

feature that outperforms glottal flow features.  

 

Yap et al. (2011b) further employed speech formant frequency-based features for 

automatic cognitive load classification. The investigation found that the slope, 

dispersion, and duration of vowel formant trajectories exhibit changes under different 

cognitive load conditions, and therefore are used in vowel-based classification for 

cognitive load measurement. The results show that the performace of frame-based 

formant features in 2-class and 3-class utterance-based cognitive workload 

classification is comparable with that of baseline MFCC features. Yap et al. (2011a) 

also used score-level fusion of the CPP-based classification with the formant 
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frequency-based system and yielded a final improved accuracy of 62.7% in cognitive 

load classification. 

 

Le et al. (2011) investigated the use of speech’s spectral centroid frequency (SCF) and 

spectral centroid amplitude (SCA) features for automatic cognitive load measurement.  

They found that the spectral centroid features consistently and significantly 

outperform a baseline system employing MFCC, pitch, and intensity features. They 

reported that the fusion of an SCF based system with an SCA based system results in 

a relative reduction in error rate of 39% and 29% for two different cognitive load 

databases. 

 

9 Electroencephalogram (EEG) based measures 

 
Electroencephalography (EEG) is a noninvasive neuroimaging technique widely used 

for measuring cognitive workload. EEG contains useful information about various 

physiological states of the brain and can be very efficient for understanding the 

complex dynamical behavior of the brain, if interpreted correctly (Hasan, 2009). It 

can provide continuous and on-line assessment of cognitive load at all levels. 

 

Various methods are used to extract different features of EEG to measure and classify 

cognitive load. This includes spectral features such as power spectral density (PSD) or 

the averaged power, maximum/log power spectra, sub-band entropy, and 

autoregressive model (Diez et al., 2008; Zarjam et al. 2011). 

 

Zarjam et al. (2011) further investigated other spectral features of EEG signals for the 

measurement of cognitive load in a reading task. The study showed that a set of 

spectral features − the spectral entropy, weighted mean frequency and its bandwidth, 

and spectral edge frequency − is able to discriminate the cognitive load levels 

effectively. The study also found that combination of various features into the 

classification for cognitive load resulted in better performance compared to one 

feature taken alone. 

 

Anderson et al. (2011) measured cognitive load based on EEG signals across multiple 

visualization types. Spectral characteristics of EEG signals such as the alpha (7.5 – 

12.5 Hz) and theta (4 – 7.5 Hz) frequency bands are used to reflect cognitive and 

memory performance. It is indicated that the Box plot and the Density plot used in the 

study incurred the lowest cognitive load scores, while the Violin and Interquartile 

plots induced the highest cognitive load. In the study, the Violin and Interquartile 

plots have greater visual complexity than the Box plot and Density plot. 

 

In an arithmetic task, Zarjam et al. (2012a) employed epectral and approximate 

entropied of EEG signals to characterize cognitive load. It is demonstrated that the 

spectral entropy decreases consistently in accordance with the increased load. The 

extracted approximate entropy quantifies the irregularity of the EEGs, indicating a 

decrease in irregularity as the load increases. In an another arithmetic task, Zarjam et 

al. (2012b) used three different non-linear/dynamic measures of correlation dimension, 

Hurst exponent and approximate entropy of EEG signals to measure cognitive load. 
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The study showed that values of the correlation dimension increase as the task 

difficulty increases, while the values of the Hurst exponent and approximate entropy 

decrease as task difficulty increases. 

 

10 Galvanic Skin Response (GSR) based measures 
 

Galvanic Skin Response (GSR) has recently attracted researchers’ attention as a 

prospective physiological indicator of cognitive load. It is also referred to as 

electrodermal activity (EDA). GSR is a measure of conductivity of human skin, and 

can provide an indication of changes in human sympathetic nervous system. Similar 

to EEG, GSR is also a noninvasive technique for the measurement of cognitive load.  

 

Shi et al. (2007) evaluated users’ stress and arousal levels while using unimodal and 

multimodal versions of the same interface in a traffic control management study. The 

results showed that mean GSR significantly increase when task cognitive load level 

increases. Moreover, users’ GSR readings are found to be lower when using a 

multimodal interface, instead of a unimodal interface. 

 

Haapalainen et al. (2010) assessed mean, variance and median of GSR against two 

cognitive load levels. They did not obtain any satisfactory results for GSR and 

explained that it might be related to the tasks type or their GSR sensors might not 

have been sensitive enough. 

 

Son and Park (2011) estimated driver’s cognitive load using driving performance and 

skin conductance level as well as other measures in a driving simulator. The results 

showed that the skin conductance level provides clear changes associated with 

difficult level of cognitive workload. It was able to identify driver’s cognitive load 

complexity with high accuracy.  

 

In designed arithmetic and reading tasks, Nourbakhsh et al. (2012) examined temporal 

and spectral features of GSR against different task difficulty levels. The results show 

the strong significance of the explored features, especially the spectral ones, in 

cognitive workload measurement in the two studied experiments. 

 

11 Pen input feature based measures 
 

Writing activities usually require the focused attention of writers, and features of this 

experience can help to understand cognitive load of writers. Ruiz et al. (2007) 

examined changes in trajectory velocity and shape-degradation of pen-gesture 

features as possible indices of cognitive load. They found possible trends in gesture 

kinematics occurred when switching to high cognitive load in tasks where cognitive 

load increases continuously. They also observed trends of increased degeneration of 

gesture shapes as cognitive load increases. 

 

Yu et al. (2011) analysed cognitive load by using the orientation of the pen and the 

pressure of the pen-tip from digital writing samples. Gaussian Mixture Models (GMM) 

were used to classify cognitive load levels from handwriting data sets. The results 



 19 

showed that the pen orientation and pressure reflected cognitive load variation well, 

and the significant improvement in cognitive load classification from 52.8% to 75.4% 

validated the effectiveness of sample selection using altitude. 

 

12 Noisy factors in workload measures 

 
Although a number of studies exhibited empirical evidence that eye activity based 

physiological measures could be used as an effective indicator of mental workload 

increase, the measures may fail to evaluate workload under complicated situations. 

For example, pupil dilation could be influenced by experimental environment like 

illumination condition. In addition to the experiment involving background lightness 

(Pomplun and Sunkara, 2003), Kramer (1991) reported the failure of workload 

measure due to factors unrelated to the cognitive task, such as changes in ambient 

illumination or screen luminance, which might give rise to greater variation of pupil 

size. Ganguly (2012) studied the pupillary response to variation in both cognitive 

workload and luminance. The results suggested that task difficulty had a stronger 

effect on pupil size for the bright background than for the dark background. In an 

experiment on the effects of perceptual/central and physical demands on physiological 

measures (Backs et al., 1994), it was found that physiological measures would be 

more sensitive to physical demands than to perceptual/central demands. In another 

experiment study of Sternberg memory search task (Van Gervan et al., 2003), the 

analysis results also demonstrated effects of aging on pupillary response. Moreover, 

to evaluate the usability of eye tracking data for cognitive workload measurement, 

Pomplun and Sunkara (2003) studied the distortion of pupil size caused by eye 

movements. The pupil size observed by the eye tracking camera would be affected by 

the gaze angle of the user. The eye tracking system was calibrated based on neural 

network to correct the geometry distortion of pupillary response data. 

 

Zekveld et al. (2011) evaluated the influence of age, hearing loss, and cognitive 

ability on the cognitive load during listening to speech presented in noise. Cognitive 

load was assessed by examination of pupil dilation. The results showed that the pupil 

response systematically increased with decreasing speech intelligibility. Ageing and 

hearing loss were related to less release from effort when increasing the intelligibility 

of speech in noise. In difficult listening conditions, these factors may induce cognitive 

overload relatively early or they may be associated with relatively shallow speech 

processing. Better text reception thresholds and larger word vocabulary were related 

to higher mental processing load across speech intelligibility levels. 

 

Video based physiological measures can also be influenced by a variety of affective 

factors including anxiety, engagement, fatigue, and stress (Chen, 2006; Pavlidis et al., 

2000; Prinzel et al., 1999). For example, eye blinks, heart rate variability, or 

electroencephalogram (EEG) could be used to evaluate engagement and fatigue as 

well (Heishman and Duric, 2007; Zhang et al., 2008). Genno et al. (1997) investigated 

the changes in facial skin temperature caused by subject’s stress or fatigue during the 

task. In the experiment of a task inducing stress, the nose skin temperature exhibited 

significant drop when the task started or an unexpected emergency alarm took place. 

Moreover, the nose skin temperature dropped significantly as well in the experiment 
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of another task inducing fatigue. Meanwhile, Puri et al. (2005) also exhibited the 

correlation between forehead temperature and emotional state through thermal 

imaging. 

 

Although it would be ideal to find a general model of human cognitive workload, 

mental workload could be personal characteristics of each subject. Thomas et al. 

(2009) studied personalized mental workload for exercise intensity measure. In the 

experiment, ratio of non-blink to blink frames and pupil radius were detected for each 

participant during different exercise tasks. It was suggested that due to non-stationary 

and nonzero-state nature of human being system, mental workload should be 

modelled individually and adaptively. 
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Table 2. Cognitive task–physiological measure matrix 
Task B

F 

B

I 

B

D 

F

F 

F

D 

S

D 

S

S 

P

D 

P

C 

P

S 

I

C 

S

T 

H

M 

Air traffic control task (Ahlstrom and 

Friedman-Berg, 2006) 
             

Air traffic control task (Brookings et 

al., 1996) 
             

Air traffic control task (Di Stasi et al., 

2010) 

             

Auditory two-back task (Guhe et al., 

2005) 
             

Cart driving and stationary bike 

exercise (Thomas et al., 2009) 

             

Cognitive task and visual search task 

(Recarte et al., 2008) 
             

Combat management task (Greef et al., 

2009) 

             

Continuous memory task (Veltman and 

Vos, 2005) 

             

Division task and Sternberg memory 

search (Murata and Iwase, 1998) 

             

Driving task and auditory addition task 

(Tsai et al., 2007) 
             

Driving task and secondary task 

(Schwalm et al., 2008) 

             

Driving task and spoken task (Palinko 

et al., 2010) 

             

Driving task and verbal/spatial-

imagery task (Zhang et al., 2004) 

             

Document editing, email classification, 

route planning (Bailey and Iqbal, 2008) 

             

Flight task and memory task (Veltman 

and Gaillard, 1998) 

             

Flight task with visual/instrument flight 

rule (Wilson, 2002) 
             

Gaze-controlled interaction task 

(Pomplun and Sunkara, 2003) 

             

Language, visuospatial, and executive 

processing (Just et al., 2003) 

             

Mental arithmetic, short-term memory, 

aural vigilance (Klingner et al., 2008) 

             

Motorbike riding task (Di Stasi et al., 

2009) 

             

Ocular following and oral calculation 

(Nakayama and Shimizu, 2004) 
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Table 2. Cognitive task–physiological measure matrix (continued) 
Task B

F 

B

I 

B

D 

F

F 

F

D 

S

D 

S

S 

P

D 

P

C 

P

S 

I

C 

S

T 

H

M 

Reading, reasoning, searching, and 

object manipulation (Iqbal et al., 2004) 

             

Simulated/real driving task and mental 

arithmetic task (Or and Duffy, 2007) 

             

Tracking task and mental arithmetic 

task (Ryu and Myung, 2005) 

             

Tracking task and mental arithmetic 

task (Wang et al., 2007) 

             

Video game (action-puzzle) task (Lin 

and Imamiya, 2006) 

             

Visual backward masking task (Verney 

et al., 2001) 

             

Visual horizontal tracking and visual 

gauge monitoring (Neumann, 2002) 
             

Visual search of symbolic displays 

(Backs and Walrath, 1992) 

             

Visuospatial memory task (Van Orden 

et al., 2001) 
             

Physiological measures. BF: blink frequency, BI: blink interval/latency, BD: blink 

duration, FF: fixation frequency, FD: fixation duration, SD: saccade distance/extent, 

SS: saccade speed, PD: pupil diameter/dilation, PC: percentage change in pupil size, 

PS: power spectrum, IC: index of cognitive activity, ST: skin temperature, HM: 

head/hand movement. 

 

13 Multimodal measures and data fusion 

 
Although physiological measures have exhibited reliable sensitivity to the variation of 

mental efforts when operators experience different levels of task demands, it is 

generally agreed that no single physiological measure can comprehensively describe 

cognitive workload. For example, in an experiment of actual flight scenario (Hankins 

and Wilson, 1998), eye activity only showed sensitivity to workload during flight 

segments that were visually demanding, meanwhile heart rate and EEG respectively 

showed sensitivity during flight segments of instrument rule and those requiring 

mental calculation. The experimental results demonstrated the multiple physiological 

measures could provide unique and non-overlapping information about subject’s 

mental workload. 

 

As multitasking is common in human activities, different subtasks may have different 

effects on individual physiological measures. In terms of the multiple resource theory 

for cognitive workload, the processing resource indexed by one video based 

physiological measure could be different from those indexed by other types of 

physiological measures. Table 2 lists recent research work using physiological 

measures for workload evaluation in various cognitive tasks. Multiple workload 

measures, especially physiological measures, could provide a comprehensive picture 
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of the processing demands during the task execution. To further increase the 

performance of cognitive workload assessment, it is reasonable to combine different 

video based measures and/or other physiological measures. 

 

13.1 Multiple measures vs. single measure 

 

The sensitivity of individual physiological measures to workload demands could be 

very different. For example, in the experiment of different flight tasks (Veltman and 

Gaillard, 1998), cognitive workload measures including heart period, blood pressure, 

respiration, and eye blinks were recorded during the task. Although all the measures 

showed the difference between rest and fight, only heart period was sensitive to all the 

difficulty levels in the tunnel fight task. 

 

Lin and Imamiya (2006) studied composite physiological measure through integrating 

eye movement and hand movement for mental effort evaluation when subjects 

performed a video game task. Although single physiological measures could only 

distinguish between the low difficulty level and high difficulty level, the composite 

measure was able to detect the variation of mental efforts for all the difficulty levels 

of the game task. 

 

Similarly, Ryu and Myung (2005) showed that in the experiment with a dual task of 

tracking and arithmetic, none of the three physiological measures, including alpha 

suppression of brain activity, eye blink interval, and heart rate variability was able to 

identify the variation of the mental workload for both tasks. The alpha suppression 

was sensitive to the mental workload for the arithmetic task, but not for the tracking 

task. On the contrary, the blink interval and heart variability revealed sensitivity to the 

workload for the tracking task, but not for the arithmetic task. Although no single 

measures revealed sufficient sensitivity, significant variation of mental workload was 

successfully detected for both tasks when all these measures were combined 

altogether. 

 

 
Figure 4. Multiple resource model (Wickens, 1984). 

 

Klingner (2010)  combined pupillometry and eye tracking in measuring cognitive load 

during visual tasks. In this study, fixation-aligned pupillary response averaging 
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method was developed. This method combines synchronized measurements of gaze 

direction and pupil size in order to assess short-term changes in cognitive load during 

unstructured visual tasks. Pupil measurements made during many instances of each 

task component can be aligned in time with respect to fixations and averaged, 

revealing any consistent pupillary response to that task component. 

 

Chen et al. (2011) employed eight eye activity based features (e.g. features of eye 

blink, pupillary response and eye movement information) for real-time cognitive load 

measurement. An experiment using a computer-based training task showed that the 

three classes of eye features are capable of discriminating different cognitive load 

levels. Correlation analysis between various pairs of features suggests that significant 

improvements in discriminating different effort levels can be made by combining 

multiple features. Combined features of eye activity provide rich information on 

mental effort. 

 

Consistent with the multiple resource theory (see Figure 4), previous studies indicated 

that task demands for different mental resource could be reflected by different 

physiological measures. The combination of multiple physiological measures has 

attracted increasing interests in cognitive workload studies, so that the explanatory 

power of multimodal information could be maximized. 

 

13.2 Multimodal data fusion 

 

The integration of multimodal information from multiple physiological measures is a 

non-trivial problem. Sometimes multiple measures could provide convergent results 

under single task condition, but inconsistent results under dual task condition. The 

way of data fusion is a key issue to efficiently and effectively integrate multimodal 

physiological features. For example, in a dual task experiment three workload 

measures based on brain activity, cardiac signal, and eye blink were combined into 

one composite measure using different weight coefficients (Ryu and Myung, 2005). It 

was shown that the composite measure significantly improved the sensitivity of 

workload assessment in the dual task. 

 

Van Orden et al. (2001) employed artificial neural network to combine various eye 

activity based physiological features including blink frequency and duration, fixation 

frequency and time, saccadic extent, and pupil diameter for mental workload 

assessment. For each participant, a neural network model was trained on two sessions 

and tested on another session. Experimental results exhibited multiple eye activity 

based measures could be combined to produce reliable physiological index of 

workload in visuospatial task. In another experiment inducing fatigue (Van Orden et 

al., 2000), eye activity based features were also input to a neural network to estimate 

the fatigue state during the visual task performance. 

 

Guhe et al. (2005) presented a Bayesian network approach to measure cognitive 

workload in real-time using multiple video based measures. The auditory two-back 

task, in which each participant was required to determine whether the current letter 

was equal to or different from the letter presented two back, was performed in the 
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experiment. Video based features including blink frequency, eye closure, saccadic 

movement, eye gaze, pupil dilatation, head movement, and mouth openness were 

recorded for each participant in the experiment. To make the model adaptive to both 

individual users and the specific task, Bayesian network was employed to fuse 

multiple video based measures for mental workload evaluation. 

 

Zhang et al. (2004) proposed a machine learning approach for driver workload 

estimation using multiple physiological features including eye gaze and pupil 

diameter. Instead of analysing the significance of individual measures, all the 

measures were considered simultaneously during the task. The estimation of cognitive 

workload was optimized automatically with the use of machine learning techniques 

such as decision tree and Bayesian learning. 

 

The combination of eye activity based physiological measures and facial skin 

temperature has also been proposed to enhance the sensitivity of mental workload 

measurement. Wang et al. (2007) presented a composite workload index based on 

facial skin temperature, eye blinks and pupil dilation. To improve the overall 

sensitivity to cognitive workload, the way of integrating eye activity features and 

facial skin temperature would be constructed through factor analysis and regression 

analysis. 

 

14 Future work 

 
Besides its sensitivity to changes in mental workload and usability as an objective 

measure, video based physiological measure has an attractive advantage that the 

measurement data can be captured in a non-intrusive and non-obtrusive way. The 

imaging sensors, especially the remote ones, minimize user interference and enable 

continuous data acquisition. Therefore, it is expected that video based physiological 

measures will become more and more popular in research and application areas 

involving cognitive workload. Meanwhile, various technique issues could be further 

investigated to improve the overall accuracy and sensitivity for mental workload 

assessment. 

 

Video based workload measures such as pupillary response and skin temperature may 

be influenced by noisy factors relating to sensor technology. For example, subtle 

changes in physiological measures could be ignored due to the insufficient accuracy 

or resolution of the sensor. For remote eye tracker, the pupil area observed in video 

frames is also affected by the pose of human face. The sensitivity of physiological 

measures could be further enhanced by correcting the noises and distortions 

introduced during the sensing process. 

 

As cognitive workload is multidimensional, single dimension of workload may have 

different effects on individual physiological measures. Previous studies also showed 

that different physiological measures could provide both overlapping and non-

overlapping information about cognitive workload. Hence it will be useful to study 

the correlation between various video based physiological measures, especially under 

multitasking conditions. 
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Multiple physiological features could provide more information and result in better 

evaluation of mental workload than single physiological input. However, simple 

combination methods such as voting or linear weighting might not improve the 

overall accuracy and sensitivity for cognitive workload assessment. With the 

development of machine learning and information fusion techniques in recent years, 

probabilistic models and tools such as dynamic Bayesian network and Markov 

decision process could be employed to improve the fusion of multiple physiological 

measures. 

 

On the other hand, an operator’s mental workload during a task is determined by both 

demands of the task and capacity of the subject. From previous work on mental 

workload measures, it has been observed that physiological data is sensitive to the 

levels of task difficulty. Besides, the physiological measures may exhibit the effects 

of cognitive capacity as well. The correlation between video based physiological 

measures and subject’s capacity should be further investigated to improve the 

explanatory power of physiological data. 

 

Furthermore, both cognitive workload and physiological measures are influenced by 

many factors. For example, cognitive workload is dependent on operator’s level of 

training, expertise, experience, motivation, etc. On the other hand, physiological 

measures are affected by various factors such as fatigue, stress, engagement, and 

environment. Ignoring these aspects may lead to the failure of physiological measures 

for mental workload assessment. The efficiency and effectiveness of video based 

physiological measures could be significantly enhanced when more of these factors 

are considered in a comprehensive way. 
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Abstract. We investigate the use of wavelet-based complexity measures of 
electroencephalogram (EEG) signals to evaluate changes in working memory 
load during the performance of a cognitive task with varying difficulty/load le-
vels. Extracted wavelet-complexity measures associated with four entropic 
measures; that is Shannon, Tsallis, Escort-Tsallis and Renyi entropies demon-
strate good discrimination among seven load levels imposed on the working 
memory with a classification rate of up to 96% using signals recorded from the 
frontal lobe of the brain. The extracted measures’ values show a consistent de-
crease in the selected channels in two frontal and occipital lobes, as the memory 
load increases, indicating the EEGs disorder declines while the complexity 
grows. This illustrates that the brain behaves in a more organized manner cha-
racterized by more order and maximal complexity when dealing with higher load 
levels. The growing complexity can also reflect the higher activation of neural 
networks involved, as the task load increases.  

1 Introduction 

The electroencephalogram (EEG) is a non-invasive neuroimaging technique widely 
used for the diagnosis of neurological dysfunctions and the understanding of cognitive 
processes.  Practically, it can be a very effective apparatus for the understanding of the 
complex behavior of the brain in different cognitive states due to its high temporal 
resolution, relative ease of use, and a comparably low cost [1].  Each cognitive process 
activates local and spatial  cortical networks to an extent depending on task specificity 
and complexity [2].  

Measuring the amount of cognitive/working memory load when performing a cog-
nitive process is of high importance for the prevention of decision-making errors, and 
the development of adaptive user interfaces [3]. This is necessary to avoid memory 
overload and maintain efficiency and productivity during tasks, especially in criti-
cal/high mental load workplaces such as persons working in the areas of air traffic 
control, military operations and emergency/interventional medicine.  

Attachment B
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Currently, different methods are available to measure working memory load, such 
as; behavioral/physiological techniques or performance-based/subjective ratings me-
thods.  Among them, EEG has been rated as the best physiological method, offering 
more reliability  and  sensitivity, when measuring memory load [4]. 

A range of features; mainly power spectral-based, have been applied for measuring 
the working memory load using EEG signals, previously [5-7]. The application of 
non-linear/dynamical measures in classifying different mental tasks or the comparison 
with the rest condition is more recent, and measures like correlation dimension (CD) [8, 
9], Hurst exponent (HE), approximate entropy (ApEn) and largest Lyapunov exponent 
(LLE) [10, 11] have been used to measure the complexity or irregularity of the un-
derlying brain dynamics. In [10], it is concluded that the brain reflects a lesser degree of 
cognitive activity (shown by less correlation dimension/complexity)  when the par-
ticipants are subject to sound or reflexologic stimulation compared with the normal 
state.  

Since dynamical features had not been used in the study of measuring memory load 
previously and also the question of whether the complexity or order/regularity of the 
EEG signals change when the imposed load varies, the authors aimed at addressing 
these questions in [12, 13].  In these studies, features such as: spectral entropy, CD, 
HE, and ApEn proved to be a good discriminator of imposed memory load and indi-
cator of higher predictability and less irregularity/more order in the brain activity when 
dealing with higher memory load. CD feature also showed that the brain activity di-
mension/complexity increases with the increase of memory load. However, in our 
previous studies, the relationship between the signals’ order/regularity and its com-
plexity was not explicitly investigated.  In this study, we investigate not only a recently 
proposed feature set; based on wavelet-complexity measures [14-16], for discriminat-
ing the memory load, but also  the  signals’ changing complexity and order rela-
tionship with varying memory load imposed, and their implication on the neural acti-
vations towards a better understanding of the brain dynamics when dealing with higher 
loads. 

2 Materials and Methods 

2.1 Experiment and Dataset 

EEG signals were acquired from twelve healthy male subjects; postgraduate students 
aged between 24-30 years. In the experiment, the participants were asked to do an 
arithmetic task (an addition task with varying difficulty level).  

Each time, the numbers to be added were displayed sequentially and in Arabic no-
tation, on a laptop PC with a viewing distance of 70 cm to the subject. The difficulty 
level was manipulated by varying the n-digit numbers used and carries required to 
calculate the addition, as follows: in very low level (L1); 1&2 digit numbers  with no 
carry, in low level (L2); carry is introduced to L1,  in medium  level (L3); 2 digit 
numbers with one carry, in medium-high level (L4); 2 digit numbers with two carries, 
in high level (L5); 2&3 digit numbers with one carry, in very high level (L6); 2&3 digit 
numbers with two carries, in extremely high level (L7); 3 digit numbers with three 
carries. The subjects were required to click on the correct answer using the mouse left 
button, using the minimum possible finger movement. In the baseline/rest condition, 
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conducted after the experiment, the participants were asked to sit relaxed and keep their 
eyes closed. To minimize any muscle movement artifact (EMG) during the recording, 
the subjects were asked to avoid any unnecessary physical movements and their hand 
was placed in a fixed position.  

The subjects’ EEG signals were recorded using an Active Two system. Each re-
cording contained 32 EEG channels mounted in an elastic cap, according to the ex-
tended international 10 - 20 system. A linked earlobe reference was used and imped-
ance was kept under  5 kÙ.  The EEG signals were passed through a band-pass filter 
with cut-off frequencies of 0.1 െ 100 Hz and were recorded at a ௦݂ ൌ 256 Hz sam-
pling rate. To select the epochs which contained minimal EMG artifact, each recording 
was judged by visual inspection. As a result, 70 seconds (out of 90 seconds of each task 
level recording) for each subject was considered. This portion of the recordings in-
cluded EOG and ECG artifacts, which were not removed. 

2.2 EEG Source Localization 

Source localization can be used to estimate the localization and distribution of electrical 
events in brain disorders [17]. We used this technique to narrow down the number of 
channels under study and select discriminatory channels, as described in our previous 
work [12]. 

2.3 Wavelet-Based Complexity Measures 

In studying EEG signals, entropy is a measure of order and more specifically, a degree 
of synchrony of the cell groups contributed in different  neural responses [18]. If this 
entropy is considered with the system’s likely state/architecture, one can define system 
complexity as a form of statistical complexity measure [16].   

General form of wavelet statistical  complexity measures can be found in [16], 
which uses different entropy types and distance measures. In this study, we use the 

complexity measure of ܥሺሻሾܲሿ  given in (1), which is based on the Kull-
back/q-Kullback distance measure [16], as below: C୯ሺ୩ሻሾPሿ ൌ ሺ1 െ H୯ሺ୩ሻሾPሿሻ. H୯ሺ୩ሻሾPሿ; k ൌ 1,2,3,4 (1)

In (1), ܲ is the probability distribution of the Discrete Wavelet Transform (DWT) of 
parameter under study,  ݍ  is the entropic index (0  ݍ  1)  and ݇ refers to the 
entropy types used as follows [18]: 

Shannon:  HଵሺଵሻሾPሿ ൌ HSH ൌ െ ∑ p୧N୧ୀଵ ln ሺp୧ሻ (2)

Tsallis:  H୯ሺଶሻሾPሿ ൌ HTS ൌ ଵ୯ିଵ ∑ ሾሺp୧N୧ୀଵ െ ሺp୧ሻ୯] (3)

Escort-Tsallis: H୯ሺଷሻሾPሿ ൌ HETS ൌ ଵ୯ିଵ ቀ1 െ ቂ∑ ሺp୧ሻଵ ୯ൗN୧ୀଵ ቃି୯ቁ (4)

Renyi: H୯ሺସሻሾPሿ ൌ HRE ൌ ଵଵି୯ ln ൣ∑ ሺp୧ሻ୯N୧ୀଵ ൧  (5)
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where   is the distribution of the DWT parameter of the under study EEG segment  
(ith ) and ݍ ൌ 1 for Shannon entropy and 0  ݍ ൏ 1 for other entropies. 

3 Experimental Results  

Our earlier source localization results demonstrated that mainly the frontal and occi-
pital regions of the brain were the most influenced regions, in all the task load levels 
across all twelve subjects ([12, 13]). Therefore, only EEG channels located in these two 
regions (i.e. the frontal channels Fp1, AF3, F7, F3, FC1, FC5 FC6, FC2, F4, F8, AF4, 
Fp2 and the occipital channels PO3, O1, Oz, O2, PO4) were considered for further 
analysis. 

