
AN ARCHITECTURE FOR COEXISTENCE WITH MULTIPLE USERS IN

FREQUENCY HOPPING COGNITIVE RADIO NETWORKS

THESIS

Ryan K. McLean, Second Lieutenant, USAF

AFIT-ENG-13-M-34

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, the Department of Defense, or the United
States Government.

This material is declared a work of the U.S. Government and is not subject to copyright
protection in the United States.

AFIT-ENG-13-M-34

AN ARCHITECTURE FOR COEXISTENCE WITH MULTIPLE USERS IN

FREQUENCY HOPPING COGNITIVE RADIO NETWORKS

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Insitute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science in Computer Engineering

Ryan K. McLean, B.S.C.E.

Second Lieutenant, USAF

March 2013

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT-ENG-13-M-34
Abstract

The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes

stem from this scarcity as many radio devices are confined to a fixed frequency or

frequency sequence. One alternative is to incorporate cognition within a reconfigurable

radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments.

In this way, the radio is able to actively observe the RF spectrum, orient itself to the current

RF environment, decide on a mode of operation, and act accordingly, thereby sharing the

spectrum and operating in more flexible manner. This research presents a novel framework

for incorporating several techniques for the purpose of adapting radio operation to the

current RF spectrum environment. Specifically, this research makes six contributions to the

field of cognitive radio: (1) the framework for a new hybrid hardware/software middleware

architecture, (2) a framework for testing and evaluating clustering algorithms in the context

of cognitive radio networks, (3) a new RF spectrum map representation technique, (4)

a new RF spectrum map merging technique, (5) a new method for generating a random

key-based adaptive frequency-hopping waveform, and (6) initial integration testing toward

implementing the proposed system on a field-programmable gate array (FPGA).

iv

To my beautiful wife: Simply put, I really couldn’t have done this without you.

v

Acknowledgments

I would first like to thank my advisor and thesis committee chair for his unrelenting

support, guidance, and critical review. My concept of scientific research and the research

process was challenged and expanded while at AFIT, and I am duly grateful for his

encouragement in that endeavor. He has also served as a valuable mentor in my first active

duty tour. Additionally, I owe sincere thanks to my committee: to Dr. Hopkinson for his

guidance in algorithm and conference selection, and to Dr. Lanzerotti for her keen insight

into thorough paper formulation and editing. Any errors in this document are my own.

Finally, I extend my and my committee’s thanks to AFRL/RWYE for their continuing

support of this research, including lab access, test data generation, experiment guidance,

and project funding.

Ryan K. McLean

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgments . vi

Table of Contents . vii

List of Figures . xi

List of Tables . xvii

List of Acronyms . xviii

1 Introduction . 1
1.1 Motivation . 3

1.1.1 Air Force Technology Horizons 2010 3
1.1.2 LightSquared versus the FCC . 5
1.1.3 Tactical DSA . 6
1.1.4 Cognitive Radio Network Reliability 7

1.2 Problem Statement . 8
1.3 Research Contributions . 11
1.4 Thesis Organization . 11

2 Related Work . 12
2.1 Cognitive Radio . 12

2.1.1 An Increasingly Smarter Radio . 13
2.1.2 Governing Standards . 18

2.2 Adaptive Frequency Hopping (AFH) . 21
2.2.1 Legacy Frequency Hopping Systems 21

2.2.1.1 Single Channel Ground and Airborne Radio System
(SINCGARS) . 21

2.2.1.2 HAVE QUICK . 21
2.2.1.3 High Frequency (HF) AFH 22
2.2.1.4 Summary . 22

2.2.2 Bluetooth (802.15.1) & WLAN (802.11) 23
2.2.3 Dynamic Adaptive Frequency Hopping 24

vii

Page

2.2.4 Summary . 24
2.3 RF Spectrum Sensing & Mapping . 25

2.3.1 Cooperative Sensing . 25
2.3.2 Spectrum Map Storage & Usage 26

2.3.2.1 Radio Environment Map 27
2.3.2.2 Overhead Analysis for REM-enabled Cognitive Radio

Networks . 27
2.3.2.3 Radio Environment Map-enabled Learning Algorithms . 31

2.3.3 Threshold Detection . 32
2.3.4 Summary . 32

2.4 Clustering . 32
2.4.1 Overview . 32
2.4.2 k-means Clustering . 33
2.4.3 University of Maryland Testbed 33
2.4.4 Cluster Visualization . 34
2.4.5 Summary . 34

2.5 FPGA-Based Cognitive Radio . 35
2.5.1 Kansas University Agile Radio (KUAR) 35
2.5.2 Wireless Open-Access Research Platform (WARP) 35
2.5.3 Trinity College’s Cognitive Radio Framework 35
2.5.4 Berkeley Emulation Engine 2 (BEE2) 35
2.5.5 Virginia Tech Public Safety Cognitive Radio (PSCR) 36
2.5.6 Summary . 36

2.6 Background Summary . 36

3 Methodology . 38
3.1 Whole System . 39

3.1.1 Assumptions . 39
3.1.2 Whole System Function . 40
3.1.3 Whole System Structure . 43

3.2 Network Clustering . 46
3.2.1 Problem Definition . 46

3.2.1.1 Goals and Hypothesis 46
3.2.1.2 Approach . 46

3.2.2 System Services . 48
3.2.3 System Boundaries . 50
3.2.4 Workload . 51
3.2.5 Performance Metrics . 52

3.2.5.1 Spectrum Representation and Threshold Determination . 52
3.2.5.2 REM Scenarios . 53
3.2.5.3 Spectrum Map Comparison 55
3.2.5.4 Intra-Cluster Spectrum Similarity 56

viii

Page

3.2.6 System Parameters . 57
3.2.7 Factors . 62
3.2.8 Evaluation Technique . 66

3.2.8.1 Technique . 66
3.2.8.2 Experimental configuration 66
3.2.8.3 Results validation . 67

3.2.9 Experimental Design . 67
3.2.10 Methodology Summary . 67

3.3 Adaptive Hopset Selection . 68
3.3.1 Spectrum Input . 68
3.3.2 FPGA Internal Structure . 69
3.3.3 IP Core Internal Structure . 69
3.3.4 IP Core Internal Function . 71

3.3.4.1 Bandwidth Masking . 71
3.3.4.2 REM Merging Components 72
3.3.4.3 Adaptive Hopset Selection 73

3.3.5 System Testing . 75
3.3.6 Optimization Goals . 75

4 Results . 76
4.1 Network Clustering . 76

4.1.1 Clustering Baseline . 76
4.1.2 Clustering Visualization . 77
4.1.3 ICSS Evaluation . 79
4.1.4 Application to System Implementation 83

4.2 Adaptive Hopset Selection . 85
4.2.1 Mapped Simulation . 85
4.2.2 Standalone Device Usage . 88
4.2.3 Timing Analysis . 88
4.2.4 Hopset Selection Demonstration 89
4.2.5 Device Usage Floorplans . 91
4.2.6 Optimization Achievements . 91

5 Conclusions . 92
5.1 Research Contributions . 92
5.2 Whole System . 92
5.3 Network Clustering . 93
5.4 Adaptive Hopset Selection . 94
5.5 Final Remarks . 94

6 Future Work . 95

ix

Page

Appendix A: DYSE-Generated RF Spectrum Maps 103

Appendix B: Node Distributions . 109

Appendix C: Additional FPGA Design Figures . 113

Appendix D: Additional Clustering Visualization Plots 115

Appendix E: Additional ICSS Plots . 132

Appendix F: MATLAB Code . 147

Appendix G: VHDL Code . 169

x

List of Figures

Figure Page

1.1 The OODA loop as a “cognitive cycle” [3]. 2

1.2 Expected system operation. 4

1.3 Conflicting LightSquared and GPS spectrum assignments. 5

1.4 System function. 9

2.1 Relation of IEEE 802.22 to other IEEE network standards [13]. 20

2.2 Standalone SINCGARS radio [19]. 21

2.3 HAVE QUICK panel mount in an F-16 [20]. 22

2.4 Early AFH system [21]. 23

2.5 Possible REM characteristics [29]. 28

3.1 Whole system function. 41

3.2 Proposed middleware architecture. 45

3.3 Baseline receiver configurations. 47

3.4 Network clustering test framework function. 48

3.5 Network clustering test framework structure. 50

3.6 Threshold application example. 52

3.7 Cluster scenario S-A. 54

3.8 Cluster scenario S-B. 54

3.9 Cluster scenario S-C. 55

3.10 Hamming distance example. 56

3.11 ICSS calculation example. 57

3.12 RF spectrum map examples. 58

3.13 Applied threshold coefficient example. 59

3.14 Transmitter configurations 1–6. 63

xi

Figure Page

3.15 Transmitter configurations 7–10. 64

3.16 Sample uniform (left), Gauss (center), and multi-cluster (right) node distribu-

tions with seed = 1. 65

3.17 Spectrum-to-node mapping example. 66

3.18 Spectrum input diagram. 68

3.19 FPGA bus structure diagram. 70

3.20 AHS structural diagram. 71

3.21 Example bandwidth mask vector. 71

3.22 Map merging example. 72

3.23 AHS functional diagram. 74

4.1 Canned cluster verification test. 76

4.2 Cluster visualization of a uniform distribution using DYSE map #3. 77

4.3 Cluster visualization of a Gauss distribution using DYSE map #3. 78

4.4 Cluster visualization of a multi-cluster distribution using DYSE map #3. 78

4.5 ICSS for uniform distributions using DYSE maps #1 and #5. 80

4.6 ICSS for Gauss distributions using DYSE maps #1 and #5. 81

4.7 ICSS for uniform distributions using DYSE maps #1 and #5. 82

4.8 REM loading . 85

4.9 Key loading . 86

4.10 Channel counting . 86

4.11 Hopset retrieval . 87

4.12 Hopset generation finished . 87

4.13 Full operation . 88

4.14 Hopset output example. 89

4.15 AHS+WARP device usage diagram. 90

xii

Figure Page

A.1 DYSE-generated RF spectrum map #1. 103

A.2 DYSE-generated RF spectrum map #2. 104

A.3 DYSE-generated RF spectrum map #3. 104

A.4 DYSE-generated RF spectrum map #4. 105

A.5 DYSE-generated RF spectrum map #5. 105

A.6 DYSE-generated RF spectrum map #6. 106

A.7 DYSE-generated RF spectrum map #7. 106

A.8 DYSE-generated RF spectrum map #8. 107

A.9 DYSE-generated RF spectrum map #9. 107

A.10 DYSE-generated RF spectrum map #10. 108

B.1 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 1). 109

B.2 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 2). 109

B.3 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 4). 110

B.4 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 5). 110

B.5 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 6). 110

B.6 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 7). 111

B.7 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 8). 111

B.8 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 9). 111

B.9 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 10). 112

B.10 Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 11). 112

C.1 AHS device usage diagram. 113

C.2 AHS internal structure. 114

D.1 Baseline node distribution with two apparent clusters. 115

D.2 Baseline node distribution with four apparent clusters. 115

D.3 Baseline node distribution with eight apparent clusters. 116

xiii

Figure Page

D.4 Baseline node distribution with 16 apparent clusters. 116

D.5 Uniform node distribution using DYSE map #1. 117

D.6 Gauss node distribution using DYSE map #1. 117

D.7 Multi-cluster node distribution using DYSE map #1. 118

D.8 Uniform node distribution using DYSE map #2. 118

D.9 Gauss node distribution using DYSE map #2. 119

D.10 Multi-cluster node distribution using DYSE map #2. 119

D.11 Uniform node distribution using DYSE map #3. 120

D.12 Gauss node distribution using DYSE map #3. 120

D.13 Multi-cluster node distribution using DYSE map #3. 121

D.14 Uniform node distribution using DYSE map #4. 121

D.15 Gauss node distribution using DYSE map #4. 122

D.16 Multi-cluster node distribution using DYSE map #4. 122

D.17 Uniform node distribution using DYSE map #5. 123

D.18 Gauss node distribution using DYSE map #5. 123

D.19 Multi-cluster node distribution using DYSE map #5. 124

D.20 Uniform node distribution using DYSE map #6. 124

D.21 Gauss node distribution using DYSE map #6. 125

D.22 Multi-cluster node distribution using DYSE map #6. 125

D.23 Uniform node distribution using DYSE map #7. 126

D.24 Gauss node distribution using DYSE map #7. 126

D.25 Multi-cluster node distribution using DYSE map #7. 127

D.26 Uniform node distribution using DYSE map #8. 127

D.27 Gauss node distribution using DYSE map #8. 128

D.28 Multi-cluster node distribution using DYSE map #8. 128

xiv

Figure Page

D.29 Uniform node distribution using DYSE map #9. 129

D.30 Gauss node distribution using DYSE map #9. 129

D.31 Multi-cluster node distribution using DYSE map #9. 130

D.32 Uniform node distribution using DYSE map #10. 130

D.33 Gauss node distribution using DYSE map #10. 131

D.34 Multi-cluster node distribution using DYSE map #10. 131

E.1 ICSS for uniform distributions using DYSE map #1. 132

E.2 ICSS for Gauss distributions using DYSE map #1. 132

E.3 ICSS for multi-cluster distributions using DYSE map #1. 133

E.4 ICSS for uniform distributions using DYSE map #2. 133

E.5 ICSS for Gauss distributions using DYSE map #2. 134

E.6 ICSS for multi-cluster distributions using DYSE map #2. 134

E.7 ICSS for uniform distributions using DYSE map #3. 135

E.8 ICSS for Gauss distributions using DYSE map #3. 135

E.9 ICSS for multi-cluster distributions using DYSE map #3. 136

E.10 ICSS for uniform distributions using DYSE map #4. 136

E.11 ICSS for Gauss distributions using DYSE map #4. 137

E.12 ICSS for multi-cluster distributions using DYSE map #4. 137

E.13 ICSS for uniform distributions using DYSE map #5. 138

E.14 ICSS for Gauss distributions using DYSE map #5. 138

E.15 ICSS for multi-cluster distributions using DYSE map #5. 139

E.16 ICSS for uniform distributions using DYSE map #6. 139

E.17 ICSS for Gauss distributions using DYSE map #6. 140

E.18 ICSS for multi-cluster distributions using DYSE map #6. 140

E.19 ICSS for uniform distributions using DYSE map #7. 141

xv

Figure Page

E.20 ICSS for Gauss distributions using DYSE map #7. 141

E.21 ICSS for multi-cluster distributions using DYSE map #7. 142

E.22 ICSS for uniform distributions using DYSE map #8. 142

E.23 ICSS for Gauss distributions using DYSE map #8. 143

E.24 ICSS for multi-cluster distributions using DYSE map #8. 143

E.25 ICSS for uniform distributions using DYSE map #9. 144

E.26 ICSS for Gauss distributions using DYSE map #9. 144

E.27 ICSS for multi-cluster distributions using DYSE map #9. 145

E.28 ICSS for uniform distributions using DYSE map #10. 145

E.29 ICSS for Gauss distributions using DYSE map #10. 146

E.30 ICSS for multi-cluster distributions using DYSE map #10. 146

xvi

List of Tables

Table Page

2.1 Recent advances in CR fundamentals. 14

2.2 Recent advances in spectrum sensing and analysis. 15

2.3 Recent advances in dynamic spectrum allocation and sharing. 16

2.4 Recent advances in spectrum sensing and analysis. 18

2.5 REM information element for IEEE 802.22 systems [10]. 30

3.1 Workload parameters and descriptions. 51

3.2 System parameters. 61

3.3 System factors. 62

4.1 Device Resource Usage Summary. 89

xvii

List of Acronyms

Acronym Definition

AFH Adaptive Frequency Hopping

AFIT Air Force Institute of Technology

AFRL Air Force Research Laboratory

AHS Adaptive Hopset Selector

BEE2 Berkeley Emulation Engine 2

BRAM Block RAM

CE Cognitive Engine

CR Cognitive Radio

CRN Cognitive Radio Network

DAFH Dynamic Adaptive Frequency Hopping

DARPA Defense Advanced Research Projects Agency

DSA Dynamic Spectrum Access

DYSE Dynamic Spectrum Emulator

EDK Embedded Development Kit

FASU Frequency Agile Spectrum Usage

FCC Federal Communications Commission

FFT Fast Fourier Transform

FH Frequency Hopping

FPGA Field-Programmable Gate Array

GPS Global Positioning System

HELLO (Not an acronym)

HF High Frequency

ICSS Intra-Cluster Spectrum Similarity

xviii

Acronym Definition

IEEE Institute of Electrical and Electronics Engineers

IP (core) Intellectual Property

IP (address) Internet Protocol

ISM Industrial-Science-Medicine

KUAR Kansas University Agile Radio

KTA Key Technology Area

MAC Media Access Control

OLSR Optimized Link State Routing

OODA Observe-Orient-Decide-Act

PCA Potential Capability Area

PCSR Public Safety Cognitive Radio (Virginia Tech)

PU Primary User

RAM Random Access Memory

REM Radio Environment Map

RF Radio Frequency

SA Situational Awareness

SCF Service Core Function

SDR Software-Defined Radio

SINCGARS Single Channel Ground and Airborne Radio System

SINR Signal to Interference and Noise Ratio

SISO Single Input Single Output

SU Secondary User

TOMC Totally-Ordered Multicast

UHF Ultra High Frequency

UNII Unlicensed National Information Infrastructure

xix

Acronym Definition

UWB Ultra-wideband

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

WARP Wireless Open Access Research Platform

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WRAN Wireless Regional Area Network

WPAFB Wright Patterson Air Force Base

xx

AN ARCHITECTURE FOR COEXISTENCE WITH MULTIPLE USERS IN

FREQUENCY HOPPING COGNITIVE RADIO NETWORKS

1 Introduction

Today’s radio frequency (RF) spectrum is increasingly congested. In America,

the Federal Communications Commission (FCC) partitions the RF spectrum into

frequency ranges based on the needs and capabilities of radio equipment. Originally,

the FCC performed this partitioning according to input from public hearings. Over time,

spectrum allocation became the product of systems such as lotteries and spectrum auctions.

Currently, the pervasiveness of equipment that uses the RF spectrum (radio and television

stations, cell phones, wireless internet, etc.) demands more flexibility of the spectrum

allocation process. In the future, the ever-expanding wireless footprint implies that devices

will need to adapt their transmission and reception capabilities to the RF spectrum in which

they communicate. This practice is known as “dynamic spectrum access” (DSA). However,

even with an adaptive communication technique, the RF spectrum’s density (especially the

overlapping of spread-spectrum transmissions) will still likely detract from an adaptive

waveform’s transmission.

Additionally, some spectrum assignments are applied to all times during the day, yet

many are only used consistently for brief periods of time. Frequencies which may be used

at any given time by a specific user, but which are used only periodically, significantly

contribute to wasted spectrum assignment. This issue is extensible to the military’s need for

radios which can function regardless of their geographic location, the time of day, and the

local spectrum policy. Were military (or civilian) radios able to operate in unused spectrum

1

Figure 1.1: The OODA loop as a “cognitive cycle” [3].

during times of limited actual usage, the spectrum could be used much more efficiently.

This research presents an architecture through which this need can be met.

It is believed a cognitive radio (CR) can be used to implement DSA in solving the

aforementioned questions as related to RF spectrum congestion and spatial/temporal policy

conflicts. CRs are a subset of the now-common radio implementation, the software-defined

radio. The CR’s power is twofold. First, by using a field-programmable gate array (FPGA),

the CR becomes a high-speed, circuit-based yet reconfigurable device [1]. (For this reason,

some refer to CRs as “firmware-defined radios”). Second, CRs implement Colonel John

Boyd’s famed Observe-Orient-Decide-Act (“OODA”) loop as a means by which to make

informed, adaptive decisions on transmission and reception policy. In summary, the CR is

DSA’s enabling technology [2].

Colonel Boyd’s OODA loop models the initial problem set. First, a radio senses its

local RF spectrum (observation). Next, the software contained on the radio constructs a

map of the RF spectrum (a radio environment map, or REM) from which to use available

2

frequencies (orientation). Third, the radio assembles a randomized frequency hopping

pattern (the hopset), for distribution to neighboring radios (decision). Finally, the radio uses

the hopset for adaptive communication (action). There are various namings, interpretations,

and implementations of this model, such as that of [3] (e.g., the “cognitive cycle”), but each

distills down to the OODA loop. Figure 1.1 shows how the OODA loop maps directly to the

interpretation from [3]. The mapping of colors to OODA loop functions remains constant

in the related diagrams throughout this document.

Figure 1.2 shows how the proposed system is follows the OODA model over time in

the presence of interference. It is worthwhile to note that this system is not focused on the

transmission or reception of specific data—only adapting to the current RF environment.

At period A, the system constantly observes the environment. Period B shows notional

expected performance while the spectrum is changing, the existing adaptations are under

duress, and the radio is reorienting itself. Period C is when the system must decide how

to react to the new RF environment. The system (re)acts using its decision at period D

and, finally, resumes observation at some improved level of performance (three feasible

outcomes are shown).

The natural extension of this process is implementing it in a cognitive radio network

(i.e., two or more). In this case, the observation step involving spectrum sensing expands

to include spectrum observation dispersion within the network. If those radios which must

communicate are aware of the RF spectra at those other nodes within the network, then

observation is complete within the network.

1.1 Motivation

1.1.1 Air Force Technology Horizons 2010.

The vision in [4] delivers a two-decade (2010-2030) outlook of the Air Force’s current

technological capabilities, an assessment of future challenges, and a plan for the molding

3

Figure 1.2: Expected system operation.

of Air Force technology to meet such challenges. Produced by the office of the Air Force

Chief Scientist, it provides a high level review to the service’s senior staff, specifically the

Secretary of the Air Force and Chief of Staff of the Air Force. “Technology Horizons”

presents 12 Air Force “Service Core Functions” (SCFs), analogous to “strategic”-level

functions needed by the service to accomplish its missions. Also identified are 30 “Potential

Capability Areas” (PCAs). PCAs are defined as “credibly achievable within the time

horizon addressed by this study.” Additionally, each PCA is mapped to each SCF such

that every SCF is supported by multiple PCAs. Under the PCAs, and at a finer level of

granularity, the document also lists 110 “Key Technology Areas” (KTAs). KTAs compose

a large, overlapping set of those technologies that make each PCA possible. In paraphrase,

these are the focus areas the Air Force believes it can and will technologically conquer by

the year 2030 [4].

PCA number seven is “Frequency Agile Spectrum Utilization” (FASU). Within FASU

is Dynamic Spectrum Utilization (DSA), the core tactical goal of this thesis. The fact that

the Air Force has identified FASU, and by extension, DSA, as a major tenet of the service’s

near-, mid-, and long-term technical superiority calls for additional research, development,

4

Figure 1.3: Conflicting LightSquared and GPS spectrum assignments.

and fielding of systems in this key area. In the context of [4], FASU is featured in five

PCAs. Of larger impact is the high number of SCFs to which the FASU PCA maps: PCA

number seven maps to 11 out of 12 SCFs; of all 30 PCAs, only five map to an equal or

greater amount of SCFs. The bottom line is this: FASU and DSA are projected to have a

significant impact on Air Force strategy and operations over the next two decades.

1.1.2 LightSquared versus the FCC.

Spectrum access and sharing issues are also of relevance in the civilian sector.

In recent years, the company LightSquared has sought to build a nation-wide wireless

broadband network using previously vacant spectrum (Figure 1.3, darkened within the

Mobile Satellite Band) near the GPS band (Figure 1.3, darkened within the Global Satellite

Navigation Band). In fact, the effort was originally sanctioned (and even propelled) by

the FCC. It was eventually realized through testing, though, that LightSquared’s spectrum

allotment and the energy generated within that spectrum would bleed over into the global

satellite navigation band. Specifically, the GPS sub-band would be impacted, if not

drowned out, in certain locations [5].

As a result of this conflict, the FCC directed LightSquared to form a working group

comprised of LightSquared, government, and industry GPS engineers. The working

group’s decision was issued in a report in June 2011 with the declaration that the current

course of action would indeed degrade GPS receiver performance. More damning was a

comment from the group’s aviation committee: “For the originally defined LightSquared

5

spectrum deployment scenarios, GPS-based operations are expected to be unavailable over

entire regions of the country at any normal operational aircraft altitude”. In other words,

in many areas aircraft flying below 2,000 feet above ground level would have little or no

GPS guidance. This is particularly dangerous because many aircraft, from general aviation

to airliners to military aircraft, use a high-precision version of GPS to take off and land.

Degraded GPS in these environments can be deadly, especially if it is unexpected.

The obvious source of contention is spectrum allocation policy as it pertains to

governing transmitters. However, [5] poses the following question: Is it time for the

FCC to focus on protecting receivers? Unfortunately, the LightSquared/FCC debate is

too advanced redesign the underlying hardware, but in future and with receiver-oriented

regulations, a situation such as the LightSquared incident could be resolved on the drawing

board. For example, if GPS receivers were protected, the issues would be oriented

toward the end-user from the very start of system design—it is reasonable to assume

the LightSquared issue could have been avoided early in the process by designing around

receiver protections. Although there are no FCC regulations in place to protect receivers,

this research is a start toward solving the problem of dynamic receiver behavior in the

presence of interference.

The LightSquared incident is a clear example of the need for DSA and FASU on a

national infrastructure scale. Furthermore, CR is an ideal method for implementing both

concepts. Given a CR’s natural ability to avoid spectrum conflicts, it becomes a highly

attractive solution to conflicts ranging from low-profile, low-impact personal networks to

high-profile, high-impact situations such as the predicament of LightSquared.

1.1.3 Tactical DSA.

The Defense Advanced Research Projects Agency (DARPA) has also identified the

need for DSA in tactical scenarios. Currently, ground-based troops have no means for

detecting spectrum usage for the purpose of avoiding such interference. In theater, troops

6

are often faced with spectrum congestion. In a tactical environment where a mission is at

stake and lives are at risk, arguably the worst problem for a commander is a breakdown

or total loss of communication with his troops. DARPA seeks to alleviate this issue

by providing commanders and their troops with a means for identifying occupied and

unoccupied RF spectrum. This capability does not focus on the content of transmissions,

but solely on classifying the energy present in the local RF spectrum [6, 7].

Given a digital analysis of the spectrum, this research presents a method in which

a map of the radio spectrum intelligible by frequency-hopping hardware is produced. The

representation is not tailored for visual inspection or human interface as would be DARPA’s

proposed map. It does, however, give the components implemented in this research the

capability to identify unoccupied portions of the RF spectrum for the purpose of avoiding

unnecessary congestion and interference.

Additionally, DARPA previously researched a new method for taking advantage of

unused RF spectrum–conceivably for use with such a map primarily for public DSA [8].

The neXt Generation (XG) communication program was proven in 2006 in a six-node

network to be able to opportunistically use otherwise wasted spectrum [9]. The proposed

system has the same basic function regarding the ability to use open spectrum space. In

addition to building on the XG radio’s functionality and network size, this research involves

a fully-scalable network (to be tested in this work at 100 nodes) and a frequency-hopping

waveform in place of a single-frequency operation.

1.1.4 Cognitive Radio Network Reliability.

If a radio is truly cognitive, there is a well-defined set of parameters by which the radio

evaluates its situation and reacts in a way that enables it to continue operation using a new

configuration. We believe reliability in a cognitive radio network is the result of effective

resource usage after it adapts to its environment. Our cognitive radio uses a frequency

hopping waveform for communication. Therefore, the system’s cognitive functionality

7

stems from its ability to evaluate occupied and unoccupied frequencies within a network,

form an adaptive hopset, and use the selected waveform. By implementing an adaptive

process, the CR becomes a direct solution to the questions of FASU and DSA in that

is reconfigurable to multiple frequencies and can access the spectrum in a self-propelled

manner.

Reliability in our system, then, is a function of the number of frequencies from which

the radio selects its hopset. A large set of open frequencies allows the radio to traverse

more of the RF spectrum, thereby decreasing the likelihood of significant data loss due to

interference. It is expected geographically partitioning a CRN yields groups, or clusters,

with similar observed RF spectra. This experiment investigates which clustering heuristic,

if any, partitions the network such that overall network complexity is reduced for the

purpose of minimizing extraneous network traffic when transmitting data (i.e., spectrum

maps, waveforms, actual data, etc.). If network complexity is reduced, it is expected

the network becomes more reliable as data is transmitted more efficiently and with fewer

collisions and/or delays.

1.2 Problem Statement

The following operations govern the functionality of the whole system. Brief

operation descriptions are given here, while full explanations are presented in Section

3.1.2. Each operation corresponds to a state of the same label in Figure 1.4, where

“network partitioning” and “waveform” map to implementing “clustering” and “hopset,”

respectively, in this research. Additionally, each operation maps to the color-corresponding

OODA function in Figure 1.1. This coloring scheme is continued through the remainder of

the document.

8

Figure 1.4: System function.

• O-1. Sense RF spectrum. Detect the presence of other spectrum users.

• O-2. Form network partitions. Partition the network into sub-networks based on

geographic location.

• O-3. Share spectrum maps. Distribute spectrum knowledge throughout the

network.

• O-4. Merge spectrum maps. Fuse the sensed data for optimal waveform selection.

9

• O-5. Select waveform. Generate a waveform common to all nodes within a sub-

network.

• O-6. Send waveform. Distribute waveform information to all nodes within network.

• O-7. Use waveform. Engage in normal communication using the adaptive

waveform.

The issues identified in Section 1.1 represent a sampling of the issues currently

recognized within the DSA community. It is expected a framework that accomplishes the

preceding seven steps is a step toward answering some of these questions. This research

proposes such a framework in the form of a middleware architecture and implements

several key components. Succinctly, the goal is to answer the following question: How can

we implement a frequency hopping cognitive radio network for coexistence with multiple

users?

Within the above problem statements, several terms are defined:

• Frequency hopping. Devices must be able to use a frequency hopping waveform

that utilizes multiple frequencies for discrete periods of time.

• Cognitive radio network. Two or more radios which can operate according to the

OODA loop, specifically the architecture proposed in this work, form a cognitive

radio network.

• Coexist. Cognitive radios are designed for the purpose of avoiding other energy

sources in the RF spectrum.

• Spectrum users. It is highly likely that other devices similar to the one in this

research also are capable of using the same RF spectrum usable by the proposed

system.

10

1.3 Research Contributions

This research makes six contributions to the field of cognitive radio:

1. The framework for a new hybrid hardware/software middleware architecture (see

Figure 3.1);

2. A framework for testing and evaluating clustering algorithms in the context of

cognitive radio networks (see Figure 3.1, O-2 and Figure 3.5);

3. A new RF spectrum map representation technique (see Figure 3.6);

4. A new RF spectrum map merging technique (see Figure 3.1, O-4 and see Figure

3.22);

5. A new method for generating a random, key-based adaptive hopset frequency

hopping waveform (see Figure 3.1, O-5 and see Figure 3.23); and

6. Initial integration testing toward implementing the proposed system on a field-

programmable gate array (FPGA) (see Figure 4.14).

It is expected that these contributions form the foundation for fulfilling the original

architecture, where the eventual result is a deployable prototype ad hoc network of

cognitive radios which operate in the presence of additional spectrum users.

1.4 Thesis Organization

Related existing work and background information on implemented components is

summarized in the next chapter. Components implemented in this project are validated in

the Methodology chapter and analyzed in the Results chapter. Conclusions are presented

in the fifth chapter, and future work is detailed in the last chapter. Appendices containing

additional figures and software code are at the end of this document.

11

2 Related Work

This work combines the results of previous related but independent endeavors, specif-

ically spectrum mapping techniques, network clustering, FPGA-based cognitive ra-

dio implementations, and adaptive frequency hopping (AFH). This chapter addresses orig-

inal work in these areas and this work’s contributions to each area.

2.1 Cognitive Radio

The ever-crowded RF spectrum demands a utility by which spectrum may be used

more efficiently by more users for less cost. Primary users purchase spectrum bands for

unrestricted usage. Such users do not always use their allotted spectrum. Secondary users

(SUs), on the other hand, do not possess ownership of any RF spectrum bands and are

relegated to the unlicensed bands (Industry-Science-Medicine (ISM), Unlicensed National

Information Infrastructure (UNII), etc.). Given the permeation of radio-centric devices

(cellular telephones, wireless internet, Bluetooth, Zigbee, etc.) into typical daily functions,

secondary users are highly prone to inadvertent interference from other secondary users.

This realization begs the question: How can secondary users with their limited spectrum

assignments efficiently use underutilized spectrum allocated to primary users?

Past systems designed for resilience in an interference- or jamming-prone environment

paved the way for today’s advanced radio systems. For example, radios such as the

military’s SINCGARS and HAVE QUICK hop frequencies based on a user-supplied key,

but the hopping sequence is independent of the surrounding spectrum. Legacy adaptive

frequency hopping radios date back to the early 1990s, but only in the past decade has the

requisite commercial technology made such systems feasible in non-military applications.

The need for pervasive adaptable radios has long been recognized, and the supporting

research and competencies are now coming to fruition.

12

Enter the cognitive radio. A progression of software-defined radio (SDR), a cognitive

radio boasts the technologies necessary to use large portions of RF spectrum designated

for primary users as the transmission medium for secondary users. One of the largest

attractions to cognitive radios is that they are designed to adapt to the needs of spectrum

regulators, network operators, and user objectives [10]. This promise has driven explosive

growth in just the past five years. For example, in [10], it is mentioned that an internet

search on the term “cognitive radio” in 2009 yields 138,000 hits–triple the number in 2006.

A similar search today, however, gives 6,820,000 hits–nearly 50 times the number four

years ago. Clearly, cognitive radio has taken hold.

Cognitive radio is defined by the SDR Forum [11] and the Institute of Electrical and

Electronics Engineers (IEEE) 1900.1-2008 [12] working group as follows:

1. “Radio in which communications systems are aware of their environment and internal

state, and can make decisions about their radio operating behavior based on that

information and predefined objectives. The environmental information may or may

not include location information related to communication systems.

2. “Cognitive radio (as defined in 1) that uses SDR, adaptive radio, and other

technologies to automatically adjust its behavior or operations to achieve desired

objectives.”

When fueled by popularity among engineers and businesses, formal adoption within

the scientific community, and maturation of key technologies, the cognitive radio is quickly

becoming the means to achieve what is needed: a smarter radio. This work follows the

above definitions for building and implementing a cognitive radio

2.1.1 An Increasingly Smarter Radio.

A popular and growing field, cognitive radio has seen steady advancement, most

notably in the past five years. Efficient spectrum usage, to include dynamic allocation

13

techniques and sharing schemes, drives most of this research for the purpose of allowing

secondary users to avoid primary users [3]. In their journal article, the authors of [3] cover

the technological advances in cognitive radio. These advances are addressed in Tables

2.1, 2.2, 2.3, and 2.4 along with the projected level of contribution of this research to

each area (Primary, Secondary, or Not Applicable [N/A]). Primary areas receive a direct

contribution from this work, secondary areas are those on which this work is formed but do

not receive any new contribution from this work, and irrelevant areas are not the focus of

any contribution in this work. An argument is presented for each for each irrelevant item

as relevant items are further discussed throughout the document.

Each fundamental advance is relevant to this research, due in large part to the

broadness of each area. However, spectrum sensing is assumed to be an existing function

prior to implementing the proposed architecture. Cognitive capability (i.e., adaptive hopset

selection) and dynamic network reconfiguration comprise the core contributions of this

research.

Interference temperature is a non-issue in this research as it is assumed each radio can

innately and accurately identify spectrum whitespace and extract signal contents. Likewise,

Table 2.1: Recent advances in CR fundamentals.

Area Advances Contribution

CR characteristics New communications and networking

paradigms, cognitive capability, etc.

Primary

CR functions Spectrum sensing/analysis, manage-

ment/handoff, and allocation/sharing

Secondary

Network architecture and ap-

plications

Spectrum broker entities, dynamic net-

work reconfiguration, etc.

Primary

14

Table 2.2: Recent advances in spectrum sensing and analysis.

Area Advances Contribution

Interference temperature Tolerable interference levels N/A

Spectrum sensing Energy detection, feature detection,

match filtering/coherent detection, etc.

Secondary

Cooperative sensing User selection, decision fusion, and ef-

ficient information sharing, and dis-

tributed cooperative sensing

Primary

hardware-based sensing and energy detection are not direct contributions, but determining

how to use said whitespace is a large part of forming the adaptive hopset. Further, doing

so within the CRN and in a distributed, collaborative fashion is key to the architecture’s

implementation.

Adaptive clustering and hopset selection are the central thrusts of this research,

so licensed spectrum sharing, power control, game theory in spectrum sharing, and

cooperation enforcement receive no contribution. Spectrum handoff, cognitive relay, and

routing are all targets of continued development but are not immediately addressed by this

research. Similarly, this work makes use of advances in the CR MAC layer and lays the

groundwork for a control channel and related management schemes, but does not contribute

to either area. Security in this network is a noble consideration and one that must be

investigated. This research does not, however, address security in order to maintain public

distribution standards.

While this research does use existing standards and regulations as guides, contribu-

tions to standards are not central to the work. Research implementations, however, are

highly relevant. In addition to being a research implementation in itself, this work builds

on several existing implementations.

15

Table 2.3: Recent advances in dynamic spectrum allocation and sharing.

Area Advances Contribution

Licensed spectrum sharing Spectrum underlay and overlay N/A

Media Access Control

(MAC) in CRNs

MultiMAC protocols and applicability

of the MAC layer to spectrum access

schemes

Secondary

Spectrum handoff Suspending transmission when a PU

reappears and resuming operation via

contingency planning

Secondary

Cognitive relaying Spectrum-opportunistic packet for-

warding within a CRN

Secondary

Spectrum sensing and access Partially observable Markov decision

process (POMDP), optimality of my-

opic policies, and inclusion of SU

residual energy and buffer state in

POMDP

Primary

Power control in a CRN Impact of transmission power on avail-

able spectrum, dynamic programming

for optimal power and rate control, col-

laborative power sensing, etc.

N/A

Control channel manage-

ment

Cluster-specific control channel based

on common channels, “swarm-based”

selection according to whitespace anal-

ysis, etc.

Secondary

Distributed spectrum sharing Independent action for fair resource

sharing, time-spectrum blocking

Primary

16

(similar to GSM cellular technology),

and multi-agent learning for resource

management

Spectrum sharing game Game theory in spectrum resource

management, no-regret learning

while considering cooperative/non-

cooperative users, auction mecha-

nisms, etc.

N/A

Routing in a CR network Accounting for lack of channel com-

monality, multiple channel switches

along a path, variable channel switch-

ing delay, etc.

Secondary

Cooperation stimulation and

enforcement

Assuming not all nodes are uncondi-

tionally cooperative in system design,

cooperation degree metrics, credit

mechanisms, etc.

N/A

Security in CRNs Localization-based defense, spectrum

sensing data falsification attacks, in-

duced SU/PU interference, etc.

N/A

17

Table 2.4: Recent advances in spectrum sensing and analysis.

Area Advances Contribution

IEEE 802.22 Relatively new standard governing

cognitive radio and secondary user ac-

cess in the TV spectrum [13]

Secondary

IEEE P1900.1 Standards series centered around spec-

trum management and next-generation

radios [12]

Secondary

Research implementations Berkeley Emulation Engine 2 (BEE2)

[14], Public Safety Cognitive Radio

(PSCR) at Virginia Tech [15], and

Rugers University’s Open Access Re-

search Testbed for Next-Generation

Wireless Networks (ORBIT), etc.

Primary

This research takes advantage of and builds on numerous recent cognitive radio ad-

vances including fundamental characteristics, dynamic network architectures, cooperative

sensing, spectrum access, distributed spectrum sharing, and existing research implementa-

tions. These advances and many others are addressed in [3], providing a broad survey from

which to launch into the actual research process. Contributions to relevant areas are further

validated in this chapter and the Methdology.

2.1.2 Governing Standards.

As a technology growing in both conceptual popularity and practical implementation,

new standards are needed to support CR use [16]. National governing organizations

including the American Federal Communications Commission (FCC) and the British

Office of Communications (Ofcom) are already considering adopting laws to govern

18

cognitive radio usage–specifically, the ability of SUs to use fallow RF spectrum allocated to

PUs. Additionally, multiple organizations including the International Telecommunications

Union - Radio Sector (ITU-R), SDR Forum, and the IEEE have begun work on CR-centric

standards. Namely, the IEEE has already published two standards as they relate to CR,

SCC41 (formerly P1900) and IEEE 802.22.

The authors of [16] also note that the emergence of such standards is particularly

useful when multiple users are competing for the same RF spectrum whitespace. When

two users compete in this fashion, they often are forced by such standards to share channels

with applicable users. This is known as self -coexistence and is implicitly applicable to this

research as the proposed system blindly adapts to unavailable spectrum. In this way, this

work’s CRN performs self-coexistence naturally as new users make their presence in the

spectrum.

A detailed examination of the IEEE 802.22 standard is presented in [13]. The sticking

point of this article is that IEEE 802.22 is the first worldwide standard based on cognitive

radio. Although the article is from 2005, it serves to highlight the growing prominence

of CR as the solution to spectrum overcrowding. According to the article, in 2005 it was

estimated that at any given time, only 5.2% of the RF spectrum is usable by SUs–even

though PUs often leave their frequencies dormant and unused. The authors also define the

standard’s relation to existing network standards (see Figure 2.1), where the outermost ring

is the proposed CR domain. Although not designed to operate at higher throughput rates

(i.e., 18-24 Mbps compared to IEEE 802.11n at over 100 Mbps), IEEE 802.22 provides the

key functionality of allowing SUs to opportunistically operate in PU-designated (but often

vacant) spectrum.

19

Figure 2.1: Relation of IEEE 802.22 to other IEEE network standards [13].

20

2.2 Adaptive Frequency Hopping (AFH)

2.2.1 Legacy Frequency Hopping Systems.

2.2.1.1 Single Channel Ground and Airborne Radio System (SINCGARS).

SINCGARS is a cryptographically-keyed frequency hopping radio originally intended

for ground forces. The radio can operate over 2,320 channels from 33 to 80 megahertz

(MHz) and has modular construction to ease the upgrade process. The operator is able

to adjust the radio’s functionality using a collection of controls on the front of the device,

shown in Figure 2.2 [17, 18].

Figure 2.2: Standalone SINCGARS radio [19].

2.2.1.2 HAVE QUICK.

HAVE QUICK is the U.S. military’s standard ultra-high frequency (UHF) radio

standard. Implemented on a host of airborne platforms, HAVE QUICK is a sophisticated

frequency hopping technology. Similar to SINCGARS, it uses a cryptographic key to

produce a frequency hopping sequence that is chronologically synchronized among all

users for a given time period. Figure 2.3 shows the cockpit panel mount in a NATO F-

16 aircraft [18, 20]

21

Figure 2.3: HAVE QUICK panel mount in an F-16 [20].

2.2.1.3 High Frequency (HF) AFH.

Adaptive frequency research has been ongoing since the early 1990s. In their

1993 MILCOMM paper, the authors of [21] introduce a scheme for AFH based on

observing channel states and generating a frequency hopping sequence that uses “good”

channels more often than “bad” channels. Also mentioned is the stipulation that available

frequencies are not selected uniformly. This system is modeled in Figure 2.4. Later, in

1996, another approach for AFH involving correlated frequency hopping. While not overtly

focused on AFH, [22] does highlight the need for improved frequency hopping measures

for the purpose of avoiding “limited bandwidth or intentional jamming”–both of which are

addressable using CR technology.

2.2.1.4 Summary.

SINCGARS and HAVE QUICK represent modern U.S. and NATO frequency hopping

radio standards. However, each implementation is not adaptable to the current RF spectrum

22

Figure 2.4: Early AFH system [21].

and, even if the RF environment is known, requires a “human-in-the-loop” to manipulate

the radio settings to fit such an environment. By definition, cognitive radio has the innate

ability to sense the spectrum, orient its operation, decide on a course of action, and perform

the appropriate actions. A human operator must engage the same process, but because a CR

can autonomously tweak the required knobs and meters to fit the existing RF environment,

it can operate much faster and at the expense of little or no valuable manpower. AFH

systems began to emerge in the early 1990s, but not in the context of a truly cognitive

radio. As compared to legacy systems such as SINCGARS and HAVE QUICK, CR allows

for a quicker, more precise method for implementing a frequency hopping radio. The AFH

iteration presented in this research is implemented as a CR with all necessary automation.

2.2.2 Bluetooth (802.15.1) &WLAN (802.11).

Adaptive frequency hopping is an emerging trend in CR networks. As they are already

able to sense spectrum availability, CR networks are natural candidates for expanding the

adaptive envelope to include entire hopsets in addition to single frequencies. An example of

AFH in practice is the current Bluetooth implementation. Whereas the early standard was

spread out across 79 of the possible 83.5 ISM channels, Bluetooth AFH versions need only

hop over 15 channels. This allows for much less interference to other devices operating in

the same band, including WLAN (802.11) and ZigBee (802.15.4) [23].

23

Adaptive frequency hopping is an emerging trend in CR networks. As they are already

able to sense spectrum availability, CR networks are natural candidates for expanding the

adaptive envelope to include entire hopsets in addition to single frequencies. An example of

AFH in practice is the current Bluetooth implementation. Whereas the early standard was

spread out across 79 of the possible 83.5 ISM channels, Bluetooth AFH versions need only

hop over 15 channels. This allows for much less interference to other devices operating in

the same band, including WLAN (802.11) and ZigBee (802.15.4) [23, 24].

2.2.3 Dynamic Adaptive Frequency Hopping.

The authors of [25] propose the dynamic adaptive frequency hopping (DAFH)

algorithm in wireless personal area networks (WPANs). They define DAFH as a general

method that enables the FH-networks in the unlicensed band to avoid mutual interference

in a distributed manner. Their approach is similar to ours in that they determine available

frequencies and select a hopset using a common seed for pseudorandom hopset generation.

The authors also implement per-subnet band division, i.e. the overall band is partitioned

such that every neighboring subnet uses a separate frequency sample space to avoid

collisions between hopsets. We currently intend to simply ensure no two subnets will share

the same hop at the same time, but the technique in [25] is certainly worthwhile to explore

for future development.