We decomposed the EEG signals of length  ܶ ൌ 5  seconds (non-overlapping), into 
five levels (scales) using Daubechies-4 mother wavelet. We denote the under study 
wavelet parameter here are wavelet coefficients. For instance, in case of approximate 
coefficients at the 5th level (which corresponds to the delta frequency band) we have:  aହ ൌ ሾaହଵ aହଶ … aହNሿ (6)

where ܰ ൌ 40 is the number of approximate coefficients at the 5th level; (ܰ ൌ ்௦ଶఱ ൌ40ሻ. ܲ in equations (2)-(5) is therefore defined as: P ൌ aହ∑ aହ୧N୧ୀଵ  (7)

Then, we calculated four entropic features; ܪௌு ோாܪ ா்ௌ andܪ ,ௌ்ܪ ,  using equations 
(2)-(5) for each EEG segment. The index  ݍ in ்ܪௌ, ܪா்ௌ and ܪோாwas varied to find 
its optimal value for the purpose of the load discrimination. The feature values showed 
a decreasing trend as the task load increased in many channels of interest.  For in-
stance, the extracted ܪோா   values for channel Fp1 of subject 1 for three load levels are 
L1=871.77, L4= 865.61, and L7= 859.68, while for the rest condition=877.70.  

For illustration purposes, Fig. 1 shows the median of the extracted ܪோா  from the 
frontal channels in scale 5, for channel F7 of subject 1, for two extreme values of ݍ; (a) ݍ ൌ 0.9, (b) ݍ ൌ 0.1, in the delta frequency band. As shown, the median of the ex-
tracted ܪோா   are able to distinguish the seven task loads better with ݍ closer to 1, as it 
consistently reveals a decreasing median with increasing task load.  

Following preliminary analysis, those features and frequency bands which show a 
consistent decreasing trend with increasing load across all twelve subjects, are sum-
marized as follows: for the frontal lobe; channels Fp1, F7, F3, FC5, FC6, FC2, and AF4 
in the delta band, channels FC5, AF4 in the alpha band; for the occipital lobe; channels 
PO3, O1, and O2, in the delta band.  For illustration purposes, Fig. 2(a) shows the 
median of the extracted ܪோா  from the frontal channels in scale 5, across all subjects. 
We then calculated the complexity values for each entropic feature, using (1).  The 
results showed that the complexity values increases as the task load increases, in the 
above selected channels. For illustration purposes, the complexity values correspond-
ing to Fig. 1(a) for channel F7 of subject 1, using ܪோா  entropy is shown in Fig. 2(b). 
This demonstrates that the signal complexity increases with increasing task load, while 
the corresponding signal entropy/disorder decreases in Fig. 1(a). 
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Fig. 1. The Renyi entropy variations for (a) q ൌ 0.9, (b) q ൌ 0.1  with the load levels, for 
channel F7 of subject 1. On each box, the red mark is the median; the edges of the box are the 
25th and the 75th percentiles. 

In order to study the performance of the entropic features in classifying different 
load levels, we applied the four extracted features from the EEG segments acquired 
from the selected channels into an Artificial Neural Network (ANN) classifier. Based 
on experimental results, we chose a multi-layer perceptron ANN, with a first hidden 
layer of 20 neurons, a second hidden layer of 14 neurons and an output layer of 7 
neurons corresponding to 7 load levels. 75% of the data (for each task level for twelve 
subjects) were used for training and the remainder for testing, in a subject-dependent 
arrangement. Since the delta band contained more selected channels for all the ex-
tracted features across all the subjects, we considered the classification accuracy of the 
features only in this frequency band. The classification results are summarized in  
Table 1. 

Table 1. Classification accuracy of the four entropic measures (q ൌ 1 for Shannon and q ൌ 0.9, 
for the remaining entropies) extracted from the delta band from channels in the two identified 
regions of interest 

Channels Feature Accuracy % 

 
Frontal:  

Fp1, F7, F3, FC5, FC6, FC2, and 
AF4 

ௌுܪ ௌ்ܪ 96.83 ா்ௌܪ  94.18 ோாܪ 82.10 89.42  
 

Occipital:  
PO3, O1, and O2 

ௌுܪ ௌ்ܪ 85.71 ா்ௌܪ 88.36 ோாܪ 51.32 83.60 
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Fig. 2. (a) Medians of the Renyi entropy extracted from segmented EEG data in the delta band, 
from the frontal lobe, across twelve subjects. (b) The complexity variations with the load level 
increase from L1 to L7 for channel F7, using extracted HRE, for subject 1. 

4 Discussion 

In this study, we investigated the use of four entropic measures in different wavelet 
levels (wavelet-complexity features) for discriminating working memory load in a 
cognitive task with seven load levels. The extracted measures from the selected 
channels; picked up by source localization from the frontal and occipital lobes of the 
brain, were found to be successful in memory load discrimination. The decline in  
the median values of the entropy features as the task load increased demonstrates that 
the degree of the disorder decreases as the task load/working memory load imposed 
increases.  

The complexity values measured by each entropic measure showed an increasing 
trend as the task load increased.  This indicates that with increasing memory load, not 
only the disorder of the signals declines but also the complexity grows.   This can 
demonstrate a more organized manner of the brain characterized by more order and 
maximal complexity at the same time, when dealing with higher load levels. Practi-
cally,  more order implicates higher degree of synchrony of the cell groups contributed 
in neural responses [18] and more complexity indicates higher activation of the neu-
rons. This can confirm the changing dynamics of the brain when performing a task with 
different load/difficulty levels.  This is supported  by [8], in which  the complexity of 
EEG signals (shown by correlation dimension) increases as more difficult cognitive 
tasks are performed and it indicates the level of vigilance and mental activity. This is 
also confirmed by previous studies that the increasing workload is reflected by more 
activity and mostly in the frontal lobe of the brain [19, 20]. On the other hand, our 
classification results revealed that the extracted features show a significantly higher 
accuracy for the selected frontal channels compared with the selected occipital chan-
nels.   

We also examined different values of entropic index of ݍ to find the optimal value 
for the purpose of task load discrimination in this study. The results showed the larger 
the value of ݍ (closer to 1) the better the different load levels were distinguished, for 

L1 L2 L3 L4 L5 L6 L7

-2.15

-2.1

-2.05

-2

-1.95

x 10
4

Load levels

C
om

pl
ex

ity

Fp1 AF3 F7 F3 FC1 FC5 FC2 FC6 F4 F8 AF4 Fp2
0

10

20

30

40

50

60

70

80

90

EEG  frontal channels

R
en

yi
 e

nt
ro

py

 

 
L1
L2

L3

L4

L5

L6
L7



698 P. Zarjam et al. 

the three measures of Tsallis, Escort-Tsallis and Renyi. This reason could be that as ݍ 
increases the three entropic measures become closer to Shannon entropy, for which the 
classification rate outperformed the rest of the features in the frontal channels. Its 
classification accuracy is closely followed by Tsallis entropy which is a generalisation 
of Shannon entropy. 

 Since the used complexity formula is based on entropy, one may criticise that it 
could carry the same information as entropy. But in [21], it is demonstrated that this 
simple entropy-based measure is really an indicator of complexity in many systems.  

The frequency band analysis showed that the delta is the most promising band for 
task load discrimination, including more selected channels for the four measures in our 
study. This is while, only two channels in the alpha band and no channel in the theta 
band, showed significant discrimination among all seven load levels. This was con-
firmed by classification results, as well. This is in line with previous studies showing 
that the delta activity could be an indicator of attention during some mental tasks, so 
that by increasing task demand, participant’s attention to the task and also the delta 
band activity increases [22]. 

Comparison of the rest condition signals, recorded after task accomplishment, with 
the task condition signals showed that the entropy value of the highest load level is 
lower than the rest condition in all the subjects.  This can indicate that the brain is in a 
less disordered (more ordered/focused) state when conducting a cognitive task. 

The entropic features not only add to the collection of suitable feature sets for cha-
racterizing working memory load previously applied by the authors, but also proved to 
be computationally more efficient than using non-linear dynamical features such as 
correlation dimension, approximate entropy and Hurst exponent. Furthermore, the 
entropic features are relatively free of parameter tuning which is critical and highly 
application-dependent for non-linear dynamical features. 

For future work, this method could be validated on a larger database and in more 
realistic environments and conducting other cognitive tasks with a focus on cognitive 
overload. 
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ABSTRACT 

We propose the use of entropy-based features; spectral 
and approximate entropies, of recorded EEG signals to 
characterize mental load when performing a cognitive 
task. It is demonstrated on a seven load-level task that 
the spectral entropy is a good discriminator of mental 
load level and decreases consistently in accordance with 
the increased load. The extracted approximate entropy 
quantifies the irregularity of the EEGs, indicating a 
decrease in irregularity as the load increases. We also 
perform EEG source estimation to choose a smaller 
subset of EEG channels which make the most 
contribution in the load level discrimination. We 
conclude that the entropy-based features are capable of 
measuring the imposed mental load from the selected 
channels in two brain regions.  This may demonstrate 
that the brain behaves in a more regular or focused 
manner when dealing with higher task loads. The 
efficacy of entropy-based features across frequency sub-
bands is also investigated. 

1. INTRODUCTION

Measuring the amount of mental demand on the working 
memory when doing a cognitive process is of great 
importance for the prevention of decision-making errors, 
and the development of adaptive user interfaces [1]. This 
is to avoid mental overload and maintain efficiency and 
productivity in work performance, especially in 
critical/high mental load workplaces such as air traffic 
control, military operations, and so on.  

A widely used brain monitoring technique for 
measuring cognitive workload is Electroencephalography 
(EEG), which offers high temporal resolution, ease of 
use, and a comparably low cost [2].  Finding features that 
are good discriminators of different workloads is another 
important key to successfully measuring and classifying 
the mental load.  

Previously, a range of spectral features have been 
deployed for this purpose using EEG signals, including 
power spectral density (PSD), average power and 
maximum/log power spectra [3-5].  Entropy-based 
measures such as the wavelet packet entropy/entropy 
synchronization have been also used, but mainly in 
mental task classification [6, 7] or approximate entropy 
(ApEn) in pathology applications [8, 9].  

For this study, we designed a cognitive task, more 
specifically an arithmetic task, with seven levels of 
difficulty to examine the performance of the entropy-
based features for fine load level measurement and 
discrimination.  To our knowledge the largest number of 
mental task load levels induced to date is five levels [10, 
11], and our work advances this to seven. As further 
motivation, our earlier work with three levels on a 
reading task showed very promising results [12-14].  

 We also apply the concept of source localization to 
select a smaller number of EEG channels to inform the 
optimal channel selection. This concept has been used in 
medical applications previously to estimate the 
localization and distribution of electrical events in neural 
pathologies such as multifocal epilepsy and Alzheimer’s 
[15-17], or anxious/depressive disorders [18]. 

This study was thus undertaken to examine the 
feasibility of applying entropy-based features to assess 
finer discrimination of mental load levels and to test the 
hypothesis that regularity/complexity of the recorded 
EEG signals changes as the task load varies. So far, the 
regularity or complexity of EEG signals in 
pathology/different mental tasks has been evaluated by 
nonlinear measures, like correlation dimension (CD), 
Hurst exponent (H), and ApEn [8, 19-21]. These 
measures have shown their effectiveness in 
understanding the complex dynamical behavior of the 
brain [20]. The related EEG channels and frequency 
bands for which reliable information may be extracted 
using entropy features for an EEG-based mental load 
measurement system were also investigated. 
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2. MATERIALS 

2.1. Experiment and Subjects 

Six healthy male volunteers, 24-30 years of age, engaged 
in postgraduate study, participated in the experiment. We 
designed an addition task with seven levels of difficulty, 
starting from one digit addition (very low) to multi-digit 
addition (extremely difficult).   

This addition task was displayed and controlled on a 
laptop PC with a viewing distance of 70 cm to the 
participant (subject). Each number was shown at the 
center of the screen in Arabic notation for three seconds. 
Subjects were asked to add the two presented numbers 
(shown sequentially), then were given two seconds 
(blank page) for retention followed by a multiple choice 
menu that presented the possible answers.  The subjects 
were required to click on the correct answer using the 
mouse left button, using the minimum possible finger 
movement. There were a total of 42 addition problems, in 
seven difficulty levels, each level lasting for two minutes. 
The difficulty level was manipulated by varying the n-
digit numbers used and carries required to calculate the 
addition. The task detail is shown in Table I. 

To minimize any muscle movement artifact (EMG) 
during the recording, the participants were asked to avoid 
any unnecessary physical movements and their hand was 
placed in a fixed position, where they could still make 
finger movements in response to the correct answer on 
the mouse. Since the channels in the frontal lobes are 
susceptible to ocular artifact, participants were required 
to refrain from blinking as much as possible. The 
participants were given 30 second rests between each 
level, allowing them to relax, move or blink. 

 

2.2. Data Acquisition 

The participants’ EEG signals were recorded using an 
Active Two acquisition system [13], at the ATP 
Laboratory of National ICT Australia in Sydney.  

The experiment was conducted under controlled 
conditions in an electrically isolated laboratory, with a 
minimum distance of five meters from power sources to 
the experiment desk and under natural illumination.  
Each recording contained 32 EEG channels mounted in 
an elastic cap, according to the extended international 10 
- 20 system. A linked earlobe reference was used and 
impedance was kept under  5݇Ω.  The EEG signals were 
passed through a band-pass filter with cut-off frequencies 
of 0.1 െ and were recorded at a ௦݂ ݖܪ 100 ൌ256 ݖܪ sampling rate. 

Each recording was judged by visual inspection to 
choose the epochs which contained minimal EMG 
artifact. As a result, 70 seconds (out of 90 seconds of 
each task level recording) for each subject was 
considered. However, the remaining portion of the 
recordings still included EOG and ECG artifacts. 

Table I. The experimental presentation is shown here. The 
difficulty level was manipulated by varying the number of digit 
numbers used, and carries required to calculate the addition.  In 
each task level, 6 additions were presented. 

 

3. METHODOLOGY 

Our methodology includes the EEG signal source 
localization using the minimum norm estimate algorithm, 
sub-band filtering by Discrete Wavelet Transform 
(DWT)  and entropy-based feature extraction from the 
EEG signals. The detail is as follows:  

3.1. EEG Source Localization 

EEG source localization is a non-invasive signal 
processing technique that measures EEGs at various 
locations on the scalp to estimate the current sources 
within the brain. It has previously been used to estimate 
the localization and distribution of electrical events in 
brain disorders [15-17]. There are various algorithms for 
EEG source localization, among which cortical source 
imaging using a minimum norm estimate is  one of the 
most common [22].  

We performed this method using the eConnectome 
software developed at Minnesota University [23], to 
select the channels which make the most contribution in 
discriminating the imposed task load, out of  32 channels 
recorded for each subject. 

3.2. Sub-Band Filtering 

The DWT provides a time-scale representation of a given 
signal, generated by dilation and translation of a mother 
Wavelet.   

We selected the Daubechies-4 mother Wavelet, which 
is localized and symmetric and has a smooth 
thresholding effect  [24], to decompose the EEG signals 
of length  T seconds, into five levels (scales), 

Task level Number of digits Example 

Very low (L1) 1&2 digit numbers 45+2 

Low (L2) 1&2 digit numbers 
with 1 carry 

54+9 

Medium (L3) 2 digit numbers with 1 
carry 

67+42 

Medium-High (L4) 2 digit numbers with 2 
carries 

39+65 

High (L5) 2&3 digit numbers 
with 1 carry 

 377+32 

Very high (L6) 2&3 digit numbers 
with 2 carries 

76+347 

Extremely high 
(L7) 

3 digit numbers with 3 
carries 

983+748 

246



corresponding to the EEG frequency bands, as shown in 
Table II. 

 
Table II. EEG frequency bands corresponding to each 

Wavelet scale. 
Wavelet 

scale 
Component Freq. range 

(Hz) 
EEG freq. 

band  1 detail 64-128  

 

Gamma 

approximate 0-64  

 

2 

detail 32-64 

approximate 0-32 

 

3 

detail 16-32 Beta 

 approximate 0-16 

 

4 

detail 8-16 Alpha 

 approximate 0-8 

 

5 

detail 4-8 Theta 

approximate 0-4 Delta 

 

3.3. Feature Extraction 

We denoted here the EEG segments under study in a 
particular sub-band as ݔሾ݊ሿ; ݊ ൌ 1,2, … , ܰ. Each segment 
had a length of  ܶ seconds. The EEG segments were  
analyzed in different frequency sub-bands as explained in 
the previous Section.  

Two entropy-based features were extracted from each 
EEG segment, since entropy is considered to be a 
measure of EEG signal complexity, and could act as a  
potential feature. These features could also provide some 
information stored in the signal’s probability distribution 
[25].  The two features are as follows: 

(a) Spectral Entropy: Spectral entropy (SpEn) was used 
to measure how the original power was distributed in a 
particular frequency sub-band. It is given by [25]: SpEn ൌ െ 1log ܰ  ௫ܲ

ே
ୀଵ ሾ݇ሿ ln ௫ܲሾ݇ሿ 

 
where ܰ is the number of frequency bins used in the 
estimation of the PSD of the signal, ݇ ൌ ଶே࢙ࢌ ݂, and ܲሾ݇ሿ is an estimate of the PDF in the ݇௧ frequency bin; 
i.e. ሺିଵሻ࢙ࢌ ଶே ൏ ݂<  ࢙ࢌଶே. 

The PDF is calculated by normalizing the PSD estimate 
with respect to the total spectral power in each frequency 
sub-band. ܰ is the number of frequency bins in the PSD 
estimate.  

According to the above equation, the spectral entropy 
attains its peak when all the frequency bins contain the 
same power, and it becomes smaller as the signal power 
tends to concentrate in a particular frequency bin. 
 

(b)  Approximate Entropy: ApEn is a non-linear entropy 
estimators, indicating regularity or predictability of a 
time series. Small ApEn indicates predictability or 
regularity in the signal. 

The feature ApEn of a given EEG segment; ݔሾ݊ሿ, ݊ ൌ1,2, … , ܰ is calculated using the following algorithm 
[26]. The parameters ݉ and ݎ represent the embedding 
dimension and the vector comparison distance, 
respectively. 

1)    Form the following ܰ െ ݉ vectors: ݔ ൌ ሾ݅ݔ ሾ݅ሿݔൣ  1ሿ … ሾ݅ݔ   ݉ െ 1ሿ൧;  ݅ ൌ 1, … , ܰ െ ݉  1 
 
2) For a given ݅,  

a) For ݆ ൌ 1,2, … , ܰ െ ݉  1; ݆ ് ݅, calculate the 
distance ݀ൣݔ, ൧ݔ,ݔൣ݀ :൧ asݔ ൌ max|ݔሾ݇ሿ െ |ሾ݈ሿݔ ; ݇ ൌ ݅, ݅  1, … , ݅  ݉ െ 1,  ݈ ൌ ݆, ݆  1, … , ݆  ݉ െ 1 
b) Find ܥሺ݉, ሻ as the number of  ܺ such that: ݀ሾݎ ܺ, ܺሿ   ݎ
c)  Next  ݅.                        

 
3)  Find: Φ ሺ݉, ሻݎ ൌ ଵேିାଵ ∑ log ቀሺ,ሻேିାଵቁேିାଵୀଵ  

4)  Repeat steps 1) to 3) for ݉ ൌ ݉  1 and calculate 
Φ ሺ݉  1,  .ሻݎ
 
5)  Calculate ApEn as: ApEnሺm, rሻ ൌ Φ ሺ݉, ሻݎ െ Φ ሺ݉  1,  .ሻݎ

 
The values of the parameters ݉ and ݎ are critical in 
determining the outcome [8]. 

ApEn has been shown to be robust to noise and also 
finite for stochastic, noisy deterministic and composite 
processes unlike its counterparts (e.g. Kolmogorov–Sinai 
entropy). Increasing values of ApEn relate to more 
irregularity or unpredictability [8].   

4. EXPERIMENTAL RESULTS AND 
DISCUSSION 

The source localization results showed that mainly the 
frontal and occipital regions of the brain in all the task 
load levels were the most influenced regions, across all 
six subjects. However, as the load level increased, not 
only wider areas of these regions were affected, but also 
they were affected more deeply (shown by values closer 
to “1” in Fig. 1).  For illustration purposes, the source 
map of two load levels; the lowest (L1) and the most 
difficult levels (L7) for subject 1 are displayed in Fig. 1.  

Thus, we only considered the EEG channels located 
in the frontal and occipital loops for further analysis,  
namely; the frontal left; channels Fp1, AF3, F7, F3, FC1, 
FC5 and the frontal right; channels FC6, FC2, F4, F8, 
AF4, Fp2, and the occipital lobe channels (channels PO3, 
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O1, Oz, O2, PO4). Then, the features defined in the 
previous Section were extracted from each EEG segment 
of  ܶ ൌ 5 seconds of the above selected channels for 
different frequency sub-bands.  

Fig. 2 displays the median of the extracted SpEn 
feature from the frontal channels in scale 5, across all 
subjects. As shown, the median of the SpEn is able to 
distinguish the seven task loads well across most of the 
EEG frontal channels in the delta frequency band, as it 
consistently exhibits a decreasing median with increasing 
task load (task difficulty).  

 

 

 
Fig. 1. The source maps of two load levels; (a) the lowest load 
(L1), and (b) the most difficult load (L7). As seen both load 
levels influence the similar regions more or less but the 
activation seems to increase as the load level increased. 
Note that the scale has been normalized, so that “0” reflects no 
difference to the background colour and “1” reflects the 
maximum difference. 

 
 The results for other sub-bands are summarized in 

Table III.  This table displays the channels which exhibit 
a regular trend (decreasing trend) as task load increases. 
This decrease indicates that the signal power tends to 
concentrate in a particular frequency bin, as the load 
increases.  
 

 
Fig. 2 Medians of the SpEn extracted from segmented EEG 
data in the delta band, from the frontal lobe across all subjects.  
In most of the frontal EEG channels, the associated median 
decreases as the task load increases. L1 represents the very low 
task level, and L7 the extremely difficult task level.  
 

The ApEn was estimated here with ݉ ൌ 2 and ݎ ൌ 0.2  .standard deviation (SD) of the EEG segment כ
These are the suggested values in [26] for studying EEG 
signals. This feature also exhibited a decreasing trend as 
the task load level increased across the channels under 
study. This decrease in the value of this feature shows 
that the signal’s irregularity declines as the task load 
increases. In other words, the signals become more 
predictable as the task load or difficulty increases. Fig. 3 
illustrates the median of the extracted ApEn from an 
occipital channel in scale 5, for subject 1. The results 
across all subjects for other sub-bands are summarized in 
Table III.  

Investigating the features by sub-band, the delta sub-
band exhibits more channels that consistently decrease 
for both extracted features, especially in the frontal loop. 
This is followed by fewer channels in the occipital loop 
for both features. The alpha sub-band is the second 
frequency band reflecting more channels for the SpEn in 
the occipital loop, than in the frontal loop. No channels 
were found useful for ApEn feature in this sub-band.  
The beta is the third sub-band reflecting few channels for 
the SpEn feature in both brain loops.  The theta sub-band 
revealed no channels in the frontal loop for any feature, 
but a couple for the SpEn in the occipital loop.  

In terms of the brain region investigation, the frontal 
loop revealed the highest number of channels 
contributing in the task load discrimination, for both 
extracted features. This is supported by similar findings   
that the increasing workload in the working memory is 
reflected by activity in the brain frontal region [10, 27].   
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Fig. 3 Medians of the ApEn extracted from segmented EEG 
data in the delta band, from one occipital channel (PO3) of 
subject 1.  On each box, the red mark is the median; the edges 
of the box are the 25th and the 75th percentiles. 
 
Table III. Selected channels for each extracted feature showing 
a consistent decreasing trend with task load increase, in 
different frequency sub-bands, across all six subjects.  
 

Brain 
region 

Freq.  
sub-band 

Feature Channels 

 
 
 

Frontal 
 
 

 
Delta 

SpEn Fp1, AF3, F7, F3, FC5, 
F4, F8, Fz 

ApEn Fp1, AF3, F7, F4,F8, 
AF4, Fp2, Fz 

 
Theta 

SpEn - 
ApEn - 

 
Alpha 

SpEn F7, FC5, Fz 
ApEn - 

 
Beta 

SpEn F3, FC5 
ApEn - 

 
 
  

Occipital 

 
Delta 

SpEn PO3, O1, PO4 
ApEn O1, Oz 

 
Theta 

SpEn PO4, O1 
ApEn - 

 
Alpha 

SpEn PO3, O1, Oz, O2, PO4 
ApEn - 

 
Beta 

SpEn PO3, O1, PO4 
ApEn - 

5. CONCLUSION 

In this study, we proposed the use of two entropy-based 
features for characterizing mental load in an arithmetic 
task. The task was designed using seven finely-spaced 
levels to impose a large amount of varying mental 
workload on the subjects working memory. The source 
localization was applied to select the optimal channels 
among the 32 recorded channels which make the most 
contribution in the task load measurement. The results 
showed that across all task levels the frontal and occipital 
channels were affected the most when the task 
complexity was varied. As anticipated, with higher load 
levels these regions were influenced more deeply and 
widely.  

The extracted features; namely SpEn and ApEn, were 
found to be successful in characterizing the task loads by 
showing a consistent decreasing value as the task load 

increased. Furthermore, the ApEn decline with the task 
load increase, could demonstrate the decreasing 
complexity or increasing regularity of the EEG signals. 
This may show that the brain behaves in a more regular 
or focused manner when performing more difficult tasks. 

The frequency sub-band study revealed that the delta 
sub-band is the most significantly contributing frequency 
sub-band in the task load measurement, including more 
channels for both features. 

In conclusion, a smaller number of channels in just 
two brain regions, in the delta sub-band could provide 
sufficient information for mental task load measurement 
in similar contexts using the entropy-based features.  

However, this should be validated on a larger 
database and in more realistic environments. Future work 
includes collection of EEG signals with increased subject 
numbers, running different cognitive tasks with a focus 
on cognitive overload, using a classification method for 
discriminating the task loads, and finding the optimal ݉ 
and ݎ parameters for estimating the ApEn feature.  
Investigating the usefulness of the other nonlinear 
measures in mental load characterization is also another 
future objective. 
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Abstract— In this paper, we investigate non-linear analysis 

of electroencephalogram (EEG) signals to examine changes in 

working memory load during the performance of a cognitive 

task with varying difficulty levels. EEG signals were recorded 

during an arithmetic task while the induced load was varying 

in seven levels from very easy to extremely difficult. The EEG 

signals were analyzed using three different non-linear/dynamic 

measures; namely:  correlation dimension, Hurst exponent and 

approximate entropy. Experimental results show that the 

values of the measures extracted from the delta frequency band 

of signals acquired from the frontal and occipital lobes of the 

brain vary in accordance with the task difficulty level induced. 

The values of the correlation dimension increased as the task 

difficulty increased, showing a rise in complexity of the EEG 

signals, while the values of the Hurst exponent and 

approximate entropy decreased as task difficulty increased, 

indicating more regularity and predictability in the signals.  

I. INTRODUCTION 

 RELIABLE and  noninvasive measurement of  working

memory load that can be made continuously while

performing a cognitive task would be very helpful for 

assessing cognitive function, crucial for the prevention of 

decision-making errors, and the development of adaptive 

user interfaces [1].  Such a measurement could help to 

maintain the efficiency and productivity in task completion, 

work performance, and  to avoid cognitive overload  [1], 

especially in critical/high mental load workplaces such as air 

traffic control, military operations, and fire/rescue 

commands. 

Electroencephalography  (EEG) is a noninvasive neuro-

imaging  technique  widely used  for measuring cognitive 

workload, which offers high temporal resolution, ease of 

use, and a comparably low cost [2].  EEG contains useful 

information about various physiological states of the brain 

and can be very efficient for understanding the complex 

dynamical behavior of the brain, if interpreted correctly [3].   
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Previously, a range of methods have been applied for 

measuring and classifying the memory load using EEG 

signal. These  methods  have used features such as power 

spectral density (PSD) or the averaged power and 

maximum/log power spectra [4-6],  sub-band entropy [7-8], 

and autoregressive model [9]. The application of non-linear 

methods in classifying mental tasks is more recent, and 

measures like correlation dimension (CD) [10-12], Hurst 

exponent (HE), approximate entropy (ApEn) and largest 

Lyapunov exponent (LLE) [13-14]  have been used to 

measure the complexity/irregularity of the underlying brain 

dynamics during the performance of some cognitive tasks 

compared with the rest condition. In [13],  it was 

demonstrated that the CD and ApEn/HE values 

decrease/increase when the participants are subject to sound 

or reflexologic stimulation compared with the normal state, 

showing a lesser degree of cognitive activity. Stated 

differently, in these studies the brain activity states; such as 

normal/rest and stimulated have been differentiated [10, 13-

14]. But to date, these measures have not been investigated 

in the analysis of the varying working memory load and the 

question whether these approaches could provide some 

information on the brain dynamics/behavior when 

performing a cognitive task with varying difficulty levels 

has not been addressed. 

For this study, we designed a cognitive task, more 

specifically an arithmetic task with seven levels of difficulty. 

To our knowledge the largest number of mental task load 

levels reported to date is five levels [15-16]. Our earlier 

work with three levels on a reading task also showed very 

promising results in characterizing the memory load  using 

linear features [17-18].  

We hypothesize that non-linear measures change 

continuously according to the varying difficulty levels of the 

cognitive task induced and therefore they can be used to 

quantify changes in memory loads during the performance 

of a cognitive task.  

II. NON-LINEAR MEASURES BACKGROUND

In this study, we analyze the EEG signals during the 

performance of an arithmetic task using CD, HE, and ApEn. 

The measures are briefly explained below. Full details of 

their computation and the selection of their parameters can 

be found in [11, 13, 19]. 

Correlation dimension (CD): this is a measure of the 

complexity of a time series. For a given EEG segment; 

 , CD is a  function of two parameters; 
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   , which represent the embedding dimension and 

radial space around each reference point, respectively. The 

CD is calculated using [11]:  

 (1) 

where  is a  function showing the probability that 

two arbitrary points of   in an  -dimensional space on 

the orbit are closer together than Larger values of CD 

indicate more complexity in the signal. 

Approximate entropy (ApEn): this is a non-linear 

entropy estimator showing regularity or predictability of a 

given time series. ApEn of a given         is calculated using 

the following formula [19]: 

 (2) 

Here,  = (number of X(j) such that  

 .   is the max distance between two given 

vectors of X(i), X(j). A parameter m 

  .  Practically, ApEn quantifies the 

likelihood of vectors that remain close (within r) on the next 

incremental comparison [20]. Larger values of ApEn 

indicate unpredictability or irregularity in the signal. 

 

 

 

 Hurst exponent (HE): it is a measure of self-similarity 

and long-term dependence and its degrees in a time-series.  

It is defined by [13]:        

where T=N*   is the  duration of the sample data and   the 

corresponding value of the rescaled range. If  the 

time-series covers more distance than a random walk. Larger 

values of HE represent increase of randomness in the signal. 

III. METHODS

A. Participants and Experiment Settings 

We studied six male participants, between the ages of 24-30 

years, engaged in postgraduate study. They were right-

handed and had normal or corrected to normal eyesight and 

gave written informed consent, in accordance with human 

research ethics guidelines. We designed an addition task 

with seven levels of difficulty, starting from one digit 

addition (very low) to multi-digit addition (extremely 

difficult).   

The task was displayed and controlled on a laptop PC 

with a viewing distance of 70 cm to the participant (subject). 

Each number was shown at the center of the screen in Arabic 

notation for three seconds. Subjects were asked to add the 

two presented numbers (shown sequentially), then were 

given two seconds (blank page) for retention followed by a 

multiple choice menu that presented the possible answers. 

The subjects were required to click on the correct answer 

using the mouse left button, with the minimum possible 

finger movement. There were 42 addition problems in total, 

across seven difficulty levels (6 per level), with each level 

lasting for two minutes. The difficulty level was manipulated 

TABLE I.  

TASK DIFFICULTY LEVEL DETAILS.  

by varying the n-digit numbers used and carries required to 

calculate the addition. The task detail is shown in Table I. 

The participants were asked to avoid any unnecessary 

physical movements to minimize the chance of muscle 

movement artifact (EMG) during the recording. Their hand 

was also placed in a fixed position, where they could still 

make finger movements in response to the correct answer on 

the mouse. Since the channels in the frontal lobes are 

sensitive to ocular artifact, participants were required to 

refrain from blinking as much as possible. The participants 

were given 30 second rests between each level, allowing 

them to relax, move or blink. 

B. EEG Recording 

The EEG signals were recorded from 32 channels mounted 

in an elastic cap, according to the extended international 10 - 

20 system using an Active Two acquisition system. The 

experiment was conducted under controlled conditions in an 

electrically isolated laboratory, with a minimum distance of 

five meters from power sources to the experiment desk and 

under natural illumination.  The EEG signals were passed 

through a band-pass filter with cut-off frequencies of 

   and were recorded at a           sampling 

rate. Each recording was visually inspected to choose the 

epochs which contained minimal EMG artifact. As a result, 

70 seconds (out of 90 seconds of each task level recording) 

for each subject was considered. However, the remaining 

portion of the recordings still included EOG and ECG 

artifacts. 

IV. ANALYSIS

A. EEG Source Localization 

We used EEG source localization to estimate the localization 

and distribution of electrical events to select discriminatory 

channels, as in our previous work [21].    

B. Sub-Band Filtering 

We decomposed the EEG signals using the Discrete Wavelet 

Transform (DWT) into five levels (scales), according to the 

EEG frequency bands (0-4Hz delta, 4-8 Hz theta, 8-12 Hz 

alpha, 12-30 Hz beta, 30-100 Hz gamma). The selected 

mother wavelet was the Daubechies-4, which is localized 

and symmetric and has a smooth thresholding effect. 

C. Non-Linear Measure Application 

The EEG segments in a particular sub-band were denoted as 

  (3) 

Task level Number of digits Example 

Very low (L1) 1&2 digit numbers 45+2 

Low (L2) 1&2 digit numbers with 1 carry 54+9 

Medium (L3) 2 digit numbers with 1 carry 67+42 

Medium-High (L4) 2 digit numbers with 2 carries 39+65 

High (L5) 2&3 digit numbers with 1 carry  377+32 

Very high (L6) 2&3 digit numbers with 2 carries 76+347 

Extremely high (L7) 3 digit numbers with 3 carries 983+748 
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   with the length of     seconds. Three 

non-linear measures; i.e. CD, ApEn, and HE were extracted 

from each EEG segment in different frequency sub-bands 

for each subject.  

V. RESULTS 

The source localization results showed that mainly the 

frontal and occipital regions of the brain were the most 

influenced regions, in all the task load levels across all six 

subjects. As the load level increased, not only were wider 

areas of these regions were affected, but also they were 

affected more deeply (shown by values closer to “1” in Fig. 

1).  The source maps of two load levels, the lowest (L1) and 

the most difficult levels (L7) for subject 1, are shown in Fig. 

1. Therefore, for further analysis only EEG channels

positioned in the frontal and occipital lobes were taken into 

account (i.e. the frontal channels Fp1, AF3, F7, F3, FC1, 

FC5 FC6, FC2, F4, F8, AF4, Fp2 and the occipital channels 

PO3, O1, Oz, O2, PO4).   

Fig. 2(a) shows the medians of the extracted CD measure 

from a frontal channel for subject 1 in the delta frequency 

band.  As seen, the median of the CD increases regularly as 

the task load increases. Fig. 2(b) displays the median of the 

extracted ApEn measure from the same channel, subject and 

frequency band.  Here, the median of the ApEn decreases 

consistently as the task load increases. The extracted HE 

values showed a similar trend to the ApEn. Therefore, their 

values tended to decline as the load level increases. 

The results for the selected channels across all the six 

subjects in different sub-bands are summarized in Table II. 

The study of these measures by frequency sub-band 

indicated that the delta sub-band exhibited more channels 

that consistently vary with the load level induced. In terms 

of the brain regions investigated, the frontal lobe also 

showed the highest number of channels contributed to the 

load level distinction.   

Due to the importance of the non-linear parameters’ 

values in determining the outcome, we also examined their 

different values to find the optima for the purpose of 

memory load characterization in this study. Thus, we 

calculated the CD for        and     .  According 

to the results, the higher the dimension  , the more distinct 

the load levels were. But varying parameter   did not affect 

the results much. For the ApEn measure, we varied   
   and         . The results showed 

that the lower the    value (closer to        ), the better the 

load levels were distanced but the choice of embedding 

dimension of 2 or 3 did not make any significant change.   

We also used a Kruskal-Wallis test to statistically measure 

the effectiveness of the measures in distinguishing seven 

load levels. The channels which revealed a small p-

value         ) for each extracted measure, across six 

subjects are shown in bold in Table II. 

Fig. 1. The source maps of two load levels for subject 1; (a) the lowest load 
(L1), and (b) the most difficult load (L7). Both load levels influence the 

similar regions more or less but the degree of activation increased as the load 

level increased. 

VI. DISCUSSION

In this study, we investigated the use of three non-linear 

measures for characterizing memory load in an arithmetic 

task with seven levels of difficulty. The source localization 

results assisted us in focusing on the brain regions/channels 

of interest which were the most influenced by the task load, 

namely the frontal and occipital lobes. When the more 

difficult task load was induced these regions were affected 

more deeply and widely. This is in line with previous 

findings that the increasing workload is reflected by activity 

mostly in the frontal lobe of the brain [15, 22]. 

The extracted non-linear measures from the selected 

channels were found to be successful in task load 

discrimination and representing the functional dynamics of 

the brain when performing a task with different difficulty 

levels. The CD values tended to increase as the task load 

increased; indicating the brain activity 

dimension/complexity increases with the increase of 

cognitive activity load. This can be supported by previous 

mental task studies showing lower dimension when the brain 

goes to a passive state or a state of relaxation [10, 13]. A 

decreased value of ApEn with increased task load implies 

higher predictability and less irregularity in the brain 

activity. The decline in HE values as the task load increased 

demonstrates that random behavior of the signal decreases as 

the task load increases.  The last two measures may indicate 

the brain behaves in a more regular and focused manner 

when performing more difficult tasks.  

The frequency sub-band analysis showed that the delta is 

the most contributing sub-band, including more channels for 

the three measures in the memory load characterization. This 

was statistically confirmed by low p-values. 

 As future work, this method should be validated on a 

larger database and in more realistic environments. This 

includes collection of EEG signals with increased subject 

numbers, running different cognitive tasks with a focus on 

cognitive overload, using a classification method for 

discriminating the task loads.
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Fig. 2. (a) Medians of the CD (         ) extracted from segmented 
EEG data in the delta band from a frontal channel (Fp1) of subject 1.  (b) 

Medians of the ApEn (             ) extracted for the same channel, 
freq. band, and subject. On each box, the red mark is the median; the edges 

of the box are the 25th and the 75th percentiles. 

TABLE II. 

SELECTED CHANNELS FOR EACH EXTRACTED NON-LINEAR MEASURE  WHOSE 

MEDIAN SHOWED A CONSISTENT TREND ACCORDING TO TASK LOAD 

VARIATION, IN DIFFERENT FREQUENCY SUB-BANDS, ACROSS ALL SIX 

SUBJECTS. CHANNELS IN BOLD DENOTE CASES WHERE A KRUSKAL-WALLIS 

TEST GAVE P<0.01 FOR ALL SIX SUBJECTS. 

Freq. 

sub-band 

Measure Region of the brain/Channels 

Delta 

CD Frontal: Fp1, AF3, FC1, F3, FC5, FC2, F4, F8, 
AF4, Fp2 - Occipital: O1, Oz 

ApEn 

HE 

Frontal: Fp1, AF3, F7, F3, FC5, FC6, FC2, F4, 

F8, AF4, Fp2 -  Occipital: O1, Oz, PO4 

Frontal: Fp1, AF3, FC1, FC6, F4, F8, AF4, 
Fp2 -  Occipital: O1, PO4 

Theta 

CD Frontal: Fp1, AF3, FC6, FC2 - Occipital: 

O1,Oz 
ApEn Frontal: Fp1, AF3, FC1, F3, F8 - Occipital: O1, 

O2, PO4  

HE Frontal: Fp1, AF3, FC1, FC2, F8 - Occipital: 

PO3,Oz, O2, PO4 

Alpha 

CD - 

ApEn Frontal: Fp1, AF3, F7, FC5, AF4, Fp2 - 

Occipital: PO3, O2 

HE Frontal: FC1, FC6, F8 - Occipital: Oz 

Beta 

CD  - 

ApEn Frontal: Fp1, AF3, FC6, Fp2 - Occipital: O1, 
Oz 

HE Frontal: Fp1, AF3, FC2, Fp2 - Occipital: PO3 
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a b s t r a c t

Measuring cognitive load changes can contribute to better treatment of patients, can help

design effective strategies to reduce medical errors among clinicians and can facilitate user

evaluation of health care information systems. This paper proposes an eye-based automatic

cognitive load measurement (CLM) system toward realizing these prospects. Three types

of eye activity are investigated: pupillary response, blink and eye movement (fixation and

saccade). Eye activity features are investigated in the presence of emotion interference,

which is a source of undesirable variability, to determine the susceptibility of CLM systems

to other factors. Results from an experiment combining arithmetic-based tasks and affective

image stimuli demonstrate that arousal effects are dominated by cognitive load during task

execution. To minimize the arousal effect on CLM, the choice of segments for eye-based

features is examined. We then propose a feature set and classify three levels of cognitive

load. The performance of cognitive load level prediction was found to be close to that of

a reaction time measure, showing the feasibility of eye activity features for near-real time

CLM.

© 2012 Elsevier Ireland Ltd. All rights reserved.

1. Introduction

Interest in including cognitive technology in clinical practice
has seen an increase in recent years. Common applications are
the use of cognitive tests to assess the deficit when impair-
ments occur in central nervous system neuropathology [40],
for example, head injury [1], Schizophrenia [2], long-term alco-
hol abuse [3], Alzheimer disease and related disorders [4], to
name a few. Moreover, cognitive assessment can also be of
benefit in screening discharge patients [5] and in construction
of individualized rehabilitation strategies [2], since cognitive
skills are associated with daily living and social activities. As
Spaulding et al. [2] have suggested, “a cognitive technology

∗ Corresponding author at: The School of Electrical Engineering and Telecommunications, The University of New South Wales, Kensington,
NSW 2052, Australia. Tel.: +61 403282498.

E-mail address: siyuan.chen@unsw.edu.au (S. Chen).

can be perfected that would contribute significantly to diag-
nosis, treatment and rehabilitation planning, evaluation of
patients’ response to treatment, and the design of future treat-
ment modalities”. Although the specification of function to be
measured is different, evidence shows those aforementioned
diseases or disorders are associated with memory capability
[2–4]. Since cognitive load occurs as a result of the limited
working memory available during a task [35], measuring cogni-
tive load on patients in the cognitive tests can offer insights for
patient treatments. For example, high cognitive load and short
stimulus duration were found to create a critical performance
distinction for schizophrenic patients [36].

Other applications include reducing medical errors due to
high memory load on clinicians in the context of emergency
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department. Studies have showed that the interruptions
(cause information loss) and multitasking induce high cog-
nitive load that contributes to medical errors [37]. Solutions
proposed include using electronic tools to support adaptive
process [37] on site and providing effective training [38] before-
hand to reduce the cognitive load in work place.

Another focus is on evaluation of clinical information sys-
tems. Approaches are based on usability engineering and
cognitive task analysis to ensure low cognitive load involved
in use of such systems while users are carrying out tasks [39].

The development of an automatic cognitive load mea-
surement (CLM) system is thus motivated by assessing user
(patient) dynamic cognitive load, using psychophysiological
and behavioral signals. Conventional methods for CLM, in par-
ticular subjective assessment, reaction time and performance
(accuracy) cannot provide satisfactory results in all situations
as they rely on overt responses without adequate temporal
sensitivity, which they assume that users (patients) are willing
to provide [6].

One fundamental problem that has limited the use of psy-
chophysiological and behavioral signals for CLM to date is the
presence of artifacts due to other mental resource demands
[28]. Task-focused mental activity is not the only possible
source of variation manifested in psychophysiological and
behavior signals. For example, speech, heart rate variability,
GSR and respiration are reported as effective features not only
in CLM but also in emotion recognition and stress detection
(e.g. [14,15]). For affective data, emotion is often elicited by
stimuli with the task performance as a function of emotional
state or as appraisals of a situation [16]. When collecting cog-
nitive load data, task difficulty is carefully controlled with
neutral (i.e. non-emotive) stimuli and emotional stimuli are
avoided. An interesting question is what would happen to
the psychophysiological and behavioral signals when users
(patients) are performing a cognitive task and are subject to
concurrent emotional stimuli. Such a question has important
considerations in practice, where emotions and cognitive load
cannot be expected to occur in isolation as they often do in the
research laboratory – how should cognitive load classification
systems be built that are robust to such types of variability?

The work in this paper is novel in (i) assessing eye pat-
tern changes during tasks with emotional stimuli, with a view
to validating eye activity-based CLM; (ii) recognizing the eye
activity patterns for five levels of induced cognitive load, there
by going beyond simply distinguishing low and high cogni-
tive load levels; (iii) determining the eye feature dependence
on arousal factors and the appropriate measurement timing
for reliable load level estimation during task execution with
interference from other sources.

2. Eye activity background and related work

2.1. Advantage of using eye activity for CLM

Four arguments are forwarded in favor of using eye activ-
ity patterns for CLM: (i) eye activity contains three classes
of eye information, but still uses one sensor for data collec-
tion. Pupil dilation is a physiological signal whose changes are
due to autonomic nervous system activity in the peripheral

nervous system. Eye blink is a behavioral signal [17] (some
papers also call it a psychophysiological response [19]) con-
trolled by the central nervous system (CNS). Fixation and
saccade are encoded by neural signals from cortical and sub-
cortical systems. The different mechanisms could measure
various underlying processes responsible for different aspects
of cognitive activity. (ii) Eye activity is more ubiquitous than
other modalities: we are free to use our eyes everywhere
and anytime. (iii) Pupillary response and eye blink have been
shown to correlate with both visual and aural cognitive tasks
[9,17], thus can be applied in broad scenarios. (iv) Eye activity
data collection is less intrusive than other physiological signal
data collection. For example, eye tracking technology has been
demonstrated to follow eye activity remotely [9].

2.2. Pupillary response

The basic function of pupil diameter change is to protect the
retina (the light reflex) and also to respond to a shift in fixa-
tion from far to near objects (the near reflex). Changes that
reflect variations in cognitive activities are relatively small
compared with the changes due to light reflex and near reflex.
In addition, the light reflex results in a relatively rapid pupil-
lary response [20]. Therefore, if objects have nearly constant
depth in the user’s (patient’s) visual field, we can consider the
task-evoked pupillary response to comprise the low frequency
components in the pupillary response spectrum.

Over a few decades of research on pupillary response,
researchers still do not agree whether the pupil is a mea-
sure of emotional arousal or mental effort. Empirical studies
found that pupil size increases as participants are exposed
to more arousing images and sounds, regardless of valence
[21,22]. Early research [23] on arousal and cognition attempted
to manipulate some arousal factors while controlling the cog-
nitive demands of tasks. They concluded that cognitive factors
have a higher priority than the arousal factors in affecting
pupil dilation. The arousal effect in pupillary response was
not observed in sentence listening and addition tasks but only
in the low cognitive load task, listening to countdown num-
bers [23]. However, in that experiment, tasks were controlled
in auditory presentation and arousal levels were manipulated
by the proximity of the stimulus (a word) to the subject of
the sentences, reward or threat of electrical shock. The effect
of auditory-induced emotion might be transient and not be
as strong as in visual presentation, and the auditory based
cognitive load might be higher compared with visual tasks,
therefore we used affective images to induce controlled emo-
tional effects.

2.3. Eye blink

Eye blinks occur only two to four times per minute for
functional purposes [17]. There are other, non-functional
types: reflexive blink (a protective response, e.g. to a puff
of air), voluntary blink (a purposeful response depends on
one’s will) and endogenous blink (unconsciously occurs).
The majority of eye blink behaviors are endogenous blinks,
which are centrally controlled and have a link to cognition
[17,20], therefore this type of blink is used for CLM. During
a task-centered scenario, voluntary blinks can be avoided by
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informing participants to behave naturally, while for reflexive
blinks, selective analysis windows must be employed to
include only important task-relevant stimuli, which may also
reduce the number of functional blinks.

One finding is that blinking tends to be avoided to max-
imize stimulus perception during high-attention tasks, and
blink occurrence is reduced with increasing information con-
tent and task demands [17]. Another explanation treats eye
blink as a relief mechanism. In states of thinking nothing and
task completion, eye blinks occur rarely because the ‘mental
tension’ is relieved in the internal channel of solving problems.
When the ‘mental tension’ cannot find an internal or external
outlet, eye blink rate is increased [24]. Both claims can ade-
quately explain most blink behaviors. Therefore we assume
that the blink rate will increase in mental tasks with constant
information content when the task difficulty increases, and
try to ensure that the time window for blink feature extrac-
tion is long enough to allow measurable changes during task
execution.

2.4. Eye movement

Fixation and saccade can be separated and labeled by
automatic identification algorithms using the vertical and hor-
izontal position of the pupil [25]. Fixation can be seen as a
stationary state over regions of interest and is usually defined
as the pause time above 100 ms within a range of 1◦ of visual
angle. There is a general consensus that visual perception and
cognitive processing occur during fixation. Saccades are rapid
eye movements from one position to another, during which
little visual processing occurs. Fixation and saccade occur in
turn when eyes are viewing a scene [26,27].

Fixation duration is often used as a metric reflecting the
difficulty of information extraction in the region of interest,
while fixation rate indicates the degree of importance of the
element. Another useful feature is saccade amplitude, which
implies the difficulty of catching precise target positions [27].

2.5. Approaches to eye-based cognitive load
measurement

Previous research on measuring cognitive load through eye
tracking has often employed offline statistical analysis and
focuses on the measurable magnitude of pupil dilation under
carefully controlled cognitive task contexts. Studies show that
pupil diameter can be used to identify group differences, for
example, in intelligence [29], age [30] and visual and auditory
presentations [9]. A recent work [42] used pupil diameter and
fixation duration to assess workload in a simulated anes-
thetic care environment with the aim of improving safety
in clinical practice. In the study, pupillary responses were
observed in different stages of inducing general anesthesia
at a high-fidelity simulator as the workload was increased by
a critical incident. Although previous studies found the link
between pupillary response and cognitive load, the influence
of arousal during CLM, as another major source of mental
activity affecting pupil dilation, has yet to be investigated.
Valence can be another factor that affects cognitive activity. A
study used pupillary response to validate emotion state with
three valences, positive, neural and negative, during tasks

and during tasks with an emotional avatar [44]. However, in
this study, we are interested in variations in eye features with
both arousal and valence induced by rated stimuli, many
levels of task difficulty, and in examining whether they are
a function of task difficulty. There are intensive studies on
how positive and negative mood affect executive functions in
the brain from neuropsychology [45]. They are fundamentally
important and can inform cognitive load measurement, but
are not our focus in this study.

Recently, researchers have begun to use classification
methods with eye data to measure cognitive load, but most
work has been classifying two states or two levels and a few
have classified three states, although classification among
three or more affective states is often seen in emotion recog-
nition research. Marshall used wavelet analysis for pupillary
response together with blink number, saccade number and the
difference between horizontal locations for the left and right
eyes, and employed discriminant function and neural network
analysis to investigate two cognitive states [8]. Those states,
denoted as in-task state and in-rest states, focused and dis-
tracted states, alert and fatigue states, were classified in three
different studies (30, 11 and 1 participant respectively). The
best overall accuracies ranged from 69% to 92%. Another inter-
esting work employed multiple modalities to classify three
states of interest on participants while they were engaged in
conversations. Eye movement and eye distance were used as
a criterion of mental state and achieved an average accuracy
of 45.6% alone [41]. Haapalainen et al. mapped six elementary
cognitive tasks onto the three contextual factors: speed of clo-
sure, flexibility of closure and perceptual speed, and employed
heat flux, ECG, GSR, median of pupil diameter, EEG and heart
rate, with a Naïve Bayes classifier to discriminate between low
and high levels [10]. Pupillary response performed better than
GSR, close to EEG and heart rate but more poorly than ECG and
heat flux. The average accuracy from pupil features achieved
across 20 participants was 57.4% [10]. Clearly, the classifica-
tion of multiple cognitive load levels, robustly in the presence
of non-cognitive factors, is of interest.

Our work attempts to take the advantage of different eye
activity patterns, select reliable features, process these with
suitable measurement timing and differentiate more than two
levels of cognitive load. Although we also used a controlled
experiment, the emotion ‘interference’ provides a form of real-
ism to the investigation of CLM.

3. Methodology

3.1. Experiment setting

In this study, cognitive load was induced using arithmetic
tasks, and the difficulty level was controlled by the num-
ber of carries and digits. More details of the tasks can be
found in Table 1. Emotional interference corresponding to
different arousal and valence levels was induced by showing
International Affective Picture System (IAPS) [31] images
in the task background. The experiment was adapted from
those using pupillary response for measuring cognitive load
with arithmetic tasks [18,23] and for measuring arousal with
IAPS images [21]. IAPS provides affective ratings from
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Table 1 – Descriptions of the five task difficulty levels and six emotion categories.

Task description:
add four
numbers

Four digits
selected from

Difficulty level (95% confidence
interval for the mean of the

subjective rating (measured))

Performance
score

(measured)

No carry produced
for each single
number addition

{0,1} 1 (1.8 ± 0.4) 89.5%

A carry is produced
in the lower digit
in the third or
fourth addition.
One-digit and
two-digit addition

{1,2,3,4,5} 2 (2.3 ± 0.4) 89.5%

A carry is produced
in the lower digit
for at least every
second addition.
One-digit and
two-digit addition.
The result has two
digits

{5,6,7,8,9} 3 (2.9 ± 0.4) 98.1%

A carry is produced
in the lower digit
in the last one or
two addition.
Two-digit addition.
The result has two
digits

{10,11,12,13,14,15,16,17,18,19} 4 (4.0 ± 0.5) 77.6%

A carry is produced
in both the low
and high digit for
every addition.
Two-digit addition.
The result has
three digits

{84,85,86,87,88,89,90,91,92,93} 5 (6.1 ± 0.8) 56.2%

Image description Emotion description Arousal/valence (mean, SD of IAPS rating)

Aging, loneliness, dirty dishes, garbage Boredom, sleepy Low/negative (M = 3.63/3.73, SD = 2.02/1.37)
Crying victims, guns, vomit, skulls, roach Disgust, sorrow Medium/negative (M = 4.83/2.93, SD = 2.25/1.61)
Bloody faces, snake and spider, surgery, dying Terror, distressed High/negative (M = 6.02/2.88, SD = 2.16/1.72)
Animals, birds, landscape Relaxed, peace Low/positive (M = 3.51/6.91, SD = 2.21/1.45)
Animal families, smiling children, art performance Joy, happiness Medium/positive (M = 4.54/7.29, SD = 2.27/1.53)
Wedding, romance, adventurous sports, gold and money Excitement, lust High/positive (M = 5.90/7.16, SD = 2.17/1.53)

approximately 100 college students for a large set of
photographs in three dimensions: valence, arousal and
dominance. For the valence dimension, the rating from low
to high indicates the range from negative to positive. For
the arousal dimension, a low rating represents calm while
a high rating means excited [31]. As valence and arousal are
the two primary scales for emotional assessments, and for a
comparison of studies in which only arousal and valence were
used, we did not consider the dimension of dominance for
emotion induction. Images from six categories were selected:
low/high rating in valence and low/medium/high rating in
arousal to elicit different emotions. The selected images and
their average ratings from each category are shown in Table 1.

At the beginning of the task, the image was displayed,
together with ten ‘x’ or ‘xx’ placeholders arranged in a circu-
lar pattern, for 2 s in order to allow the eye to adapt to the
light intensity. Then four numbers were displayed sequen-
tially and participants were required to sum the four numbers.
Each number replaced one of the placeholders (selected
randomly) and stayed for 3 s. When a number showed up,

the previous number was replaced by ‘x’ or ‘xx’, so that the
effect of light intensity change on pupillary response dur-
ing the task was minimal. Displaying numbers in random
placeholder positions encouraged the eye to explore image
elements and engage with the content, to facilitate emo-
tion induction. At the 15th second, 10 numbers, representing
the candidate answers, replaced the 10 placeholders without
the background changing. Participants were required to use a
mouse to click the correct answer and then click a radio but-
ton in the center to submit the answer. The position of the
correct answer for each addition task was changed randomly.
After the addition task, a rating form for task difficulty (9-point
scale from extreme easy to extreme difficult) or/and emotion
(two dimensions in 3 scales) appeared and participants could
only select one ratio button for each subjective assessment.