2.2.4 Summary.

Adaptive frequency hopping (AFH) forms the core basis by which the proposed

system reliably and unpredictably avoids interference. Frequency hopping applications

currently drive military radio communication systems, but none hops according to

adaptation to the RF environment. Commercial applications such as Bluetooth have begun

implementing simple packet loss-induced AFH schemes, but such methods continue to

use occupied frequencies to avoid changing the predefined hopset. Older AFH schemes

exist primarily in the HF bands, but newer AFH systems operate in the widely-used ISM

24

and UNII bands and are focused on hopset collision avoidance. This research also avoids

hopset collisions. Additionally, the proposed system uses a combination of random keying

and spectrum sensing to accurately avoid occupied frequencies using frequency hopping.

2.3 RF Spectrum Sensing & Mapping

2.3.1 Cooperative Sensing.

Cooperative sensing consists of multiple CRs within a CRN working together to

formulate an accurate picture of the RF environment. This topic is of great interest in

distributed CR systems research as cooperative sensing both minimizes overall workload

for the individual node and yields a more reliable depiction of environmental conditions.

However, there are tradeoffs to cooperative sensing: the CRN must both communicate

valuable RF spectrum information within the network and minimize the amount of network

flow over low-bandwidth and potentially vulnerable control channels.

In [26], the authors examine the physical aspects of the motivation for cooperative

sensing. The authors recognize bandwidth as a confounding factor of the amount of

information detectable by CRs: if a radio has a low-bandwidth control channel, it is

likely only able to perform either energy detection or signal statistics; a CR with a high-

bandwidth control channel, however, may implement all possible detectors. The type of

control channel is largely dependent on the hardware used to implement the board.

In line with opinions presented in [26], the authors of [27] also examine the issue

of bandwidth limitations in cooperative sensing. Nodes must report within the network

their observations, and the granularity of these observations is limited by the bandwidth

delivered in hardware. The implementation studied in [27] uses sensing bits to quantize a

likelihood ratio (LR) for determining which nodes have enough worthwhile information to

disseminate through the network. Using LRs is thereby a means for reducing meaningless

observation traffic within the network via low-bandwidth control channels. Their tests show

25

that with only a minor cost to sensing performance, the number of sensing bits decreases

greatly.

Cooperative sensing is also very applicable to cluster-based networks, as noted in [28].

Sensing in this manner minimizes overall traffic throughout the overall CRN and allows for

sensing to be geographically localized. This is important because geographically distant

nodes are unlikely to sense and attempt to use the same RF spectrum environment as nodes

within close proximity of one another.

Cooperative sensing plays a large part in this network in terms of data fusion (RF

map merging), and in order to minimize overhead time associated with adapting to the RF

environment, limiting extraneous information over control channels is vital. This research

proposes minimizing network traffic not via minimal data representation as in [27], but

instead by partitioning the network in to sub-networks (“subnets”) using clustering. There

are two distinct benefits to partitioning the network into clusters that are likely to operate

in the same RF environment.

2.3.2 Spectrum Map Storage & Usage.

An RF spectrum can be represented in many different ways, such as real+complex

number pairs, a histogram-like FFT model, and so forth. Prior to conducting this

experiment, it is necessary to choose a method such that it is both portable between

components and extensible for future research. One method generalizes the RF spectrum as

part of a larger set of data, the radio environment. In their pioneering Radio Environment

Map (REM) research, Zhao, Le, and Reed present the RF spectrum as part of a larger

model containing multiple quantitative and qualitative radio environment characteristics to

include terrain, historical or time-based usage data, and others in addition to the obvious

inclusion of present RF spectrum usage [10].

This research implements the REM solely as an avenue for storing spectrum

availability data where frequency-specific data is contained in a binary vector. This concept

26

is validated in section three. Therefore, and for the rest of this paper, the spectrum map is

referred to simply as the REM to allow for expansion of this research to include more

aspects of the radio environment.

2.3.2.1 Radio Environment Map.

Zhao, Le, and Reed introduce the radio environment map (REM) as an integrated

database consisting of multi-domain information such as geographical features, available

services, spectral regulations, locations and activities of radios, policies of the user and/or

service provider, and past experience.” Figure 2.5 illustrates this concept.

A cognitive radio (CR) uses this REM to improve its situational awareness (SA) and

reasoning process, and it disseminates/receives REM information to/from other CRs in

order to form a highly situation-aware CR network. According to the authors, the formation

of a REM is both a system-level solution to cognitive networking” and a natural step

from legacy radios to CR; more succinctly, REM usage in CR networks leverages prior

knowledge and collective intelligence.” Finally, the authors of [10] recognize five open

questions related to the REM, two of which apply specifically to this thesis:

1. How can we assure the REM’s integrity, security, privacy, and reliability?

2. In order to provide desired performance, how current and what level of granularity

does the information contained in the REMs need to be?

Regarding these questions, this thesis concerns the REM dissemination integrity, REM

reliability, and REM currency.

2.3.2.2 Overhead Analysis for REM-enabled Cognitive Radio Networks.

An important aspect of using a REM in conjunction with a CR is the overhead

associated with such action. Zhao, Reed, Mao, and Bae [29] present REM dissemination

schemes and issues, analyze REM dissemination overhead, and compare various overhead

scenarios with network simulation results. This research mainly pertains to REM

27

Figure 2.5: Possible REM characteristics [29].

dissemination schemes and issues with an eventual focus on simulating the network and

analyzing subsequent REM overhead.

Dissemination schemes include periodic REM broadcasts to the entire network (via

plain flooding), an CR-specific extension of the mobile wireless LAN optimized link

state routing (OLSR) protocol (via adapting or extending the OLSR HELLO or Topology

Control (TC) messages), adapting the REM dissemination rate based on existing primary

users (PUs) or interference in an application-specific ad hoc network, and disseminating

REM information in an on-demand” scheme (i.e. only transmitting requested REM

information, as opposed to always transmitting the entire map) [29].

When choosing the REM dissemination scheme, the overarching goals are minimal

retransmissions, minimal transmission sizes, and a minimal number of REM sources. REM

implementations can be any data structure containing the desired information. In ascending

computational overhead, the implementation can take the form of a multi-dimensional

28

matrix, a C++ structure, or a multi-dimensional database. REM memory footprint depends

on both the implementation and the amount of information stored in the REM. The authors

suggest using a common control channel in any of the following flavors: Narrowband

channel in a licensed band; channel in license-free ISM or UNII band; an ultra-wideband

(UWB) channel; or sharing with the traffic channel [29].

While the aforementioned methods are valid, this research proposes REM dissemina-

tion by a different means. Totally-ordered multicast (TOMC) is an information dissemina-

tion protocol in which all nodes receive messages in the same order [30]. Such a protocol

is valuable in a network where information must be distributed among a large number of

nodes and network structure decisions are contingent upon that information. This is essen-

tially the state of the proposed network during formation and prior to clustering. Nodes

must receive information in the same order to guarantee that each node receives the same

data in the same order. While TOMC is not explored further than conceptual integration in

this document, it is expected to become a vital part of future research involving inter-node

communication.

Table 2.5 describes a potential implementation for REM information, ideally

contained in a C++ structure or multi-dimensional database. The rightmost column shows

how each field applies to the system proposed in this research, if applicable. While the

IEEE 802.22 standard is designed to be infrastructure-based, our CRN is is designed as an

infrastructure-less, ad hoc network. This table helps define where the proposed system is

similar to an infrastructure-based CRN like one governed by IEEE 802.22 [10].

29

Table 2.5: REM information element for IEEE 802.22 systems [10].

Domain and Application

index range Syntax and index to research

Application type

(700-799)

Voice (701), packet data (702), vido conference

(703), etc.

Packet data

Optimization

layer (600-699)

Minimize interference to PU (600), maximize

SU throughput (601), etc.

Maximize SU

goodput

Topology and net-

work type (500-

599)

Infrastructure-based network {WCDMA (500),

cdma2000 (501), WRAN (502), etc.}; Ad hoc

network (510), mesh network (520), etc.

ad hoc network

MAC and duplex

(400-499)

TDMA (400), FDMA (401), CDMA (402),

OFDMA (403); FDD (410), TDD (411), etc.

Frequency hop-

ping

Geography and

mobility informa-

tion (300-399)

Indoor {home (300), office (301), airport (302),

factory (303), etc}; outdoor {urban (310),

suburban (311), open rural (312), highway

(313), etc.}; in-vehicle {train (320), bus (321),

car(322), plane (323), etc.}; etc.

Various

Modulation type

(200-299)

AM (200); FM (210); M-PSK {BPSK (220),

QPSK (221), etc}; M-QAM {16-QAM (230),

64-QAM (231), etc.}; etc.

N/A

Radio device

capability (100-

199)

Channel coding {Convolutional coding (100)},

Turbo coding (110), etc.}; maximum RF trans-

mit power (120), sensitivity (130), operational

bands (140); antenna type (150), etc.

Sensitivity, opera-

tional frequencies

Experience (0-99) Blind zone (10), hot spot (20), hidden node

(30), etc.

Dynamic RF en-

vironment

30

2.3.2.3 Radio Environment Map-enabled Learning Algorithms.

The authors of [31] propose a generic top-down approach for obtaining situational

awareness (SA) via REM exploitation for CRs and a framework for CR learning loops.

Additionally, the authors conduct simulations to evaluate the efficiency and effectiveness

of the approach and framework they propose. Metrics include adaptation time, average

received signal to interference and noise ratio (SINR), average throughput, and existing PU

average packet delay.

The authors use Table 2.5 to describe one possible method for digitizing and indexing

radio environment information. For example, suppose that the REM shows that the CR is

within the service area of a wireless regional area network (WRAN), and that the REM

also lists TV channel 9 as available for use. Once the CR senses the open channel and

adjacent channels and confirms that TV channel 9 is indeed available and suitable for use,

the WRAN determines the current situation, which in this example can be defined by the

Table 2.5 as {703, 600, 502, 403, 411, 312, 231, etc.}. Thus different REM/CR scenarios

can be modeled across different CRs [29, 31].

The use of the REM has also been explored as a means to spatially interpolate radio

locations. The authors of [32] present a new robust method for using inverse distance

weighting to determine feature locations. The REM forms the backbone of several other

areas of research, including building a mobile ad hoc network architecture around the REM

[33] and investigating the effect of a noise threshold on REM effectiveness [34]. Both

concepts are central to this research–the REM is the primary means for storing, using, and

transferring this system’s RF environment observations, and the applicability of a noise

threshold is also thoroughly vetted when comparing the RF spectrum environments of

neighboring CRs.

31

2.3.3 Threshold Detection.

Threshold detection is an important part of extracting valuable information from a

signal. While developing a threshold detection method is not a focus of this research,

implementing an existing solution plays a major role in both the clustering evaluation and

hopset selection steps of the overall cycle of operations. The authors of [35] highlight one

such method using the noise floor. The noise floor is determined to be the mean of the entire

spectral density function, and the threshold is the noise floor (mean) multiplied by some

coefficient. This coefficient serves to move the threshold above the noise floor by some

amount. In this research, the threshold is implemented in a similar manner for the purpose

of converting the measured spectrum to a format usable for comparison and lightweight

hardware manipulation. The conversion method and the usage of the conversion output is

discussed in Section 3.2.5.1 and validated both Sections 3.2.5.3 and 3.3.4.2.

2.3.4 Summary.

In order for a radio to accurately sense its environment and correctly adapt its

behavior, it must be able to “see” its surroundings and “remember” how they affect

its operation. Many different techniques for sensing in the context of CRNs currently

exist and have been demonstrated as effective purveyors of RF environment information.

The radio environment map (REM) provides an ideal medium for efficiently storing and

communicating RF environment information. While this research does not implement a

spectrum sensing implementation, a method for mapping the spectrum and storing it in a

custom REM is proposed and demonstrated.

2.4 Clustering

2.4.1 Overview.

Clustering is the manner in which similar objects are “clustered” together using some

distance or similarity metric. In practice, clustering serves a number of purposes. In

statistical analysis, clustering is a way to identify groupings of data. In image processing,

32

clustering enables similarly-colored pixels to be marked as such. This research uses

clustering to form IP subnets from an initially-flat radio network.

2.4.2 k-means Clustering.

As Kanungo, et al explain in [36], although there are a variety of k-means clustering

implementations, Lloyd’s algorithm is known effectively as the defacto k-means algorithm.

Before defining the algorithm, though, it is necessary to define terms. First, a centroid is

simply the geometric weighted center of a cluster. For example, if all nodes in a cluster

are of equal weight, the centroid is the center of mass of the shape composed by the nodes.

Second, a center is the point location of the centroid. After the clustering algorithm runs,

every node is assigned to a center. Finally, a center’s neighborhood is defined as those

nodes for which z is the closest neighbor. The focal point of Lloyd’s algorithm is observing

the optimal placement of the center of at the centroid of the relevant cluster. The actual

algorithm is defined below.
1: procedure Lloyd(Some set of k centers Z)
2: repeat
3: for each center z ∈ Z do
4: Let V(z) denote z’s neighborhood
5: Move z to the centroid of V(z)
6: Update V(z) with the distance from each point to its nearest center
7: end for
8: until some convergence condition is met
9: end procedure

2.4.3 University of Maryland Testbed.

The authors of [37] present a framework for testing the k-means clustering algorithm.

This testbed is written in C++ and forms the centerpiece of this work’s clustering

experiment. A total of 34 different runtime options are available. For simplicity, and

to limit the number of experiments, this research varies several and maintains the rest

as default values. One of the most important options is the ability to select among four

different clustering algorithms, all of which are variations on the core Lloyd’s algorithm.

33

The testbed uses the original Lloyd’s algorithm and three more; the additional three

algorithms involve some modification or addition(s) to the Lloyd’s algorithm. All four

algorithms are listed and summarized below. Full explanations are contained in [37].

• Lloyd’s. Original centroid-based algorithm that runs until convergence of cluster

assignments. Initial centers are randomly sampled.

• Swap. Maintains a set of candidate centers and swaps between this list and the

existing centers.

• Hybrid. Complex hybrid algorithm comprised of both Lloyd’s and Swap in which a

number of Swap iterations are performed followed by several iterations of Lloyd’s.

The Hybrid algorithm uses an approach akin to simulated annealing to avoid local

minima entrapment.

• EZ-Hybrid. Simplified Hybrid algorithm. Performs one swap and a number of

subsequent iterations of Lloyd’s.

2.4.4 Cluster Visualization.

Every node is associated with a particular RF spectrum measurement. These

measurements can be compared between two nodes to yield a similarity ratio ranging from

totally dissimilar (zero) to totally similar (one). While several cluster visualizations are

informally presented in [36], this research shows both cluster assignments via projected

communication links and the RF spectrum similarity between nodes.

2.4.5 Summary.

k-means clustering is the basis of the middleware’s ability to reduce a flat network

into a hierarchical set of sub-networks. In the context of this research, an IP-based network

composed of cognitive radios is partitioned into subnets. While the k-means algorithm

itself is not new, implementing the algorithm in the realm of congitive radio networks and

the manner in which experimental data is visualized is a novel contribution.

34

2.5 FPGA-Based Cognitive Radio

2.5.1 Kansas University Agile Radio (KUAR).

The University of Kansas uses a Virtex-II Pro FPGA for the digital signal processing

operations and digital communication components of their software-defined radio platform

KUAR. It performs communications processing in VHDL on the FPGA, does signal

processing, radio control, and RF environment sensing with both VHDL on the FPGA

and C code on the FPGAs embedded processor, and interfaces with a transceiver and a

Linux control processor [38].

2.5.2 Wireless Open-Access Research Platform (WARP).

Rice University uses the PowerPC processor on the Virtex-II Pro FPGA for

communication processing on their Wireless Open-Access Research Platform. WARP

is used to prototype wireless networks. They have tested and verified the FPGAs on

the WARP board in over-the-air tests. The single-input single-output (SISO) Orthogonal

Frequency Division Multiplexing (OFDM) transceiver uses the FPGA for all the baseband

processing. It uses the radio daughtercards on the WARP board to convert to the RF band

[39].

2.5.3 Trinity College’s Cognitive Radio Framework.

The authors of [40] at Trinity College performed a case study that demonstrated the

implementation of cognitive radio on an FPGA. They created a set of tools for radio

designers to be able to implement cognitive radio on FPGAs. This research used a partial

reconfiguration of the FPGAs during runtime, allowing a cognitive engine to reconfigure

both the software and hardware.

2.5.4 Berkeley Emulation Engine 2 (BEE2).

The BEE2 is a modular radio prototyping testbed for examining both narrowband

and wideband approaches, and uses a combination of Simulink and Linux alongside the

BORPH operating system in implementation. In their experimental design, the authors of

35

[14] use the BEE2 as the basis for two separate examples, a wideband configurable testbed

in the 400-500 MHz range, and a narrowband multiple-input/multiple-output CR example

in the 20 MHz range. This example uses a Virtex II Pro FPGA as the central part of the

BEE2’s CR extension, much like the implementation proposed in this research.

2.5.5 Virginia Tech Public Safety Cognitive Radio (PSCR).

The authors of [15] present a CR implementation specifically for public safety (police,

fire, etc.) personnel, Public Safety Cognitive Radio (PSCR). The research implements

the traditional operation cycle of a cognitive radio in very fine detail. Included in

the implementation is the radio environment map (REM) much like in this document’s

proposed system. In addition to the radio’s “cognitive cycle” (as also defined with this

research), the authors present a fully-described product from physical-layer hardware up

through the graphical user interface (GUI). One important feature of the PSCR is its

dependency on policy-based verification such that the radio fits both the physical RF

spectrum environment and the public policies governing spectrum usage [15].

2.5.6 Summary.

Like those in previous work, this research leverages the FPGA features of flexibility

and compact area. In using the base WARP system, a custom IP core written in VHDL, and

the Virtex IV’s embedded PowerPC core with C code to implement the radio and hopset

selector.

2.6 Background Summary

Many underlying technologies compose what we envision to be a viable, field-

deployable cognitive radio network and the supporting architecture. While some existing

systems are indeed similar to the one proposed in this research, this work employs a wholly

new architecture and implements such components in a new and novel manner. Dynamic

adaptive frequency hopping, network clustering, and packaging the system into a hybrid

hardware/software FPGA are the core pieces of this work and have already been explored

36

or accomplished individually. This research shows that such sub-systems can be integrated

into a novel cognitive radio middleware architecture as part of an ongoing effort to develop

a “smarter radio.”

37

3 Methodology

This research proposes the architecture for a frequency hopping cognitive radio

network which coexists with other RF spectrum users, and implements several of

the necessary features. Specifically, the goals of this research are to answer the following

questions:

1. Is it possible and feasible to implement such a system?

2. What are the properties of such a system?

3. What are the pieces for implementing such a system?

4. How is the system implemented?

5. What is the operation of the system?

Similarly, the following hypotheses are investigated:

1. Feasibility of clustering an ad hoc CR network based on spectrum similarity and

physical distance. The network is partitioned, or clustered, according to the

similarities between spectra at individual nodes. It is expected clustering a CR

network according to local RF spectrum similarity and physical distance produces

clusters with nodes whose sensed spectra are more similar than clustering on physical

distance alone.

2. Feasibility of AFH in an interference environment. Since the core focus of this system

is to adaptively select and use a frequency hopping sequence, or hopset, based on

the existing RF spectrum, it entails that this research must prove such operation as

tractable. It is expected the system can recognize available and unavailable spectrum,

react with an appropriate AFH sequence, and continue normal operation.

38

3. Feasibility of communicating information between nodes in an orderly, organized

fashion. Nodes must have the ability to form and maintain a dynamic network, share

spectrum data, and achieve synchronized frequency hopping activity. Since multiple

nodes must communicate on the same hopping pattern, they must chronologically

share spectrum resources. Further, the spectrum may change independently

at different network locations. To maintain adaptive operations, nodes must

communicate spectrum data, engage their cognitive operations, and (re)distribute an

adaptive hopset. It is expected all nodes can maintain effective communications while

conducting AFH operations.

4. Ability to successfully transmit in the presence of a dynamic RF spectrum. In addition

to deciding an adaptive hopset, the system must transmit and receive between radios.

This is necessary to measure typical traffic-based network metrics such as goodput

and latency. It is expected the system can combine the first three hypotheses to form

a novel AFH CR network system.

3.1 Whole System

This section presents the entire adaptive frequency hopping (AFH) architecture. When

in use, the system is able to coexist with other spectrum users. This section explains how

the system functions and its internal structure and lists which components are implemented

in this research.

3.1.1 Assumptions.

In order to properly scope this research and therefore limit the design decisions for

unimplemented components, the following assumptions are made:

1. Rendezvous and routing are complete prior to middleware actions.

2. Every radio is within transmission range of all other radios.

39

3. Every radio acts as a node in an IP network such that each radio has both an IP and

MAC address.

4. Radios have the ability to communicate with one another prior to network clustering.

5. The network is immobile and the spectrum is fixed, i.e., nodes cannot enter or leave

the network and the RF spectrum remains constant once the experiment begins.

6. Nodes are uniquely identified based on network arrival time, i.e., the first radio to

join the network has the first identifier.

7. The radio with the first identifier (e.g. “Node 0”) serves as the network leader.

8. Each radio can detect “quiet” periods and engage in spectrum sensing during these

periods.

9. Nodes have the ability to synchronize their time upon rendezvous and remain

synchronized for the duration of operations.

10. The observable spectrum is contiguous and spans the same frequency range across

the network such that all REMs are of equivalent structure during map merging.

11. Operations occur precisely in the order defined in Figure 1.4 such that transmission

and sensing cannot occur simultaneously.

12. A reliable transfer protocol is used during data transmission in O-3 and O-6 in Figure

1.4.

3.1.2 Whole System Function.

System functionality describes the “what” of the proposed architecture. In other

words, the system function is an direct answer to the requirements posed at the beginning

of this chapter and accounts for the assumptions given above. The following list details

40

each operation in chronological order, and Figure 3.1 shows how these operations relate to

each other and the conditions that must be met to transition between operations.

O-1. Sense RF spectrum. All nodes scan the radio frequency environment to

obtain a snapshot of occupied frequency bands and available whitespaces. Effectively,

this snapshot amounts to a 2,048-bin Fast Fourier Transform (FFT) of the analog spectrum.

A threshold is applied to the FFT output to convert the spectrum to a REM representation.

Figure 3.1: Whole system function.

41

Each node applies this threshold individually and stores this information into its local REM.

This threshold is discussed in Section 3.2.5.1.

O-2. Form clusters. During ad-hoc network formation, each node must perform

rendezvous/neighbor discovery. Per assumption one above, this is already accomplished

prior to O-1. For the purpose of this research, it is assumed nodes begin in a non-hopping

mode of operation, where discovery occurs on a fixed control channel. Per assumptions two

and three above, the radios initially form one large, flat-hierarchy IP network. Nodes then

form geographic clusters, meaning nodes within close geographic proximity are assigned a

common cluster identifier. These clusters serve as IP subnets, and each cluster/subnet has

a leader given by assumption six. Such subnets serve to reduce the total amount of traffic

within the overarching network. It is hypothesized nodes within a cluster have similar

REMs and are able to form a common REM with limited data exchange.

O-3. Share REMs. A radio may freely transmit their REM information at any

time, but will only do so if its observed RF spectrum environment has changed. This is

accomplished via TOMC. In TOMC, many nodes can attempt to “speak” at a given time,

but all nodes will only “hear” from one node at a time due to the nature of the protocol. In

this protocol, all intended transmissions are eventually received in a totally-ordered fashion,

meaning each node will receive all data in the same order as all other nodes. This operation

occurs after O-2 because doing so in a flat, complex network floods the network with

REM data traffic, thereby voiding the concept of using clustering to minimize unnecessary

transmissions.

O-4. Merge spectrum maps. The leader of a given cluster merges the maps of the

cluster’s nodes to form a common REM. Because REMs are represented as binary data,

the common REM is simply the result of a logical AND operation between all REMs. This

operation is performed within a circuit on an FPGA. Section 3.3.4.2 validates this concept.

42

O-5. Select hopset. Using a random key, an FPGA circuit randomly selects available

channels for use as a hopset. This hopset is 2,048 hops in length. Section 3.3.4.3 validates

this concept.

O-6. Send hopset. As in operation O-3, the radios use TOMC to distribute an

adaptive hopset through the network. Hopsets are only valid within a subnet, i.e., each

subnet generates and uses a unique hopset.

O-7. Use hopset. Once all nodes within a cluster have knowledge of the adaptive

hopset, the radios commence data transmission and reception. This operation is the result

of the preceding six, and functions just as any typical frequency hopping radio.

The system returns from O-7 to O-1 when one of two conditions are met: (1) the

hopset expires, or (2) the spectrum has potentially changed. A hopset expires if all hops

have been used. While individual frequencies may be reused in order to generate a hopset

of desired length, the hopset itself is generally for one-time use only. However, if for any

number of reasons (i.e., present environment is deemed benign, a new key is unavailable,

etc.) a new hopset cannot be generated, the hopset is reusable. The spectrum is known to

have potentially changed if any radio sends new REM data during any operation other than

O-3.

Of the seven operations outlined above, operations O-2, O-4, and O-5 are implemented

in this research. These operations are shaded green in Figure 3.1. Operations O-1, O-3, O-

6, and O-7 are only explained in this section and are not validated any further in this work.

3.1.3 Whole System Structure.

The solution proposed in this research is a framework for accomplishing the operations

described above. Specifically, a middleware architecture for adaptive frequency hopping

within cognitive radio network is presented. This architecture exists in a hybrid hardware-

software system on a WARP II FPGA-centric radio board. This middleware architecture is

shown in Figure 3.2.

43

In Figure 3.2, there are four primary components: the RF spectrum emulator, a

database for storing spectrum map data, the radio hardware with which the radio transmits

and receives, and the middleware architecture itself. The architecture itself consists of eight

sub-components: database interface, spectrum map parser, map distributor, clustering, map

merger/hopset selector, secure hash chainer, multicast communication layer, and hardware

interface layer. Of these sub-components, the clustering and map merger/hopset selector

are constructed and tested for this work (shown here in green). The remaining pieces (i.e.,

on-board spectrum sensing, radio card operation, and network communication) are to be

demonstrated in future iterations of this project. The overall system and its operation is

proposed in Section A.

The clustering implementation is integrated into the architecture purely in software.

In order to minimize traffic within the overall network, the radios exist within a packet-

switched network. Geographically-close nodes belong to the same subnet. By using a

clustering algorithm to partition a collection of many nodes, it is expected nodes contained

within the same subnet will have highly-similar RF spectra. In Section B, an experiment is

presented for selecting the best combination of number of clusters (equivalent to number

of subnets) coupled with the ideal clustering algorithm heuristic.

The map merger/hopset selector component exists primarily in hardware with limited

software interfacing. After accepting an indefinite number of maps from radios within the

network and a random key, it generates an adaptive hopset which maps to the frequencies

(or channels) usable by radios within the network. This capability allows the system to fit

within the available spectrum “whitespace” in true DSA fashion. This design is validated

in Section C.

44

Figure 3.2: Proposed middleware architecture.

45

3.2 Network Clustering

3.2.1 Problem Definition.

3.2.1.1 Goals and Hypothesis.

The goal of this experiment is to demonstrate a method for selecting a clustering

algorithm for integration with the rest of the middleware architecture. The “defacto” k-

means algorithm is Lloyd’s algorithm [36, 37], so Lloyd’s algorithm is the default choice.

Therefore, the purpose of this experiment is to investigate which clustering heuristic

described in Section 2.4.3, if any, performs best over a range of RF spectrum environments

and center counts.

3.2.1.2 Approach.

We introduce a method by which the four clustering heuristics in Section 2.4.3 can be

evaluated for expected best performance in a cognitive radio network. We first establish a

baseline for clustering performance using “canned” maps and then use the point distribution

generator within the kmltest.exe software to form “real” maps of four distribution types:

uniform, Gauss, and multi-cluster. The points used for these maps represent receivers in a

network, as opposed to the transmitters we intend to avoid.

Apply threshold. In the actual system, operation O-1 (see Figure 3.1) converts the

observed spectrum to a format usable by the map merging and hopset selection component

described in Section 3.3. This conversion is also necessary to validate the clustering test

framework proposed in this section. Because the spectrum is input as an unprocessed,

emulated entity for this experiment, the threshold conversion is completed within the test

framework.

Establish baseline. In order to validate the performance of kmltest.exe, we form

several trivial maps to verify that the four clustering heuristics perform as expected. For

example, if there are n discrete clusters as seen by the human eye, it is expected n clusters

46

Figure 3.3: Baseline receiver configurations.

will be formed as they are geographically positioned. The baseline receiver configurations

(i.e., the canned maps) are shown in Figure 3.3.

Clustering algorithm testing. The clustering algorithm partitions a flat cognitive

radio network into sub-networks (analogous to IP subnets). This partitioning decomposes

from a larger problem in which every node can “talk” to every other node (notionally

47

Figure 3.4: Network clustering test framework function.

of O(n2) complexity) into a simpler problem (notionally toward O(n log(n)) complexity).

(Note: Network complexity is not proven as part of this research, and is used in this research

as a method for generalizing expected trends.) The most desirable performance yields the

highest spectrum similarity within a cluster such that extraneous traffic is minimized and

the adaptive hopset is chosen from the broadest possible space.

Results evaluation. Using the data from this experiment, we implement one or

more heuristics for use in the overall cognitive radio network. Selection is based on best

performance across a range of RF spectrum environments and node configurations.

3.2.2 System Services.

S-1. Generate node maps. Given the number of nodes, the number of maps needed,

and map dimensions, component C-1 generates the desired number of maps with the

desired quantity and size using the specified distribution. There are no bounds on the

inputs. The generated maps can be reused in future tests for a consistent dataset.

48

S-2. Decode spectrum. Spectrum data is originally formatted according to the

virtual device that recorded the measurement. Given the original data and the map

dimensions, component C-2 extracts that data to produce a grid representation of the RF

spectrum of the same dimensions as the maps generated during S-1. The output of this

component takes the form of multiple discrete FFTs.

S-3. Generate REMs. Using the data generated by S-2, component C-3 transforms

the spectrum data into binary REMs. These REMs are used for calculation of the

performance metric.

S-4. Generate kmltest.exe commands. Clustering is performed in an external

program, kmltest.exe, which implements the KMlocal testbed described in [37].

Normally, the clustering heuristic used and the number of centers are input by the user

at command line. To automate the testing process, commands must be prefabricated and

piped in using system calls. This service generates a text file containing all commands

needed to run the appropriate test.

S-5. Run map through kmltest.exe. This service is the core of the experimental

design, and is therefore the Component Under Test (CUT). The program is run using

system calls and input is given via the text file generated during S-4. The program generates

output to a predefined text file.

S-6. Parse cluster assignments. When kmltest.exe runs, it generates a report

containing the assignments of all points. Because this information cannot be returned

directly to the test framework without extensive modification, it is more viable simply to

parse the output file generated by the k-means software. Along with the REMs derived in

C-3, cluster assignments are used for calculation of the performance metric.

S-7. Calculate spectrum similarity. The similarity calculation component computes

the performance metric described in Section 3.2.5.4. This component accepts the list of all

REMs and the list of cluster assignments as inputs and returns a single number.

49

Figure 3.5: Network clustering test framework structure.

3.2.3 System Boundaries.

The system under test (SUT) is comprised of six components:

C-1. Node map generator. This component exists within the kmltest.exe program

and can generate multidimensional point collections of various distribution types. This

research uses two-dimensional maps over uniform, Gaussian, and bimodal Gaussian

distributions.

C-2. Spectrum decoder. Data from the is parsed from a structure formed by

the DYSE into a structure more easily used in determining spectrum measurements to

individual locations.

C-3. REM encoder. Applies the threshold value and forms binary vectors for use in

comparing RF spectra.

50

C-4. k-means clusterer. Performs the clustering operation using one of four

heuristics and outputs the results to a file.

C-5. Assignments parser. Reads the cluster assignments from the output file and

generates a data structure containing all nodes and their assignments.

C-6. Similarity calculator. Calculates the similarity metric for all clusters.

3.2.4 Workload.

The component under test is affected by four workload parameters: the number of

nodes, the number of maps, each map’s dimensions, and the distribution type used to

create the map. All four parameters are input to the map generator component in the

kmltest.exe software.

Table 3.1: Workload parameters and descriptions.

Workload Parameter Description

Number of nodes Defines how many nodes should be created for each

map. The number of nodes in a map remains constant

for all maps generated during a given test.

Number of maps Defines the number of maps generated for a test.

Map dimensions Specifies the x and y dimensions of a map such that

the minimal coordinates will be (1, 1) and the maximal

coordinates will be (x, y). When nodes are generated,

they are placed within these bounds.

Distribution type Selects the type of distribution used to generate the

map of nodes.

51

3.2.5 Performance Metrics.

This system’s performance metric is determined by the similarity between observed

spectra at nodes within clusters. This metric is determined using the comparisons of

multiple spectrum maps. The method for determining spectrum maps is presented first,

followed by an clustering affects a cognitive radio network. Last, a node-wise similarity

metric (the main system performance metric) is examined.

3.2.5.1 Spectrum Representation and Threshold Determination.

In this research, the REM is represented as a binary vector. This vector is derived from

an analog-to-digital conversion of the analog spectrum. In the case of using a discrete FFT

to analyze the spectrum, the number of FFT bins that corresponds to one discrete channel

depends on the channel bandwidth required by the user. For example, if there are N FFT

bins and M discrete channels span the given frequency band, d N
M e bins map to each channel.

We assume that the mapping of bins to channels and/or center frequencies has already been

established.

Figure 3.6: Threshold application example.

52

Using the discrete FFT output, we apply a threshold value to each bin. In [35],

researchers present a simple method for applying a threshold to a signal to extract

information. The average of each discrete FFT bin’s value is multiplied by some coefficient

to increase the likelihood that the threshold is applied above the noise floor. In this research,

the coefficient is 0.2. This translates to moving the threshold 20% higher than the average

FFT bin value when applied to a linear scale (see Figure 3.13). We use this threshold

method to evaluate each bin for energy presence. Pilot experiments show that in order to

eliminate as much noise as possible without overlooking actual spectrum usage, this value

should be held constant at 0.2.

Calculation and application of the threshold is performed in the spectrum sensing

operation (O-1 in Figure 3.1) by marking each bin as a ’1’ if the spectrum is unused above

the threshold. Otherwise the bin is marked as a ’0’. The result of this process is the binary

vector spectrum representation where ones represent available frequencies and zeros show

unavailable spectrum. An example of the threshold conversion method is shown in Figure

3.6, and the threshold is applied to an actual RF map in Figure 3.13.

3.2.5.2 REM Scenarios.

A geographically-separated network does not share a common REM. A single

frequency hopping sequence cannot be selected which every node can concurrently use.

Individual clusters, however, are more likely to have common unoccupied spectrum. To

achieve this goal and build the aforementioned hierarchy, the strategy of clustering is break

the network into smaller clusters, which do share common REM. In this manner, Scenario C

distills into separate instances of Scenarios A and/or B. As shown in the notional examples

of Figures 3.7, 3.8, and 3.9, the greatest amount usable spectrum is available when clustered

nodes have similar observed spectra, likely the result of geographical closeness.

S-A, Similar. Nodes are geographically close to each other and have nearly identical

REMs. A fused common REM is approximately equivalent to any individual REM within

53

Figure 3.7: Cluster scenario S-A.

the cluster. This is the simplest scenario as the aggregate REM is easiest to compute, i.e.,

the cluster leader’s REM. Any given node can communicate with any other node at will.

An example of individual and merged spectra in S-A is shown in Figure 3.7 where the

spectrum is partitioned into 32 bins. Dark areas represent occupied spectrum and light

areas represent usable “white space.”

S-B, Overlapping. Nodes with moderate geographical separation likely have non-

identical, but overlapping, REMs. A fused common REM is equivalent to the intersection

of the individual REMs. This scenario is identical to A with the caveat that the space of

possible hop destinations is more limited. An example of individual and merged spectra

in S-B is shown in Figure 3.8 where the spectrum is partitioned into 32 bins. Dark areas

represent occupied spectrum and light areas represent usable “white space.”

Figure 3.8: Cluster scenario S-B.

S-C, Disjoint. Geographically-far nodes have non-identical and potentially non-

overlapping REMs. In this scenario, no more than two nodes share common available

54

spectrum such that the cluster’s REM intersection is disjoint. Therefore, a node has a

mutually-exclusive REM intersection with only one other node. In terms of ad hoc network

communications, this is the worst scenario as a gateway node would need to relay packets

between adjacent nodes. An example of individual and merged spectra in S-C is shown in

Figure 3.9 where the spectrum is partitioned into 32 bins. Dark areas represent occupied

spectrum and light areas represent usable “white space.”

Figure 3.9: Cluster scenario S-C.

Therefore, the goal of clustering is to geographically partition a set of nodes with

disjoint REMs (Scenario C) into clusters which have similar or overlapping (Scenario A/B)

REMs with the intent of high intra-cluster spectrum similarity. High intra-cluster spectrum

similarity implies a broader sample space from which to select an adaptive hopset. A

broader sample space, then, is expected to decrease the possibility of interference.

3.2.5.3 Spectrum Map Comparison.

In this research, REMs are represented as binary vectors. As such, it a trivial operation

to compare two REMs. Hamming distance, a commonly used metric in coding theory,

counts the number of coefficients by which two strings differ. If bits are considered as

55

coefficients and REMs as strings, the Hamming distance between two REMs of equal

length is the number of bits which are different for all equivalent positions. An graphical

example of Hamming distance is shown in Figure 3.10. Positions at which bits are equal

are shaded green; likewise, unequal bits are shaded red.

Figure 3.10: Hamming distance example.

Hamming distance is directly applicable to determining the effectiveness of clustering.

While the original metric determines the bit-wise difference between two REMs,

subtracting that number from unity and dividing the difference by the number of bits yields

the percent similarity between two REMs. The latter is used to evaluate how effectively

clustering groups together nodes with like spectra and will be referred to as “REM distance”

from this point.

3.2.5.4 Intra-Cluster Spectrum Similarity.

Using the cluster scenarios of Section 3.2.5.2 and the distance metric of Section

3.2.5.3, the test system’s sole metric is intra-cluster spectrum similarity (ICSS). To

determine the overall spectrum similarity within a cluster, the REM distance is computed

for every pair of nodes within the cluster. No pair carries a particular “weight” over any

other pair, so intra-cluster spectrum similarity is defined simply as the average of all REM

distances within a cluster. An example of ICSS calculation is shown in Figure 3.11 where

ICS S = 84.5%.

56

Figure 3.11: ICSS calculation example.

We do not use Hamming distance as our experimental metric because it is dependent

on the number of bits (which map to the bins, channels, frequencies, etc. in the observed

spectrum) in the vectors being compared. ICSS is only a slight modification of Hamming

distance and, as a ratio, it is independent of vector size. Therefore, ICSS can also be used to

compare experiments using arbitrary-length spectrum vectors. (Note: We do not use ICSS

for this purpose in this paper, but instead build our experiment for future expansion.)

3.2.6 System Parameters.

The system under test accepts five system parameters: the set of RF spectrum maps,

the number of bins used in the FFT (corresponding to the number of bits in a REM), the

REM threshold coefficient, k-means heuristic, and the number of k-means centers. These

parameters and the reasons they are chosen are shown in Table 3.2.

The reason(s) for choosing each system parameter follows:

• RF spectrum maps. The set of RF spectrum maps is a parameter because varying

the RF environment presents different REMs for comparison using ICSS. An RF

spectrum map is unique to each grid location and contains the FFT of the spectrum

observed at that location. All spectrum map inputs are shown in Appendix A.

57

Figure 3.12: RF spectrum map examples.

58

• Number of FFT bins. This parameter affects determination of the REMs as the

number of FFT bins is also the number of bits in a REM.

• REM threshold coefficient (α). Given that each map contains a unique energy density

at each bin, the REM threshold coefficient sets the REM threshold (see Figure 3.6)

α percent above the mean of the energy levels in that spectrum. The equation for

computing the REM threshold using the threshold coefficient α is shown in 3.1,

where N is the number of bins, and S represents the vector containing all N energy

density values. For this research, spectral density values are recorded in decibels and

are negative in sign. The value for α is limited to the range [−0.5, 0.5].

Threshold = (1 − α)
1
N

N∑
i=1

S i (3.1)

This research uses a coefficient of 0.2 as in Figure 3.13, which is similar to the

original threshold coefficient example in [35]. If, in a given bin of the FFT, the signal

Figure 3.13: Applied threshold coefficient example.

59

exists above the threshold, the corresponding bit of the resulting REM is marked as a

‘1’ vice a ‘0’ otherwise. This technique is applied in Section 3.2.5.4 when computing

the performance metric and in Section 3.3.4.2 for map merging.

• k-means heuristic. Exposing the different heuristics allows for a decision on which

heuristic, if any, outperforms the others and should therefore be integrated with the

rest of the middleware architecture.

• Number of k-means centers. It is expected the number of k-means centers affects

how many nodes will belong to a cluster, thereby influencing the commonly-available

spectrum throughout.

• Node distribution standard deviation (σ). The clustering software accepts a

number of parameters, including the standard deviation used in generating several

distributions (including Gauss). In general, increasing this value increases the area

covered by the Gauss distribution.

60

Table 3.2: System parameters.

System Parameter Description

RF spectrum maps Represents the maps used to simulate varying spec-

trum environments. Figures A.1 and A.2 shows two

examples of ten-by-ten spectrum measurement grids

where the top left plot corresponds to position (1,1)

and the bottom right plot to (10,10). Thresholds are

denoted with a red dashed line.

Number of FFT bins The number of bins in an FFT of the spectrum. The

value used for this experiment is 2,048 due to the

equipment configuration.

REM threshold coefficient Determines how much the mean energy level is

adjusted when evaluating the spectrum for availability.

k-means heuristic The different heuristics by which k-means clustering

is performed. These heuristics are listed and briefly

described in Section 2.4.3.

Number of k-means cen-

ters

Defines how many centers should be used by the

specified k-means heuristic.

Node distribution σ Provides a non-default standard deviation for deter-

mining several distributions. Pilot experiments show

that σ = 0.3 yields Gauss distributions that consume

roughly the same area as the other distribution types.

61

3.2.7 Factors.

Arguably the single most important parameter is the RF spectrum map under which

a node map exists. If the spectrum map is held constant, it is useless to assert clustering

produces expected ICSS results. Thirteen total RF spectrum maps are used to validate

clustering algorithm performance. Additionally, four clustering heuristics and seven center

counts are used.

Table 3.3: System factors.

Factor Levels

RF spectrum maps (see Figures 3.14 and 3.15)

Number of maps 10

Node distributions Uniform, Gaussian (µ = 0), Multi-Cluster (k = 2).

k-means heuristic Lloyd’s, Swap, EZ-Hybrid, Hybrid

Number of centers 2 to 98, in intervals of 2 (49 total)

Ten RF spectrum measurement grids are used to validate the system’s performance

across a range of transmitter configurations. These spectra are emulated and their FFTs

taken (“snapshots” of the spectrum) at every whole-number coordinate within the specified

dimensions (i.e., (4, 5)). The REMs formed from these snapshots are used in determining

ICSS. All ten spectra are shown in Appendix A.

For the non-baseline data, the spectrum at each grid location is generated via spectrum

emulation equipment where a custom transmitter map may be specified. The transmitter

maps used to generate the RF spectra for this experiment are shown in Figures 3.14 and

3.15. In these diagrams, the map has dimensions 10 × 10 such that each has a maximal

coordinate of (10, 10). Triangles represent transmitters, large circles represent high-power

62

Figure 3.14: Transmitter configurations 1–6.

63

Figure 3.15: Transmitter configurations 7–10.

transmitters (as opposed small circles for low-power), and dashed lines represent wide-

band transmitters (as opposed to dotted lines for narrow-band).

We use kmltest.exe to generate ten different receiver maps of three distribution

types. Each map is pseudo-randomly generated using integer seed. Because the program is

known to crash when using seeds of three and seven, the seed number is incremented twice

upon reaching those numbers such that they are not used. One map of each distribution

64

Figure 3.16: Sample uniform (left), Gauss (center), and multi-cluster (right) node

distributions with seed = 1.

type (seed = 1) is shown in Figure 3.16 where the x- and y-axes correspond to the nodes’

respective physical locations. All ten maps (using seeds {1, 2, 4, 5, 6, 8, 9, 10, 11, 12}) are

shown in Appendix B.

The k-means testbed described in Section 2.4.3 features four clustering heuristics.

Therefore, all four are used for this experiment for exploring any variability and/or

improvement among heuristics prior to incorporation with the system.

All center counts are powers of two for binary division of the map. We use this rule to

facilitate simpler creation of a more vertical hierarchy in future work. Additionally, pilot

experiments revealed that kmltest.exe crashed when the number of centers was equal to

the number of nodes. Therefore, the maximum number of centers is the highest power of

two less than the number of nodes; in this case, 100.

To emulate the ability of nodes to organically sense the RF spectrum, nodes are

mapped to DYSE spectrum measurements. When nodes are assigned spectra for clustering

heuristic evaluation, they receive the spectra assigned to the grid cell in which they are

located, per Figure 3.16 and the rest of the maps located in Appendix B. The grid cell

is the whole number of the node’s coordinates. For example, a node with a location

65

Figure 3.17: Spectrum-to-node mapping example.

(4.23288, 7.31245) will be assigned the spectra of grid cell (4, 7). A demonstration of this

mapping of spectrum measurements to nodes is shown in Figure 3.17. Black lines show

how spectrum measurements map to individual grid cells, and red arrows show how those

grid cells with spectrum measurements are mapped to the nodes within each grid cell.

3.2.8 Evaluation Technique.

3.2.8.1 Technique.

Evaluation is via simulation followed by analysis. It is not practical to evaluate this

system purely by simulation because the ICSS metric must be analyzed using simulation

output.

3.2.8.2 Experimental configuration.

Host machine. This work is performed on a laptop containing an Intel Core i7-

2720QM containing eight cores running at 2.20 GHz. The machine has 16.0 GB of RAM

and runs Windows 7 with Service Pack 2.

66

Software and code. MATLAB is used to build this test framework, run the

simulation, and analyze output. All associated code is included in Appendix F.