The participants comprised seven females and eight
males, aged 20–48 (M = 26.8, SD = 7.2). After a short training,
each participant firstly completed 1 task-centered session,
with task demands and with gray color as background, then
1 image-viewing session without task demands but with 2
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Fig. 1 – Time line for each task. Each task comprises focusing, image viewing, reading and calculating four addends
sequentially, selecting an answer and subjective rating of both task difficulty and emotion.

images from each emotion category. Then each participant
completed 6 task-interference sessions, which contained
2 tasks in each of 5 cognitive load levels with 10 different
images from the same emotion category. The sequence of the
cognitive load levels was randomized to minimize carry-over
effects. The sequence of emotion categories for the 6 ses-
sions was low/positive, medium/positive, high/positive,
and low/negative, medium/negative, high/negative in
arousal/valence. At the end of each session, participants
were advised to take a break as long as they needed to recover
from images or/and cognitive tasks and then continue. Each
task in the 1 task-centered and 6 task-interference sessions
followed the same procedure as shown in Fig. 1. In the
image-viewing session, each image was displayed for 14 s
then an emotion rating form appeared. Therefore, a total of
82 recordings (K = 82) were obtained from each participant,
including 60 samples with both cognitive load and emotion
factors, 10 samples with only the cognitive load factor and 12
samples with only the emotion factor. The signal length of
each sample was 14 s, during which four task stimuli were
systematically presented and time stamped.

3.2. Signal pre-processing

Pupil dilation and position were monitored and recorded using
a FaceLAB 4 [32] desk-mounted eye tracker system with a
sampling rate of 60 Hz. Participants were free to move their
head but instructed to keep their eyes within the screen dis-
play range. The 12 s of mental arithmetic activity containing
the first to the last task stimuli is the time window of inter-
est, and a pupil sample signal (P) was extracted according
to the timestamps. Each recording of pupil size was first lin-
early interpolated during blinking and then low-pass filtered
at around 4 Hz cut off frequency [33] to remove high frequency
noise such as drift, tremors in eye and equipment introduced
noise in the measure. In order to further attenuate the noise,
we averaged left and right eye pupil diameters after filtering
to obtain an averaged pupil signal of length N = 720.

Due to inaccurate blink detection from the eye tracker,
measures of blink were processed from video recorded from
a separate 30 Hz webcam situated in front of participants,
around 0.5–0.7 m away. Scripts developed in MATLAB using

motion analysis and template matching [34] were able to rec-
ognize eye blink states as either blink (1) or non-blink (0)
during the 12 s time window of interest, which we denote
as Bk[n] ∈ {1, 0}; n = 1, . . ., N/2; k = 1, . . ., K. Extracted blink data
were superimposed on the video and played back to manu-
ally ensure that blink features extracted correctly represented
actual blink activity.

Fixation and saccade data during the 12 s time window
were extracted and obtained from pupil positions using a
dispersion-based algorithm [25]. For each sample of pupil posi-
tion, those eye positions remaining within 1 degree of visual
angle for at least 100 ms were defined as fixations Fk[n] with
centroid position C (i.e. Fk[n] ∈ {Cj}, n = 1, . . ., N; k = 1, . . ., K, j is
the index of the fixation). In the saccade vector, constant
eye positions were recorded as fixations (0 s) and moving eye
positions were recorded as saccades (1 s), i.e. Sk[n] ∈ {1, 0};
n = 1, . . ., N; k = 1, . . ., K.

3.3. Measured feature sets

We gathered a variety of features from the literature and also
proposed some features to investigate: zero crossing count
of pupil size, features from cumulative blink/fixation/saccade
number, eye features from task stimuli onset to the first
saccade. These were calculated in different segments 1 s
(spanning from 0.5 s before to 0.5 s after addend), 1.5 s (span-
ning 1.5 s after addend), 2 s (spanning 0.5 s after addend to
0.5 before next addend), 3 s (spanning 3 s after addend) around
the four task stimuli (‘1S’, ‘2S’, ‘3S’, ‘4S’, where ‘S’ is the stim-
ulus). The segment names are added to each feature name as
suffixes to denote the segmentation scheme. This was to eval-
uate which task stimulus produces a significant response from
eye features in each difficulty level with emotion interference;
and how soon and for how long eye features should be mea-
sured after each task stimulus. Long delays after task stimuli
might weaken the cognitive load effect, while short segments
might result in low signal-to-noise ratios.

Throughout the paper, k ∈ {1, . . ., K} is the number of tasks
that each participant has completed. Each feature was calcu-
lated on a per-task basis. For simplicity, k is omitted in the
equations below. n ∈ {0, . . ., N − 1} is the discrete-time sample
index, and n1 and n2 (n1 < n2) are the first and last sampling
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indices of a particular segment. The features extracted are
defined as follows.

The pupil diameter change:

PD[n] = P[n] − PB[n] (1)

where PB is the average baseline during 1S1sec;
The cumulative blink number:

BD[n] =
n2∑

n=n1

B[n]; (2)

The blink number during [n1, n2]:

BNum = 1
2

n2∑
n=n1

|B[n] − B[n − 1]|; (3)

The blink duration per blink during [n1, n2]:

BDur = 1
BNum

n=n2∑
n=n1

B[n]; (4)

The cumulative saccade number:

SD[n] =
n2∑

n=n1

S[n]; (5)

The fixation number during [n1, n2]:

FNum = 1
2

n2∑
n=n1

|S[n] − S[n − 1]|, S[n] = 1 − S[n]; (6)

The fixation duration per fixation during [n1, n2]:

FDur = 1
FNum

n2∑
n=n1

S[n]; (7)

The saccade amplitude per saccade during [n1, n2]: Cx and Cy

are the centroid positions of fixation F[n] along the x and y
axes.

SAmp = 1
FNum − 1

×
J∑

j=2

(max(Cx)) − min(Cx) + max(Cy)

− min(Cy)); (8)

Based on the above features (raw features), we then cal-
culated their mean, standard deviation and difference values
during [n1, n2]. We add a ‘−M’ suffix to the raw feature name
(fn), for example, PDM[n], BDM[n], BDurM[n], SDM[n], FDurM[n],
SAmpM[n], to denote the means of the raw features. Similarly
we add the −Std, −Diff1, −Diff2 suffices to denote the standard

deviation, average of absolute difference value and average of
slope of the raw features.

fnM = 1
n2 − n1

n2∑
n=n1

raw feature[n]; (9)

fnStd =

√√√√ 1
n2 − n1 − 1

n2∑
n=n1

(raw feature[n] − fnM)2; (10)

fnDiff 1 = 1
n2 − n1

n2∑
n=n1

|raw feature[n] − raw feature[n − 1]|; (11)

fnDiff 2 = 1
n2 − n1

n2∑
n=n1

(raw feature[n] − raw feature[n − 1]); (12)

In addition, we calculated the zero crossing count of PD,
after filtering by a low pass filter.

ZCC = 1
2

n2∑
n=n1

|sign(PS[n]) − sign(PS[n − 1])|, PS[n] = PD[n]

− PDM; (13)

In addition to the above features, we explored how PD, BDur,
FDur and SAmp varied in response to the task stimulus, that is,
during the time from 1S, 2S, 3S, 4S onset to the next saccade
occurrence. Therefore, another four features, the means of PD,
BDur, FDur and SAmp during that time, denoted by mSS (mth
task stimulus to the next saccade), were calculated: PDMmSS,
BDurmSS, FDurmSS, SAmpmSS.

3.4. Statistical analysis

When measuring pupil response change, it was not easy to
select a baseline segment during which light intensity was
always identical to that during tasks. We used the average
pupil size during the 0.5 s before and after the first task stim-
ulus (i.e. 1.5th to 2.5th second) as the baseline and assumed
that background luminance was constant afterwards. Some
rapid changes as a result of light contrasts during saccades
were filtered in the signal pre-processing stage. During the
first task stimulus, there was no addition needed and partici-
pants should have experienced minimal cognitive load. In the
image-viewing session, since each participant possibly per-
ceived different emotional stimuli within a single image and
the precise time(s) of this response was unknown, we set the
average pupil size during the first half second after image
onset as the baseline.

A three-way repeated ANOVA test, followed by Bonfer-
roni corrected t-tests, was conducted for each eye feature in
the task-centered, image-viewing and task-interference ses-
sions. The aim was to find the sensitive features and their
measurement timing across all participants and evaluate the
cognitive load effect, emotion effect and their interactions
for each feature. We also considered ω2 values, which are an
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Fig. 2 – Comparisons of pupillary response PD[n] during (a) the task-centered sessions, (b) the image-viewing sessions and
(c), (d) the task-interference sessions, averaged across all 15 participants. (c) and (d) are from the same data but averaged
across all arousal levels and task levels respectively.

unbiased measure of the effect size in ANOVA. These indicate
the magnitude of variation in eye features that is explained
by cognitive load or arousal factor. The three-factor design
was task (5 levels) × arousal (3 levels) × valence (2 levels). We
set 0.05 as the critical p value and for those within-subject
tests that violated the assumption of sphericity, the degrees of
freedom were corrected by Greenhouse–Geisser epsilon coef-
ficients.

In ANOVA tests, the p value can only determine whether
the observed value of a statistic differs sufficiently from a
hypothesized value of a parameter to draw the inference.
To understand the exact weights of the significant contribu-
tions from cognitive load and from arousal factors in pupil
features, we conducted multiple regression analysis to eval-
uate the measurement timing. We applied the ANOVA model
on each eye feature to look into the cognitive load effect in
the task-centered session, the arousal effect in the image-
viewing session, and the cognitive load, arousal and cognitive
load × arousal in the task-interference sessions respectively.
For the regression analysis, we used all the three sessions at a
time to estimate the extent to which cognitive and arousal fac-
tors predict pupillary response and to find the segment across
all participants with the highest weight for the cognitive load
effect and the lowest weight for the arousal effect. The model
we used was:

Y = ˇtXt + ˇaXi + C, (14)

where Y is the PD in the task-interference session (15 × 1 vector
of 3 arousal levels and 5 task difficulty levels for each partici-
pant), Xt is the PD from the task-centered session (5 × 1 vector
comprising 5 task difficulty levels, replicated for each emotion
category for each participant) and Xi is the PD from the image-
viewing session (3 × 1 vector comprising 3 arousal levels,
replicated for each task difficulty level for each participant).

In applying this analysis, PD data from the two task rep-
etitions were averaged, and similarly PD data from images
from the same arousal-valence category from each participant
were averaged. The coefficients were standardized in order to
compare them on the same scale.

4. Statistical results

4.1. Pre-processing for pattern analysis

As a preliminary investigation, we examined the eye activ-
ity responses to the task-centered, image-viewing and
task-interference sessions respectively, averaged over all par-
ticipants. Figs. 2 and 3 present the measurable pattern
changes of pupillary response and cumulative blink num-
ber respectively along the task timeline for the task-centered
(Figs. 2 and 3(a)), image-viewing (Figs. 2 and 3(b)) and task-
interference sessions (Figs. 2 and 3(c), (d)). The descriptive
results are shown in Table 2.
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Fig. 3 – Comparisons of cumulative blink number BD[n] during (a) the task-centered sessions, (b) the image-viewing
sessions and (c), (d) the task-interference sessions, averaged across all 15 participants. (c) and (d) are from the same data but
averaged across all arousal levels and task levels respectively.

Table 2 – Descriptive statistical results for the three eye features in the three sessions. Mean and standard deviation
values are presented in the form of ‘mean (standard deviation)’, with the order from low to high for task difficulty and
arousal levels, negative and positive for valence levels.

Task-centered session Image-viewing session Task-interference sessions

Pupil size
(PDMS12sec)
(difference to
baseline in mm)

5 task difficulty
levels: −0.01(0.16),
0.11(0.18), 0.14(0.21),
0.24(0.26), 0.32(0.26)

3 arousal levels:
0.18(0.18), 0.06(0.23),
0.26(0.28)
2 valence levels:
0.16(0.24), 0.18(0.21)

5 task difficulty
levels: 0.19(0.11),
0.16(0.12), 0.27(0.15),
0.34(0.13), 0.46(0.18)
3 arousal levels:
0.34(0.12), 0.29(0.14),
0.23(0.11)
2 valence levels:
0.24(0.13), .33(0.12)

Blink number
(BNumS12sec)
(number)

5 task difficulty
levels: 4.77(3.21),
4.30(2.48), 4.47(3.40),
4.80(3.46), 5.70(3.94)

3 arousal levels:
4.93(4.06), 5.13(3.36),
4.07(2.90)
2 valence levels:
4.78(3.65), 4.64(3.23)

5 task difficulty
levels: 4.24(2.68),
4.34(2.72), 4.57(2.82),
4.97(3.47), 5.37(3.63)
3 arousal levels:
4.55(2.86), 4.86(3.00),
4.69(3.18)
2 valence levels:
4.74(2.99), 4.65(3.02)

Saccade amplitude
(SAmpS12sec)
(cm/saccade
occurrence)

5 task difficulty
levels: 1.16(0.95),
1.31(0.96), 1.24(1.02),
1.60(1.27), 1.99(1.21)

3 arousal levels:
1.03(0.71), 1.36(0.97),
1.02(0.78)
2 valence levels:
1.11(0.76), 1.16(0.82)

5 task difficulty
levels: 1.09(0.85),
1.00(0.73), 1.05(0.70),
1.18(0.84), 1.24(0.90)
3 arousal levels:
1.17(0.84), 1.14(0.73),
1.03(0.88)
2 valence levels:
1.00(0.81), 1.22(0.81)

dx.doi.org/10.1016/j.cmpb.2012.10.021
dx.doi.org/10.1016/j.cmpb.2012.10.021


Please cite this article in press as: S. Chen, J. Epps, Automatic classification of eye activity for cognitive load measurement with emotion
interference, Comput. Methods Programs Biomed. (2012), http://dx.doi.org/10.1016/j.cmpb.2012.10.021

ARTICLE IN PRESSCOMM-3469; No. of Pages 14

c o m p u t e r m e t h o d s a n d p r o g r a m s i n b i o m e d i c i n e x x x ( 2 0 1 2 ) xxx–xxx 9

Table 3 – ANOVA results for the three eye features in the three sessions. Levels in brackets with ‘–’ between are
significantly different paired levels using Bonferroni corrected t tests. The threshold is 0.05/number of comparison pairs
(10 for five levels and 3 for three levels).

Task-centered session Image-viewing session Task-interference sessions

Pupil size (PDMS12sec) F(3.0,41.2) = 4.58, p = 0.01,
(1–4, 1–5);

Arousal: F(2,28) = 4.64,
p = 0.02, (2–3);
Valence: F(1,14) = 0.18,
p = 0.67;
Arousal × Valence:
F(2,28) = 2.41, p = 0.11;

Task: F(2.9,40.2) = 19.99,
p < 0.01, (1–4, 1–5, 2–4, 2–5,
3–5, 4–5);
Arousal: F(1.8,25.1) = 8.41,
p < 0.01, (1–3);
Valence:: F(1,14) = 6.20,
p = 0.03;
Task × Arousal:
F(5.1,72.0) = 3.43, p < 0.01
Task × Valence:
F(2.9,40.2) = 2.14, p = 0.11
Arousal × Valence:
F(1.8,25.1) = 6.62, p < 0.01

Blink number (BNumS12sec) F(2.2,30.5) = 2.4, p = 0.10;
(2–5, p = 0.006)

Arousal: F(1.4,19.4) = 4.17,
p = 0.04, (2–3);
Valence: F(1,14) = 0.11,
p = 0.74;
Arousal × Valence:
F(1.4,19.4) = 6.91, p = 0.01;

Task: F(1.5,21.4) = 4.39,
p = 0.03, (1–5, 2–5);
Arousal: F(1.9,26.9) = 1.88,
p = 0.17;
Valence:: F(1,14) = 0.38,
p = 0.55;
Task × Arousal:
F(2.9,41.1) = 1.31, p = 0.28
Task × Valence:
F(1.5,21.4) = 0.79, p = 0.43
Arousal × Valence:
F(1.9,26.9) = 6.91, p < 0.01

Saccade amplitude
(SAmpS12sec)

F(3.0,41.7) = 4.29, p = 0.01,
(1–5, 2–5, 3–5);

Arousal: F(2,28) = 3.03,
p = 0.06;
Valence: F(1,14) = 0.14,
p = 0.72;
Arousal × Valence:
F(2,28) = 0.55, p = 0.58;

Task: F(2.7,38.0) = 3.09,
p = 0.04, (2–5);
Arousal: F(1.8,26.0) = 1.07,
p = 0.35;
Valence: F(1,14) = 4.84,
p = 0.05;
Task × Arousal:
F(5.0,70.4) = 0.52, p = 0.76
Task × Valence:
F(2.7,38.0) = 1.80, p = 0.17
Arousal × Valence:
F(1.8,26.0) = 0.55, p = 0.58

4.2. ANOVA model

Subjective rating of task difficulty/emotion was used as a
reference to indicate the degree of distinction between the
levels for all participants. The average scale values of the
difficulty levels and their confidence intervals can be found
in Table 1. Repeated ANOVA results (F(1.6,21.9) = 91.4, p < 0.01)
showed that tasks were felt to be more difficult by the partici-
pants when the difficulty levels increased. The pairs of levels
1–3, 1–4, 1–5, 2–4, 2–5, 3–4, 3–5, 4–5 were found significantly
different using a Bonferroni corrected t-test. Meanwhile, sub-
jective ratings for the three arousal levels (M = 1.55, 1.88, 2.24;
SD = 0.24, 0.18, 0.26) showed participants perceived increas-
ing arousal when they were viewing more arousing images
selected from IAPS (F(1.9,26.9) = 91.9, p < 0.01) and the three
induced arousal levels all yielded significant differences by
Bonferroni corrected t-test. The differences in subjective rat-
ing between the two levels of valence (M = 1.37, 2.59; SD = 0.17,
0.19) were also significant (t(14) = 17.6, p < 0.01), in accordance
with the levels of the selected IAPS images.

Tables 2 and 3 show only the most effective eye fea-
tures during the 12 s time window to build a general view of

which features were relevant to cognitive load, arousal fac-
tor and their interactions. When examining the measurement
timing, we found that the features exhibiting all three signif-
icant effects, arousal, cognitive load and arousal × cognitive
load, were all pupil diameter averages for segments around
the second to the last task stimulus (PM2S1sec, PM3S1sec,
PM4S1sec; PM2S1.5sec, PM3S1.5sec, PM4S1.5sec; PM2S2sec,
PM3S2sec, PM4S2sec; PM2S3sec, PM3S3sec, PM4S3sec; PM2SS,
PM3SS, PM4SS). An interesting trend is that as more task stim-
uli were presented in this experiment (requiring sustained
effort), pupil size increased, meanwhile, the ω2 value on cog-
nitive load effect increased from 0.06 after the 1st stimulus to
0.23 after the 4th stimulus but the ω2 value on arousal effect
decreased from 0.03 to 0.01. Therefore, around the last task
stimulus, which was the most difficult part of the task (this
part most accurately represents the designed difficulty levels),
the average pupil size reached its peak with the maximum
effect from cognitive load and minimum effect from arousal
effect. This trend agrees with a previous study [23] in that
arousal effect was obvious when cognitive load is minimal.
However, this trend was not observed on the blink and eye
movement features.
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Table 4 – Selected features ranked by a ratio of weights
in multiple regression analysis.

Features ˇt ˇa |ˇt/ˇa|
PDM4S1sec 0.3557 0.0128 27.7
PDM4S1.5sec 0.34387 −0.0139 24.8
PDM4S3sec 0.3558 0.01673 21.3
PDM4S2sec 0.3533 0.01930 18.3
PDM2H6sec 0.3292 0.01808 18.2
PDM4S2sec 0.1766 0.01835 9.6
PDM3SS 0.1545 0.02140 7.2

The best three ratios are shown in bold.

Among the three types of eye activity, pupil features
demonstrated the best attributes for discriminating different
levels of cognitive load. PM4S1.5sec and PM4S3sec obtained the
largest ω2, followed by the derived features ZCC and PDdiff1.
Blink was the second most promising type of eye activity for
CLM, in terms of its number of features having significant
effects on cognitive load, although two of the participants had
very low blink numbers (0–2) in the five cognitive load lev-
els. Among the eye movement features, only SAmpS12sec and
FDur4S1sec showed potential for discriminating different load
levels.

Another major concern is to what extent the pupil light
reflex was reduced by the baseline subtraction when partici-
pants were free to explore the non-uniform image background
with task stimuli. A two-way repeated ANOVA test for
PDM4S3sec on the luminance1 (0–1) of images (4 levels) and
cognitive load (5 levels) showed that before baseline subtrac-
tion, pupil size had significant effects on the luminance of
images, cognitive load levels and the interaction of the lumi-
nance and cognitive load; however, after baseline subtraction,
only the cognitive load effect survived, which suggested that
the baseline was reasonable. Still pupil size might be affected
by the local luminance of image due to gaze shifts, which will
cause large variations within the 5 load levels. In a compar-
ison of the standard deviations of PDMS12sec after baseline
subtraction within the 5 load levels in the task-centered ses-
sion (gray background) and task-interference sessions (image
background), we found that they are not significantly differ-
ent. This suggested that pupil light reflex due to gaze shifts did
not dominate over cognitive load effect but might undermine
cognitive load estimation as noise.

4.3. Multiple regression analysis for pupil features

From ANOVA results, only pupil features in different segments
showed significant effects on both cognitive load and arousal
factors. Examining the results from the multiple regression
analysis for pupillary response in Table 4, we found the ratios
for 4S1sec, 4S1.5sec and 4S3sec were very close and had a
higher contribution from cognitive load. Considering that
pupil diameter in the 4S3sec segment had the largest ω2 in the

1 To calculate the luminance of an image, we firstly converteda
RGB image to an intensity image by
0.2989 × Red + 0.5870 × Green + 0.1140 × Blue to obtain the value of
each pixel,and then averaged them.

task-inference session, we chose the segment of 4S3sec for the
average pupil size in CLM.

4.4. Deciding the candidate feature set for
classification

To find a feature set for classification, we chose candidate
features from all proposed eye features based on their p val-
ues, ω2 values, origins in different types of eye activity, and
consistency of differentiating load levels in task-centered and
task-interference sessions. The features that best met the
above criteria were PDM4S3sec, BNumS12sec, ZCC4HzS12sec,
PDdiff14S3sec, BDdiff1S12sec, SAmpS12sec and FDur4S1sec.

5. Classification results

5.1. Gaussian mixture model classifier

Gaussian mixture models (GMMs) were selected for classi-
fication purposes because of their suitability for modeling
arbitrary feature distributions and the explicit control over
the number of model parameters given the small size of the
database. In GMM classification, the probability density func-
tion (pdf) parameters, comprising the means (m), covariances
(C) and weights (w) are estimated based on a training dataset.

p(X) = −
M∑

m=1

Wm
1

(2�)k/2|Cm|1/2
exp

(
− 1

2
(X − mm)TC−1

m (X − mm));
)

(15)

where m is the number of mixture components, and k is the
dimension of feature vector. The iterative Expectation Max-
imization (EM) algorithm is usually used to maximize the
likelihood of data distribution for the mixture components.
Because of the limited samples for training, we fixed the num-
ber of mixture components to1.

Individual models were built for each participant (subject-
dependent classification) and one GMM was trained for each
of the five load levels. During testing, the GMM with the high-
est log likelihood among test vectors was chosen and the
test vector was assigned the label of the load level for that
Gaussian model. Classification was conducted using a leave-
one-session-out average over 7 folds, where 10 tasks from one
of the 7 sessions were used as test data and the remaining data
were used to train the classifier. Training and testing features
were normalized to have zero mean and a standard deviation
of one on a per-feature basis before classification.

6. Results

The above candidate features give good performance for most
individual participants. Inevitably there are some participant-
dependent features. Among the seven selected features,
PDM4S3sec and BNumS12sec demonstrated consistent trends
for cognitive load in both task-centered and task-interference
sessions and they were also the most frequently reported fea-
tures that were correlated with cognitive load in different
tasks; hence we used PDM4S3sec and BNumS12sec as core fea-
tures in all classification experiments, and used a filter method
to select participant-dependent features among the remaining
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five features, to try to better understand the individual upper
performance bound.

The Fisher ratio Ji was calculated for each feature in each
class i using a one-against-all method without projection, and
used to select the features with maximum value in the 1st to
ith class. This only applied to features excluding PDM4S3sec
and BNumS12sec, therefore the number of features used for
classification ranged from 2 (PDM4S3sec and BNumS12sec) to
2 + i (selected i times) depending on the training data and num-
ber of classes.

GMM classification accuracy was scored by comparing the
predicted load levels with the induced cognitive load levels.
Since the statistical tests for subjective ratings of task diffi-
culty showed that three levels are significantly different from
each other, we used the verified three levels as the ground
truth. Table 5 presents the average classification accuracies
across 15 participants. The classification accuracy varies from
participant to participant; therefore we also list the best and
the worst classification performance. We demonstrate 2- and
3-class results by selecting the distinguishable levels, yield-
ing some insight into the trade-off between the number of
cognitive load levels (precision) and accuracy. A compari-
son with the reaction time measure is also presented for
reference.

7. Discussion and conclusion

7.1. Results for cognitive load measurement

ANOVA test results in Section 4.2 and multiple regression
results in Section 4.3 revealed important implications for using
eye activity for CLM. Pupil size [7,12,13,18] and blink num-
ber [11,19] increased with more difficult tasks, which perfectly
matches the literature. Pupil size also increased with higher
arousal images regardless of valence, which is also consistent
with studies of pupil dilation using visual [21] and auditory
stimuli [22]. However, pupil size increased with images of pos-
itive valence when a task goal was presented in this study, as
the p value was close to 0.05.

The new finding here is that some eye activity feature pat-
terns (notably pupil dilation and blink) for the cognitive load
levels were not significantly altered with or without arousal
factor in the task-goal driven situation. In contrast, the
patterns of features for the arousal level seemed weakened in
the pupillary response when cognitive load was induced and
there was no arousal effect on the features of blink, fixation
and saccade. This result suggests the dominance of cognitive
load over emotion in eye features during task performance.
Although a previous study only observed an arousal effect
in pupillary response when cognitive load was very low with
auditory stimuli [23], our work still found an arousal effect in
high cognitive load tasks. Since pupillary response showed a
dependence on arousal factor, different possible segmentation
approaches were considered to reduce this effect. PDM4S3sec
seemed a more suitable feature than PDMS12sec for CLM,
exhibiting a high ratio of cognitive load effect to arousal factor.
Meanwhile there is no sufficient evidence supporting the
dependence of cognitive load on arousal factor for the features
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of blink, fixation and saccade, as there were no significant
effects in the cognitive load × arousal factor interaction.

With the two core features identified, PDM4S3sec and
BNumS12sec, together with other eye features selected on
individual bases by Fisher criterion we achieved an overall
classification accuracy of 71.1% for two levels and 50.3% for
three levels across all 15 participants under the presence
of interference from emotion. The results are close to the
accuracy produced by the reaction time measure, which is
a major measurement for clinical cognitive test. Comparing
eye-feature based load level estimation with reaction time, the
advantages of the former are that it does not require any con-
scious user (patient) response to a stimulus, does not require
actions to respond, and importantly can be measured contin-
uously through a task.

An average of 70% classification accuracy for two classes
of cognitive load is also better than another initial effort to
classify two-level cognitive load using pupillometry, with an
average accuracy of 57% [10]. Our classification accuracy was
achieved in the presence of emotional interference, while
most results from the literature were obtained by less realistic
‘pure’ cognitive load tasks. It is difficult to directly compare our
results with Marshall’s work, where the overall two-class accu-
racy ranges from 69% to 92% [8] for classifying two different
cognitive states (e.g. working and resting) instead of between
cognitive load levels, since our low, medium and high cogni-
tive load levels are ordinal and implying a ranking between
them. The encouraging results are that two load levels can
be distinguished effectively, and that pupillary and blink fea-
tures are robust in the presence of another form of arousal.
The most distinguishable load levels in this study are levels
1, 4 and 5. Accuracies for other groups can be reduced by 3%
at most. Therefore, our work sets a benchmark for CLM under
non-ideal task conditions, achieving similar accuracy to the
reaction time measures and showing the possibility for CLM
in near-real time.

It is worth noting that the primary objective of this work
was to investigate the interaction between cognitive load
and arousal in eye activity features rather than to optimize
the system’s classification accuracy. This is because reducing
ambiguity as to what an eye activity based system is mea-
suring can be considered an essential precursor to developing
practical CLM systems. In this experiment, task difficulty lev-
els were randomized and the sequence was the same for
every participant. However counterbalancing the difficulty
levels may be a better design. In the repeated ANOVA tests
on the differences of pupil size, blink number and saccade
amplitude in the task-centered, image-viewing and task-
interference sessions, we found that there was no evidence
to support an ordering effect due to the ordering of diffi-
culty level presentation, such as fatigue, on pupil size, blink
number and saccade amplitude. This suggests that the ran-
domization of levels did not distort the results presented
above.

7.2. Challenges for cognitive load measurement

Clearly the precision of eye-based CLM remains a general
challenge. However, the best accuracies revealed in Table 5
show some promise. Understanding the disparity between the

best and worst performing participants may provide a viable
path toward improvements. Firstly, the accuracy of record-
ing eye activity using an eye tracker depends heavily on the
calibration procedure. Low quality calibration brings inac-
curate models for participants. Too much head movement
and frequent changes in the distance from the head to the
screen also resulted in inaccurate eye tracking data. Noise,
such as light reflex, can be minimized by averaging during
ANOVA and regression analysis, but it significantly affected
the classification accuracy when each sample was tested.
Habituation effects may be another limitation in this study, as
the number of repetitions of the three sessions was not equal.
Future work will look into the specific eye activity measure-
ments, with a view to measuring pupil dilation in particular,
directly from the raw video image rather than depending on
a third-party tracker that has not been optimized for CLM
purpose. Another tentative reason for low accuracy could be
the varying cognitive capacities among participants [28]; there
may be different distances between levels across different
individuals.

7.3. Implications for realistic applications of cognitive
load measurement

By controlling certain aspects of the experiments herein, some
limitations for realistic applications are implied. In practice,
we would need to know the time of the first task stimulus
to obtain a baseline for pupillary response, which is subse-
quently subtracted to normalize for the light effect on the eye.
We also need a stimulus for measurement, which we term
the ‘test marker’, in our approach. The test marker can be
either a task stimulus or can be task related, e.g. the arrival
of a target to hit. The time from the first task stimulus to the
‘test marker’ can be seen as the temporal resolution for cap-
turing dynamic cognitive-load-related changes and cannot be
too short if blink features are to be used. Light is another noise
source for pupillary response and needs to be controlled at
least during the measurement periods. Blink, saccade and fix-
ation can be monitored from the first task stimulus to the ‘test
marker’. In the context of realistic applications, we envisage
an outwards facing camera or light sensor to measure ambient
light. If we know the pupil size at a certain luminance, we can
reduce the effect of light reflex by subtracting the pupil size
that corresponds to the luminance where the gaze is directed
[43].
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Multimodal Behavior and Interaction as Indicators of Cognitive Load

FANG CHEN, NATALIE RUIZ, ERIC CHOI, JULIEN EPPS, M. ASIF KHAWAJA,
RONNIE TAIB, BO YIN, and YANG WANG, NICTA, Australia

High cognitive load arises from complex time and safety-critical tasks, for example, mapping out flight paths,
monitoring traffic, or even managing nuclear reactors, causing stress, errors, and lowered performance.
Over the last five years, our research has focused on using the multimodal interaction paradigm to detect
fluctuations in cognitive load in user behavior during system interaction. Cognitive load variations have been
found to impact interactive behavior: by monitoring variations in specific modal input features executed in
tasks of varying complexity, we gain an understanding of the communicative changes that occur when
cognitive load is high. So far, we have identified specific changes in: speech, namely acoustic, prosodic, and
linguistic changes; interactive gesture; and digital pen input, both interactive and freeform. As ground-truth
measurements, galvanic skin response, subjective, and performance ratings have been used to verify task
complexity.

The data suggest that it is feasible to use features extracted from behavioral changes in multiple modal
inputs as indices of cognitive load. The speech-based indicators of load, based on data collected from user stud-
ies in a variety of domains, have shown considerable promise. Scenarios include single-user and team-based
tasks; think-aloud and interactive speech; and single-word, reading, and conversational speech, among oth-
ers. Pen-based cognitive load indices have also been tested with some success, specifically with pen-gesture,
handwriting, and freeform pen input, including diagraming. After examining some of the properties of these
measurements, we present a multimodal fusion model, which is illustrated with quantitative examples from
a case study.

The feasibility of employing user input and behavior patterns as indices of cognitive load is supported
by experimental evidence. Moreover, symptomatic cues of cognitive load derived from user behavior such
as acoustic speech signals, transcribed text, digital pen trajectories of handwriting, and shapes pen, can
be supported by well-established theoretical frameworks, including O’Donnell and Eggemeier’s workload
measurement [1986] Sweller’s Cognitive Load Theory [Chandler and Sweller 1991], and Baddeley’s model of
modal working memory [1992] as well as McKinstry et al.’s [2008] and Rosenbaum’s [2005] action dynamics
work. The benefit of using this approach to determine the user’s cognitive load in real time is that the data
can be collected implicitly that is, during day-to-day use of intelligent interactive systems, thus overcomes
problems of intrusiveness and increases applicability in real-world environments, while adapting information
selection and presentation in a dynamic computer interface with reference to load.

Categories and Subject Descriptors: H.1.2 [User/Machine Systems]—Human information processing; H.5.2
[User Interfaces]—Interaction styles

General Terms: Measurement, Experimentation, Human Factors

Additional Key Words and Phrases: Cognitive load, pen input, assessment, multimodal
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1. INTRODUCTION

The past few decades have been marked by the rapid development of new and powerful
information systems, granting access to volumes of data previously unheard of. The
dramatic evolution of computers and networks has allowed exponential functionality
to be offered by expert software. However, the capabilities of the human brain, work-
ing memory in particular, have remained unchanged and fairly limited. Even domain
experts well-trained with the tools now struggle in the management of information.
Worse still, the lack of metrics in complex environments makes it impossible to predict
the tipping point, when the user no longer has control of the situation. This issue is
exacerbated in high-intensity, data-laden, and safety-critical environments, and calls
for a robust and real-time measurement of user’s cognitive load.

Indeed, traffic management centers, crisis or air-traffic control rooms, and intelligent
interactive systems involve inherently complex domain tasks for operators to solve.
High cognitive demand arises from such tasks as mapping out flight paths, monitoring
traffic, or even managing nuclear reactors. The ability to measure a user’s cognitive
load in real time can support personalized system adaptation to users affected by high
cognitive load, easing the demand and avoiding stress, frustration, and errors. While
conventional human-computer interaction paradigms (e.g., Graphical User Interfaces)
are useful in personal computing applications such as word processing, they do not
adequately support tasks that require the manipulation of complex data types and
constraints in the way intelligent, interactive systems have the potential to do.

Our research goal for the past five years has been the development of technology
for the implicit, objective, automated, and real-time estimation of a user’s cognitive
load, suitable for real-time deployment as part of an intelligent interactive system.
The approach is focused on the identification of possible correlations between increas-
ing levels of cognitive demand and both passive and active modalities, from speech,
digital pen, and freehand gesture, to eye activity, galvanic skin response, and Elec-
troEncephaloGraphy (EEG). This article begins with a summary of the underlying
psychological theories on which our research rests, an overview of our individual ap-
proach, and a review of the most promising indices and features that we have found to
be sensitive to high cognitive load. Finally, we discuss the implications of our findings
and plans for future work.

2. RELATED WORK

2.1. Working Memory and Cognitive Load

It is well-established that the two main limitations of working memory resources are its
capacity and duration [Baddeley 1992]. According to Baddeley’s model [1992], working
memory has separate processors for visual and verbal information. Only a limited
number of item “chunks” can be held in working memory at any one time and then only
for a short amount of time [Cowan 2001]. These limitations are never more evident
than when users undertake complex tasks or when in the process of learning, resulting
in extremely high demands being placed on working memory. The construct of cognitive
load refers to the working memory demand induced by a complex task in a particular
instance where novel information or novel processing is required [Sweller et al. 1998].
Any single task can induce differing levels of mental effort or cognitive load from
one user to another, or as a user gains expertise. This discrepancy in the mental
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demand from person to person could be due to a number of reasons, for example, level
of domain expertise or prior knowledge, interface familiarity, the user’s age, or any
mental or physical impediments. A task that may cause high load in one user may not
necessarily do so in a more experienced user, for example.

The cognitive load construct comprises at least two separate load sources: intrinsic
load and extraneous load [Paas et al. 2003; Sweller et al. 1998]. Intrinsic load refers to
the inherent complexity of the task itself, whereas extraneous load refers to the repre-
sentational complexity, that is, complexity that varies depending on the way the task
is presented. In an intelligent interactive system, the inherent task complexity would
be dictated by the domain. For example, in a traffic management scenario, a sample
domain task may be to find the exact location of an accident. The equipment, tools, and
applications the operator employs to complete the task, for example, a paper-based
directory, a GIS, or electronic maps, or even street monitoring cameras, each contribute
to extraneous load. Both of these types of load combine to form the overall experience of
cognitive load. Situations that induce high levels of cognitive load can impede learning
and efficient performance on designated tasks [Paas et al. 2003; Sweller et al. 1998].

The ability to determine exactly when a user is being cognitively loaded beyond a level
that he or she is able to manage could enable the system to adapt its interaction strat-
egy intelligently. For example, the system could attempt to reduce the cognitive load
experienced by the operator—particularly in terms of extraneous load—such that opti-
mal performance is facilitated. A number of methods have been used, both in Human-
Computer Interaction (HCI) and other domains, to estimate the level of cognitive load
experienced. There are four main methods comprising the state-of-the-art: subjective
(self-report) measures, where users rank their experienced level of load on single or
multiple rating scales [Gopher and Braune 1984]; physiological measures, such as gal-
vanic skin response and heart rate [Delis et al. 2001]; performance measures, such
as task completion time, speed, or correctness, critical errors and false starts [Gawron
2000; O’Donnell and Eggemeier 1986; Paas et al. 2008], as well as dual tasks [Chandler
and Sweller 1991]; and finally, behavioral measures, which observe feature patterns
of interactive behavior, such as linguistic or dialog patterns [Berthold and Jameson
1999], and even text input events and mouse-click events [Ikehara and Crosby 2005].
However, while most of these types of measures are suitable for research purposes,
many are unfeasible for widespread deployment in interactive intelligent systems.

2.2. Subjective Measures

Traditionally, the most consistent results for cognitive load measurement have been
achieved through subjective measures [O’Donnell and Eggemeier 1986]. These mea-
sures ask users to describe in fine detail and reflect each user’s perception of cognitive
load by means of introspection: the user is required to perform a self-assessment of
his or her mental demand by answering a set of assessment questions immediately
after the task. However, such an approach is impractical in real, day to day situations
because the questionnaires not only interrupt task flow but also add more tasks to the
load of potentially overloaded users.

2.3. Physiological Measures

The physiological approach for cognitive load measurement is based on the assump-
tion that any changes in human cognitive functioning are reflected in human phys-
iology [Kramer 1991]. The measures that have been used in the literature to show
some relationship between subjects’ mental workload or cognitive load and their
physiological behavior include, among others, heart rate and heart rate variability
[Kennedy and Scholey 2000; Mousavi et al. 1995; Nickel and Nachreiner 2000], brain
activity (e.g., changes in oxygenation and blood volume, ElectroCardioGraphy (ECG),
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ElectroEncephaloGraphy (EEG)) [Brunken et al. 2003; Wilson and Russell 2003], Gal-
vanic Skin Response (GSR) or skin conductance [Jacobs et al. 1994; Shi et al. 2007],
and eye activity (e.g., blink rate, eye movement, pupillary dilation) [Backs and Walrath,
1992; Iqbal et al. 2004; Lipp and Neumann 2004; Marshalle et al. 2003]. Changes in the
physiological data occur with the level of stimulation experienced by the person and can
represent various levels of mental processing. The data collected from body functions
are useful as they are continuous and allow the signal to be measured at a high rate and
in fine detail. However, physiological measures require users to wear a lot of cumber-
some equipment, for example, EEG headsets that not only interfere with their task, but
are prohibitive in cost and implementation. Additionally, the large amounts of physio-
logical data that need to be collected and the expertise needed to interpret these signals
render many types of physiological signals unsuitable for common interactive intelli-
gent systems [Delis et al. 2001]. While they can be very sensitive to cognitive activity,
the preceding issues in combination with the degree of variability of physiological sig-
nals, due to external factors such as temperature and movement, means they may have
limited suitability for environments other than laboratory conditions [Delis et al. 2001].

2.4. Performance Measures

The hypothetical relationship between performance and workload as discussed by
O’Donnell and Eggemeier [1986] is composed of three regions, A, B, and C as seen
in Figure 1. The authors claim that primary task measures of workload cannot be
used to reflect mental workload in Region Low, because this region is characterized
as indicating “adequate task performance” on behalf of the subject [O’Donnell and
Eggemeier 1986]. However, in many real-world tasks, what constitutes “adequate task
performance” is analogous to a band of acceptable outcomes rather than a single cor-
rect response, and subtle differences may occur between different solution alternatives
which may not be reflected in the overall performance measures used. As discussed
in this article, we propose that certain features of the behavioral responses have the
potential to differentiate between these solution outcomes by identifying compensatory
behaviors. In much the same way, performance measures cannot measure spare capac-
ity [Parasuraman et al. 2008], when a user still has plenty of cognitive resources to
deploy. The relationship between cognitive load and performance, where it has been
studied, is not as simple as might be hoped [Yeh and Wickens 1988]. Nevertheless,
in this article we provide performance-based cognitive load classification results for
experiments in which the task design and measurements made permit this.

In Region B, both primary and secondary task performance measures can be
used to reflect workload as performance decreases. Dual-task approaches have
been incorporated in several studies to measure subjects’ performance in controlled
conditions [O’Donnell and Eggemeier 1986]. While secondary task performance can
provide a measure of remaining resources not being used by the primary task [Kerr
1973; Marcus et al. 1996], it is not feasible for operators to complete dual tasks “in
the wild”, and hence these cannot be adopted for widespread use. In real-world tasks,
performance measures from the primary task can be extremely difficult to calculate
on-the-fly, if at all. In the case of transport management Centers, senior staff will often
conduct reviews of incident handling to debrief operators and qualitatively rate their
performance. In this application, access to automatic cognitive load estimates around
every hour or so would be considered a dramatic improvement for review purposes.
Access every minute or so would be considered “real time” and could directly affect
moment to moment operator allocation.

Performance measures tend to remain stable as load increases in Region B,
particularly when the operator exerts a greater amount of mental effort, as noted by
O’Donnell and Eggemeier [1986]. This is addressed more specifically by Hockey [2003]
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Fig. 1. Hypothetical relationship between workload and operator performance, adapted from O’Donnell and
Eggemeier [1986].

Fig. 2. Relationship between performance and workload, adapted from Hockey [2003].

who proposes a range within which compensatory efforts may have an effect. Figure 2
illustrates this concept; the subject still achieves a high level of performance within
the region labeled “effort”, depending on the degree of effort exerted. Exposure to high
cognitive load (workload) culminates in a higher likelihood of errors [Byrne et al. 1998;
Hockey 2003; Ruffell Smith 1979] and compensatory efforts can only be maintained
for a time, after which the subject then fatigues and his or her performance begins
to decline [Hockey 2003]. At the overload stage, compensatory efforts no longer make
a difference; it is too late for the system to react appropriately to ease the operator’s
load and both the system and the user must engage in costly recovery strategies.

The approaches described thus far have the disadvantage of being physically or
psychologically intrusive. Likewise, many of them are also post hoc and hence not
conducive to the implementation of real-time adaptive behaviors and strategies by
an interactive intelligent system or interface. Performance measures can also depend
on the subject completing the task, which may not always be possible in high load
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situations, for example, the subject may be stuck on one or two steps of the overall task
for a relatively long period of time and no valid task-based performance assessment
can be calculated.

Similarly, performance measures—which we define as measures that reflect the
accuracy and correctness of a user’s response and are directly relevant to the outcome
of the task—are often calculated after the fact, if they can be assessed objectively at all.
In the kinds of complex domains that we are targeting, measures based on performance
outcomes are impossible to access in real time such that the system is able to act on
the information in a timely manner. For example, the spontaneous nature of crisis
management and other control-room situations means the user’s performance in this
sense is very difficult to rate, even during debriefing, and unique to almost every
situation. The actions taken can vary widely from operator to operator, both in order
and content, while still being equally effective in achieving the task goals and solving
the problem to an adequate level of performance. In some cases, performance cannot
be calculated automatically at all.

2.5. Behavioral Measures

On the other hand, we define response-based behavioral features as those that can be
extracted from any user activity that is predominantly related to deliberate/voluntary
task completion, for example, eye-gaze tracking, mouse pointing and clicking, keyboard
usage, application usage, digital pen input, gesture input, or any other kind of inter-
active input used to issue system commands. These responses provide two types of
information: first, the inherent content or meaning of the response, and second, the
manner in which the response was made. For example, one could type in a sequence of
numbers as part of a task in different ways using a variety of equipment, such as the
keys on the top part of the keyboard (above the alphabet), or the keys on the number
pad on the right side of the keyboard, or by clicking buttons on a numeric display
with a mouse. The string of numbers is the same; this is the content or meaning in
the response relevant to the domain task. The manner in which the response is made
does not directly affect the outcome of the task, but does provide other information,
for example, how long it took to enter the sequence of letters, how much pressure was
exerted on each key, and in the case of the mouse usage, features such as the mouse
trajectory and the time between clicks.

We define these sources as behavioral rather than performance-centric because the
information they hold does not directly affect the domain-based outcome of the task,
hence there is a lot of margin for differences within and between users. They are objec-
tive, and can be collected implicitly, that is, while the user is completing his or her task
and without overt collection activities (e.g., stopping to ask the user to provide a sub-
jective rating of difficulty), hence suitable for control-room-type environments. They
are also distinct from physiological measures in that they are mostly or entirely under
the user’s voluntary control. Some of the measures we consider herein, for example,
acoustic speech features, do not fall neatly into the usual definition of “behavioral”,
however, they share with behavioral measures the property of being nonintrusively
and continuously acquired, they occur during a task rather than after it, and in most
cases they are primarily under partial or full conscious user control, by contrast with
post hoc measures (e.g., performance). While this is likely to introduce some variability
relative to physiological measures, this may turn out to be smaller when the behavior
is the response to a task or task type that occurs very often in the user’s environ-
ment. There is evidence showing that these kinds of behavioral features can reflect
mental states, such as mental effort and cognitive load. For instance, Gütl et al. [2005]
used eye tracking to observe subjects’ learning activities in real time by monitoring
their eye movements for adaptive learning purposes. Although the visual functions are
partly involuntary (e.g., the eye is drawn to salient items in the visual field), gaze is

ACM Transactions on Interactive Intelligent Systems, Vol. 2, No. 4, Article 22, Pub. date: December 2012.



Multimodal Behavior and Interaction as Indicators of Cognitive Load 22:7

under voluntary control, and can be considered a behavioral measure. Contemporary
eye trackers do not require cumbersome headsets and can be extracted from video
collected through standard Webcams. Others have used mouse clicking and keyboard
key-pressing behavior to make inferences about their emotional state and adapt the
system’s response accordingly [Ark et al. 1999; Liu et al. 2003].

Previous research also suggests the existence of major speech cues that are related
to high cognitive load [Berthold and Jameson 1999; Jameson et al. 2009; Keränen
et al. 2004; Müller et al. 2001]. Examples of features that have been shown to vary
according to task difficulty include pitch, prosody, speech rate, speech energy, and
fundamental speech frequency. Some studies have reported an increase in the subjects’
rate of speech as well as speech energy, amplitude, and variability under high load
conditions [Brenner et al. 1985; Lively et al. 1993]. Others have found specific peak
intonation [Kettebekov 2004] and pitch range patterns [Lively et al. 1993; Wood et al.
2004] in high load conditions. Pitch variability has also been shown to potentially
correlate to cognitive load [Brenner et al. 1985; Tolkmitt and Scherer 1986; Wood
et al. 2004]. These features are classified as behavioral because they show variations
regardless of the meaning of the utterance being conveyed.

Higher-level-features, such as linguistic and grammatical features, may also be
extracted from user’s spoken language for patterns that may be indicative of high
cognitive load. Significant variations in levels of spoken disfluency, articulation rate,
and filler and pause rates [Berthold and Jameson 1999] have been found in users
experiencing low versus high cognitive load. Extensions of this work attempt to
recognize cognitive load levels using a Bayesian network approach [Müller et al. 2001];
other work has found changes in word frequency and first-person plurals [Sexton and
Helmreich 2000]. Changes in linguistic and grammatical features have also been used
for purposes other than cognitive load measurement [Schilperoord 2001].

More closely linking multimodal interactive systems and cognitive load, users have
been found to change and adapt their multimodal behavior in complex situations.
Empirical evidence suggests that when tasks are more difficult, users prefer to interact
multimodally rather than unimodally across a variety of different application domains
[Oviatt et al. 2004]. As task complexity increases, users tend to spread information
acquisition and production over distinct modalities, seemingly for more effective use
of the various modality-based working memory resources [Alibali et al. 2000; Goldin-
Meadow et al. 2001; Mousavi et al. 1995; Oviatt 1997, 2006]. Temporal relationships
that exist between interaction modalities (e.g., speech and pen) have also been shown
to change under increased load conditions, showing a deeper entrenchment into the
participant’s preferred multimodal pattern, either simultaneous or sequential [Oviatt
et al. 2004]. Another study employed users’ digital-pen gestures and usage patterns
to evaluate the usability and complexity of different interfaces [Oviatt 2006]. It has
been suggested that pen-based interfaces can dramatically improve subjects’ ability to
express themselves over traditional interfaces because linguistic, alphanumeric, and
spatial representations bear little cognitive overhead [Oviatt 2009].

2.6. Estimating Load from Interactive Behavior

The premise of our research is that observations of interactive features may be suitable
for cognitive load assessment because a user experiencing a high cognitive load will
show behavioral symptoms relating to the management of that load. This suggests a
more generalized effect of an attempt to maximize working memory resources during
completion of complex tasks [Mousavi et al. 1995; Oviatt et al. 2004]. High cognitive
load tasks increase the cognitive demand, forcing more cognitive processes to share
fewer resources. We hypothesize that such reactions will cause changes in interactive
and communicative behavior, whether voluntary or otherwise.
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The hypothesis that behavioral responses can provide insight into mental states and
processing is not without precedent. Spivey et al. contend that reaching movements
made with a computer mouse provide a continuous two-dimensional index of which
regions of a scene are influencing or guiding “action plans”, and therefore reflective of
changes in cognitive processes [Spivey et al. 2005]. In an experiment involving decision
making, McKinstry et al. found that mouse trajectories for answer selection (YES and
NO) options are characterized by the greatest curvature and the lowest peak velocity
when the “correct” choice to be made is more ambiguous or more complex [McKinstry
et al. 2008]. They conclude that spatial extent and temporal dynamics of motor move-
ments can provide insight into high-level cognition [McKinstry et al. 2008; Rosenbaum
2005]. Dale et al. ran a study where participants’ hand movements were continuously
tracked using a Nintendo R© WiiT M remote, as they learned to categorize elements
[Dale et al. 2008]. They noted that participants’ arm movements started and finished
more quickly and more smoothly (decreased fluctuation and increased perturbation)
after learning the categorization rules. The “features of action dynamics” show that
participants grow more “confident” over a learning task, and indicate learning has
taken place. Galen and Huygevoort have shown that time pressure and dual-task load
results in “biomechanical adaptations of pen pressure” as a coping mechanism to in-
creased load [Galen and van Huygevoort 2000]. These studies provide evidence that
features of behavioral responses can be harnessed to provide an indication of changes
in cognitive processing and strategy.

Symptomatic changes in structure, form, and quality of communicative and interac-
tive responses are more likely to appear as people are increasingly loaded, as will be
described in this article. With the proliferation of sensor data that can be collected from
users through the latest intelligent systems, there is a very specific opportunity to use
this behavioral input to detect patterns of change that are correlated with high load,
and use these cues to guide the adaptation strategies employed by the system. Here,
“patterns of change” is the term we use to describe any behavioral change, while we con-
sider that cues are perceptible or observable behaviors that can be used to signal that
a change is occurring. Such features have the added advantage of offering an implicit
(as opposed to overt) way to collect and assess cues that indicate changes in cognitive
load. However, to do this it is necessary to first identify and quantify the fluctuations of
features in user interaction as cognitive load varies over a variety of input modalities.

The major challenge of choosing the assessment features for automated load detec-
tion is to make sure they satisfy the requirements of consistency, compact representa-
tion, and automatic acquisition [Yin et al. 2008]. Our aim is to find effective features
that reliably reflect the cues and can be extracted automatically such that they are
useful in adaptive systems. A second goal is to find a suitable learning or modeling
scheme for each index to resolve the corresponding level of cognitive load [Yin et al.
2008]. By manipulating the level of task complexity and cognitive load, and conducting
a series of repeated-measures user studies in a variety of scenarios, we have been able
to identify a series of cognitive load indices based on features from a number of input
modalities, specifically, observations of significant changes in speech and digital-pen
input that are abstracted from individual application domains in which they occur as
well as correlated to high cognitive load. In this work, we use the term “indices” to de-
note operationalized cues that can be resolved by a machine, and may comprise many
individual features (which may or may not be indicative of load on their own).

3. SPEECH-BASED FEATURES OF COGNITIVE LOAD

Speech signal features can be a particularly good choice for cognitive load indices,
since speech data exists in many real-life tasks (e.g., telephone conversations, voice
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command and control systems, self-talk) and can be easily collected in a nonintrusive
and inexpensive way with a close talk microphone. Types of speech features can vary,
from intensity, pitch, and formants inspired by speech production, to other acoustic,
prosodic, or linguistic features such as grammar and syntax. We have explored all types
of features with significant results.

3.1. Speech Datasets

Over the last five years, we have conducted a series of user studies in which we have
collected a large amount of interactive and conversational speech data in a variety of
application domains, ranging from speech responses to simple psychological tests such
as the Stroop test [Stroop 1935], to reading and comprehension speech, to interactive
speech (in both simulated and real multimodal interactive system environments) and
think-aloud speech from controlled user studies with interactive systems [Le et al.
2010a, 2010b; Stroop 1935; Yap 2011; Yap et al. 2010a, 2010b; Yin and Chen 2007; Yin
et al. 2008]. All data was collected through a series of specially designed and controlled
experiments, where we have manipulated multiple parameters to isolate different
cognitive load factors. Finally, through collaborative partnerships with industry, we
have also collected speech from the field, generated in real-life environments such as
air traffic control rooms, call centers, and bushfire control training exercises.

The speech datasets we have used in our investigations have either been elicited
during tasks of increasing cognitive load a priori or labeled a posteriori with expert
ratings of task complexity and cognitive load [Yin et al. 2008, 2007]. While six different
speech datasets have been collected in our team—including field data, and lab studies
featuring multimodal interaction with speech and gesture, multimodal interaction
with speech and pen in two different application domains (incident management and
basketball training), as well as a simulated driving user study—two key databases
have been used in the development of the speech cognitive load measurement system.
The first is the Stroop database and the second is the Reading and Comprehension
database. Both were generated from lab controlled experiments featuring cognitive
load manipulations.

The Stroop test corpus is based on the original test by John Ridley Stroop [1935].
Three levels of cognitive load were derived from this paradigm, the task difficulty arises
from cognitive interference when reading color names or naming color words. In our
version of the Stroop test, speech from the low cognitive load task was recorded by
asking the subjects to read aloud a series of words (which were the names of colors)
written either in black font or a congruent font color (e.g., the word red, written in
red font). During the medium load level, subjects were asked to name the font color of
words written in incongruent color (i.e., the font color of the words is different from the
meaning of the word, e.g., white written in blue font). In the high cognitive load level,
a time constraint was added to the medium load task, forcing the subjects to complete
the task faster. An additional recording was collected from each subject when asked
to read a short story aloud for approximately 90s; this was used as baseline data and
for the background model of the base cognitive load measurement engine illustrated
in Figure 3. This corpus contains single-word utterances of ten color names, spoken
slowly in a series. The majority are also very short, containing only one or two syllables
(e.g., red, blue, white). In addition, there is a speech rate artifact caused by the time
constraint for the high cognitive load speech.

The second corpus, the Reading and Comprehension corpus, was generated by asking
the subjects to read three stories aloud, each corresponding to a load level from low
to high. The difficulty levels of the stories were estimated based on the Lexile scale
[Lennon and Burdick 2004], a semantic difficulty and syntactic complexity measure
scale ranging from 200 to 1700 Lexiles (L), corresponding to the reading level expected
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Fig. 3. The base system structure for acoustic and prosodic CLM.

from a first grade student to a graduate student. The Lexile ratings of the stories used
were 925 L, 1200 L, and 1350 L, respectively. The approximate lengths of the utterances
corresponding to reading the story for the low, medium, and high cognitive loads are
90s, 140s, and 230s, respectively. The story reading speech is referred to as the Reading
data. After each story, the subjects were asked to answer three open-ended questions
related to the content of the story. The approximate length of each answer to the three
questions for all three levels of cognitive load is 30s. In contrast to the Stroop dataset,
the Reading and Comprehension corpus contains a significantly larger vocabulary due
to the less-constrained content of the stories and the answers given to the questions.

3.2. Acoustic and Prosodic Speech Features

Inspired by previous research on emotional and stressed speech [Fernandez and Picard
2003; Hansen 1996; Picard 1997], we expected that prosodic patterns (i.e., voice pitch
variation) could be used as a cue to reflect cognitive load. The rate of pauses and rate of
pitch peaks emerged as good potential indicators of cognitive load levels for the speech
in multimodal interaction tasks in a study described in Ruiz et al. [2006]. We used a
sliding window implementation, which showed these indicators to be higher when the
cognitive load level was higher [Yin and Chen 2007]. This proved to be the first of the
speech-signal-based indices we uncovered.