3.2.8.3 Results validation.

Results are validated by examining (a) whether clustering does indeed behave as

expected using the baseline maps, (b) whether the ICSS value does asymptotically approach

unity as the number of clusters approaches the number of nodes, and (c) whether the ICSS

value is consistent between distribution types and across different node distributions and RF

maps. If the two latter observations hold throughout the experimental results, the k-means

algorithm is a solid fit for use in a network where the network’s configuration depends on

the RF spectrum environment. Additionally, if one heuristic consistently performs better

than Lloyd’s algorithm, then that heuristic is deemed the primary choice for use in such a

network. If no heuristic does so consistently or at all, then Lloyd’s algorithm is chosen for

implementation. This validation approach is visual confirmation based on a large dataset,

so it is expected any trend is distinct and readily identifiable by the human eye.

3.2.9 Experimental Design.

This experiment is full factorial as the number of possible input combinations is

feasible to implement. There are 58,800 total simulations (10 RF spectrum maps × 10

node distributions × 3 distribution types × 4 clustering heuristics × 49 center counts).

3.2.10 Methodology Summary.

This experiment is designed to evaluate the effectiveness of several different clustering

algorithms for incorporation into a cognitive radio system. Experimental data and analysis

is generated using MATLAB code, and results are compared using the proposed new

metric, ICSS.

67

3.3 Adaptive Hopset Selection

3.3.1 Spectrum Input.

Spectrum sensing is the first step in forming the adaptive hopset. First, a radio front-

end receiver (Rx) senses the spectrum. An analog-to-digital (ADC) converter converts this

signal to its digital equivalent. Next, a Fast Fourier transform (FFT) is performed on the

digitized signal to generate an N-bin frequency-domain model of the signal. The FFT

output is then converted to a binary vector corresponding to the spectrum representation

definition presented in Section 3.2.5.1. The entire spectrum input process is shown in

Figure 3.18, where components designed as part of this section are shown in red.

The portion of Figure 3.18 in dashed lines shows the REM distribution process and the

centralized REM-based network clustering process. Once clusters exist, common REMs

can be formed for individual clusters and the network as a whole using the same merging

process. Clustering is not a focus of this paper, however, and will not be explained further

here.

In this section, we assume spectrum sensing is complete for the network, that every

node can represent its REM in this manner, and that all nodes have received the REMs of

Figure 3.18: Spectrum input diagram.

68

all nodes in the network. In terms of Figure 3.18, we assume that all steps prior to the REM

Merger block are complete and REM vectors are ready for merging.

3.3.2 FPGA Internal Structure.

We implement our design on a Xilinx Virtex IV FPGA as part of the WARP II radio

transceiver board. Using the Xilinx Embedded Development Kit (EDK), we assemble a

collection of custom and existing intellectual property (IP) cores using a 32-bit bus and

the FPGA’s embedded PowerPC processor. In Figure 4, green cores are affiliated with the

PowerPC, blue cores are WARP-specific, tan cores are those needed to support our IP core,

and our core is shown in red. Cores with an asterisk (*) are not used in this experiment, but

will be used in future development.

The IP cores supporting our core are RS-232 (for output to PC serial port terminal) and

a removable CompactFlash memory. The latter two IP cores are grouped together by a gray

dashed line because they are interchangeable as method for exchanging REMs. Initially,

we simply write each node’s REM to the removable memory and transfer REMs between

nodes in this fashion.

Future iterations of this design will include transmit REM data via wired network for

system testing purposes. Finally, radios will operate in a completely wireless fashion using

their radio cards. The bus structure of our design is shown in Figure 3.19.

3.3.3 IP Core Internal Structure.

Our IP core consists of six components: REM merger, key loader, two 64x32 register

files for storing the aggregate REM and the key, the hopset selector, and a BRAM section

in which open channels are stored. Their organization is shown in Figure 3.20. Buses are

shown in bold, and bus widths are in square brackets. A larger version of 3.20 is shown in

Appendix C as Figure C.2. All VHDL code necessary to implement this IP core is included

in Appendix G.

69

Figure 3.19: FPGA bus structure diagram.

70

Figure 3.20: AHS structural diagram.

3.3.4 IP Core Internal Function.

3.3.4.1 Bandwidth Masking.

Different radio protocols have different bandwidth requirements. In order to provide

flexibility with regard to these requirements, our device accepts two 32-bit bandwidth

masks. When the hardware scans the aggregate REM for available channels, the two masks

are applied to determine whether the required band is available. For example, if a given

protocol requires B bins to be available around a center frequency, the user specifies the

corresponding bits in the bandwidth mask input vectors as ’high’. The construction of the

bandwidth mask is shown in Figure 3.21.

Figure 3.21: Example bandwidth mask vector.

71

3.3.4.2 REM Merging Components.

REM merging is the first core function of this design. In this paper, we assume that

each REM is a 2048-bit binary vector, the direct result of a 2048-bin FFT. REMs can be

composed of a variety of types of spectrum data; we use only spectral data represented as

binary vectors per Section 3.2.5.1.

Further, REM merging is the process of successive bitwise AND operations. In this

manner, the AND of any number of REMs produces a new REM for which available

channels are the intersection of all available channels across all input REMs. Each vector

is loaded successively and ANDed with the previous result per the merging technique

presented in Figure 3.22. There is no physical limit to the number of input REMs, although

the number of possible REMs is ultimately limited to the network size. All vectors are

serially loaded at a rate of one word per clock cycle. The number of clock cycles needed to

load a map is modeled by Equation 3.2.

Cycles =
#REMs

map
×

Bbits
REM

×
1cycle

Buswidth
(3.2)

For example, consider the scenario in which 64 REMs are used. A 64-bit map with

32-bit bus will take 64REMs
map ×

2048bits
REM ×

1cycle
32bits = 4, 096cycles to load all maps. If the number of

Figure 3.22: Map merging example.

72

vectors is less than the total number of possible input gates, unused input gates are assigned

all ones such that the bitwise AND of any vector with that of all ones results in the original

vector. All vectors are serially loaded at a rate of one word per clock cycle.

The REM merger can accept an arbitrary number of maps as the hardware component

logically ANDs each 32-bit input with its respective section in the aggregate REM. For

example, if the nth 32-bit section of a REM is loaded into the REM merger, it will be

ANDed with the nth section of the REM stored by the merger. The result is then written to

the register storing that section of the aggregate REM. In this way, any number of devices

in a network can share REMs for the purpose of creating an adaptive hopset.

3.3.4.3 Adaptive Hopset Selection.

Adaptive hopset selection, or AHS, represents the second core function of our design.

Map merging generates the aggregate REM as a binary vector in which each bit maps

to the center frequency of an FFT bin within the device’s usable spectrum. Because all

radios within the network know this mapping, adaptive hopset selection becomes a matter

of randomizing these channels. We assume the hopset S is H hops in length, bit position-

to-channel mappings are stored in the device (i.e., in a look-up table), and an N-bit random

key K exists prior to forming the hopset. Under these assumptions, our circuit performs the

following steps on an N-bit REM to convert the map into a corresponding adaptive hopset:

73

Figure 3.23: AHS functional diagram.

1. Starting at the lowest-number channel, begin iterating through the binary vector.

Initialize the available channel count C = 0.

2. For every bit, if the bit is a ‘1’, look up the corresponding channel number and store

it in a list L containing available channels and increment C.

3. If C < H, replicate the first H −C at the end of the list L such that L has H elements.

4. For i = 0 to i = H − 1, look up the available channel in L at the index indicated by

the key K, scaled to the number of open channels. Output the channel in L as the ith

hop in hopset S . Rotate K one bit to the right.

74

5. Repeat step four H times, i.e., until all H hops have been assigned within S .

The hopset S of length N is this system’s output. Because each index is derived from

a random number, every index is inherently random. This process is graphically illustrated

as a finite state machine in Figure 3.23.

3.3.5 System Testing.

VHDL code was developed in ModelSim PE. Once we developed a consistent simula-

tion design, we synthesized the hopset selector core in the Xilinx ISE implementation tool.

We used the mapped version of the circuit to confirm the design’s functionality with the

effects of realistic delays and other hardware characteristics prior to loading the integrating

the circuit with the rest of the WARP system. We show the results of this simulation in the

Results section.

We tested the hardware system using C code implemented on the FPGA’s embedded

processor core by reading in the spectrum maps from a compact flash file, submitting the

maps to the VHDL code described above, and writing the resulting hopset(s) to a new

compact flash file to simulate REM reception and hopset transmission over the network.

We use random maps and a random key to ensure a random hopset is indeed generated

from a realistic input.

3.3.6 Optimization Goals.

Virtex IV FPGA resources are already limited, and incorporating the existing WARP

system causes the design to be even more crowded. Therefore, this design is optimized

for area. Because the state machines and other logic in our IP core require relatively little

area (on the order of 5% total resources), our primary optimization was to minimize the

effort needed to synthesize and implement memory. This strategy implicitly attempts to use

memory components built into the board. We used a generic VHDL block RAM (BRAM)

structure given in the XST User Guide for storing available channels [41].

75

4 Results

4.1 Network Clustering

4.1.1 Clustering Baseline.

In order to verify that clustering does behave as expected, four canned node

distributions were generated such that clusters were readily apparent. The k-means

algorithm was run on example distributions containing two, four, eight, and 16 clusters.

Sixteen clusters was the upper limit as it was assumed the trend would continue in the

same fashion as the first four greater-than-two binary counts. As shown in Figure 4.1, each

heuristic clustered the distributions as expected (i.e., two clusters were formed in the map

Figure 4.1: Canned cluster verification test.

76

containing two distinct clusters, etc.). Different line colors are irrelevant to this portion of

the experiment.

This proof-of-concept validates the simple (but very important) hypothesis that the

clustering testbed software does perform as expected. As a result, it is assumed all results

obtained using the clustering software are accurate representations such that any obscurities

in the results pertain solely to the spectrum-based clustering metric.

4.1.2 Clustering Visualization.

Lines are drawn between all nodes within each cluster to represent potential (pre-

routing) communication links. When nodes within a cluster have highly similar REMs

(i.e., a high ICSS value), the connecting links are colored red. Likewise, links between

nodes with dissimilar REMs are colored blue. This is accomplished by selecting colors

from the MATLAB colormap() function according to the inter-node ICSS value. The

clustering visualization method show only center counts of two, four, eight, 16, 32, and 64

in the interest of preserving space. Figures 4.2, 4.2, and 4.2 show examples of this cluster

visualization method using the third DYSE map on all three distribution types.

Figure 4.2: Cluster visualization of a uniform distribution using DYSE map #3.

77

Figure 4.3: Cluster visualization of a Gauss distribution using DYSE map #3.

Figure 4.4: Cluster visualization of a multi-cluster distribution using DYSE map #3.

Multiple cluster visualizations are presented in Appendix D. Each distribution type

is used ten times, and each pseudo-random distribution (based on a random seed) is used

three times. This configuration yields a total of thirty different cluster visualizations.

78

4.1.3 ICSS Evaluation.

ICSS plots for the first and fifth DYSE maps are shown for all three distributions in

Figures 4.5, 4.6, and 4.7. ICSS is found to vary between approximately 60% and 100%

across the range of clustering heuristics and distribution types. Each datapoint represents

running the relevant clustering heuristic on the ten distributions shown in Appendix B and

averaging the ICSS result. It should be noted that while the trends do look nearly identical,

close inspection reveals a slight yet distinct difference between plots.

Five characteristics are readily apparent in all three ICSS plots. An asymptotic

relationship to unity at high cluster counts, a dip at lower counts in uniform and Gauss

distributions, the inconsistency of the EZ-hybrid heuristic at cluster counts over 50 in a

100-node distribution, the relative consistency of both the Lloyd and Hybrid heuristics

over (nearly) the entire range, and the immediate drop-off in ICSS for the Swap heuristic

at high cluster counts are all plainly visible on first inspection. These characteristics are

examined below.

The asymptotic relationship over the range of cluster values is as expected and

confirms the hypothesis that spectrum similarity between nodes within the same cluster

asymptotically approaches unity as the mapping of nodes to clusters becomes one-to-

one. In addition to confirming this trend, the radio can also be pre-loaded with a range

of clustering results such that different cluster counts are available for selection based

on desired ICSS. For example, if the RF environment contains a significant amount of

interference, nodes likely need a higher ICSS value in order to increase the likelihood that

a common hopset can be found. Per the results of evaluating the ICSS metric, this need

translates to more clusters. Conversely, an RF environment with little interference requires

less commonality (i.e., lower ICSS) for approximately the same number of common

frequencies.

79

Figure 4.5: ICSS for uniform distributions using DYSE maps #1 and #5.

80

Figure 4.6: ICSS for Gauss distributions using DYSE maps #1 and #5.

81

Figure 4.7: ICSS for uniform distributions using DYSE maps #1 and #5.

82

There exists a dip in ICSS occurs around 16 clusters, with the ICSS value remaining

below that of two clusters until the number of clusters reaches approximately 25. More

testing is needed to explore whether ICSS “breaks even” at 25 (in this case, 25% of the

total number of nodes), and why this occurs in the uniform and Gauss distributions, but not

in the multi-cluster distribution.

The EZ-hybrid heuristic experiences a series of oscillations at higher cluster counts

(i.e., those counts greater than half the total number of nodes). This is contrary to the

monotonic trend in the three other heuristics (aside from Swap at high counts). This is

because EZ-hybrid is a simple hybrid of the Lloyd and Swap heuristics and does not make

any effort to optimize clustering. The Hybrid heuristic, on the other hand, does not show

any such dropoff except at the highest cluster count. This result, however, is because the

test program crashes with regularity at that cluster count.

Similarly, the Swap heuristic crashes for each of the last four cluster counts. Because

of this instability, the Swap heuristic appears to be a poor choice for implementation with

the remainder of the system. If it not for the consistent crash tendency at high cluster counts,

Swap performs evenly with (and often better than) the three other heuristics. However,

if the desired ICSS is lower than approximately 97% (a very likely scenario), the Swap

heuristic is an ideal choice.

4.1.4 Application to System Implementation.

This experiment highlights the tradeoffs present in selecting the number of clusters

chosen for a CRN implementation. From Figures 4.5, 4.6, 4.7, and those in Appendix

E, it is apparent that increasing the number of clusters yields higher bandwidth. Further,

partitioning the nodes into many clusters decreases network complexity and limits excess

traffic loads on the overall network as intra-cluster communication is independent of

other clusters. However, while high bandwidth potentially means less interference, it

is not always necessary. Networks experiencing few or no occupied channels require

83

less commonality between nodes, which leads to a lower ICSS value and fewer clusters.

Therefore, these results can be used to retrieve in real-time a desirable cluster count given

a minimum or maximum ICSS value.

The cluster count used as input to the clustering algorithm in actual operation is driven

solely by the desired ICSS value, but ICSS is affected by the radio environment itself. We

intend to incorporate the results of this research as a cache of experimentally-obtained

data. A cache reduces computing time, and it is expected that the data obtained using

100 nodes can be extrapolated to both smaller and larger networks with the same result.

Ultimately, using a table-lookup scheme balances the tradeoffs anticipated in different RF

environments where greater interference can be offset by increasing the number of clusters

in order to improve the similarity of spectrum observations between nodes.

84

4.2 Adaptive Hopset Selection

4.2.1 Mapped Simulation.

In order to validate our design before running the time-intensive place-and-route

process and to facilitate quicker debugging, we simulated the synthesized/mapped version

of our circuit. Figures 4.8-4.13 detail this simulation and reinforce our assertion that the

circuit performs as intended given realistic hardware constraints. Signals of interest are

described in captions. The synthesized component was instantiated in the same VHDL test

bench used to evaluate our code base. Xilinx automatically generated the VHDL file using

Unisim components which accurately model hardware constraints in simulation.

Initially, the new rems and new key flags are toggled to clear the existing aggregate

REM and key. The REMs are loaded by writing the 32 bits of REM data and toggling the

load rem flag (Figure 4.8).

Figure 4.8: REM loading

The key is loaded in a similar fashion to the REM(s) with the load key flag being

toggled (Figure 4.9).

85

Figure 4.9: Key loading

Once the software has loaded the REMs and key, it toggles the start flag. The

circuit immediately begins counting and tracking the open channels by first deasserting the

finished flag (Figure 4.10).

Figure 4.10: Channel counting

86

After the open channels have been counted, the hopset ready flag is asserted. The

software then toggles the next hop flag in order to retrieve the hopset contents (Figure

4.11).

Figure 4.11: Hopset retrieval

The finished flag is asserted after all hops have been extracted. The hopset ready

flag is deasserted (Figure 4.12).

Figure 4.12: Hopset generation finished

87

Figure 4.13 shows full system simulation. Hopset output occupies the most time

because its speed is governed by that of the software running on the processor.

Figure 4.13: Full operation

4.2.2 Standalone Device Usage.

When placed and routed, the AHS (including a bus communication wrapper) occupies

approximately 10% of the board’s slice resources. Because BRAM is used, the associated

slice usage is limited to a small footprint. Two BRAMs out of 376 total units are used

to create the open channels table. Table 4.1 provides a comparison between device usage

summaries for both the individual IP core and the WARP-based system as a whole.

4.2.3 Timing Analysis.

While the maximum frequency given by XST is only 70.442 MHz, the actual system

can be run at a much higher frequency because of the automatic placement of clock dividers

around the chip. For example, we run the PowerPC clock at 125 MHz and the bus clock at

100 MHz with no adverse effects. This is because the relatively low frequency applies only

to a subset of clock nets.

88

Table 4.1: Device Resource Usage Summary.

Resource Available AHS AHS+WARP

Number of BUFGs 32 1 (3%) 11 (34%)

Number of External IOBs 768 256 (33%) 462 (69%)

Number of RAMB16s 376 2 (1%) 59 (15%)

Number of Slices 42,176 4,614 (10%) 15,032 (35%)

Number of SLICEMs 21,088 768 (3%) 1,119 (5%)

4.2.4 Hopset Selection Demonstration.

In addition to actually building the AHS system and implementing on an FPGA, C

code was written for testing and verifying the system’s functionality. Figure 4.14 shows

the output of the test. The example shown is the result of a 64-bit implementation. The

smaller size (as opposed to the 2,048-bit full implementation) is used simply to aid in

demonstration. Using all 2,048 bits would simply create a large, complicated output. The

Figure 4.14: Hopset output example.

89

Figure 4.15: AHS+WARP device usage diagram.

90

hopset shown is the result of a 64-bit random key. The code used to produce this output

forms the skeleton onto which the rest of the system is to be constructed.

4.2.5 Device Usage Floorplans.

The PlanAhead diagrams in Figures 4.15 and C.1 show how the slices (shown as light

blue dots) fill the FPGA fabric with the existing WARP system and the AHS IP core and

IP core alone, respectively. The most notable difference is the addition of routed PowerPC

cores in the larger design (shown as two dim blue blocks).

4.2.6 Optimization Achievements.

Directing the synthesis and implementation tools to build the memory structure out of

logic slices ran and did not complete, even when given over 12 hours to run. Purposefully

using BRAM and using the XST option for automatically extracting BRAM was quick and

resulted in virtually no synthesis and implementation overhead.

91

5 Conclusions

5.1 Research Contributions

This research makes five contributions to the field of cognitive radio:

1. The framework for a new hybrid hardware/software middleware architecture (see

Figure 3.1);

2. A framework for testing and evaluating clustering algorithms in the context of

cognitive radio networks (see Figure 3.1, O-2 and Figure 3.5);

3. A new RF spectrum map representation technique (see Figure 3.6);

4. A new RF spectrum map merging technique (see Figure 3.1, O-4 and see Figure

3.22);

5. A new method for generating a random, key-based adaptive hopset frequency

hopping waveform (see Figure 3.1, O-5 and see Figure 3.23); and

6. Initial integration testing toward implementing the proposed system on a field-

programmable gate array (FPGA) (see Figure 4.14).

5.2 Whole System

We believe it is both possible and feasible to implement an adaptive frequency hopping

cognitive radio for use among existing primary and secondary users. To support this

assertion, we propose a new middleware architecture for use in such a system. We also

implement several components as the basis for proving feasibility. Through defining the

architecture and implementing several operations within the system, we conclude such a

system is both possible and feasible to build.

92

5.3 Network Clustering

We presented a methodology for evaluating the k-means clustering algorithm in

a cognitive radio network over a range of node distributions, cluster counts, and RF

spectrum maps. We also introduced a new metric, intra-cluster spectrum similarity (ICSS),

for comparing the effectiveness of clustering in the context of a dynamic RF spectrum

environment. Our experiment showed that ICSS asymptotically approaches unity as the

number of clusters in a notional cognitive radio network of 100 nodes approaches the

number of nodes. This trend was as expected and remained consistent across all ten RF

spectrum maps, distributions, distribution types, and clustering heuristics for a range of

cluster counts. Because of its consistent performance, Lloyd’s algorithm (the de facto

heuristic) was selected for integration with the whole system.

In addition to selecting an algorithm, the consistency of results allows the design to

incorporate the ICSS results in a table-lookup format. For example, if the radio determines

that spectra must be Y-percent similar, the radio runs the clustering algorithm using X

clusters. Given the requirement for Y , X is easily derived from the plotted ICSS data.

Further, if it is determined a cluster must have high bandwidth, then a higher ICSS value

(X) is chosen, and therefore a large number of clusters (Y) is chosen. Likewise, a low-

bandwidth connection requires a lower ICSS value and therefore fewer clusters. Within

this decision, there exists a tradeoff. High bandwidth leads to more clusters which leads to

decreased complexity (toward O(n log(n)), whereas low bandwidth leads to fewer clusters

which leads to increased complexity (toward O(n)). We conclude that the decision for Y

is contingent upon a tradeoff between ICSS (representing similarity between REMs) and

required bandwidth, and that the number of clusters is not dependent on ICSS alone, but

also network requirements.

93

5.4 Adaptive Hopset Selection

The last three contributions were made in adaptive hopset selection. First, we

implemented a cognitive radio with adaptive hopset selection on an FPGA. Second,

we proposed and demonstrated a new technique for merging RF spectrum maps when

represented as binary vectors. Finally, we proposed and demonstrated a new adaptive

hopset selection technique. The whole system (composed of the WARP architecture and

our custom core) fit within the resources available on the Virtex IV FPGA. Because our

code simulation, mapped hardware simulation, and software-based testing yielded the

desired results, this portion of the whole system functioned as expected.

5.5 Final Remarks

The architecture proposed in this research is a novel method by which to implement

a frequency hopping cognitive radio network for coexistence with other RF spectrum

users. By demonstrating the practicality of using the k-means clustering algorithm and RF

spectrum measurements as an effective method for partitioning an otherwise-flat network

into sub-networks, we provide an efficient way to decrease network complexity in a

way that accounts for RF spectrum differences. Further, by demonstrating a hardware-

based implementation for selecting a random frequency hopping hopset, we introduce an

avenue for adaptively hopping frequencies as a means to quickly and continually avoid

RF interference. To support these two contributions, we propose a lightweight, hardware-

portable spectrum representation technique. It is expected these contributions forge a path

for building on the proposed architecture and ultimately developing, testing, and fielding

an operational frequency hopping cognitive radio network.

94

6 Future Work

As stated in the Introduction, several pieces within this research remain to be

implemented before a full-scale, standalone prototype network can exist. At the time

of publication, one post-doctoral student, two masters students, and several interns are

currently working on expanding the envelope of this research.