Since the areas of interest in cognitive load monitoring are extreme levels of cognitive
load (too high or too low), the assessment problem was reinterpreted from a continuous
scale of degrees of cognitive load by introducing the notion of discrete levels of load.
A classification approach could then be employed for cognitive load measurement [Yin
et al. 2008, 2007]. In a bottom-up, data-driven strategy for cognitive load assessment,
the subsequent datasets were employed in a statistical machine learning approach,
in an effort to build a cognitive load monitoring engine based solely on changes in
the speech signal [Yin et al. 2008, 2007]. We have developed an automatic, real-time,
speaker-independent cognitive load assessment module that can be adapted to varied
task scenarios [Yin et al. 2008, 2007].

A Gaussian-Mixture-Model (GMM)-based classifier [Reynolds and Rose 1992], form-
ing part of the base system as pictured in Figure 3, was created with semisuper-
vised training, from hours of annotated data from both of these sets, where each of
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the cognitive load levels is modeled by a GMM. The classification engine determines
the best-matched model based on a calculated likelihood score. Channel and speaker
normalization are deployed also for improving robustness. The classification process
uses a mixture of frame-based acoustic features: Mel-Frequency Cepstral coefficients
(MFCCs), pitch, and intensity. MFCCs are a set of features commonly used in speech
recognition applications, and they capture information in the magnitude part of the
speech spectrum. Pitch and intensity, on the other hand, are features that capture
information relating to the prosody of speech. Additionally, a background model was
introduced, in the form of another GMM trained on data from all the cognitive load lev-
els. All individual cognitive-load-level models are adapted from it using the Maximum
A Posteriori (MAP) estimation technique. Since the background model models the ba-
sic feature distribution shared by all speakers under all load levels, it is a good initial
distribution from which to adapt models of specific levels, and therefore improves the
generalization capabilities of models of specific CL levels when training and/or test
data are limited.

The classification accuracy for both of these databases using the baseline MFCC
cognitive load measurement system has been very positive. The Stroop test data reveals
an accuracy of 78.9% for classification into low, medium, and high load in a speaker-
independent scenario [Yin et al. 2008]. Similarly, over three discrete cognitive-level
ranges, classification of the Reading and Comprehension dataset (comprehension data)
achieved a 71.1% accuracy in a speaker-independent closed-set setting [Yin et al. 2007].

MFCCs proved to be an effective set of baseline frame-based features for cognitive
load classification. However, MFCCs do not provide us with any insight into how cog-
nitive load affects the speech spectrum or the underlying speech production system.
Moreover, since MFCCs may have higher dimensionality than is strictly required for
the problem, it may be possible to achieve the same result using more targeted sets
of features. Voice source or glottal features have been investigated in an attempt to
link cognitive load to the speech production system [Le et al. 2010; Yap et al. 2010a]
with some success. The system tested on the Stroop test corpus, after fusing the scores
of the baseline system (combination of MFCC, pitch, and intensity) with the scores of
a glottal-parameter-feature-based system [Yap et al. 2010c] produced an accuracy of
84.4% on that dataset. By way of comparison, a performance measure (the correctness
of the answer) yielded 57.1% accuracy when classified across the three load levels.
Furthermore, the difference in answer correctness across medium and high load levels
was not statistically significant (p = 0.265).

Investigations conducted in order to assess the effectiveness of detailed spectral fea-
tures such as Spectral Centroid Frequency (SCF) [Paliwal 1998] and Spectral Centroid
Amplitude (SCA) [Le et al. 2011], as part of the cognitive load classification system,
have also proven successful. Inclusion of these features has resulted in improvements
to the baseline classification result. First, the Stroop test classification over three levels
reaches 88.5% accuracy with the fusion of the SCF-based system and the SCA-based
system. Second, the speaker-dependent system based on the fusion of the SCF-based
system and the SCA-based system has an accuracy of 84.3% in the Reading and Com-
prehension corpus.

A recent step has been to study the effect of cognitive load on the vocal tract through
an investigation of formant frequencies. Formant frequencies (the frequencies at which
broad spectral peaks occur in the magnitude spectrum of speech) are closely related
to the underlying configuration of the vocal tract. The results show that 2-class (low
and high) and 3-class (low, medium, and high) utterance-based evaluations on both
of the databases, using frame-based formant features, perform at least as well as
the baseline system with MFCC features. This is despite formant features having a
dimensionality of 3 compared with MFCCs with a dimensionality of 7 [Yap et al. 2011].
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This finding suggests that cognitive load information can be captured using features
with lower dimensionality [Yap et al. 2011], potentially reducing the amount of data
needed for training models. Combinations of features derived from formants and speech
production models have produced accuracies to 95% in more recent work [Yap 2011].

It is possible to conduct both linguistic and acoustic analysis on any speech data, in-
cluding speech from teams. However, suitable microphones are needed (individual close
talk microphones are preferable) and more involved preprocessing may be required in
group situations for acoustic analysis, since there is a higher chance of crosstalk noise
in the recorded speech signals.

3.3. Real-Life Case Studies1

As part of our research, the involvement of collaborative industry partners has been
sought in order to obtain field data on which to test our behavioral indices, in particular,
the speech features. The following case studies show the viability of using speech-based
cognitive load indices for measurement and assessment with our system.

The first case study took place in an Emergency Communications Center in North
America, where the operators are responsible for receiving information from police,
traffic authorities, and other sources, and dispatching them to relevant ambulance
units. A total of 37 working sessions were recorded from 10 participants during training.
Each 30 minute session contained a total of 1113 events under three workload levels,
each lasting approximately 10s (i.e., each cognitive load estimate was made after 10s).
All events were manually annotated with an observed workload level during a postre-
view session by domain experts to label the data for adaptation and evaluation pur-
poses. There were 599 low load events, 465 medium load, and 49 high load events in the
dataset. Our speech-based cognitive load measurement system successfully estimated
the load level of participants with an average accuracy of 82.2% over 3 levels of load
when it was evaluated with a 10-fold leave-one-participant-out cross-validation. More-
over, the high load event detection achieved a 95.9% hit rate and 4.1% false alarm rate.

In a second case study conducted at a large outsourced Contact Center operator
in Australia (5000+ seats), high personnel attrition rates and associated hiring and
training expenses were key issues to be addressed. Our speech-based cognitive load
measure was used to investigate the correlation between tenure and demonstrated
load level under a series of tests. By analyzing the speech responses of the potential
candidates, it was possible to predict whether the candidate was likely to perform well
as a contact center operator, and hence was more likely to have a longer tenure. A
group of 191 freshly hired agents received the assessment, and the attrition reduction
was evaluated over 12 weeks. The overall attrition rate reached 18% at the end of week
12, while the attrition rate of the most suitable candidates, as identified by the system,
was only 9%, representing a relative 50% improvement over existing assessments.
Cognitive load estimates were made once every 2–3 minutes of speech recorded. For this
application there was no requirement for real-time processing, however, a demonstrator
system for call center monitoring developed by the authors yielded a reliable cognitive
load estimate every 3s (less than a typical utterance).

A third case study conducted on real-life training data involved air traffic controllers
from 3 different regional airports in Australia. The speech data produced by the con-
trollers in their communications with the pilots during a shift was recorded. In ad-
dition, every two minutes, the controllers were also asked to report on their current
level of cognitive load. The tasks were designed to emulate different difficulty levels,
for example, from routine landings of single flights to multiple landings in inclement
weather. The evaluation dataset consists of speech data collected from 10 controllers

1 Industry partners are kept anonymous for confidentiality purposes.
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over a total of 26 sessions (about 3 sessions per controller). Each session contains 15
speech segments and each segment has a fixed duration of 2 minutes. Since there may
be pauses or silences in a segment, the actual speech duration is only about 40s on
average. For each controller, half of the available segments within a session were used
for the training of models, while the other half were used for testing. The annotation
of the individual segments was obtained by mapping the corresponding post hoc sub-
jective ratings into 4 cognitive load levels: low, medium, high, and extremely high.
Our speech-based cognitive load measurement was applied on the evaluation dataset,
resulting in an average 87.9% accuracy rate in the identification of the cognitive load
level. Cognitive load estimates were made once every 2 minutes of speech recorded.

3.4. Linguistic Features

In a complementary, semantically-driven approach, we have also examined the lin-
guistic features of speech for cues that indicate high cognitive load. It has been shown
that people’s selection of the language elements and linguistic features varies from
one situation to another depending on the circumstances of the situation [Dechert and
Raupach 1980; Sexton and Helmreich 2000]. We have been successful in isolating a
number of cognitive indices based on linguistic features that correlate strongly with
high load. The data examined here have been gathered from one of three (and in many
cases, more than one) scenarios: Reading and Comprehension lab study; the Bushfire
training team lab study; or the real-life Bushfire team training field study. The linguis-
tic features of interest are: pause features, grammar features, language complexity
features, and word features.

Pause Features. Traditionally in psychology, the pauses during natural speech have
been associated with a person’s thinking and cognitive processes. It is argued that the
more time it takes to produce the response, the more cognitive energy it requires to do
so [Schilperoord 2001]. In other words, the increased amount of time spent in pausing
(and hence thinking) while talking represents the increased level of cognitive load
experienced [Esposito et al. 2007; Schilperoord 2001]. We have found that people use
more and longer pauses (including both silent and filled pauses) under high cognitive
load conditions versus low load conditions. Furthermore, it was found that people’s
response latency increases, confirming results from other studies in the literature
[Berthold and Jameson 1999; Müller et al. 2001].

Grammatical Features. The use of personal pronouns has also been found to differ
significantly, specifically the use of individual and collective pronoun use in team-based
tasks. Four personal pronoun words (1st-person singular, 1st-person plural, 3rd-person
singular, and 3rd-person plural) were examined in low versus high load conditions.
The results show an interaction between usage of pronoun types (singular versus
plural) and task difficulty (and so the cognitive load). People’s use of singular pronouns
decreased while their use of plural pronouns increased significantly when cognitive load
was high. As task difficulty increases, teams tend to share more of the work [Kirschner
et al. 2009] and this behavior is visible through their pronominal usage preferences.
A further analysis of the results confirmed that use of both singular personal pronoun
words (1st-person and 3rd-person) decreased while their use of both plural pronoun
words (1st-person and 3rd-person) increased when cognitive load was increased.

Language Complexity. The complexity of a written or spoken text or transcript can
be measured by two main factors: semantic difficulty and syntactic complexity [Lennon
and Burdick 2004]. Our investigations show that while working collaboratively and per-
forming tasks of high difficulty, people speak more and use longer sentences as the cog-
nitive load increases. That is because under high workload conditions, as things become
more complex, team members communicate more and provide more explanations as a
strategy to deal with high task difficulty [Katz et al. 1998]. The language complexity
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measures we used include lexical density [Chalker and Weiner 1998; Ure 1971], com-
plex word ratio [Chalker and Weiner 1998], Gunning Fog Index [Gunning 1952; Reck
and Reck 2007], Flesch-Kincaid Grade [Flesch 1948], SMOG Grade [McLaughlin 1969],
and Lexile Level [Lennon and Burdick 2004]. While these complexity measures have
mostly been used for written texts, for example, articles and essays, we have success-
fully demonstrated their use for measuring people’s cognitive load from their spoken or
written texts [Khawaja et al. 2010]. People’s lexical density, that is, their use of unique
and different words (or vocabulary richness), decreases as cognitive load increases: a
result of fewer working memory resources available for the language processing task
[Baddeley 2003], resulting in poorer selection of many unique words from the pool of
words stored in long-term memory. A second result reveals people’s spoken language
becomes more complex and difficult to comprehend under high load conditions (again,
working memory resources are allocated to the task itself rather than on speaking) and
as a result, their speech is complicated, and comprised of often ill-formed sentences.

Word Categories and Valence. Qualitative investigations into word category usage
show that while performing a collaborative task, as the cognitive load increases, peo-
ple’s use of negative emotion words significantly increases and their use of positive
emotion words decreases significantly. The analyses also show that people used on
the average fewer overall emotion words (either negative or positive) under high load
situations as compared to low cognitive load. More importantly we found a significant
interaction between the emotion words (negative versus positive) and cognitive load
levels (low versus high). People working in groups and exhibiting negative emotions
spend more time negotiating and engaging in more group discussions [Donner and Han-
cock 2011], which also supports our previous findings of increased word count in high
load. Members of teams experiencing high load used significantly more cognitive mech-
anism words (e.g., think, consider, know, remember) and perceptual words (e.g., hear,
view, touch) than those under low load conditions portraying their increased mental
effort and concentration for the task. Similarly, their use of conflicting and disagree-
ment words (e.g., no, wrong, never) increased significantly while there was a significant
decrease in the use of agreement words (e.g., ok, right, fine). Other studies show people
experiencing negative emotions tend show more disagree ment [Hancock et al. 2008].

The linguistic and grammatical features can be used as an individual set of cognitive
load indices in the domains where speech and/or conversational transcripts are used as
the main input modalities. Cognitive load measurement from the proposed linguistic
features will require state-of-the-art Automatic Speech Recognition (ASR) technology
with highly accurate automatic Speech-To-Text (STT) functionality to realize its po-
tential in practical applications. Our linguistic approach to measuring cognitive load
may also be used as a post hoc analysis technique for user interface evaluation and
interaction design improvement, in addition to the acoustic speech analysis of load.

4. DIGITAL PEN-BASED FEATURES OF COGNITIVE LOAD

Digital pen or digital ink is becoming an increasingly popular method for interac-
tion in specialized systems, beyond use as a pointing device. Recognition accuracy has
markedly improved for handwriting purposes, symbolic drawing and gesture recog-
nition, and sketching and visualization, as well as mark-up/annotation applications.
An intuitive input mechanism, pen usage is said to be spontaneous, allowing users
to produce two-dimensional representations almost as quickly as they are envisaged
[Oviatt 2009; Schwartz and Heiser 2006]. In particular, pen input can support thought-
organizing activities such as counting, ordering, grouping, labeling, and showing re-
lationships, helping complex problem solving in high load contexts [Oviatt 2006], and
is thus an ideal candidate for capturing symptomatic input changes. Geometric and
temporal features of ink trajectory can be used as potential cues suited for automated
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Fig. 4. Pen gestures: traffic flow, distance cost, and toggle route.

extraction, while higher-level recognition of characters and meaning can be compiled
in a post hoc manner to offer an alternative view of how pen input is affected by high
load tasks. Our investigation of cognitive load assessment features from digital pen
spans three types of input: pen gesture input of predefined shapes, handwriting and
freeform pen input, including note taking and sketching.

4.1. Symbolic Pen Gesture Features

Symbolic gestures refer to pen input methods that require the user to reproduce a spe-
cific two-dimensional shape modeled on a predefined shape to trigger a specific function
within an interactive intelligent system. Our motivation for examining pen-input fea-
tures when cognitive load is high is based on the premise that a user’s performance
is likely to be affected at a fine-grained level, where the quality of his or her motor
productions may diminish in much the same way as his or her speech signal, due to low
working memory resources [Ruiz 2011]. In fact, empirical evidence we have collected
shows that the degeneration geometric features in predefined pen-gesture shapes in-
creases significantly when cognitive load is very high, suggesting that a cognitive load
index could be derived from such a measure [Ruiz et al. 2007].

Pen-gesture ink trajectories used in our analysis were collected using a custom inter-
active application, where users were required to build alternative routes on a map. The
cognitive load factor was manipulated through three levels of task complexity, requiring
users satisfy increasing sets of constraints related to the distance and traffic congestion
of roads along possible alternative routes [Ruiz et al. 2007]. We defined three types of
predefined functional pen-gesture inputs: to query the traffic flow, distance cost, and a
toggle function showing the start and end of the route being constructed. These were
invoked when the user drew any of the possible pen inputs, shown in Figure 4, on the
map area. It was expected that when cognitive load increases, the shapes produced
as part of the user’s input would degrade in quality, that is, differ more significantly
from the standard form of that shape. Dissimilarity could be due to asymmetry, jittery
strokes, or generally “messy” script. Users produced a set of pen-gesture inputs in a
“no-load” task (essentially 10 instances of each type of gesture on a blank screen), in
order to create a standard form for that user from these trajectory instances.

The Mahalanobis distance (MDIST) was used to measure the level of degeneration
of each single-stroke shape instance to the standard form [Rubine 1991; Ruiz 2011].
MDIST is most often used for recognition purposes, to classify the sample input into
its correct type, however, we were able to leverage this function by also recording the
degree of difference between the baseline form of each pen-shape type for each user
and comparing to standard features. MDIST is a statistical measure of how similar
an unknown vector of features is to a known vector of features, and considers the
correlations between the features being assessed [Rubine 1991]. This is done via a
classification technique that calculates MDIST as the weighted Euclidean distance
from the vector of sample points (each input trajectory) to a standard model created
for the inputs of that type, for each user. Subsequent pen inputs, produced during task
time, were generated in each load level and MDIST was used to quantify the degree of
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Fig. 5. Standard form and degenerate samples.

dissimilarity between the standard form and each specific instance. Hence, the greater
the distance from its own type, the higher the MDIST value and geometric difference
between the sample and the standard. The changes in MDIST have been found to be
statistically significantly different between low cognitive load and high cognitive load
tasks [Ruiz 2011; Ruiz et al. 2007].

Some examples of a standard form and sample inputs are shown in Figure 5. A
MDIST result of zero is interpreted as a perfect replicate of the standard form of the
shape for that user. The set of MDIST values generated by the system were developed
by using a variant Rubine’s specification for a classification-based gesture recognizer
[Rubine 1991].

Using MDIST as a proxy for the geometric degeneration of pen shapes has a number
of useful properties. Firstly, it can combine a number of individual geometric fea-
tures into a single-value measurement of degeneration. This means that the trajectory
changes from the baseline, or standard form, can occur in any or all of the features
used by the classifier. MDIST can combine very small geometric changes in multiple
features to register a significant combined change from the standard, and this type of
deformation can be compared with large geometric change in a single feature. In this
sense, it is a “true” measure of degeneration of the shape, with respect to any of the
features used. Similarly, the same set of geometric features can be used uniformly to
measure degeneration of all types of single-stroke pen shapes, hence providing compa-
rable results for a wide variety of shapes and allowing us to group the data to obtain
higher level of confidence in the assessment of degeneration.

In high load situations, a combination of both high intrinsic and high extraneous
load can negatively affect both intrinsic and extraneous types of processing. This is
reflected in decreased performance scores (intrinsic) as well as degradation in the
quality of modal productions (extraneous). The degree of degradation as measured by
MDIST can provide an indication of increased load between extreme load levels (low
and high) for 85% of subjects, regardless of expertise. This measure is also personalized;
each user has his or her own standard form that can be updated as often as necessary,
and the baseline can be updated over time, so that the user is not penalized for learning
to use the pen input more efficiently over time, for example, holding the pen differently
or more comfortably [Ruiz 2011].

4.2. Handwriting Features

While the technical challenge of handwriting recognition has received ample attention
from HCI researchers, analysis of form and structure of handwriting itself has received
relatively little, and certainly not in the context of cognitive load assessment. Research
into cognitive load during handwriting is important for improving the performance
and experience of users in pen-based interactions [Frankish et al. 1995]. Our team’s
investigations have resulted in the first pen-based cognitive load classification engine
for handwriting.
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Fig. 6. Handwriting samples for high load task from two different users [Yu et al. 2011c].

According to handwriting experts, the writing process comprises three distinct
phases: planning, translating, and reviewing [Vanderberg and Swanson, 2007]. The
cognitive load induced by these processes places a demand on working memory re-
sources from each of these in subsequent stages. We hypothesized in the same way
as low-level trace features were found to change in pen-gesture inputs, stroke-level
changes may also be detectable in handwriting produced under high load. An initial
attempt to statistically analyze the stroke-level features of velocity, length, and pres-
sure information with respect to increasing cognitive load showed that local maximum
writing pressure, and local minimum writing velocity for strokes in particular, are
sensitive to the cognitive load of the writer.

The findings are based on a study where subjects completed a sentence composition
task using sets of given words. The number of words that were to be used in each
sentence increased in each of the three complexity levels. Subjective ratings confirm
the levels induced appropriate cognitive load differences. The handwriting dataset pro-
duced included approximately 600 handwritten sentences. Sentences from two subjects
are shown in Figure 6 as examples.

The analysis shows that maximum writing pressure tends to occur at the beginning,
at the corners, and at the end of strokes, where the minimum writing velocity is
observed concurrently [Yu et al. 2011a]. This could be attributed to the shaping of
alphanumeric letters, as it appears that writers experience higher cognitive load when
forming the shapes than when producing straight parts of a stroke [Yu et al. 2011a].
Straight sections do not require a change in the direction of the pen trace, allowing the
writer spare resources for other cognitive processes, such as reviewing of previously
written material. This may suggest that cognitive load can potentially fluctuate even
during the process of a stroke, correlated with the tempo of stroke construction [Yu
et al. 2011a].

A second attempt has been made to use sample-based rather than stroke-based fea-
tures from the ink trace [Yu et al. 2011b]. Specifically, this meant examining each
writing point as a set of attributes including time-stamped trajectory coordinates and
pressure of the pen tip, and the orientation of the pen tip [Yu et al. 2011b]. This informa-
tion was modeled using Gaussian mixture models. Taking the combination of pressure
and azimuth as features of the pen trace and using the same classifier, the application
of altitude intervals improved the classification accuracy from 50.1% to 63.5%. Also, a
particular span of pen altitudes, corresponding to about 12% of the writing samples,
was found to produce a higher cognitive load classification accuracy of 75.4%. Using
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Fig. 7. Sample digital notepad input.

altitude to sort the samples used in the models resulted in significant improvement,
which signified that for samples with similar altitude within the low altitude interval,
their pressure and azimuth attributes are sensitive to cognitive load changes. This
finding could potentially decrease the computational cost for pen-based cognitive load
classifications [Yu et al. 2011b]. For purposes of comparison, a performance-based mea-
sure (the rate of modification/correction after each writing task) yielded a classification
result of 47.4% using a Parzen window classifier.

As a nonintrusive supporting component, a cognitive load measurement module
based on handwriting with a digital pen can provide a useful reference to control the
difficulty level of tasks where a writing requirement exists. In order to use the engine,
a user would initially need to set up a profile to log the individual characteristics of his
or her handwriting (e.g., altitude distribution) by producing a sufficient amount of text
[Yu et al. 2011b]. The quantity of text needed is a trade-off between profiling time and
system accuracy. [Yu et al. 2011b].

4.3. Freeform Pen Features

The use of digital pen for freeform note-taking, including sketches, symbolic diagrams,
and other miscellaneous “doodles”, is less common in high-pressure control-room en-
vironments, despite the fact that many operators use an array of low-tech tools, such
as physical paper and pen to support their work processes. Indeed this has been found
in a variety of domains [Lajoie 2000; Schwartz and Heiser 2006]. In our industry case
studies, in particular with a large traffic monitoring center, we have seen that some of
the work processes are duplicated, with operators transferring information organized
on paper notes into the system after the fact. At the same time, freeform pen input
recognition is not yet mature or robust enough for deployment in mission-critical sys-
tems. Nevertheless, it is possible that freeform pen input can provide further insights
into cognitive effort. In much the same way as we expected the quality of pen-gesture
inputs and handwriting to be affected by high mental demand, we expected there to
also be changes in low-level temporal features of freeform pen input to signify reduced
resources available for cognitive processing [Ruiz 2011]. Indeed, our investigations
reveal significant changes in stroke frequency to be correlated with low versus high
cognitive load [Ruiz et al. 2011]. We also found that the discrepancy between stroke
frequencies under low and high load is reduced with expertise. These results indicate
that pen stroke frequency, which can be automated, could be used as an indicator of
cognitive load, or conversely, of expertise level [Ruiz et al. 2011].

The analysis was carried out on a dataset of freeform pen input, generated as part of
the same user study from which the pen-gesture input data came from, generating data
in three levels of increasing load (sample inputs are shown in Figure 7). In contrast
with symbolic pen-gesture inputs, however, freeform pen markings were used solely in
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the digital notepad area and did not trigger any specific functionality. The role of the
digital “notepad” was simply to emulate low-tech tools such as pen and paper.

Due to the high variability in content matter in each user’s scratchpad, the analy-
sis needed to be based on features sufficiently abstracted from the task content and
semantics of the data itself. The features we investigated were based on the pen trajec-
tories and the task time, chosen to ensure the content from all subjects could be judged
equally. Using normalized stroke frequency measures (strokes per second), we found a
main effect of cognitive load, where the frequency increased as cognitive load increased
[Ruiz et al. 2011]. This signified that operators were writing much faster and relying
on the digital notepad much more as cognitive load increased [Ruiz et al. 2011].

However, we also found that the discrepancy between stroke frequencies under low
and high loads reduced with expertise, with both eventually converging. This sug-
gests the possibility of using a convergence of stroke frequency in spite of varying task
complexity to diagnose gains in expertise: increased expertise indicates an improve-
ment in schema representations in working memory and the fact that learning has
taken place [Ruiz et al. 2011]. Noting the fact that stroke frequency can easily be ex-
tracted in real time and unobtrusively using a tablet monitor or electronic pen, not only
can this measure be applied to assess cognitive load levels, but also to detect when a
user has acquired enough expertise on a given task or interface and hence allow them
to progress to the next level of complexity [Ruiz et al. 2011]. An issue with using such
methods to gauge improvements in expertise, however, is that efficacy of the index will
be reduced with improved expertise, as subjects experience lower cognitive load; experts
learn from the task and hence cognitive load variation occurs over a smaller range.

5. PROPERTIES OF BEHAVIORAL INDICES OF LOAD

Previous work on mental load measures, most notably by O’Donnell and Eggemeier
[1986], Wickens and Hollands [2000], Kramer [1991], and Gopher and Braune [1984],
has sought to describe them using a series of properties, to enable comparisons to be
made such that the most appropriate measure is chosen for any situation. These in-
clude: sensitivity, diagnosticity, primary task intrusion, implementation requirements,
operator acceptance, selectivity and bandwidth, and reliability.

In the context of our work, other properties have also proven useful in classifying
behavioral indices, namely: the potential for implementing this measurement in real
time; the provision and use of contextual information in interpreting the index or
measure, dimensionality, and temporal scales.

Closely related is the issue of weighting methods for each of the individual modal
index types and their subfeatures during fusion approaches. Weighting can be based
on the task context, or can be based on the sensitivity or diagnostic power of the index,
feature, or modality from which it is sourced [Ruiz 2011]. Confidence levels for the
reliability of each index, as well as the combined multimodal index, can be provided
on a task or user basis, depending on the quality of calibration and index combination
types available [Ruiz 2011]. Other limitations can occur when combining data that is
derived from inputs which vary sampling rates.

5.1. Real-Time Potential

One of the main goals of this work was to produce an automated method for cognitive
load assessment that would allow the measure to have a high potential for being
implemented and used in real time. Of course the definition of “real time” varies
from one application to the next, for example, updates to the estimated cognitive
load level at intervals of between 1ms to 10 minutes would be considered real time
in the examples of Section 3.3. The basic requirement then is that the features used
for assessment be extracted automatically, without the need for labeling or human
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intervention. The features used to derive each of the modal indices presented here can
be fully automated; the process from extraction to assessment can be done on-the-fly
with very good results. Both types of indices (speech based and digital pen based)
require some level of user calibration at the very beginning in order to improve the
accuracy of the results. However, this process is quite simple in all instances and not
at all prohibitive either in terms of time or effort. Individual measures within these
modal index types may have differing levels of automation, for example, some may
require a baseline or bootstrapping sequence at initialization.

5.2. Temporal Scales

Whether the features themselves offer discrete or continuous assessments will also
affect how they are combined in a multimodal index. Information about how often the
feature is updated or refreshed will need to be included as part of that single modality
index information profile and serve as a reference as to which others it can be combined
with. For example, in a constant speech-signal monitoring scenario, the acoustic speech
index can be updated after every 2s of active speech or less. In contrast, the linguistic
index based on the same raw input will have a longer update response lag, since the
speech needs to be transcribed on-the-fly and a minimum amount of data needs to be
accumulated before classification, for example, a complete sentence, phrase, or word.
Hence, specific temporal update windows will need to be defined for specific modal index
combinations. The granularity at which each type of index is refreshed or updated can
be increased by implementing sliding window algorithms on the streaming signal, and
initially weighted less heavily during the fusion stages. Many of the indices explored
have displayed significant differences in average-based or rate-based features (e.g.,
MDIST, freeform pen), which means they have the potential to be indicative even with
fewer samples than those collected here.

5.3. Dimensionality

Dimensionality refers to the number of features and individual measures included in
a single index. For example, the MDIST measure is a single reading that combines the
information from 12 separate information points derived from a trajectory. Particularly
when using multidimensional indices, weighting of each subfeature can be a make or
break factor, especially if the availability or quality of the sensor data on which these
features is based cannot be guaranteed. Further, in early fusion implementations, the
dimensionality of the features will certainly have an effect on how often they can be
updated and combined with each other and contribute to the final multimodal index:
features with high dimensionality and high update frequency can be revised much more
often and potentially a higher level of confidence can be attached to such an index.

5.4. Contextual Information

Any multimodal index of load will need to be tightly coupled with the task context
and workflow process. An understanding of the task flow is imperative because the
indices presented here cannot be implemented as a universal solution applicable in
all scenarios. For example, the linguistic indices are most useful in think-aloud data,
or human-human communication between operators, but would be completely inef-
fective when applied on command-and-control speech input. Therefore, the contextual
information will need to be closely derived from the work process, to select the indices
most likely to be: (a) present, (b) reliably collected, and (c) the best match in each task
scenario. In other cases, more than one modal indicator may be activated, for example,
when an operator is speaking on the phone, the handwriting indices and a continuous
speech signal index may be equally effective. Similarly, the contextual information can
be considered on a per-user basis; user profiles can notify the system of individual
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Table I. Properties Previously Defined in the Literature

Property Definition
Sensitivity Capability for discriminating significant variations along the

workload continuum (Refer to Fig. 1 and Fig. 2.)
Diagnosticity Capability for discriminating the specific computational process

causing the load changes.
Primary Task Intrusion Whether the task workflow is interrupted or not
Implementation Requirements How difficult it is to implement within context, includes operator

training or instrumentation required
Operator Acceptance Willingness of operators to follow instructions.
Selectivity Whether the measure is sensitive to mental workload only or also to

physical changes.
Bandwidth and reliability Bandwidth and reliability refer to the workload’s estimate that has

to be reliable both within and across tests.

Table II. Five More Pertinent Properties We Define

Property Definition
Real-time potential Is it possible to automatically extract these features from the input signal?
Temporal Scales How often can this feature be updated?
Dimensionality How many dimensions in this measure?
Contextual Information Information regarding which indices can be combined with which others for

maximum effect – and which should not be combined at all.
Domain independence How tightly coupled is this measure to the domain it was observed in?

preferences (e.g., Operator A does not like to use pen input or handwriting; Operator B
is quite reliant on pen for taking notes, but not interacting with the system or issuing
commands).

5.5. Domain Independence

The advantage of the kinds of behavioral indices for cognitive load that are presented
here is that they largely remain domain independent. For example, among the speech
features, the acoustic indices appear to be relatively successful regardless of the domain
(as shown by the variety of lab experiments conducted and the real-life case studies
presented). The pen features, such as handwriting, for example, can also be applied
in any domain, as long as the user is using a digital pen that is instrumented with
the right sensors to capture the relevant features that comprise the index. Domain
independence refers to how tightly coupled the features are to the domain in which
they were observed; high domain independence means a loose coupling exists, whereas
low domain independence means a tight coupling exists between dataset and domain.

5.6. Summary

Table I and Table II summarize the properties previously defined in the literature as
well as the pertinent new ones we defined.

Table III and Table IV summarize the measures for the most pertinent previously
defined properties and three of the new properties. Implementation requirements,
operator acceptance, bandwidth and reliability, contextual information, and domain
independence can only be assessed meaningfully with reference to a specific application
domain, and hence are not included in this table. “Low-Normal-High” denotes possible
values that can be taken by the feature, but not at the same time. Some features
cannot detect low levels, for example. These tables are based on experiments detailed
or referenced within this article, as well as general attributes of modalities. Some
modalities may take one of multiple values, for example, pronouns are sensitive to
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Table III. Speech-Based Measures and Indices
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Linguistic Features

P
au

se
s

Low, High High Low Med High – using voice
activity detection

Significant pauses
take around 0.3s.
Sliding window
every 5 seconds

∼3
individual
features
(total
duration,
frequency
and avg.
length)

P
ro

n
ou

n
s Low, High High Low High Med – Dependent

on recognizer
Word Level-Sliding
window every
sentence or phrase,
using voice activity
detection

Single

C
om

pl
ex

it
y

Low, High High Low High High – Dependent
on recognizer, use
voice activity
detection

Word, Sentence or
Phrase level

∼3
measures of
complexity

C
at

eg
or

y

Low, High High Low High High – Dependent
on and word
categories, Sliding
window every task

Word level 2–10
significant
categories

V
al

en
ce

Low, High Low High Med to High–
Dependent on
recognizer, Sliding
window every task

Word level 2 significant
categories

Acoustic Features

A
co

u
st

ic

Low,
Nor-mal,
High+

High Low Med High 2–10 second
windows yield
excellent results

High >72
features

Low and High load, but being either singular or plural they cannot easily discriminate
more than two classes. The tables are intended to illustrate that no single modality
possesses the ideal set of attributes, and that a combination can instead provide the
required accuracy.

6. MULTIMODAL INDICES OF LOAD

Given previous successes in finding features from pen and speech input that allow us
to differentiate cognitive load levels for up to 3 levels of load, the next step is to apply
a multimodal index of load that combines output from different sources. Correlations
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Table IV. Other Indices and Measures
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Handwriting
Velocity,
Length,
Pressure,
Orientation,
Altitude,
Azimuth

Low,
Normal,
High+

Med to High Low High High - Per
stroke basis

High - Per
stroke basis

∼6
individual
features per
stroke

Frequency Low,
Nor-mal,
High+

Med to High Low High High – per
stroke basis

Med to
High–
Dependent
on
segmenta-
tion

∼3
individual
features per
stroke

Symbolic
MDIST Low,

High
Med to High Low High High – Per

symbol basis
High ∼12 features

per stroke
Custom,
Geometric,
Features

Low,
High+

Med to High Low High High – Per
stroke basis,
dependent
on
segmenta-
tion
scheme

High –
Dependent
on
recognizer

Variable

GSR
Mean Low,

Med,
High +

High Med – can
use
em-bed-ded
sensors

Low High –
sampled
every 100ms

High Variable

between single-modality indices offer a way in which to introduce redundancy and
robustness to a multimodal index of cognitive load. Dual-modality indices working
together in a complementary fashion, such as speech-signal-based classification or
degree of degeneration of pen input, are likely to align quite well, reinforcing each other.
However, there are a number of aspects that need to be considered in the development
of a multimodal index of load, for example, whether early or late fusion approaches are
used. At an abstract level, multimodal indices can be derived in four ways [Ruiz 2011]:

(1) combining component features within each modality for, example, combining within
pen-input features such as stroke frequency, MDIST, or altitude span;

(2) combining component features across modalities, for example, combining stroke
frequency (from pen) with use of singular pronouns (linguistic);

(3) combining index results between modalities, for example, between pen-only assess-
ment versus speech signal-only assessment;

(4) using a combination of any of the three preceding methods.
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Fig. 8. High-level functional model of a multiple-modality CLM system.

6.1. An Abstract Model for Multimodal Assessment

Figure 8 depicts a high-level functional model of a proposed Cognitive Load Measure-
ment (CLM) system. The abstract system model embodies four high-level processes:
preprocessing and data cleaning, feature extraction, load assessment, and index fusion.
The great advantage of multimodal behavioral indices of cognitive load is that they are
derived from activity already undertaken as part of the task, and thus can be collected
implicitly, or “passively” [Zander and Kothe 2011]. The raw modality input sources
are first and foremost intended for purposes other than cognitive load measurement,
specifically to do with the domain application.

For example, the data may be used for semantic interpretation or rendering (e.g.,
in the case of command-and-control speech or interactive pen gestures). The data may
therefore need to be duplicated and diverted, with the original stream sent to the
recognizers, and a secondary stream sent to the cognitive load measurement engine.
In Figure 8, speech input data is first captured through a close talk microphone. This
generates two kinds of data, speech signal data (e.g., a wav file) and text (through
a speech to text engine). Likewise, pen input data is collected as trajectory tuples,
including pressure, pen orientation, and other information transmitted directly from
the device drivers, alongside system time-stamps.

Data preprocessing and data cleaning refers to any reformatting or restructuring of
the input data, or removal of unnecessary information, for example, any outliers or
segments that are too short for geometric and temporal analysis; words not recognized
in the text, as well as words that are not used in the analysis. Input streams from other
modalities will follow the same processes. Similarly, a number of other nonbehavioral
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indices will also undergo preprocessing as needed; these include indices that may also
be used in the process, such as galvanic skin response, or other body-based data, such as
posture, movement, or temperature. Environmental and other external context infor-
mation may also be provided to the CLM system for enhanced performance at this point.

The second stage involves streaming the individual modal inputs into their respective
feature extraction components. The same data may be used for multiple feature extrac-
tion components, while other extraction components may not be activated, depending
on domain-specific contextual information gathered from the active applications and
workflow diagrams established a priori. This will allow the feature extraction engine
to choose the most appropriate modules to activate for each incoming input stream.
For example, if the incoming speech is sourced from a phone call or radio conversation,
the feature extraction component will activate both MFCC and prosodic feature extrac-
tion as well as the linguistic category extraction components, since both can provide
meaningful measures on this kind of data. On the other hand, if the incoming speech is
sourced from command-and-control input, only MFCC and prosodic feature extraction
will be activated, as the linguistic categories cannot provide any meaningful cognitive
load measurement information on short, closed vocabulary, or single-word speech.

The third stage involves the decision-making aspect of the process, where thresh-
olds are invoked and the appropriate models for each modality are selected from the
database from which to carry out the classification. For example, for the speech-signal-
based cognitive load measurement, different models are required for single word cog-
nitive load classification versus continuous speech classification. Likewise, different
MDIST models exist for each shape, and also for each user. Any calibration data that
is needed for classification or for comparison purposes is also accessed at this point.

The final stage involves the fusion of indices resolved from the previous stage. The
assessment results obtained from each modality can also convey confidence informa-
tion to support the fusion process. The fusion engine accesses information regarding
the modality load assessment combination rules in each specific context, for exam-
ple, whether the time windows for the collected inputs are compatible; which indices
are complementary with which others; and the appropriate weightings for each index,
given the scenario and the user situation. Figure 8 shows how mid- and late- fusion
may be achieved from a set of cognitive load assessments from each of the subfeatures.
Mid-level fusion, for example, is achieved by combining multiple assessments that are
based on the same input modality, for example, speech-based and linguistic assess-
ments. Late fusion for a multimodal index can be likewise achieved by combining the
results from all the features individually (regardless of input modality), or combining
the input modality subgroup from the mid-level fusion results. The final output from
the CLM engine can then be passed onto the output generation system in order to
implement appropriate adaptation strategies.

We now present a user study illustrating the applicability of this model to multimodal
data processing.

6.2. Basketball Skills Training

In order to illustrate how a multimodal cognitive load measurement system could work,
we now present a lab-based study in which cognitive load and complexity were manip-
ulated, and multiple behavioral modalities were recorded. The objective is to assess
how well individual and combined modalities can reflect levels of cognitive load, and
provide a concrete application for our multimodal cognitive load measurement model.
While the task is different from the safety-critical, data-laden, and high-intensity ap-
plications discussed in the motivation for this article, it is a richly multimodal dataset
that helps to provide an example application of the model proposed in Section 6.1.
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Fig. 9. Physical setup of a user completing a task using a digital pen and with GRS attached.

Fig. 10. (a). Last frame of video clip before freeze. (b) Blank court image with player markings.

Elite athletes at the Australian Institute of Sport (AIS) are required to complete
cognitive skills training using a targeted sports-specific software application called
AISReact [Mackintosh 2010]. While aiming at ever-faster situation analysis and de-
cision making through the construction of better mental schemas, it is desirable to
precisely determine onsets of very high cognitive load in order to adapt the training
rate to each individual athlete. In this experiment, we modified the software to accept
pen-based interaction, and added the modalities of speech and eye activity. In addition,
performance (accuracy) measures, physiological signals (GSR), and subjective ratings
were also collected to establish a ground truth for cognitive load and task difficulty.
The setup is shown in Figure 9.

Twelve male recreational basketball players, aged 19–36, each with more than
2 years’ experience (average of 9.4 years) volunteered to complete the study. The task
consisted of a 10s video basketball clip played on a tablet monitor, which was then
frozen and replaced with a blank court schematic. The clips involved 10 players and
the participants had to remember the locations and roles of some players in three task
difficulty levels (remember 3 players for low level, 6 for medium, and all 10 for high).
Each level consisted of 6 distinct clips. The clips were filmed from above and cover half
the court, with all plays moving from the bottom of the screen towards the top, where
the basketball hoop was located, as seen in Figure 10.

The participants used specific pen marks to identify the remembered player positions
on the tablet monitor: attackers were denoted by crosses, defenders by circles, and
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Fig. 11. Performance scores and subjective ratings [Ruiz et al. 2010].

the ball carrier by a circle with a dot in the middle, as illustrated in Figure 10(b).
Participants were also instructed to think aloud through their answers, and these
utterances were captured using a close talk microphone.

6.3. Subjective Ratings and Performance Results

Subjective ratings were collected using a Likert 9-point scale, where 1 was minimal
effort and 9 was extreme effort. The task complexity levels induced extreme levels of
load as reflected in the subjective ratings, increasing significantly as cognitive load
increased, with mean averages of 3.2 (SD = 1.34), 5.5 (SD = 1.62), and 7.6 (SD =
1.23) for the low, medium, and high load tasks, respectively, in Figure 11. Due to the
non-parametric dataset, this was verified using Friedman’s χ2 test (χ2(12,2) = 25.53,
p < 0.001), where low, med and, high were ranked 1.00, 2.04, and 2.96, respectively.

As expected, the participants’ performance decreased significantly from low load to
high load. Scores were given for each mark whose centroid was placed within a radius
of 8% screen distance (in pixels) from the correct player position, as recommended by
basketball experts at the Australian Institute of Sport, who also annotated the correct
player positions on the schematic. The mean score for the low, med, and high load
tasks 83.5% (SD = 11.63), 77.7% (SD = 12.26), and 68.1% (SD = 15.14). The decrease
was verified through a repeated-measures ANOVA test (F(2,22) = 4.84, p = .018).
Subsequent planned contrasts show a significant linear (F(1,11) = 5.59, p = 0.04, r =
0.46) to the 0.05 level, with a medium effect size. This is evident in Figure 11 also,
where the performance decreases gradually between low and medium load levels and
then more steeply from medium to high levels.

Overall, participants’ performance decreased significantly, while their subjective rat-
ings of load increased significantly, from low load to high load, validating that the
responses elicited by these tasks are affected by extreme levels of cognitive load.

6.4. Individual Modalities

In this section, we analyze the capacity of individual modalities to classify load levels. In
addition to speech and pen input, we present Galvanic Skin Response (GSR) although
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Table V. Confusion Matrix of Three-Level Speech Classification

Classified as
Low Medium High

Testing samples from
Low 100% 0% 0%

Medium 40% 6% 54%
High 15% 3% 82%

Table VI. Pen-Input Trajectory Features

Geometric feature Description Accuracy on
test samples

Duration Stroke duration, in milliseconds 32.6%
Length Cumulative distance between sampled points

along the trajectory
40.7%

Mean velocity Mean velocity of the stroke trajectory, calculated
point to point

30.7%

Mean acceleration Mean acceleration of the stroke trajectory,
calculated point to point

37.0%

Area The area in pixels taken by the circle shape,
enclosed by the trajectory

36.3%

First.Last Distance between the first and last points of the
trajectory

33.3%

Overlap ratio The ratio of the overlapping distance between
the first and last points of the trajectory to the
total size of the shape.

37.4%

it is a physiological measure, because we compare the relative potential of these three
modalities in the next section. In this analysis, a cognitive load estimate was made at
the end of the task, that is, after around 1–5s.

Speech data was analyzed for all 12 subjects as described in Section 3 (and in Ruiz
et al. [2010]), and the results use the average of the two evaluation folds, classifying into
three predesigned load levels. As shown in Table V, low load achieved 100% accuracy,
and high load 82% of testing samples. Interestingly, however, testing samples from
the medium load level were mostly misclassified into either the low or high load,
suggesting that no distinct pattern was captured. We suspect participants with subtly
varied basketball skills and load capacity may have experienced slightly lower or higher
loads in this level. The average accuracy for the 3 levels was 62.7%.

Unfortunately, due to corrupt collected signals from some of the GSR input sensor,
and data losses caused by unexpected crashes in the software, only 9 subjects have
complete data for the purpose of fusion, and hence this subset will be exclusively used
for the remainder of this case study. For these 9 subjects only, the average speech
classification accuracy drops slightly, to 61.8%.

Pen input was analyzed through a set of simple, objective features based on circling
shapes drawn by the participants. Table VI summarizes the features and their individ-
ual accuracy at classifying load levels for the 9 subjects. The results range from 31%
to 41% for the 3-level classification, that is, in some cases not always outperforming a
random classification.

Although galvanic skin response is not a behavioral measure of cognitive load but
a physiological one (i.e., it is not a voluntary reaction but a function of the autonomic
nervous system), it was used as a ground-truth measurement for the study. Measured
in micro-Siemens (μS), the signal was simply analyzed using an average measurement
over the task period, yielding a classification accuracy of 64.4% over 3 load levels, across
all 9 subjects, using a leave-one-out evaluation scheme.
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Table VII. AdaBoost Weights for Speech and Pen Input Features
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Table VIII. AdaBoost Weights for Speech, Pen Input Features and GSR
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6.5. Multimodal Fusion

In this section we fuse the preceding features extracted from speech, pen input, and
GSR using the AdaBoost boosting algorithm. Boosting [Freund 1995; Schapire 1990]
is a general ensemble learning algorithm that creates an accurate strong classifier
H by iteratively combining a number T of moderately inaccurate weak classifiers ht.
By definition, a strong classifier has high classification accuracy on the dataset, while
a weak classifier’s accuracy is just above that of a random guess. The final strong
classifier can be defined as

H(x) =
{

1 if
∑T

t=1 αtht(x) ≥ 0
−1 otherwise

,

where αt is a weight coefficient. In simple cases, each weak classifier is attached to
a feature, so the process of combining weak classifiers in Boosting is equivalent to a
feature fusion process.

We used AdaBoost [Freund and Schapire 1997; Schapire et al. 1998], an adaptive
version of boosting. Sample weights are all initially set equal, then refined iteratively
during a training process. In order to select those features that are most discrimi-
native of a given problem, in each iteration AdaBoost selects a new weak classifier
ht with the minimal weighted classification error with respect to the training sample
weight distribution, which means the newly selected weak classifier can guarantee the
more important samples (samples with higher weights) are classified correctly. Then
the weights of incorrectly classified samples are increased, so in the next iteration,
AdaBoost can focus on these incorrectly classified samples.

Table VII details the weights obtained for speech and the pen features. The average
classification accuracy when fusing all these features is 64.1% on the testing samples,
for the 3 load levels across all 9 subjects. It is noted that this represents a small
improvement over the speech-only accuracy in Section 6.4. Cognitive load classification
of freeform pen features is a challenging task (this is seen also in Table VI), however,
the prospects for handwriting features are considerably more positive, as seen from
the results discussed in Section 4.2.

Similarly, Table VIII details the weights obtained when fusing speech, pen features,
and also GSR. The average classification accuracy is then 77.8% on the testing samples,
for the 3 load levels across all 9 subjects.

Adding the GSR feature provides a significant improvement, supporting the benefits
of feature fusion for workload detection. This case study is proposed as one imple-
mentation example of the model, however, the results indicate that other behavioral
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features, yet to be explored, may be able to provide further multimodal cognitive load
measurement accuracy.

7. DYNAMIC SYSTEM ADAPTATION BASED ON COGNITIVE LOAD INDICES

Interactive intelligent systems equipped with methods for unobtrusive, real-time de-
tection of cognitive load and general cognitive load awareness should be able to adapt
content delivery in more appropriate ways by sensing what the user is able to cogni-
tively cope with at any given moment. Presentation and interaction strategies can be
used to adapt the pace, volume, and format of the information conveyed to the user,
depending on his or her individual cognitive load experience [Ruiz 2011]. For example,
in the case of a real-life bushfire management control center scenario, the interaction
system may be able to adapt many elements of the interface to decrease the cognitive
load experienced by a user: from highlighting a critical computer screen or a specific
information window, to sorting and prioritizing task checklists, to showing controlled
reminders, to filtering email or SMS messages, to redirecting phone calls to the less cog-
nitively loaded operators, the system has the power to subtly ease the user’s cognitive
demand [Khawaja et al. 2010, 2009].

Recent advances in the design of applications and user interfaces have promoted the
awareness of the user context. It is crucial to establish a reliable indicator of cognitive
load for each individual, by assessing which feature patterns are likely to occur at
high or low levels of load on a case-by-case basis, given that there are large individual
variations within a trend or pattern from one person to another. Many of the potential
pen and speech indices summarized earlier need a relative baseline or standardization
feature. Also, user preferences can also be used as the basis for response strategies for
high cognitive load; some users may prefer to be overtly alerted to the system detecting
their high load, while others may choose to let the system support them in a more
autonomous way, for example, redirecting incoming calls to voicemail.

7.1. Performance Monitoring

The type of multimodal interaction environment we are targeting, featuring high-
complexity, safety-critical tasks, could benefit from dynamic adaptation based on cogni-
tive load assessment, as part of performance monitoring. Such complex work scenarios
do not provide readily usable metrics for an operator’s performance; instead, debrief-
ings are used to assess the team’s performance and address any undesirable outcomes.
Cognitive load assessment can provide a real-time indicator of the load experienced
by each operator: from this point, the system can be equipped to provide feedback to
them, offer a warning, or suggest ways in which the system can “help”. Other less
technically-oriented solution strategies are possible, for example, where team leaders
or managers manually redirect incoming incidents or incoming tasks to operators who
may have more cognitive resources available to attend to them, while scaffolding others
who are struggling to cope with demand.

7.2. Targeted Training

The use of cognitive load indices in intelligent environments, possibly in conjunction
with performance and other measures, could provide an individually targeted learning
experience. Interface and system learning environments are often aimed at a group
level, while training programs seldom take into account individual differences in cog-
nitive load during progression through increasingly complex material. Although some
systems already exist that are able to cater for performance differences in training
scenarios that can adapt slightly to accommodate these, it is generally acknowledged
within the field of educational psychology that performance does not always accurately
reflect the level of load. The latter, in fact, represents the subject’s cognitive cost, for
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example, cognitive resources spent, mental effort invested [Kalyuga 2007] to produce
these results. By deploying cognitive assessment during training sessions, learners
can benefit from a self-paced curriculum, supported by system recommendations as
to when it may be appropriate to advance to the next module. This could potentially
reduce training time and increase efficiency, with learners spending more time on
material when necessary, and less otherwise.

8. CONCLUSION AND FUTURE WORK

The work presented here summarizes research aiming to measure cognitive load
expended by human operators, especially using unobtrusive, real-time measurements.
These are crucial for practical applications, where they can be used to optimize user
interaction.

Previous research has tried to assess users’ cognitive load using several meth-
ods including physiological, performance-based, and subjective measures. However,
interactive intelligent systems lend themselves more to the collection of behavioral
measures—in particular, modal inputs and communication—for cognitive load assess-
ment. The goal is to measure a user’s cognitive load implicitly and in real time so as to
adapt systems to users affected by high cognitive load, easing the demand and avoiding
stress, frustration, and errors. This work presented here has explored the viability of
a number of behavioral modal data sources, especially from speech and pen input, to
identify symptomatic cues of high cognitive load.

The feasibility of using user input and behavior patterns as indices of cognitive load
is supported by experimental evidence. The benefits of this approach are that these
measures can be collected implicitly, that is, by monitoring variations in specific modal
features executed during day-to-day usage of interactive intelligent systems, thus over-
coming problems of intrusiveness and increasing applicability in real-world environ-
ments. Moreover, using symptomatic cues of cognitive load derived from user behavior,
such as acoustic speech signals, linguistic analysis of transcribed text, digital pen tra-
jectories of handwriting and geometric shapes, can be supported by well-established
theoretical frameworks, including O’Donnell and Eggemeier’s workload measurement
[O’Donnell and Eggemeier 1986], Sweller’s Cognitive Load Theory [Sweller et al. 1998],
and Baddeley’s model of modal working memory [Baddeley 1992; Sweller et al. 1998],
as well as McKinstry et al. [2008] and Rosenbaum’s [2005] action dynamics findings.

Behavior-based cognitive load measurement also benefits from its very means of data
collection. It doesn’t require extra physical instrumentation of the user or environment,
since the inputs it captures are part of the natural interaction required by the task.
Moreover, the data is always available and current, so long as the user is interacting
with the system or completing a task. Such real-time assessment of the user’s cognitive
load can then help achieve the ultimate goal of adapting information selection and
presentation in a dynamic computer interface with reference to load. The development
of standardized tasks to compare cognitive load measures would go a long way to
achieving more definitive comparisons between indices.

Extensive investigations into a complete speech signal analysis for cognitive load
measurement have culminated in the development of a fully functional automatic cog-
nitive load assessment engine, able to produce a result in real time without manual
intervention. Providing reliable speaker-independent measurement of cognitive load
(85% accurate over 3 levels, without the need to create a model for each individual
subject) for data collected using a close talk microphone incurring minimal cost. This
would be a significant improvement in industrial environments where no cognitive load
assessment technology currently exists. The changes in the user’s voice that charac-
terize high cognitive load occur at the acoustic and prosodic features of speech data,
thus, the technology is able to make an accurate assessment regardless of the specific
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words uttered, meaning of the message, or vocabulary used. Likewise, it is difficult for
the user to consciously manipulate the assessment.

In regards to the linguistic analysis of the speech data, our studies show that the
frequency of selected linguistic and grammatical features changed between low and
high load tasks. We have successfully isolated a number of cognitive indices based on
pause features, grammar features, language complexity features, and word category
features such as emotive and agreement words. These indices are an ideal tool to
complement current speech-signal-based results because they assess the content of the
user’s speech.

The results of our ongoing research also suggest that pen-input data produced under
high cognitive load will also exhibit symptomatic characteristics, specifically in the
structure, form, and manner of the trajectories generated in pen gesture, handwriting,
and drawing. The findings demonstrate that the quality of interactive pen-gesture tra-
jectories degrades as tasks become more complex; altitude, pressure, and orientation
features show significant changes in handwriting produced in high load situations;
and finally, the frequency of sketching, drawing, and other note-taking activities using
a digital pen increases significantly in very difficult tasks compared to very simple
tasks. Of these three pen-input measures, structural handwriting analysis has proven
the most promising index of cognitive load. Strokes and interstrokes provide a com-
prehensive record of writing behavior, conveying rich insights into the cognitive load
experienced by a writer. The overall classification accuracy showed that pen altitude,
pen orientation, and pressure reflect cognitive load variations successfully, reaching
75% accuracy over three load levels.

These specific modal changes in modal and communicative behaviors when cognitive
resources are scarce reflect a mental mechanism designed to extend working memory
and reserve resources for problem solving strategies and processes. Despite significant
evidence across a variety of domains and tasks (including some using psychology-based
task designs that are well-known for inducing cognitive load) linking physical alter-
ations to behavioral changes, the question of causality, where we can definitively link
these changes to cognitive load, is still an open issue, and one we are actively investigat-
ing. Further work also remains to determine the shortest possible period of time from
which cognitive load may be reliably estimated for each modality, since to date, both in
the literature and in this article, decisions are usually made at the end of the task.

Finally, we proposed a high-level model of a system for assessment of cognitive load
using a number of behavioral indices over two modalities: speech and pen. The real-time
assessment of cognitive load provided by the system offers new potential for dynamic
support and adaptive system behavior, promising to optimize the human-computer
interaction throughput, and reduce the burden placed on limited human cognitive
capabilities.
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Objective: Analyses of novel linguistic and grammatical 
features, extracted from transcribed speech of people 
working in a collaborative environment, were performed for 
cognitive load measurement.

Background: Prior studies have attempted to assess 
users’ cognitive load with several measures, but most 
of them are intrusive and disrupt normal task flow. An 
effective measurement of people’s cognitive load can 
help improve their performance by deploying appropriate 
output and support strategies accordingly.

Methods: The authors studied 33 members of bushfire 
management teams working collaboratively in computerized 
incident control rooms and involved in complex bushfire 
management tasks. The participants’ communication was 
analyzed for some novel linguistic features as potential indices 
of cognitive load, which included sentence length, use of 
agreement and disagreement phrases, and use of personal 
pronouns, including both singular and plural pronoun types.

Results: Results showed users’ different linguistic 
and grammatical patterns with various cognitive load 
levels. Specifically, with high load, people spoke more  
and used longer sentences, used more words that 
indicated disagreement with other team members, and 
exhibited increased use of plural personal pronouns and 
decreased use of singular pronouns.

Conclusion: The article provides encouraging evidence 
for the use of linguistic and grammatical analysis for measuring 
users’ cognitive load and proposes some novel features as 
cognitive load indices.