1. Multicast communication layer. Multicast communication, specifically totally-

ordered multicast (TOMC), enables a conceivably large and complex network to

communicate in a structured fashion. Integrating the TOMC layer onto the board

means tying in existing software. Currently, using the Spread API is yielding

promising results. This layer will be fully validated once nodes can communicate

over either wired or wireless links. This layer requires some sort of MAC layer to also

be in place, so it is possible small and/or embedded operating system (i.e., TinyCore

Linux, Windows Embedded, etc.) may need to run on the embedded processor. At

time of print, this step is being completed as part of a follow-on student’s thesis.

2. Ethernet core. An Ethernet core is the next step toward inter-node communication.

When implemented, Ethernet allows two or more boards to be a part of the same

wired network in much the same way as the eventual wireless network. At time of

print, wireless transmission via Ethernet has been demonstrated but has not yet been

integrated with the middleware architecture.

3. Frequency hopping operation. The WARP board supports up to four radio cards,

and these cards must be integrated with the hopset selection method described in

Section 3.3. Current work on this step (outside the scope of this document) is

demonstrating the WARP’s wireless functionality, so integration with the proposed

middleware architecture is pending. In order for the radio to operate as intended,

95

though, this task is extremely critical. In addition to implementing frequency

hopping-spread spectrum communication, it is desirable to include non-contiguous

OFDM where carriers are adaptively selected using REM data.

4. Secure hash chaining. To realistically generate new hopsets periodically, keys need

to be distributed securely and quickly. Secure hash chaining provides a method

by which such values can be distributed. This task is intended for software-only

implementation, but it is feasible the operation could be completed much quicker in

a hardware-based FPGA solution.

5. On-board spectrum sensing. Once the board can sense its own spectrum and

produce a model satisfying the previously requirements laid out and implemented,

each board can begin to function as a fully autonomous device. Spectrum sensing

is currently performed in an emulation environment; this is for prototyping only.

Simply put, on-board sensing completes the OODA loop.

6. Field testing. Lab testing and emulation environments only validate this research

to the accuracy of such tests. In order to fully prove this system’s worth, it must be

tested in an outdoor environment where the spectrum is truly unknown and the radio

must truly adapt. This also allows the radio to grow as necessary without the physical

limitations of doing so indoors.

96

Bibliography

[1] M. Faisal, Y. Park, and D. D. Wentzloff, “Reconfigurable Firmware-Defined Radios

Synthesized from Standard Digital Logic Cells,” 2011, pp. 803 115–803 115–8.

[Online]. Available: http://dx.doi.org/10.1117/12.885058

[2] R. Coram, Boyd: The Fighter Pilot Who Changed the Art of War. Back Bay Books,

2002.

[3] B. Wang and K. Liu, “Advances in cognitive radio networks: A survey,” in IEEE

Journal of Selected Topics in Signal Processing, vol. 5, no. 1, February 2011, pp.

5–23.

[4] Air Force Chief Scientist, Office of the, Report on Technology Horizons: A Vision for

Air Force Science & Technology During 2010–2030, 2010, pp. 52–55, 60, 78–91.

[5] D. Schneider, “LightSquared’s GPS-Interference Controversy Comes to a Boil,” in

IEEE Spectrum Magazine, vol. 42, no. 2, February 2012, pp. 13–14.

[6] “Advanced RF Mapping (Radio Map),” DARPA Strategic Technology

Office. [Online]. Available: http://www.darpa.mil/Our Work/STO/Programs/

Advanced RF Mapping (Radio Map).aspx

[7] “DARPA seeks mapping of RF spectrum for deployed troops,” Defense Systems,

March 2012. [Online]. Available: http://defensesystems.com/articles/2012/03/06/

agg-darpa-spectrum-mapping.aspx

[8] M. McHenry, K. Steadman, A. Leu, and E. Melick, “XG DSA Radio System,”

in 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks

(DySPAN), October 2008, pp. 1–11.

97

http://dx.doi.org/10.1117/12.885058
http://www.darpa.mil/Our_Work/STO/Programs/Advanced_RF_Mapping_(Radio_Map).aspx
http://www.darpa.mil/Our_Work/STO/Programs/Advanced_RF_Mapping_(Radio_Map).aspx
http://defensesystems.com/articles/2012/03/06/agg-darpa-spectrum-mapping.aspx
http://defensesystems.com/articles/2012/03/06/agg-darpa-spectrum-mapping.aspx

[9] F. Seelig, “A Description of the August 2006 XG Demonstrations at Fort A.P. Hill,”

in 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum Access

Networks (DySPAN), April 2007, pp. 1–12.

[10] B. Fette, Y. Zhao, B. Le, , and J. Reed, Cognitive Radio Technology, ser. Electronics

& Electrical. Academic Press/Elsevier, 2009.

[11] SDR Forum, “SDRF Cognitive Radio Definitions,” November 2007.

[12] D. W. Group, IEEE Standard Definitions and Concepts for Dynamic Spectrum

Access: Terminology Relating to Emerging Wireless Networks, System Functionality,

and Spectrum Management. Institute of Electrical and Electronics Engineers,

October 2008.

[13] C. Cordeiro, K. Challapali, D. Birru, and N. Sai Shankar, “IEEE 802.22: The

First Worldwide Wireless Standard Based on Cognitive Radios,” in First IEEE

International Symposium on New Frontiers in Dynamic Spectrum Access Networks

(DySPAN), November 2005, pp. 328–337.

[14] S. Mellers, B. Richards, H.-H. So, S. Mishra, K. Camera, P. Subrahmanyam, and

R. Brodersen, “Radio Testbeds Using BEE2,” in Signals, Systems, and Computers,

November 2007, pp. 1991–1995.

[15] B. Le, F. Rodriguez, Q. Chen, B. Li, F. Ge, M. ElNainay, T. Rondeau, and C. Bostian,

“A Public Safety Cognitive Radio Node,” in SDR Forum Technical Conference, 2007.

[16] A. Mody, M. Sherman, R. Martinez, R. Reddy, and T. Kiernan, “Survey of IEEE

standards supporting cognitive radio and dynamic spectrum access,” in IEEE Military

Communications Conference (MILCOM), November 2008, pp. 1–7.

[17] “Single Channel Ground and Airborne Radio System (SINCGARS),” 1999. [Online].

Available: http://www.fas.org/man/dod-101/sys/land/sincgars.htm

98

http://www.fas.org/man/dod-101/sys/land/sincgars.htm

[18] “HAVE QUICK Frequency Hopping System,” 2012. [Online]. Available:

http://www.cryptomuseum.com/radio/havequick/index.htm

[19] “Single Channel Military Comm Recorder,” 2012. [Online]. Available:

http://www.digital-loggers.com/sincgars.html

[20] “UHF Radio Control Panel,” 2002. [Online]. Available: http://www.xflight.de/

pe org par lfc uhf.htm

[21] D. Stranneby and P. Kallquist, “Adaptive Frequency Hopping in HF Environments,”

in IEEE Military Communications Conference (MILCOM), vol. 1, October 1993, pp.

338–341.

[22] D. Herrick, P. Lee, and J. Ledlow, L.L., “Correlated Frequency Hopping - An

Improved Approach to HF Spread Spectrum Communications,” in Proceedings of

the 1996 Tactical Communications Conference, April 1996, pp. 319–324.

[23] K. Hamdi and O. Bamahdi, “A New Adaptive Frequency Hopping Technique,” in 60th

IEEE Vehicular Technology Conference, vol. 3, September 2004, pp. 2083–2086.

[24] O. Bamahdi and S. Zummo, “An Adaptive Frequency Hopping Technique With

Application to Bluetooth-WLAN Coexistence,” in International Conference on

Networking, International Conference on Systems and International Conference on

Mobile Communications and Learning Technologies, April 2006, p. 131.

[25] P. Popovski, H. Yomo, and R. Prasad, “Dynamic adaptive frequency hopping for

mutually interfering wireless personal area networks,” in IEEE Transactions on

Mobile Computing, vol. 5, no. 8, August 2006, pp. 991–1003.

[26] S. Mishra, A. Sahai, and R. Brodersen, “Cooperative Sensing among Cognitive

Radios,” in IEEE International Conference on Communications, vol. 4, June 2006,

pp. 1658–1663.

99

http://www.cryptomuseum.com/radio/havequick/index.htm
http://www.digital-loggers.com/sincgars.html
http://www.xflight.de/pe_org_par_lfc_uhf.htm
http://www.xflight.de/pe_org_par_lfc_uhf.htm

[27] C. Sun, W. Zhang, and K. Letaief, “Cooperative Spectrum Sensing for Cognitive

Radios under Bandwidth Constraints,” in IEEE Wireless Communications and

Networking Conference, March 2007, pp. 1–5.

[28] C. Sun, W. Zhang, and K. Ben, “Cluster-Based Cooperative Spectrum Sensing in

Cognitive Radio Systems,” in IEEE International Conference on Communications,

June 2007, pp. 2511–2515.

[29] Y. Zhao, J. H. Reed, S. Mao, and K. K. Bae, “Overhead Analysis for Radio

Environment Mapenabled Cognitive Radio Networks,” in IEEE Workshop on

Networking Technologies for Software Defined Radio Networks, September 2006, pp.

18–25.

[30] X. Defago, A. Schiper, and P. Urban, “Total Order Broadcast and Multicast

Algorithms: Taxonomy and Survey,” in ACM Computing Surveys (CSUR), vol. 36,

no. 4, December 2004, pp. 372–421.

[31] Y. Zhao, J. Gaeddert, L. Morales, K. Bae, J.-S. Um, and J. H. Reed, “Development of

Radio Environment Map Enabled Case- and Knowledge-Based Learning Algorithms

for IEEE 802.22 WRAN Cognitive Engines,” in 2nd International Conference on

Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM),

August 2007, pp. 44–49.

[32] D. Denkovski, V. Atanasovski, L. Gavrilovska, J. Riihijarvi, and P. Mahonen,

“Reliability of a radio environment Map: Case of spatial interpolation techniques,” in

7th International ICST Conference on Cognitive Radio Oriented Wireless Networks

and Communications (CROWNCOM), June 2012, pp. 248–253.

100

[33] L. Iacobelli, P. Fouillot, and C. Le Martret, “Radio Environment Map based

architecture and protocols for mobile ad hoc networks,” in The 11th Annual

Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net), June 2012, pp. 32–38.

[34] D.-Y. Seol, H.-J. Lim, and G.-H. Im, “Optimal threshold adaptation with radio

environment map for cognitive radio networks,” in IEEE International Symposium

on Information Theory, July 2009, pp. 2527–2531.

[35] F. Ge, R. Rangnekar, A. Radhakrishnan, S. Nair, Q. Chen, A. Fayez, Y. Wang, and

C. Bostian, “A Cooperative Sensing Based Spectrum Broker for Dynamic Spectrum

Access,” in Military Communications Conference (MILCOM), October 2009, pp. 1–7.

[36] T. Kanungo, D. Mount, N. Netanyahu, C. D. Piatko, R. Silverman, and A. Wu, “An

Efficient k-Means Clustering Algorithm: Analysis and Implementation,” in IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 24.7, July 2002, pp.

881–892.

[37] D. Mount, “KMlocal: A Testbed for k-means Clustering Algorithms,” Department

of Computer Science and Institute for Advanced Computer Studies, University of

Maryland, College Park, Maryland 20742, Tech. Rep., August 2005.

[38] G. Minden, J. Evans, L. Searl, D. DePardo, V. Petty, R. Rajbanshi, T. Newman,

Q. Chen, F. Weidling, J. Guffey, D. Datla, B. Barker, M. Peck, B. Cordill, A. Wyglin-

ski, and A. Agah, “KUAR: A Flexible Software-Defined Radio Development Plat-

form,” in 2nd IEEE International Symposium on New Frontiers in Dynamic Spectrum

Access Networks (DySPAN), April 2007, pp. 428–439.

[39] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. Cavallaro, and A. Sabharwal,

“WARP, a Unified Wireless Network Testbed for Education and Research,” in IEEE

101

International Conference on Microelectronic Systems Education, June 2007, pp. 53–

54.

[40] J. Lotze, S. A. Fahmy, J. Noguera, L. Doyle, and R. Esser, “An FPGA-Based

Cognitive Radio Framework,” in IET Irish Signals and Systems Conference, June

2008, pp. 138–143.

[41] “XST User Guide,” Xilinx, Inc., Tech. Rep., September 2009.

102

Appendix A: DYSE-Generated RF Spectrum Maps

The following plots represent “snapshots” of various RF spectrum environments.

These plots were generated using AFRL’s DYSE system. Dashed lines represent the

threshold applied to each plot.

Figure A.1: DYSE-generated RF spectrum map #1.

103

Figure A.2: DYSE-generated RF spectrum map #2.

Figure A.3: DYSE-generated RF spectrum map #3.

104

Figure A.4: DYSE-generated RF spectrum map #4.

Figure A.5: DYSE-generated RF spectrum map #5.

105

Figure A.6: DYSE-generated RF spectrum map #6.

Figure A.7: DYSE-generated RF spectrum map #7.

106

Figure A.8: DYSE-generated RF spectrum map #8.

Figure A.9: DYSE-generated RF spectrum map #9.

107

Figure A.10: DYSE-generated RF spectrum map #10.

108

Appendix B: Node Distributions

Figure B.1: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 1).

Figure B.2: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 2).

109

Figure B.3: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 4).

Figure B.4: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 5).

Figure B.5: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 6).

110

Figure B.6: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 7).

Figure B.7: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 8).

Figure B.8: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 9).

111

Figure B.9: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 10).

Figure B.10: Uniform (l), Gauss (c), and multi-cluster (r) distributions (seed = 11).

112

Appendix C: Additional FPGA Design Figures

Figure C.1: AHS device usage diagram.

113

Figure C.2: AHS internal structure.

114

Appendix D: Additional Clustering Visualization Plots

Figure D.1: Baseline node distribution with two apparent clusters.

Figure D.2: Baseline node distribution with four apparent clusters.

115

Figure D.3: Baseline node distribution with eight apparent clusters.

Figure D.4: Baseline node distribution with 16 apparent clusters.

116

Figure D.5: Uniform node distribution using DYSE map #1.

Figure D.6: Gauss node distribution using DYSE map #1.

117

Figure D.7: Multi-cluster node distribution using DYSE map #1.

Figure D.8: Uniform node distribution using DYSE map #2.

118

Figure D.9: Gauss node distribution using DYSE map #2.

Figure D.10: Multi-cluster node distribution using DYSE map #2.

119

Figure D.11: Uniform node distribution using DYSE map #3.

Figure D.12: Gauss node distribution using DYSE map #3.

120

Figure D.13: Multi-cluster node distribution using DYSE map #3.

Figure D.14: Uniform node distribution using DYSE map #4.

121

Figure D.15: Gauss node distribution using DYSE map #4.

Figure D.16: Multi-cluster node distribution using DYSE map #4.

122

Figure D.17: Uniform node distribution using DYSE map #5.

Figure D.18: Gauss node distribution using DYSE map #5.

123

Figure D.19: Multi-cluster node distribution using DYSE map #5.

Figure D.20: Uniform node distribution using DYSE map #6.

124

Figure D.21: Gauss node distribution using DYSE map #6.

Figure D.22: Multi-cluster node distribution using DYSE map #6.

125

Figure D.23: Uniform node distribution using DYSE map #7.

Figure D.24: Gauss node distribution using DYSE map #7.

126

Figure D.25: Multi-cluster node distribution using DYSE map #7.

Figure D.26: Uniform node distribution using DYSE map #8.

127

Figure D.27: Gauss node distribution using DYSE map #8.

Figure D.28: Multi-cluster node distribution using DYSE map #8.

128

Figure D.29: Uniform node distribution using DYSE map #9.

Figure D.30: Gauss node distribution using DYSE map #9.

129

Figure D.31: Multi-cluster node distribution using DYSE map #9.

Figure D.32: Uniform node distribution using DYSE map #10.

130

Figure D.33: Gauss node distribution using DYSE map #10.

Figure D.34: Multi-cluster node distribution using DYSE map #10.

131

Appendix E: Additional ICSS Plots

Figure E.1: ICSS for uniform distributions using DYSE map #1.

Figure E.2: ICSS for Gauss distributions using DYSE map #1.

132

Figure E.3: ICSS for multi-cluster distributions using DYSE map #1.

Figure E.4: ICSS for uniform distributions using DYSE map #2.

133

Figure E.5: ICSS for Gauss distributions using DYSE map #2.

Figure E.6: ICSS for multi-cluster distributions using DYSE map #2.

134

Figure E.7: ICSS for uniform distributions using DYSE map #3.

Figure E.8: ICSS for Gauss distributions using DYSE map #3.

135

Figure E.9: ICSS for multi-cluster distributions using DYSE map #3.

Figure E.10: ICSS for uniform distributions using DYSE map #4.

136

Figure E.11: ICSS for Gauss distributions using DYSE map #4.

Figure E.12: ICSS for multi-cluster distributions using DYSE map #4.

137

Figure E.13: ICSS for uniform distributions using DYSE map #5.

Figure E.14: ICSS for Gauss distributions using DYSE map #5.

138

Figure E.15: ICSS for multi-cluster distributions using DYSE map #5.

Figure E.16: ICSS for uniform distributions using DYSE map #6.

139

Figure E.17: ICSS for Gauss distributions using DYSE map #6.

Figure E.18: ICSS for multi-cluster distributions using DYSE map #6.

140

Figure E.19: ICSS for uniform distributions using DYSE map #7.

Figure E.20: ICSS for Gauss distributions using DYSE map #7.

141

Figure E.21: ICSS for multi-cluster distributions using DYSE map #7.

Figure E.22: ICSS for uniform distributions using DYSE map #8.

142

Figure E.23: ICSS for Gauss distributions using DYSE map #8.

Figure E.24: ICSS for multi-cluster distributions using DYSE map #8.

143

Figure E.25: ICSS for uniform distributions using DYSE map #9.

Figure E.26: ICSS for Gauss distributions using DYSE map #9.

144

Figure E.27: ICSS for multi-cluster distributions using DYSE map #9.

Figure E.28: ICSS for uniform distributions using DYSE map #10.

145

Figure E.29: ICSS for Gauss distributions using DYSE map #10.

Figure E.30: ICSS for multi-cluster distributions using DYSE map #10.

146

Appendix F: MATLAB Code

MATLAB code was used to test the k-means clustering algorithm and its heuristics

against various parameter configurations. In addition to the following files, parseArgs.m

and subaxis.m (both available online) are also used. To load the spectrum, run

load spectrum.m. To run the test itself, run kmeans experiment.m. For reference,

the total MATLAB code base developed for this experiment is 863 lines, including vertical

whitespace.

1 function spectrum = build baseline spectra(type, dim, bins)
2 spectrum = zeros(dim, dim, bins);
3

4 if strcmp(type, 'empty') == 1
5 for i = 1:dim
6 for j = 1:dim
7 spectrum(i, j, :) = ones(bins, 1);
8 end
9 end

10 elseif strcmp(type, 'disjoint') == 1
11 interval = bins / (dim*dim)
12 counter = 1;
13

14 if interval < 1
15 fprintf('Cannot build disjoint baseline−−not enough ...

bins.\n\n');
16 spectrum = [];
17 return;
18 end
19

20 for i = 1:dim
21 for j = 1:dim
22 temp = zeros(bins, 1);
23 temp(counter*interval) = 1;
24 spectrum(i, j, :) = temp;
25 counter = counter + 1;
26 end
27 end
28 elseif strcmp(type, 'full') == 1
29 for i = 1:dim
30 for j = 1:dim
31 spectrum(i, j, :) = zeros(bins, 1);
32 end
33 end
34 end

147

35 end

1 function clean data()
2 dos('del /Q .\commands\commands*');
3 dos('del /Q .\output\output*');
4 dos('del /Q .\input\input*');
5 end

1 function spectrum = decode spectrum(mag, n devices, info grid, ...
bins, dim)

2 spectrum = zeros(dim, dim, bins);
3

4 for x = 1:dim
5 for y = 1:dim
6 for d = 1:n devices
7 if info grid(x, y) , 0
8 if mag(d, info grid(x, y), :) , zeros(1, 1, bins)
9 spectrum(x, y, :) = mag(d, info grid(x, ...

y), :);
10 break;
11 end
12 end
13 end
14 end
15 end
16 end

1 function intra cluster similarity = draw clusters(map number, ...
distro, v n centers, map assigned, n nodes, rems, baseline, ...
plot clusters)

2 heuristics = char('Lloyd', 'Swap', 'Hybrid', 'EZ−Hybrid');
3 n heuristics = 4;
4 plot number = 1;
5 intra cluster similarity = zeros(numel(v n centers), ...

n heuristics);
6

7 distros = {'Uniform' 'Gauss' 'Multi−Cluster'};%; 'co gauss';
8 %'co laplace'; 'clus gauss'; 'clus orth flats';
9 %'clus ellipsoids'; 'multi clus'];

10

11 for j = 1:n heuristics
12 fprintf('\n\tProcessing heuristic: %s\n', heuristics(j,:));
13 fprintf('\t Cluster counts drawn: ');
14

15 for i = 1:numel(v n centers)
16 cluster similarities = zeros(v n centers(i), 2);
17 cluster similarities(:, 2) = ones(v n centers(i), 1);
18

148

19 if plot clusters == 1
20 set(gca, 'Units', 'normal');
21 subaxis(n heuristics, numel(v n centers), ...

plot number, ...
22 'Spacing', 0.01, 'MT', 0.05, 'MR', 0.02, ...

'MB', 0.05, 'ML', 0.02);
23

24 if j == 1
25 title(sprintf('%d centers', v n centers(i)));
26 end
27

28 if i == 1
29 ylabel(heuristics(j,:));
30 end
31

32 hold on
33

34 %centers x coords = centers(i, j, ...
1:v n centers(i), 1);

35 %centers y coords = centers(i, j, ...
1:v n centers(i), 2);

36 %scatter(centers x coords(:), ...
centers y coords(:), '.r');

37

38 nodes x coords = map assigned(i, j, 1, :);
39 nodes y coords = map assigned(i, j, 2, :);
40 scatter(nodes x coords(:), nodes y coords(:), '.k');
41 end
42

43 for k = 1:n nodes
44 current center = map assigned(i, j, 3, k);
45 current rem = rems(k, :);
46

47 cluster similarities(current center+1, 1) = ...
48 cluster similarities(current center+1, ...

1) + 1;
49

50 for m = k+1:n nodes
51 compare center = map assigned(i, j, 3, m);
52 compare rem = rems(m, :);
53

54 if compare center == current center
55 similarity = 1.0−pdist([current rem; ...

compare rem], 'Hamming');
56

57 cluster similarities(current center+1, 2) ...
= ...

58 cluster similarities(current center+1, ...
2) + similarity;

59

60 if plot clusters == 1
61 x1 = map assigned(i, j, 1, k);

149

62 y1 = map assigned(i, j, 2, k);
63 x2 = map assigned(i, j, 1, m);
64 y2 = map assigned(i, j, 2, m);
65

66 colors = colormap();
67 plot([x1 x2], [y1 y2], 'Color', ...

colors(ceil((63*similarity)) + 1, :));
68 end
69 end
70 end
71 end
72

73 temp similarity = cluster similarities(:, 1);
74

75 for k = 1:v n centers(i)
76 if cluster similarities(k, 1) , 0
77 cluster similarities(k, 1) = ...

ceil(cluster similarities(k, 1)ˆ2 / 2);
78 temp similarity(k) = cluster similarities(k, ...