Application: The proposed approach may be applied to 
many data-intense and safety-critical task scenarios, such as 
emergency management departments, for example, bushfire 
or traffic incident management centers; air traffic control 
rooms; and call centers, where speech is used as part of 
everyday tasks.

Keywords: cognitive load measurement, collaborative 
communication, language analysis, bushfire management, 
adaptive interaction and support

INTRODUCTION
Cognitive load (CL) refers to the amount of 

mental demand imposed on a person by a particu-
lar task and is associated with the limited capacity 
of the person’s working memory and the ability to 
process novel information (Chandler & Sweller, 
1991; Sweller, 1988). It is derived from the 
semantic or representational complexity of the 
task. However, the same task can affect different 
users in different ways and can induce levels of 
perceived cognitive load that vary from one user 
to another. This variation is attributable to many 
reasons, including level of domain expertise, age, 
and mental or physical impediments.

In complex and time-critical situations, users of 
an interaction system, especially those working 
collaboratively, can experience high cognitive 
demands, which can interfere with their ability to 
complete a task at an optimum performance level. 
These cognitive demands are caused either by the 
complexity of the task being carried out or by the 
complex design of an interaction system, as in 
multimodal or multimedia interfaces, which may 
contain inappropriate amounts of content deliv-
ered to users simultaneously (Mayer, 2001). For 
example, high-intensity control room work envi-
ronments, such as for air traffic control, require 
operators to manage many such interfaces, switch-
ing from one application to another, often on mul-
tiple screens and in time-critical scenarios. 
Operators will frequently use radios or mobile 
phones, make and answer calls, and speak to their 
colocated colleagues while completing their tasks. 
This complexity can result in extremely high cog-
nitive load and hinder the users’ ability to perform 
their task.

An understanding of the users’ current cogni-
tive load will enable researchers to implement 
strategies to adjust the interaction system’s 
response, presentation, and flow of interaction 
material and provide users with appropriate 
support as per their cognitive burden, helping 
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them complete tasks more effectively. Moreover, 
for complex collaborative tasks for which many 
users communicate with each other to solve 
task-related problems, understanding cognitive 
demands can be particularly helpful.

Background

Measuring a user’s cognitive load robustly 
and in real time is not a trivial task. Many 
researchers have attempted to assess users’ cog-
nitive load using several methods, including 
physiological, behavioral, performance, and 
self-reporting subjective measures.

Historically, the most consistent results for 
cognitive load measurement have been achieved 
through self-reporting subjective measures 
(Brunken, Plass, & Leutner, 2003; Paas, Merrin-
boer, & Adam, 1994). These measures require 
users to introspect on their perceived level of 
cognitive load induced by various tasks by 
answering a set of assessment questions immedi-
ately after the tasks.

Performance-based approaches includes two 
techniques: primary task measurement, which is 
based on user’s performance of the task being 
completed, and secondary or dual-task method-
ology, based on the performance of a second task 
that is performed concurrently with the primary 
task. Primary task measures include task comple-
tion times, speed or correctness, and critical 
errors (Gawron, 2000; Paas, Ayers, & Pachman, 
2008). The dual-task approach has also been 
incorporated by several studies (Leyman, Mirka, 
Kaber, & Sommerich, 2004; Marcus, Cooper, & 
Sweller, 1996; Sweller, Merrienboer, & Paas, 
1998; Wada, Iwata, & Tano, 2001) and can effec-
tively be used to measure the degree to which the 
primary task requires working memory resources 
(Kerr, 1973).

The physiological approach of cognitive load 
measurement is based on the assumption that any 
changes in the human cognitive functioning are 
reflected in the human physiology (Kramer, 1991). 
The measures that have been used to show some 
relationship between participants’ mental work-
load and their physiological behavior include heart 
rate and its variability (Mousavi, Low, & Sweller, 
1995; Nickel & Nachreiner, 2000), brain activity 
(changes in oxygenation and blood volume, elec-
trocardiography, electroencephalography; Brunken 

et al., 2003; Wilson & Russell, 2003), skin conduc-
tance (Jacobs et al., 1994; Shi, Ruiz, Taib, Choi, & 
Chen, 2007), and eye activity (blink rate, eye 
movement, pupillary dilation; Backs & Walrath, 
1992; Lipp & Neumann, 2004; Marshall, Pleydell-
Pearce, & Dickson, 2003).

However, most of those approaches can be 
physically or psychologically intrusive and may 
not allow implicit measurement. Moreover, 
they can sometimes be used only post hoc and 
may disrupt normal task flow. Although they 
may be useful approaches in research situations, 
they are often unsuitable for deployment in 
real-life applications.

Behavioral measures, in contrast, can provide 
an objective, nonintrusive, and implicit analysis of 
users’ cognitive load, as they are based on data 
collected from the users while they complete the 
task, without their realizing that their behavioral 
data are being recorded. The user cannot manipu-
late the data (as in the case of subjective ratings) 
and can perform the task naturally without any 
interference. Behavioral features of cognitive load 
include eye blinking and movement (Gütl et al., 
2005), mouse clicking and keyboard key presses 
(Ark, Dryer, & Lu, 1999; Liu, Wong, & Hui, 
2003), and digital-pen gestures and usage patterns 
(Oviatt, 2006).

Most behavioral features of cognitive load 
have been extracted from users’ speech signal 
data (Berthold & Jameson, 1999; Jameson et al., 
2009; Keränen et al., 2004; Yap, Ambikairajah, 
Epps, & Choi, 2010; Yin, Chen, Ruiz, & 
Ambikairajah, 2008). Examples of such features 
include pitch, prosody, speech energy, and funda-
mental speech frequency. Some studies have 
reported an increase in the participants’ rate of 
speech as well as speech energy, amplitude, and 
variability in high load conditions (Brenner, 
Shipp, Doherty, & Morrissey, 1985; Lively et al., 
1993). Others have found peak intonation 
(Kettebekov, 2004) and pitch range patterns 
(Lively et al. 1993; Wood, Torkkola, & 
Kundalkar, 2004) to be related to high cognitive 
load. Pitch variability has also been shown to 
potentially correlate to cognitive load (Brenner et 
al., 1985; Wood et al., 2004).

Apart from speech signal features, linguistic 
and grammatical features may also be extracted 
from users’ spoken language and analyzed  
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for patterns indicating high cognitive load. 
These features may include speech pauses, self-
corrections, repetitions, response latency, and 
language usage, for example, use of different 
word categories and parts of speech, such as 
nouns and pronouns, and grammatical struc-
tures. Such features may be collected from 
users’ spoken or written language and are highly 
unobtrusive, as the data can be collected with-
out interrupting task flow. Some researchers 
have looked at linguistic features as indices of 
high cognitive load, including pauses (Berthold 
& Jameson, 1999; Khawaja, Ruiz, & Chen, 
2008), word frequency, and use of first-person 
plurals (Sexton & Helmreich, 2000). Various 
other studies have also used linguistic features 
for purposes other than cognitive load measure-
ment (Kramer, Oh, & Fussell, 2006; Rhee & 
Kim, 2001; Stirman & Pennebaker, 2001).

In this article, we study some novel linguistic 
and grammatical features of cognitive load and 
analyze various aspects of language use, includ-
ing word selection, parts of speech, and gram-
mar. These linguistic features can be used as 
cognitive load indices in domains in which 
speech or conversational transcripts are used as 
the main forms of input. They can also be fused 
with other speech, behavioral, and performance 
indices proposed by others to enhance the over-
all performance of a state-of-the-art multimodal 
cognitive load measurement system.

Aims of the Study

Australia is one of the most bushfire-prone 
regions in the world, and there are thousands of 
fires that need to be managed annually (Owen, 
Douglas, & Hickey, 2008). As the impact of cli-
mate change results in more extreme weather 
events (Flannigan & Wagner, 1991; Fried, Torn, 
& Mills, 2004; Hughes, 2003), fire and emer-
gency service work is becoming increasingly 
important and needs to be well managed to save 
the communities from their effects. We present a 
study involving a real-life bushfire emergency 
management task carried out in the field by 
experienced emergency service operators work-
ing as a team in an emergency control room. The 
study was performed with the objective of ana-
lyzing bushfire management operators’ natural 
speech for linguistic indices of cognitive load 

while they collaboratively perform bushfire 
management tasks of different complexities.

The overall aim of the study was to under-
stand how people’s spoken and linguistic 
behavior changes when working in a team col-
laboratively and when completing complex and 
high-cognitive-load tasks compared with low-
load tasks. Capturing changes in communica-
tive behavior will help us ascertain whether 
any members of the team experience high load. 
This knowledge, in turn, will enable any tech-
nology or tool that supports teamwork to adapt 
to those situations more intuitively so as to sup-
port team members’ work processes.

Hypotheses

The rationale for our hypotheses is based on 
human cognitive models and working memory 
structure and its limitations (Atkinson & 
Shiffrin, 1968; Baddeley, 1992, 2000, 2003; 
Kintsch, Patel, & Ericsson, 1999; Sweller et al., 
1998), which affect human language production 
processes and cause different linguistic patterns 
in various cognitive load conditions.

We hypothesize that while working collab-
oratively on high-cognitive-load tasks, partici-
pants will speak more with each other to manage 
the high task complexity. Although a few studies 
have shown a decrease in spoken communica-
tion with an increase in workload (e.g., 
Kleinman & Serfaty, 1989), we expect that 
focusing on more cognitive tasks that involve 
active thinking processes will result in more 
communication or “thinking aloud,” especially 
when working in a collaborative team setting, 
resulting in an increased word count. This 
hypothesis has been confirmed by many other 
studies showing that in high-mental-load condi-
tions, as things become more complex, team 
members communicate more and provide  
more information and/or explanations to each 
other as a strategy to deal with increased task 
complexity (Foushee & Helmreich, 1988; 
Jensen, 1986; Katz, Fraser, & Wagner, 1998; 
Oser, Prince, Morgan, & Simpson, 1991).

We also expect greater use of agreement 
expressions, for example, “OK” or “Agree,” 
with low-load tasks and more disagreement 
among team members as task complexity 
increases. Our intuition is that people feel more 
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confident and responsible in easy situations 
than in difficult ones, when they tend to feel 
more reluctant. Also according to Baddeley’s 
(2000, 2003) working memory model, when 
people experience high cognitive load and their 
separate audio and visual working memory 
resources are overloaded with the task itself, it 
may interfere with their ability to consciously 
understand and agree with what is being said by 
other team members, and people may uncon-
sciously become reluctant, disagree, and/or take 
some time to understand what is being said.

We also wanted to see how people’s individu-
alistic and collectivistic communicative behavior 
changes in different cognitive load conditions. It 
has been found that when working in a group and 
handling difficult tasks together, people prefer to 
share their efforts to solve the problem (Kirschner, 
Paas, & Kirschner, 2009). Accordingly, we 
expect people to use personal pronouns differ-
ently in different cognitive load situations. A per-
sonal pronoun is a pronoun that substitutes for 
proper or common nouns and can be categorized 
into first-person singular, such as I or me; first-
person plural, such as we or us; second-person 
singular or plural, such as you; and third-person 
singular or plural, such as he, she, or they. For 
our objective, we wanted to compare people’s 
usage preference for singular versus plural per-
sonal pronouns. We hypothesize that in tasks of a 
collaborative nature, there will be an interaction 
between level of cognitive load and use of singu-
lar and plural personal pronouns; that is, as the 
task complexity (and so the cognitive load) 
increases, the use of singular pronouns will 
decrease and the use of plural pronouns will 
increase.

Again, we expect people to work together 
more to share the cognitive load as task complex-
ity increases (Kirschner et al., 2009), and the dif-
ference between their individual and their 
collaborative working behavior may be visible 
from their pronominal usage preferences. Use of 
a singular personal pronoun implies a person’s 
preference to work on his or her own, whereas 
use of a plural personal pronoun implies working 
together in a group. Therefore, considering the 
linguistic aspects of the team cooperation, we 
expect that when team members work together 
more than individually, they will use more plural 

(team) personal pronouns, such as we, us, or our, 
than singular (individual) pronouns.

It should be noted that although the second-
person pronoun you has both singular and plural 
properties, semantically it is not possible for any 
automated analysis tool to discriminate between 
the two usage types. Therefore, our main focus 
of the analyses will remain to study the behavior 
of first- and third-person pronouns and their sin-
gular versus plural usage. Nevertheless, the use 
of the second-person pronoun you will still be 
analyzed to see how its behavior changes with 
different load levels. However, it is not expected 
to be a useful cognitive load index.

METHOD
A bushfire management study was performed 

by experienced bushfire operators working col-
laboratively in a computerized incident control 
room. The study requires the operators to carry 
out highly complex bushfire management tasks.

Task Design

The task involved a bushfire management 
exercise carried out by at least four members of 
an incident management team (IMT) working 
in an incident control center. The team mem-
bers carried out 10 tasks, each about 5 hr in 
duration, in four states of Australia, including 
New South Wales, Victoria, Tasmania, and 
Queensland. Each IMT involved in an exercise 
comprised the following:

 • incident control, for the management of all activi-
ties necessary for the resolution of an incident;

 • planning, for the collection, analysis, and dis-
semination of information and the development
of plans for resolution of an incident;

 • operations, for the tasking and application of
resources to achieve resolution of an incident; and

 • logistics, for the acquisition and provision of
human and physical resources, facilities, services, 
and materials to support achievement of incident
objectives.

In the exercises observed for this study, three
main team members or operators were studied, 
including incident controller (IC) and the offi-
cers in charge of the operations and planning 
functions. Logistics officers were excluded 
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because of unavailability of sufficient data col-
lection equipment.

All exercises were conducted as planned train-
ing exercises with the purpose of regular training 
for the bushfire management personnel. The exer-
cises were conducted in genuine incident control 
centers. Thus, operators employed usual commu-
nication processes they would use in managing 
real bushfire incidents from the control centers. 
These processes included communicating infor-
mation to each other and to other fieldworkers and 
volunteers via radios and telephones. Participants 
also used computers, often with multiple screens, 
for updated fire maps and task checklists and used 
paper-based reporting tools for updating the fire 
maps, charts, and boards with current fire status 
and resource information. Figure 1 shows a bush-
fire training venue and the use of charts and white-
boards by the participants during an exercise.

In the exercises, a wildfire is reported and an 
IMT is established. During the course of the 
exercise, the fire escalates and threatens local 
assets, such as a forest plantation and a town. 
The operators then perform the bushfire man-
agement activities from the incident control 

center. During the task, three levels of incident 
management activity occur randomly:

1. Low-level task demands, for example, little
urgency and processes that are running smoothly.

2. Activity in which the incident escalates; for
example, a change in strategy is needed as a result 
of deteriorating conditions, such as bad weather.

3. High level of task demand, for example, urgency
and high resource coordination demands.

Each bushfire management exercise was
facilitated and monitored by a bushfire manage-
ment trainer in charge, who observed the opera-
tors’ bushfire management activities and 
arbitrarily presented a subjective rating ques-
tionnaire to random operators to rate their expe-
rienced cognitive load.

Participants

A total of 33 male participants (11 teams of 
three operators) participated in the study. All 
participants had prior experience in firefighting, 
and the majority of them also had previous 

Figure 1. Use of charts and whiteboards by operators during an exercise at the training 
venue.
Source. Owen, Douglas, & Hickey (2008).
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experience in an IMT for bushfire management. 
All were trained in their role or function and 
were assumed to be competent for their IMT. All 
were native English speakers, so English speak-
ing ability differences were assumed to be negli-
gible. The exercises were aimed at personnel’s 
being able to manage what develops to be a 
Level 3 incident, which is the highest level of 
bushfire incident complexity (Owen et al., 2008).

Data Collection and Coding 
Procedure

The three key roles (IC, operations, and plan-
ning officers) were video-recorded, and speech 
was also captured. We later transcribed the 
digital audio speech files collected using 
Transana (2010). Audio captured on the video 
recorders was also used to verify parts of the 
dialogue that were difficult to transcribe from 
the digital audio recorders. The transcribers 
were instructed not to include personal identifi-
cation information. The speech transcriptions 
were then printed in hard copy and given to 
corresponding bushfire trainers in charge, who 
coded the transcriptions for cognitive load indi-
cation on the basis of their observations and 
available subjective ratings. The transcriptions 
were coded for four cognitive load levels 
according to the following framework devel-
oped by the bushfire training experts:

1. Low load (casual): Participants were involved
in communication not related to their task, for
example, conversation about personal life.

2. Medium load (routine): Participants were
involved in nonchallenging routine bushfire man-
agement tasks.

3. High load (challenging): Participants were
involved in challenging tasks, for example, han-
dling unexpected events, producing information
reports, and completing tasks within time con-
straints.

4. Very high load (very challenging): Same as high
load; also participants were required to handle
disturbances and breakdowns.

A partial sample of an operator transcrip-
tion annotated with cognitive load is shown in 
Figure 2. Operators’ coded transcripts were 

analyzed by at least three coders, who achieved 
an interrater reliability of 72%. The coders then 
discussed further the points of difference in an 
effort to reach the cognitive load coding frame-
work as described, which resulted in 83% inter-
rater reliability.

The electronic versions of transcriptions 
were then imported into NVivo (2010) and 
coded as per previous manual coding. Then the 
cognitive load–coded digital transcription file 
of each operator was processed semiautomati-
cally to extract and separate the operator’s tran-
scription as per each cognitive load level and 
was saved. These saved files for each operator 
were then converted semiautomatically to a 
form usable by Linguistic Inquiry and Word 
Count (LIWC) automatic text analysis and 
extraction software (Pennebaker, Chung, 
Ireland, Gonzales, & Booth, 2007).

Analyses

We conducted detailed analysis of data col-
lected from the study. During the preliminary 
analysis of the speech transcriptions for all four 
load levels, we observed that for the low and 
very high load levels, there were very few tran-
scripts available, and they covered only 6 and 9 
of the total 33 operators, respectively. To deal 
with this insufficiency of data, we merged the 
low-load data with medium-load data, and 
very-high-load data with high-load data, by 
averaging their corresponding participants’ val-
ues. We referred to these resulting combined 
levels as low load and high load, respectively. 
Hence, all the statistical analyses and results 
that follow are based on the data for these two 
low- and high-load levels.

We used the LIWC tool to automatically 
extract the linguistic and grammatical features 
from the operators’ speech transcriptions for 
both load levels. LIWC extracted the linguistic 
features as percentages of total words spoken 
by the operator to deal with operators’ verbosity 
differences. The software counts the number of 
words for a specific linguistic or grammatical 
feature by matching the words from the tran-
scription with its built-in dictionary of linguistic 
categories. The average dictionary coverage 
(the percentage of words captured by the 
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dictionary) for the bushfire transcriptions was 
more than 86%. LIWC has been used by many 
other studies involving text and/or transcription 

analyses for purposes other than cognitive load 
measurement (Sexton & Helmreich, 2000; 
Stirman & Pennebaker, 2001).

Figure 2. A sample bushfire transcription with cognitive load annotations. Note that the coding in 
column 6 represents the cognitive load level information entered by the bushfire in-charge coders.
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RESULTS
Word Count

For all operators, the average word count for 
low-load task was 1,501.91 words, which is 
lower than that for the high-load task, 1,707.53 
words, a difference of 13.69%. Although this 
trend is exactly as we hypothesized, the differ-
ence in the average word count between low- 
load and high-load levels was not statistically 
significant.

Words per Sentence

In line with the increased word count, we 
also expected longer sentences spoken by the 
operators resulting from more explanations 
happening with a high-load task. For all bush-
fire operators, average words per sentence for 
the low-load task was 9.21 words, which is 
found to be significantly fewer than that for the 
high-load task at 11.37 words, a significant dif-
ference of 23.44%, shown by a one-tailed t test 
(t = –2.92, t

c
 = 1.69, df = 32, p = .003). This

finding suggests an increasing trend of words 
per sentence, confirming longer sentences and 
more communication with a high-load task than 
with a low-load task, as expected.

Agreement and Disagreement Words

We expected the bushfire operators to show 
more agreement among each other with low-load 
tasks than with high-cognitive-load tasks. To test 
this hypothesis for the study, the average number 
of agreement words used for the low-load task 
was found to be 3.48% of total spoken words, 
significantly higher than that for the high-load 
task at 2.01%, a difference of –42.07%, shown 
by a one-tailed t test (t = 4.93, t

c
 = 1.69, df = 32,

p = .0001). Similarly, the average use of dis-
agreement words for the low-load task is 1.39%, 
which is significantly lower than that for the high 
load task at 1.79% (significant difference  
of 29.19%), shown again by a one-tailed t test  
(t = –2.47, t

c
 = 1.69, df = 32, p = .009).

These results suggest that higher level of 
cognitive load is associated with decreased 
agreement and increased disagreement among 
people working together in a team to solve a 
problem.

Personal Pronouns

We conducted analysis of the use of personal 
pronouns to see whether there were any main 
effects and interaction between cognitive load 
levels and use of personal pronouns. We 
expected that bushfire operators would use 
more singular personal pronouns in a low-load 
task situation than with a high-load task. We 
merged first-person singular and third-person 
singular pronouns together and first-person plu-
ral and third-person plural pronouns together 
and then conducted the following analyses.

Main effects and interaction between cogni-
tive load and personal pronouns. To check the 
main effects of the levels of cognitive load (low 
load vs. high load) and the pronoun types (sin-
gular vs. plural pronouns) and the interaction 
between the two, we performed a two-way 
repeated-measured ANOVA test.

We found a significant main effect of pro-
noun type (singular vs. plural pronouns), F(1, 
65) = 114.36, p < .001. The operators’ use of
singular and plural pronouns, on average, was 
significantly different for low-load and high-
load tasks. Specifically, operators used signifi-
cantly more plural than singular personal 
pronouns in the high-load situation.

More importantly, the analysis showed that 
there was a significant interaction between  
the use of pronoun types (singular and plural) 
and cognitive load levels (low and high), F(1, 
65) = 18.33, p < .001. This finding means that
the effect of cognitive load level is different for 
singular and plural pronouns; that is, operators 
used more singular pronouns than plural in low-
load situations and more plural pronouns than 
singular in high-load situations, as originally 
hypothesized. Figure 3 shows the significant 
main effect and the interaction between cogni-
tive load levels and singular versus plural 
pronouns.

First-person singular and third-person singu-
lar pronouns. The aforementioned analyses 
showed significant interaction between singular 
and plural personal pronouns and levels of cogni-
tive load. To further investigate the individual 
use of different singular pronouns, we conducted 
simple effects tests. For all operators, their 
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average use of first-person singular pronouns for 
the low-load task was found to be 2.21% of total 
words spoken, which is significantly higher than 
that for the high-load task at 1.6%, a difference 
of –28%, shown by a one-tailed t test (t = 1.96,  
t
c
 = 1.69, df = 32, p = .02). Similarly, average use 

of third-person singular pronouns for the low-
load task is 0.699%, also significantly higher 
than that for the high-load task at 0.389% (differ-
ence of –44%), shown by a one-tailed t test  
(t = 2.27, t

c
 = 1.69, df = 32, p = .015). These 

results show a clear trend of overall decreased 
singular pronoun use linked with increased load.

First-person plural and third-person plural 
pronouns. For all operators, their average use of 
first-person plural pronouns for the low-load 
task is 3.20%, which is significantly lower than 
that for the high-load task at 3.97% (difference 
of 24%), shown by a one-tailed t test (t = –2.05, 
t
c
 = 1.69, df = 32, p = .02). Similarly, average 

use of third-person plural pronouns for the low-
load task is 1.26%, significantly lower than that 
for the high-load task at 1.68%, a difference of 
33%, shown again by a one-tailed t test (t = 
–2.28, t

c
 = 1.69, df = 32, p = .01). These results 

demonstrate participants’ overall increased use 
of plural pronouns for high-load tasks, which 
shows the need to share the increased load 
among other team members.

Second-person pronoun you. As mentioned 
earlier, second-person pronoun you can be used 
for both singular and plural, so the results may 
be ambiguous. For all operators, we observed 
that the overall use of the second-person pro-
noun you decreased from 2.46% for the 

low-load task to 1.86% for high-load tasks, a 
significant difference of –24%. This result is 
similar to the behavior of other singular pro-
nouns, but because of its inherent ambiguity in 
its singularity and/or plurality, it is difficult to 
conclude whether this difference was attribut-
able to greater use of singular you pronouns for 
low-load tasks.

DISCUSSION
Analyses of some novel linguistic and gram-

matical features of cognitive load were carried 
out. The results confirm that while working 
collaboratively and performing high-cognitive-
load tasks, people speak more with other team 
members to manage and share the high task 
complexity. The results show that participants, 
especially those working in a collaborative 
team environment, consistently use singular 
pronouns and plural pronouns differently in dif-
ferent task load situations. Specifically, they 
used significantly more singular pronouns for 
low-load tasks than for high-load tasks; that is, 
the lower the cognitive demand, the greater use 
of singular pronouns. In contrast, they used 
significantly more plural pronouns for high-
load tasks than for low-load tasks; that is, the 
higher the cognitive load, the greater use of 
plural pronouns. These results support the 
notion that people actually collaborate and 
coordinate tasks more with each other during 
highly complex real-world tasks. These results 
are summarized in Table 1.

The results also suggest that in collaborative 
interaction situations, when dealing with low-
cognitive-load tasks, team members are more 
confident about the task, prefer to perform tasks 
individually, and feel more comfortable accept-
ing responsibilities and/or agreeing to the facts 
or instructions presented by other team mem-
bers. In contrast, when dealing with complex 
and high-cognitive-load tasks, they do not agree 
easily and/or take individual responsibility; 
rather, they try to involve other team members 
to share the high and otherwise unmanageable 
cognitive load. This approach helps them to 
effectively solve problems during high-load 
tasks and improve the team’s overall perfor-
mance by working together and sharing the 
activities of the task when complexity increases 
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(Kirschner et al., 2009). Although these results 
apply across a variety of people, they may be 
specific to this combination of tasks in a col-
laborative bushfire management scenario. 
Further testing is suggested to confirm that 
results generalize to other types of applications, 
such as road or air traffic management tasks.

The linguistic assessment of cognitive load 
available through analysis of users’ speech is 
attractive because it offers the potential to pro-
vide dynamic support and achieve adaptive sys-
tem behavior, especially with the availability of 
appropriate technology for automatic speech 
recognition. If users experiencing high load can 
be identified by the system, they can be catered 
to with extra support, or perhaps through adap-
tation of the organizational or system behavior, 
to decrease their overall experienced cognitive 
load to more manageable levels. For example, 
in the bushfire management control center sce-
nario, the system may be able to adapt many 
elements, such as highlighting a critical com-
puter screen or a specific information window, 
sorting and prioritizing task checklists, showing 
controlled reminders, filtering e-mail or text 
messages, redirecting phone calls to the less 
cognitively loaded operators, and so on.

CONCLUSION AND FUTURE WORK
This study provides encouraging evidence  

and presents some novel linguistic and grammati-
cal features extracted from natural speech as 

potential indices of users’ experienced cognitive 
load. These features may be applied to many data-
intense and safety-critical task scenarios, such as 
bushfire management or traffic incident manage-
ment centers, air traffic control rooms, and call 
centers, where speech is used as part of day-to-
day tasks on the phone or face-to-face. We expect 
that such promising features can complement 
other measures of cognitive load, such as physio-
logical or performance features, and form part of 
a greater multimodal suite of measures acting 
together as robust indices of cognitive load.

We envisage a system that, after training, 
would be able to detect and calculate these and 
other similar speech and linguistic features 
automatically and to update these at regular 
intervals, such that an accurate indication of 
load is available at all times and can be used to 
update, modify, and adapt information pre-
sented to users in real time.
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KEy POINTS
 • The manuscript proposes a linguistic analysis 

approach to human cognitive load measurement.
 • Analysis of collaborative communication has 

been conducted for linguistic indices of cognitive 
load.

TABLE 1: Summary of Linguistic and Grammatical Features of Cognitive Load (N = 33)

Linguistic/Grammatical Features
Low-Load Task  

Average
High-Load Task 

Average Difference*(%)

Word counta 1501.91 1707.53 13.69c

Words per sentencea 9.21 11.37 23.44
Agreement wordsb 3.48 2.01 −42.07
Disagreement wordsb 1.39 1.79 29.19
First-person singular pronounsb 2.21 1.60 −28
Third-person singular pronounsb 0.699 0.389 −44
First-person plural pronounsb 3.20 3.97 24
Third-person plural pronounsb 1.26 1.68 33

aValues in number of words.
bValues in percentage of total words spoken.
cBehavior as expected but not significant.
*p = .025 (one-tailed t test).
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 • Novel linguistic and grammatical features as 
measures of users’ cognitive load have been iden-
tified.

 • A new way of adapting system response and interac-
tion and providing dynamic user support has been 
proposed.
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