2) / cluster similarities(k, 1);
79 end
80 end
81

82 %dot(cluster similarities(:, 1), ...
cluster similarities(:, 2)) / ...
sum(cluster similarities(:, 1));

83 %intra cluster similarity(i, j) = ...
dot(cluster similarities(:, 1), ...
1./cluster similarities(:, 2));

84 intra cluster similarity(i, j) = mean(temp similarity);
85

86 if plot clusters == 1
87 hold off
88

89 set(gcf,'Color','white')
90 set(gcf, 'Position', [1 1 1920 978])
91 axis([0 10 0 10]);
92 set(gca, 'xtick', []);
93 set(gca, 'ytick', []);
94 %set(gcf, 'Units', 'normal');
95 %set(gca, 'Position', get(gca, 'OuterPosition'));
96

97 plot number = plot number + 1;
98 end
99

100 fprintf('%d ', v n centers(i));
101 end
102 end
103

104 if baseline == 0

150

105 export fig(gcf, ...
sprintf('./figures/Clustering/clustering%d %s.png', ...
map number, char(distros(distro))));

106 else
107 export fig(gcf, ...

sprintf('./figures/Clustering/baseline%d.png', baseline));
108 end
109

110 close(gcf);
111

112 fprintf('\n');
113 end
114

115 function e = n edges(n vertices)
116 e = (n verticesˆ2 / 2) − (n vertices / 2);
117 end

1 function draw distribution(map number, n nodes, centers, distro, ...
center count, dim, baseline)

2 distros = {'Uniform' 'Gauss' 'Multi−Cluster'};%; 'co gauss';
3 %'co laplace'; 'clus gauss'; 'clus orth flats';
4 %'clus ellipsoids'; 'multi clus'];
5

6 seed = 1;
7

8 for m = 1:map number
9 if m == 3

10 seed = seed + 1;
11 end
12

13 for d = 1:distro
14 fig = figure(1000 + (m−1)*distro + d);
15 set(fig, 'Position', [100 100 500 500])
16 gen kmeans commands(m, n nodes, centers, d, ...

center count, seed, baseline);
17 run kmeans(m, center count);
18 points = read kmeans points(m, n nodes, dim, baseline);
19

20 hold on
21 h = scatter(points(:, 1), points(:, 2), '.k');
22 hChildren = get(h, 'Children');
23 set(hChildren, 'Markersize', 15)
24

25 % title(sprintf('%s Distribution\nseed = %d', ...
char(distros(distro)), seed number))

26 % xlabel('X Location')
27 % ylabel('Y Location')
28

29 set(gcf,'Units','normal')
30 set(gcf,'Color','white')
31 axis([0 10 0 10])

151

32

33 set(gca,'Position',[0.05 0.05 0.91 0.91])
34 set(gca,'Box','on')
35

36 % x−axis parameters
37 set(gca,'XTickMode', 'manual')
38 set(gca,'XMinorTick', 'on')
39 set(gca,'XTick',0:10)
40 set(gca,'XAxisLocation','Top')
41

42 % y−axis parameters
43 set(gca,'YTickMode', 'manual')
44 set(gca,'YMinorTick', 'on')
45 set(gca,'YTick',0:10)
46 set(gca,'YDir','reverse');
47

48 grid on
49 set(gca,'GridLineStyle','−');
50 %set(gca,'XColor',[0.5 0.5 0.5]);
51 %set(gca,'YColor',[0.5 0.5 0.5]);
52

53 export fig(gcf, ...
sprintf('.\\figures\\Node maps\\%s %d.png',char(distros(d)), ...
m));

54

55 close(gcf);
56

57 hold off
58 fprintf(' |');
59 end
60

61 seed = seed + 1;
62 end
63

64 fprintf('\n');
65 end

1 function gen kmeans commands(map number, n nodes, centers, ...
distro indices, center count, seed number, baseline)

2 heuristics = {'lloyd', 'swap', 'hybrid', 'EZ−hybrid'};
3

4 for h = 1:numel(heuristics)
5 show assignments = 'show assignments yes';
6 kcenters = 'kcenters';
7

8 % Point generation commands
9 print points = 'print points yes';

10 distribution = 'distribution';
11 data size = 'data size';
12 gen data pts = 'gen data pts';
13 read data pts = 'read data pts';

152

14 seed = 'seed';
15

16 % Point distribution types
17 distros = {'uniform' 'gauss' 'multi clus'};%; 'co gauss';
18 %'co laplace'; 'clus gauss'; 'clus orth flats';
19 %'clus ellipsoids'; 'multi clus'];
20

21 % Point distribution type parameters
22 std dev = 'std dev'; % for gauss, clustered; ...

def = 1
23 std dev lo = 'std dev lo'; % for clus ellipsoids; def ...

= 1
24 std dev hi = 'std dev hi'; % for clus ellipsoids; def ...

= 1
25 corr coef = 'corr coef'; % for co gauss, ...

co laplace; def = 0.05
26 colors = 'colors'; % for clustered; def = 5
27 max clus dim = 'max clus dim'; % for clus orth flats, ...

clus ellipsoids;
28 % def = 1
29

30 % Runtime command/parameters
31 run kmeans = 'run kmeans';
32

33 % System commands
34 quit = 'quit';
35

36 % Open the file for writing
37 fid = fopen(sprintf('./commands/commands%d %d %s', ...

map number, center count, char(heuristics(h))), 'w');
38

39 % Write commands to the command input file
40 fprintf(fid, '%s\n', show assignments);
41 fprintf(fid, '%s\n', print points);
42 fprintf(fid, '%s %d\n', seed, seed number);
43 fprintf(fid, '%s %d\n', data size, n nodes);
44

45 for i = distro indices
46 % Set gauss std dev
47 if i == 2 | | i == 3
48 fprintf(fid, '%s %f\n', std dev, 0.3);
49 end
50

51 if i == 3
52 fprintf(fid, '%s %d\n', colors, 2);
53 end
54

55 fprintf(fid, '%s\n', sprintf('%s %s', distribution, ...
char(distros(i))));

56

57 if baseline == 0
58 fprintf(fid, '%s\n', gen data pts);

153

59 else
60 fprintf(fid, '%s ./input/baseline%d', ...

read data pts, baseline);
61 end
62

63 fprintf(fid, '\n');
64

65 fprintf(fid, '%s\n', sprintf('%s %d', kcenters, ...
center count));

66 fprintf(fid, '%s\n', sprintf('%s %s', run kmeans, ...
char(heuristics(h))));

67 end
68

69 fprintf(fid, '%s\n', quit);
70

71 fclose(fid);
72 end
73 end

1 function rems = gen rems(spectrum, n nodes, dim, thresh, bins)
2 rems = ones(n nodes, bins);
3 %aggregate = ones(1, bins);
4 rem = zeros(1, bins);
5 %fid = fopen(filename, 'w');
6 rem count = 1;
7

8 %if fid == −1
9 % error('could not open file');

10 %end
11

12 for x = 1:dim
13 for y = 1:dim
14 cell = spectrum(x, y, :);
15 c = cell(:);
16 thresh = mean(cell);
17

18 if c == zeros(bins, 1)
19 rem = ones(1, bins);
20 else
21 for i = 1:bins
22 if c(i) < thresh
23 rem(i) = 1;
24 else
25 rem(i) = 0;
26 end
27 end
28 end
29

30 rems(rem count, :) = rem;
31 % aggregate = aggregate & rem;
32 % fprintf(fid, '%s\n', dec2hex(rem)');

154

33 rem count = rem count + 1;
34 end
35 end
36

37 %fprintf(fid, '\n%s\n', dec2hex(aggregate)');
38

39 %openChannels = 0;
40

41 %for i = 1:bins
42 % if aggregate(i) == 1
43 % openChannels = openChannels + 1;
44 % end
45 %end
46

47 %fprintf('Open Channels: %d\n', openChannels);
48

49 %fclose(fid);
50 end

1 function maps = gen test maps(n maps, size, dim)
2 maps = zeros(n maps, 3, size);
3

4 for i = 1:n maps
5 maps(i, 1:2, :) = gen data pts(size, dim, ...

sprintf('./input/input%d', i))';
6 maps(i, 3, :) = 0;
7 end
8 end

1 function kmeans experiment(n trials, n nodes, v n centers, ...
thresh adjust, map dimensions, bins, spectrum number, ...
distro indices, baseline, plot clusters)

2 lloyd = zeros(numel(v n centers), numel(distro indices));
3 swap = zeros(numel(v n centers), numel(distro indices));
4 hybrid = zeros(numel(v n centers), numel(distro indices));
5 ez hybrid = zeros(numel(v n centers), numel(distro indices));
6

7 n heuristics = 4;
8 n centers = numel(v n centers);
9

10 for t = 0.6:0.1:1.4
11 thresh adjust = t;
12

13 % Initialize spectrum data if it does not already exist
14 fprintf('Generating spectrum data using Sim%d Grid.mat ...', ...

spectrum number);
15 spectrum = load spectrum(spectrum number);
16 fprintf('Done.\n');
17

155

18

19 % Point distribution types
20 distros = {'uniform' 'gauss' 'multi clus'};%; 'co gauss';
21 %'co laplace'; 'clus gauss'; 'clus orth flats';
22 %'clus ellipsoids'; 'multi clus'];
23

24 tic
25 rems = gen rems(spectrum, n nodes, map dimensions, ...

thresh adjust, bins);
26

27 fclose all;
28 clean data();
29

30 % icss figure number = numel(distro indices)*n trials;
31

32 % for j = 1:numel(distro indices)
33 for j = distro indices
34 seed number = 0;
35

36 intra cluster similarity = zeros(n trials, ...
numel(v n centers), 4);

37

38 fprintf('Running experiment using %s distribution...\n', ...
char(distros(j)));

39

40 % for i = 1:n trials
41 for i = n trials
42 seed number = seed number + 1;
43

44 % When seed is 3, kmltest.exe crashes. (??)
45 if seed number == 3
46 seed number = 4;
47 end
48

49 fprintf('Generating K−means commands...');
50 for v = v n centers
51 gen kmeans commands(i, n nodes, v n centers, j, ...

v, seed number, baseline);
52 end
53 fprintf('Done.\n');
54

55 fprintf('Running kmltest.exe for map %d...', i);
56 for v = v n centers
57 run kmeans(i, v);
58 end
59 fprintf('Done.\n');
60

61 fprintf('Parsing points for this distribution...');
62 points = read kmeans points(i, n nodes, ...

map dimensions, baseline);
63 fprintf('Done.\n');
64

156

65 fprintf('Parsing assignments for map %d...', i);
66 assignments = read kmeans assignments(i, n nodes, ...

numel(v n centers));
67 fprintf('Done.\n');
68

69 fprintf('Parsing centers for map %d...', i);
70 centers = read kmeans centers(i, n nodes, ...

numel(v n centers));
71 fprintf('Done.\n');
72

73 fprintf('Entering assignments for map %d...', i);
74 map assigned = set assignments(n nodes, points, ...

assignments, v n centers);
75 fprintf('Done.\n');
76

77 % Could use FFT algorithm for faster similarity ...
comparison

78

79 fprintf('Drawing clusters and determining ...
intra−cluster similarity...');

80 %figure((j−1)*n trials + i)
81 %colorbar
82 %colorbar('YTickLabel', {'0%', '25%', '50%', '75%', ...

'100%'}, ...
83 % 'location', 'EastOutside')
84 temp = draw clusters(i, j, v n centers, map assigned, ...

n nodes, rems, baseline, plot clusters);
85 intra cluster similarity(i, :, :) = temp;
86 fprintf('Done.\n');
87

88 fprintf('Map %d processing complete!\n', i);
89 fprintf('==\n');
90 end
91

92 for k = 1:numel(v n centers)
93 lloyd(k, j) = mean(intra cluster similarity(:, k, 1));
94 swap(k, j) = mean(intra cluster similarity(:, k, 2));
95 hybrid(k, j) = mean(intra cluster similarity(:, k, 3));
96 ez hybrid(k, j) = mean(intra cluster similarity(:, k, ...

4));
97 end
98

99 % fprintf('Plotting intra−cluster similarity for %s ...
distribution...', char(distros(j)));

100 % %intra cluster similarity
101 %
102 % figure(n trials*numel(distro indices) + j)
103 % hold on
104 % plot(log2(v n centers), intra cluster similarity(:, ...

:, 1), '−−r+')
105 % plot(log2(v n centers), intra cluster similarity(:, ...

:, 2), '−−b+')

157

106 % plot(log2(v n centers), intra cluster similarity(:, ...
:, 3), '−−k+')

107 % plot(log2(v n centers), intra cluster similarity(:, ...
:, 4), '−−g+')

108 % set(gca, 'XTickLabel', v n centers)
109 % xlabel('Number of Clusters')
110 % ylabel('Average ICSS')
111 % title(sprintf('ICSS vs. Cluster Count for %s ...

Distribution', upper(char(distros(j)))));
112 % hold off
113 % fprintf('Done.\n');
114

115 % fprintf('Experiment complete for %s ...
distribution!\n', char(distros(j)));

116 % fprintf('==\n\n');
117

118 % colors = ['r' 'b' 'g' 'k'];
119

120 % Plot ICSS for Lloyd
121

122 fprintf('Plotting ICSS for all heuristics...');
123 figure(n heuristics*n centers + 1)
124 h = zeros(4, 1);
125 labels = {'Lloyd', 'Swap', 'Hybrid', 'EZ−Hybrid'};
126

127 hold on
128 n icss = n trials*numel(v n centers);
129 cluster = zeros(n icss, 1);
130 icss = zeros(n icss, 1);
131

132 for m = 1:numel(v n centers)
133 for n = 1:n trials
134 cluster((m−1)*n trials + n) = v n centers(m);
135 icss((m−1)*n trials + n) = ...

intra cluster similarity(n, m, 1);
136 end
137 end
138

139 % boxplot(icss, log(cluster))
140

141 h(1) = plot(v n centers, lloyd(:, j), '−ro');
142 % h(2) = plot(v n centers, swap(:, j), '−bs');
143 % h(3) = plot(v n centers, hybrid(:, j), '−g*');
144 % h(4) = plot(v n centers, ez hybrid(:, j), '−cv');
145

146 set(gcf,'Color','white')
147 set(gca, 'XTickMode', 'auto')
148 set(gca, 'XTickLabelMode', 'auto')
149 set(gca,'Box','on')
150 set(gca,'XMinorTick', 'on')
151 set(gca,'YMinorTick', 'on')
152 axis([0 n nodes 0.6 1]);

158

153

154 xlabel('Number of Clusters')
155 ylabel('Average ICSS')
156 title(sprintf('ICSS vs. Cluster Count for %d ...

Nodes\n(using Sim%d Grid.mat, %s distribution)', ...
n nodes, spectrum number, char(distros(j))), ...
'Interpreter', 'none');

157 legend(h, labels, 'Location', 'NorthWest');
158 hold off
159 fprintf('Done.\n');
160 export fig(gcf, ...

sprintf('./figures/ICSS/icss sim%d %s.png', ...
spectrum number, char(distros(j))));

161 % close(gcf);
162

163 % icss figure number = icss figure number + 1;
164 %
165 % Plot ICSS for Swap
166

167 % fprintf('Plotting ICSS for Swap...');
168 % figure(icss figure number)
169 % h swap = zeros(numel(thresholds), 1);
170 % labels = cell(numel(thresholds), 1);
171 %
172 % hold on
173 % n icss = n trials*numel(v n centers);
174 % cluster = zeros(n icss, 1);
175 % icss = zeros(n icss, 1);
176 %
177 % for m = 1:numel(v n centers)
178 % for n = 1:n trials
179 % cluster((m−1)*n trials + n) = v n centers(m);
180 % icss((m−1)*n trials + n) = ...

intra cluster similarity(n, m, 2);
181 % end
182 % end
183

184 % boxplot(icss, log(cluster))
185

186 % for r = 1:numel(thresholds)
187 % h swap(r) = plot(v n centers, swap(r, :, j), ...

'−bo');
188 % labels(r) = {char(sprintf('Threshold @ %d dB', ...

thresholds(r)))};
189 % end
190

191 % axis ([0.90*log2(min(v n centers)) ...
1.05*log2(max(v n centers)) ...

192 % 0.95*min(min(min(lloyd), min(swap)), ...
min(min(hybrid), ...

193 % min(ez hybrid))) ...

159

194 % 1.05*max(max(max(lloyd), max(swap)), ...
max(max(hybrid), ...

195 % max(ez hybrid)))])
196

197 % set(gca, 'XTickMode', 'auto')
198 % set(gca, 'XTickLabel', v n centers)
199 %
200 % xlabel('Number of Clusters')
201 % ylabel('Average ICSS')
202 % title(sprintf('ICSS vs. Cluster Count for Swap ...

Heuristic\n(%s distribution)', char(distros(j))));
203 % legend(h swap, labels, 'Location', 'SouthEast');
204 % hold off
205 % fprintf('Done.\n');
206

207 % icss figure number = icss figure number + 1;
208 %
209 % Plot ICSS for Hybrid
210

211 % fprintf('Plotting ICSS for Hybrid...');
212 % figure(icss figure number)
213 % h hybrid = zeros(numel(thresholds), 1);
214 % labels = cell(numel(thresholds), 1);
215

216 % hold on
217 % n icss = n trials*numel(v n centers);
218 % cluster = zeros(n icss, 1);
219 % icss = zeros(n icss, 1);
220 %
221 % for m = 1:numel(v n centers)
222 % for n = 1:n trials
223 % cluster((m−1)*n trials + n) = v n centers(m);
224 % icss((m−1)*n trials + n) = ...

intra cluster similarity(n, m, 3);
225 % end
226 % end
227

228 % boxplot(icss, log(cluster))
229 %
230 % h hybrid = plot(v n centers, hybrid(r, :, j), '−go');
231 % labels(r) = {char(sprintf('Threshold @ %d dB', ...

thresholds(r)))};
232 %
233 % axis ([0.90*log2(min(v n centers)) ...

1.05*log2(max(v n centers)) ...
234 % 0.95*min(min(min(lloyd), min(swap)), ...

min(min(hybrid), ...
235 % min(ez hybrid))) ...
236 % 1.05*max(max(max(lloyd), max(swap)), ...

max(max(hybrid), ...
237 % max(ez hybrid)))])
238

160

239 % set(gca, 'XTickMode', 'auto')
240 % set(gca, 'XTickLabel', v n centers)
241 %
242 % xlabel('Number of Clusters')
243 % ylabel('Average ICSS')
244 % title(sprintf('ICSS vs. Cluster Count for Hybrid ...

Heuristic\n(%s distribution)', char(distros(j))));
245 % legend(h hybrid, labels, 'Location', 'SouthEast');
246 % hold off
247 % fprintf('Done.\n');
248

249 % icss figure number = icss figure number + 1;
250 %
251 % Plot ICSS for EZ−Hybrid
252

253 % fprintf('Plotting ICSS for EZ−Hybrid...');
254 % figure(icss figure number)
255 % h ez hybrid = zeros(numel(thresholds), 1);
256 % labels = cell(numel(thresholds), 1);
257 %
258 % hold on
259 % n icss = n trials*numel(v n centers);
260 % cluster = zeros(n icss, 1);
261 % icss = zeros(n icss, 1);
262 %
263 % for m = 1:numel(v n centers)
264 % for n = 1:n trials
265 % cluster((m−1)*n trials + n) = v n centers(m);
266 % icss((m−1)*n trials + n) = ...

intra cluster similarity(n, m, 4);
267 % end
268 % end
269 %
270 % %boxplot(icss, log(cluster))
271 %
272 % for r = 1:numel(thresholds)
273 % h ez hybrid(r) = plot(v n centers, ez hybrid(r, ...

:, j), '−ko');
274 % labels(r) = {char(sprintf('Threshold @ %d dB', ...

thresholds(r)))};
275 % end
276 %
277 % set(gca, 'XTickMode', 'auto')
278 % set(gca, 'XTickLabel', v n centers)
279 %
280 % xlabel('Number of Clusters')
281 % ylabel('Average ICSS')
282 % title(sprintf('ICSS vs. Cluster Count for EZ−Hybrid ...

Heuristic\n(%s distribution)', char(distros(j))));
283 % legend(h ez hybrid, labels, 'Location', 'SouthEast');
284 % hold off
285 % fprintf('Done.\n');

161

286

287 % icss figure number = icss figure number + 1;
288 end
289 toc
290

291 % Catch any file handles not closed due to an error
292 fclose all;
293

294 end
295 end

1 function spectrum = load spectrum(sim number)
2 load(sprintf('Sim%d Grid.mat', sim number), ...
3 'device grid', 'freq', 'info grid', 'mag');
4 spectrum = decode spectrum(mag, 7, info grid, 2048, 10);
5 end

1 function plot spectrum(map number, spectrum, thresh adjust, bins)
2 figure(map number);
3

4 title(sprintf('RF Spectrum Maps Generated by ...
DYSE\nSim%d Grid.mat', map number))

5

6 plot number = 1;
7 unknown = 0;
8

9 colors = ['r' 'b' 'g' 'k'];
10

11 for y = 1:10
12 %for y = 4
13 for x = 1:10
14 %for x = 3
15 set(gca, 'Units', 'normal');
16 subaxis(10, 10, plot number, 'Spacing', 0.015, 'MT', ...
17 0.03, 'MR', 0.02, 'MB', 0.035, 'ML', 0.02);
18 title(sprintf('%d, %d', x, y))
19

20 s = spectrum(x, y, :);
21 threshold = thresh adjust*mean(s(:));
22

23 plot(s(:));
24 axis([0 2047 −150 10]);
25 hold on
26

27 plot([0 bins], [threshold threshold], '−−', 'Color', ...
(1/255)*[5, 136, 5], 'LineWidth', 2);

28 plot([0 bins], [mean(s(:)) mean(s(:))], '−−', ...
'Color', [1, 0, 0], 'LineWidth', 2);

29

162

30 hold off
31 set(gca, 'xtick', []);
32 set(gca, 'ytick', []);
33

34 if x == 1
35 set(gca, 'YTickMode', 'manual')
36 set(gca, 'YTick', [−120, −60, 0])
37 elseif x == 10
38 set(gca, 'YTickMode', 'manual')
39 set(gca, 'YTick', [−120, −60, 0])
40 set(gca, 'YAxisLocation', 'right')
41 end
42

43 if y == 1
44 set(gca, 'XTickMode', 'manual')
45 set(gca, 'XTick', [0 1023 2047])
46 set(gca, 'XAxisLocation', 'top')
47 elseif y == 10
48 set(gca, 'XTickMode', 'manual')
49 set(gca, 'XTick', [0 1023 2047])
50 end
51

52 plot number = plot number + 1;
53 end
54 end
55

56 fprintf('%d total cells with unknown properties.\n\n', unknown);
57

58 set(gcf, 'Color', 'white')
59 set(gcf, 'Position', [1 1 1920 978])
60

61 export fig(gcf, sprintf('.\\figures\\RF maps\\dyse%d.png', ...
map number));

62 end

1 function assignments = read kmeans assignments(map number, ...
node count, n centers)

2 lloyd = 1;
3 swap = 2;
4 hybrid = 3;
5 EZhybrid = 4;
6 type = 0;
7

8 n heuristics = 4;
9

10 centers count = −1;
11 centers index = 0;
12

13 assignments = zeros(n centers, n heuristics, node count);
14

15 fid = fopen(sprintf('./output/output%d', map number), 'r');

163

16

17 while ¬feof(fid)
18 % Spin until cluster assignments
19 while (strcmp(fgetl(fid), '[Run k−means:') == 0)
20 if feof(fid)
21 break;
22 end
23 end
24

25 % Get the heuristic type
26 str type = fscanf(fid, ' k−means alg = %s', 1);
27 if strcmp(str type, 'lloyd') , 0
28 type = lloyd;
29 elseif strcmp(str type, 'swap') , 0
30 type = swap;
31 elseif strcmp(str type, 'hybrid') , 0
32 type = hybrid;
33 elseif strcmp(str type, 'EZ−hybrid') , 0
34 type = EZhybrid;
35 elseif strcmp(str type, '') , 0
36 %disp('Reached end of output file.');
37 % Reached end of file => no more results to read
38 break;
39 end
40

41 % Read out the next line
42 fgetl(fid);
43 fgetl(fid);
44

45 % Get the number of centers
46 temp centers = fscanf(fid, ' kcenters = %d', 1);
47 if centers count , temp centers
48 centers count = temp centers;
49 centers index = centers index + 1;
50 end
51

52 % Spin until cluster assignments
53 while (strcmp(fgetl(fid), ' (Cluster assignments:') == 0)
54 if feof(fid)
55 break;
56 end
57 end
58

59 % Read out two following lines
60 fgetl(fid);
61 fgetl(fid);
62

63 for i = 1:node count
64 % Read the cluster for the point number
65 data = fscanf(fid, '%d %d %f', 3)';
66

67 if(isempty(data))

164

68 break;
69 end
70

71 assignments(centers index, type, i) = data(2);
72 end
73 end
74

75 fclose(fid);
76 end

1 function center data = read kmeans centers(map number, ...
node count, n centers)

2 lloyd = 1;
3 swap = 2;
4 hybrid = 3;
5 EZhybrid = 4;
6 type = 0;
7

8 n heuristics = 4;
9

10 centers count = −1;
11 centers index = 0;
12

13 center data = zeros(n centers, n heuristics, node count, 2);
14

15 fid = fopen(sprintf('./output/output%d', map number), 'r');
16

17 while ¬feof(fid)
18 % Spin until cluster assignments
19 while (strcmp(fgetl(fid), '[Run k−means:') == 0)
20 if feof(fid)
21 break;
22 end
23 end
24

25 % Get the heuristic type
26 str type = fscanf(fid, ' k−means alg = %s', 1);
27 if strcmp(str type, 'lloyd') , 0
28 type = lloyd;
29 elseif strcmp(str type, 'swap') , 0
30 type = swap;
31 elseif strcmp(str type, 'hybrid') , 0
32 type = hybrid;
33 elseif strcmp(str type, 'EZ−hybrid') , 0
34 type = EZhybrid;
35 elseif strcmp(str type, '') , 0
36 %disp('Reached end of output file.');
37 % Reached end of file => no more results to read
38 break;
39 end
40

165

41 % Read out the next line
42 fgetl(fid);
43 fgetl(fid);
44

45 % Get the number of centers
46 temp centers = fscanf(fid, ' kcenters = %d', 1);
47 if centers count , temp centers
48 centers count = temp centers;
49 centers index = centers index + 1;
50 end
51

52 % Spin until center points
53 while (strcmp(fgetl(fid), ' (Final Center Points:') == 0)
54 if feof(fid)
55 break;
56 end
57 end
58

59 for i = 1:centers count
60 temp center = fscanf(fid, ' %d [%f %f ...

] dist = %f', 4)';
61

62 center = temp center(1) + 1;
63 center x = temp center(2);
64 center y = temp center(3);
65 center sqdist = temp center(4);
66

67 center data(centers index, type, center, 1:2) = ...
[center x center y];

68 end
69 end
70

71 fclose(fid);
72 end

1 function points = read kmeans points(map number, node count, dim, ...
baseline)

2 points = zeros(node count, 3);
3

4 fid1 = 0;
5 if baseline == 0
6 fid1 = fopen(sprintf('./output/output%d', map number), 'r');
7 else
8 fid1 = fopen(sprintf('./input/baseline%d', baseline), 'r');
9 end

10

11 fid2 = fopen(sprintf('./input/input%d', map number), 'w');
12

13 i = 0;
14 x = 0;
15 y = 0;

166

16

17 if baseline == 0
18 while ¬feof(fid1)
19 % Spin until cluster assignments
20 while (strcmp(fgetl(fid1), ' (Data Points:') == 0)
21 if feof(fid1)
22 break;
23 end
24 end
25

26 for i = 1:node count
27 if feof(fid1)
28 break;
29 end
30

31 % Get the point coordinates
32 temp point = fscanf(fid1, ' %d [%f %f]', ...

3)';
33

34 x = (temp point(2)+1)*(dim/2);
35 y = (temp point(3)+1)*(dim/2);
36

37 fprintf(fid2, '%f %f\n', x, y);
38

39 points(temp point(1)+1, 1) = x;
40 points(temp point(1)+1, 2) = y;
41 end
42 end
43 else
44 for i = 1:node count
45 if feof(fid1)
46 break;
47 end
48

49 temp point = fscanf(fid1, '%f %f', 2)';
50

51 x = temp point(1);
52 y = temp point(2);
53

54 fprintf(fid2, '%f %f\n', x, y);
55

56 points(i, 1) = x;
57 points(i, 2) = y;
58 end
59 end
60

61 fclose(fid1);
62 fclose(fid2);
63 end

1 function run kmeans(map number, center count)

167

2 heuristics = {'lloyd', 'swap', 'hybrid', 'EZ−hybrid'};
3

4 output = sprintf('./output/output%d', map number);
5

6 for h = 1:numel(heuristics)
7 input = sprintf('./commands/commands%d %d %s', ...
8 map number, center count, char(heuristics(h)));
9

10 dos(sprintf('kmltest.exe < %s >> %s', input, output));
11 end
12 end

1 function map assigned = set assignments(n nodes, map, ...
assignments, v n centers)

2 n heuristics = 4;
3

4 map assigned = zeros(numel(v n centers), n heuristics, 3, ...
n nodes);

5

6 for j = 1:numel(v n centers)
7 for i = 1:n heuristics
8 temp map = map;
9 temp assignments = assignments(j, i, :);

10 temp map(:,3) = temp assignments(:);
11

12 % temp map(:, :)
13 % temp map assigned = map assigned(j, i, :, :)
14 % map assigned(j, i, :, :) = temp map(:, :);
15

16 for k = 1:n nodes
17 map assigned(j, i, 1, k) = temp map(k, 1);
18 map assigned(j, i, 2, k) = temp map(k, 2);
19 map assigned(j, i, 3, k) = temp map(k, 3);
20 end
21 end
22 end
23 end

168

Appendix G: VHDL Code

VHDL files represent the FPGA-based circuitry used to quickly generate an adaptive

hopset. The overall hopset selector is wired together in adaptive hopset selector.vhd,

and actual hopset selection is performed in hopset selector b.vhd. Files beginning

with “tb ” are test bench files for verifying system and subsystem functionality. A total of

1,430 lines of VHDL code were implemented for this research.

1 library ieee;
2 use ieee.std logic 1164.all;
3 use ieee.numeric std.all;
4

5 entity adaptive hopset selector is
6 port(
7 signal clk, reset : in std logic;
8 signal load rem : in std logic;
9 signal load key : in std logic;

10 signal new rems : in std logic;
11 signal new key : in std logic;
12 signal input : in std logic vector(31 downto 0);
13 signal key : in std logic vector(31 downto 0);
14 signal lower bw mask : in std logic vector(31 downto 0);
15 signal upper bw mask : in std logic vector(31 downto 0);
16 signal start : in std logic;
17 signal next hop : in std logic;
18 signal hopset ready : out std logic;
19 signal finished : out std logic;
20 signal hop number : out std logic vector(10 downto 0);
21 signal hop channel : out std logic vector(10 downto 0)
22);
23 end entity;
24

25 architecture structural of adaptive hopset selector is
26 component rem merger is
27 port(
28 signal clk, reset : in std logic;
29 signal load rem : in std logic;
30 signal new rems : in std logic;
31 signal input : in std logic vector(31 downto 0);
32 signal rem rdat : in std logic vector(31 downto 0);
33 signal rem rsel : out std logic vector(5 downto 0);
34 signal rem wen : out std logic;
35 signal rem wsel : out std logic vector(5 downto 0);
36 signal rem wdat : out std logic vector(31 downto 0)
37);

169

38 end component;
39

40 component key loader is
41 port(
42 signal clk, reset : in std logic;
43 signal load key : in std logic;
44 signal new key : in std logic;
45 signal input : in std logic vector(31 downto 0);
46 signal key wen : out std logic;
47 signal key wsel : out std logic vector(5 downto 0);
48 signal key wdat : out std logic vector(31 downto 0)
49);
50 end component;
51

52 component hopset selector b is
53 port(
54 signal clk, reset : in std logic;
55 signal lower bw mask : in std logic vector(31 downto 0);
56 signal upper bw mask : in std logic vector(31 downto 0);
57 signal start : in std logic;
58 signal next hop : in std logic;
59 signal new rems : in std logic;
60 signal new key : in std logic;
61 signal hopset ready : out std logic;
62 signal finished : out std logic;
63 signal hop number : out std logic vector(10 downto 0);
64 signal hop channel : out std logic vector(10 downto 0);
65

66 signal rem rdat : in std logic vector(31 downto 0);
67 signal rem rsel : out std logic vector(5 downto 0);
68

69 signal key rdat : in std logic vector(31 downto 0);
70 signal key rsel : out std logic vector(5 downto 0);
71

72 signal bram write en : buffer std logic := '0';
73 signal bram read en : out std logic := '0';
74 signal bram fill : out std logic;
75 signal bram addr : buffer std logic vector(10 downto ...

0) := (others => '0');
76 signal bram data in : out std logic vector(10 downto 0) ...

:= (others => '0');
77 signal bram data out : in std logic vector(10 downto 0) := ...

(others => '0')
78);
79 end component;
80

81 component bram shared 2port is
82 port(
83 signal clk, reset : in std logic;
84 signal wdat : in std logic vector (31 downto 0);
85 signal wsel : in std logic vector (5 downto 0);
86 signal wen : in std logic;

170

87 signal rsel1 : in std logic vector (5 downto 0);
88 signal rsel2 : in std logic vector (5 downto 0);
89 signal rdat1 : out std logic vector (31 downto 0);
90 signal rdat2 : out std logic vector (31 downto 0)
91);
92 end component;
93

94 component bram channels table is
95 port(
96 signal clka, rsta : in std logic;
97 signal wea : in std logic vector(0 downto 0);
98 signal ena : in std logic;
99 signal regcea : in std logic;

100 signal addra : in std logic vector(10 downto 0);
101 signal dina : in std logic vector(10 downto 0);
102 signal douta : out std logic vector(10 downto 0)
103);
104 end component;
105

106 signal rem wdat : std logic vector (31 downto 0);
107 signal rem wsel : std logic vector (5 downto 0);
108 signal rem wen : std logic;
109 signal rem rsel1 : std logic vector (5 downto 0);
110 signal rem rsel2 : std logic vector (5 downto 0);
111 signal rem rdat1 : std logic vector (31 downto 0);
112 signal rem rdat2 : std logic vector (31 downto 0);
113

114 signal key wdat : std logic vector (31 downto 0);
115 signal key wsel : std logic vector (5 downto 0);
116 signal key wen : std logic;
117 signal key rsel1 : std logic vector (5 downto 0);
118 signal key rsel2 : std logic vector (5 downto 0);
119 signal key rdat1 : std logic vector (31 downto 0);
120 signal key rdat2 : std logic vector (31 downto 0);
121

122 signal bram write en : std logic vector(0 downto 0) := ...
(others => '0');

123 signal bram read en : std logic := '0';
124 signal bram fill : std logic := '0';
125 signal bram addr : std logic vector(10 downto 0) := ...

(others => '0');
126 signal bram data in : std logic vector(10 downto 0) := ...

(others => '0');
127 signal bram data out : std logic vector(10 downto 0) := ...

(others => '0');
128 begin
129 key rsel2 ≤ (others => 'Z');
130 key rdat2 ≤ (others => 'Z');
131

132 merger: rem merger
133 port map(
134 clk => clk,

171

135 reset => reset,
136 load rem => load rem,
137 new rems => new rems,
138 input => input,
139 rem rdat => rem rdat1,
140 rem rsel => rem rsel1,
141 rem wen => rem wen,
142 rem wsel => rem wsel,
143 rem wdat => rem wdat
144);
145

146 loader: key loader
147 port map(
148 clk => clk,
149 reset => reset,
150 load key => load key,
151 new key => new key,
152 input => key,
153 key wen => key wen,
154 key wsel => key wsel,
155 key wdat => key wdat
156);
157

158 selector: hopset selector b
159 port map(
160 clk => clk,
161 reset => reset,
162 lower bw mask => lower bw mask,
163 upper bw mask => upper bw mask,
164 start => start,
165 next hop => next hop,
166 new rems => new rems,
167 new key => new key,
168 bram fill => bram fill,
169 hopset ready => hopset ready,
170 finished => finished,
171 hop number => hop number,
172 hop channel => hop channel,
173

174 rem rdat => rem rdat2,
175 rem rsel => rem rsel2,
176

177 key rdat => key rdat1,
178 key rsel => key rsel1,
179

180 bram write en => bram write en(0),
181 bram read en => bram read en,
182 bram addr => bram addr,
183 bram data in => bram data in,
184 bram data out => bram data out
185);
186

172

187 bram rem: bram shared 2port
188 port map(
189 clk => clk,
190 reset => new rems,
191 wdat => rem wdat,
192 wsel => rem wsel,
193 wen => rem wen,
194 rsel1 => rem rsel1,
195 rsel2 => rem rsel2,
196 rdat1 => rem rdat1,
197 rdat2 => rem rdat2
198);
199

200 bram key: bram shared 2port
201 port map(
202 clk => clk,
203 reset => new key,
204 wdat => key wdat,
205 wsel => key wsel,
206 wen => key wen,
207 rsel1 => key rsel1,
208 rsel2 => key rsel2,
209 rdat1 => key rdat1,
210 rdat2 => key rdat2
211);
212

213 bram: bram channels table
214 port map(
215 clka => clk,
216 rsta => new rems,
217 wea => bram write en,
218 ena => bram read en,
219 regcea => bram fill,
220 addra => bram addr,
221 dina => bram data in,
222 douta => bram data out
223);
224 end structural;

1 library ieee;
2 use ieee.std logic 1164.all;
3 use ieee.numeric std.all;
4 use ieee.std logic unsigned.all;
5

6 −− entity bram channels table is
7 −− port(
8 −− signal clk, reset : in std logic;
9 −− signal write en : in std logic;

10 −− signal read en : in std logic;
11 −− signal fill : in std logic;
12 −− signal addr : in integer;

173

13 −− signal data in : in std logic vector(10 downto 0);
14 −− signal data out : out std logic vector(10 downto 0)
15 −−);
16 −− end entity bram channels table;
17

18 entity bram channels table is
19 port (
20 clka : in std logic; −− clk
21 rsta : in std logic; −− reset
22 ena : in std logic; −− enable
23 regcea : in std logic; −− fill
24 wea : in std logic vector(0 downto 0); −− write enable
25 addra : in std logic vector(10 downto 0); −− address
26 dina : in std logic vector(10 downto 0); −− data in
27 douta : out std logic vector(10 downto 0) −− data out
28);
29 end bram channels table;
30

31 architecture structural of bram channels table is
32 type channel list is array (0 to 2048) of std logic vector(10 ...

downto 0);
33 signal channels table : channel list;
34

35 signal open channels : integer := 0;
36

37 signal fill : std logic := '0';
38 signal fill table : std logic := '0';
39 signal fill start : std logic := '0';
40 signal low offset : integer := 0;
41 signal high offset : integer := 0;
42 signal increment : integer := 0;
43

44 signal write en buffer : std logic := '0';
45 signal read en buffer : std logic := '0';
46 begin
47 channels table(2048) ≤ (others => '0');
48 fill ≤ regcea;
49

50 bram: process(clka, rsta, wea, ena, fill)
51 begin
52 if(rsta = '1') then
53 write en buffer ≤ '0';
54 read en buffer ≤ '0';
55 open channels ≤ 0;
56 douta ≤ (others => '0');
57 elsif(rising edge(clka)) then
58 write en buffer ≤ wea(0);
59 read en buffer ≤ ena;
60 open channels ≤ open channels;
61

62 if(wea(0) = not write en buffer) then

174

63 channels table(to integer(unsigned(addra))) ≤ dina(10 ...
downto 0);

64 open channels ≤ open channels + 1;
65 end if;
66 elsif(fill = '1') then
67 fill table ≤ '1';
68 fill start ≤ '1';
69 elsif(fill table = '1') then
70 if(fill start = '1') then
71 low offset ≤ open channels;
72 high offset ≤ open channels+open channels−1;
73 increment ≤ open channels;
74 fill start ≤ '0';
75 elsif(fill start = '0' and fill table = '1') then
76 if(high offset < 2047) then
77 channels table(low offset to high offset) ≤ ...

channels table(0 to open channels−1);
78 low offset ≤ low offset + increment;
79 high offset ≤ high offset + increment;
80 else
81 fill table ≤ '0';
82 channels table(low offset to 2047) ≤ channels table(0 ...

to (2047−low offset));
83 end if;
84 else
85 low offset ≤ 0;
86 high offset ≤ 0;
87 increment ≤ 0;
88 fill table ≤ '0';
89 end if;
90 elsif(rising edge(ena) and fill table = '0') then
91 douta ≤ channels table(to integer(unsigned(addra)))(10 ...

downto 0);
92 end if;
93 end process bram;
94 end structural;

1 library ieee;
2 use ieee.std logic 1164.all;
3

4 entity bram shared 2port is
5 port(
6 signal clk, reset : in std logic;
7 signal wdat : in std logic vector (31 downto 0);
8 signal wsel : in std logic vector (5 downto 0);
9 signal wen : in std logic;

10 signal rsel1 : in std logic vector (5 downto 0);
11 signal rsel2 : in std logic vector (5 downto 0);
12 signal rdat1 : out std logic vector (31 downto 0);
13 signal rdat2 : out std logic vector (31 downto 0)
14);

175

15 end entity;
16

17 architecture structural of bram shared 2port is
18 type shmem64x32 is array (0 to 63) of std logic vector(31 ...

downto 0);
19 signal mem : shmem64x32;
20 begin
21 shmem: process(clk, reset)
22 begin
23 if(reset = '1') then
24 mem(0) ≤ (others => '1');
25 mem(1) ≤ (others => '1');
26 mem(2) ≤ (others => '1');
27 mem(3) ≤ (others => '1');
28 mem(4) ≤ (others => '1');
29 mem(5) ≤ (others => '1');
30 mem(6) ≤ (others => '1');
31 mem(7) ≤ (others => '1');
32 mem(8) ≤ (others => '1');
33 mem(9) ≤ (others => '1');
34 mem(10) ≤ (others => '1');
35 mem(11) ≤ (others => '1');
36 mem(12) ≤ (others => '1');
37 mem(13) ≤ (others => '1');
38 mem(14) ≤ (others => '1');
39 mem(15) ≤ (others => '1');
40 mem(16) ≤ (others => '1');
41 mem(17) ≤ (others => '1');
42 mem(18) ≤ (others => '1');
43 mem(19) ≤ (others => '1');
44 mem(20) ≤ (others => '1');
45 mem(21) ≤ (others => '1');
46 mem(22) ≤ (others => '1');
47 mem(23) ≤ (others => '1');
48 mem(24) ≤ (others => '1');
49 mem(25) ≤ (others => '1');
50 mem(26) ≤ (others => '1');
51 mem(27) ≤ (others => '1');
52 mem(28) ≤ (others => '1');
53 mem(29) ≤ (others => '1');
54 mem(30) ≤ (others => '1');
55 mem(31) ≤ (others => '1');
56 mem(32) ≤ (others => '1');
57 mem(33) ≤ (others => '1');
58 mem(34) ≤ (others => '1');
59 mem(35) ≤ (others => '1');
60 mem(36) ≤ (others => '1');
61 mem(37) ≤ (others => '1');
62 mem(38) ≤ (others => '1');
63 mem(39) ≤ (others => '1');
64 mem(40) ≤ (others => '1');
65 mem(41) ≤ (others => '1');

176

66 mem(42) ≤ (others => '1');
67 mem(43) ≤ (others => '1');
68 mem(44) ≤ (others => '1');
69 mem(45) ≤ (others => '1');
70 mem(46) ≤ (others => '1');
71 mem(47) ≤ (others => '1');
72 mem(48) ≤ (others => '1');
73 mem(49) ≤ (others => '1');
74 mem(50) ≤ (others => '1');
75 mem(51) ≤ (others => '1');
76 mem(52) ≤ (others => '1');
77 mem(53) ≤ (others => '1');
78 mem(54) ≤ (others => '1');
79 mem(55) ≤ (others => '1');
80 mem(56) ≤ (others => '1');
81 mem(57) ≤ (others => '1');
82 mem(58) ≤ (others => '1');
83 mem(59) ≤ (others => '1');
84 mem(60) ≤ (others => '1');
85 mem(61) ≤ (others => '1');
86 mem(62) ≤ (others => '1');
87 mem(63) ≤ (others => '1');
88 elsif(rising edge(clk)) then
89 if(wen = '1') then
90 case wsel is
91 when "000000" => mem(0) ≤ wdat;
92 when "000001" => mem(1) ≤ wdat;
93 when "000010" => mem(2) ≤ wdat;
94 when "000011" => mem(3) ≤ wdat;
95 when "000100" => mem(4) ≤ wdat;
96 when "000101" => mem(5) ≤ wdat;
97 when "000110" => mem(6) ≤ wdat;
98 when "000111" => mem(7) ≤ wdat;
99 when "001000" => mem(8) ≤ wdat;

100 when "001001" => mem(9) ≤ wdat;
101 when "001010" => mem(10) ≤ wdat;
102 when "001011" => mem(11) ≤ wdat;
103 when "001100" => mem(12) ≤ wdat;
104 when "001101" => mem(13) ≤ wdat;
105 when "001110" => mem(14) ≤ wdat;
106 when "001111" => mem(15) ≤ wdat;
107 when "010000" => mem(16) ≤ wdat;
108 when "010001" => mem(17) ≤ wdat;
109 when "010010" => mem(18) ≤ wdat;
110 when "010011" => mem(19) ≤ wdat;
111 when "010100" => mem(20) ≤ wdat;
112 when "010101" => mem(21) ≤ wdat;
113 when "010110" => mem(22) ≤ wdat;
114 when "010111" => mem(23) ≤ wdat;
115 when "011000" => mem(24) ≤ wdat;
116 when "011001" => mem(25) ≤ wdat;
117 when "011010" => mem(26) ≤ wdat;

177

118 when "011011" => mem(27) ≤ wdat;
119 when "011100" => mem(28) ≤ wdat;
120 when "011101" => mem(29) ≤ wdat;
121 when "011110" => mem(30) ≤ wdat;
122 when "011111" => mem(31) ≤ wdat;
123 when "100000" => mem(32) ≤ wdat;
124 when "100001" => mem(33) ≤ wdat;
125 when "100010" => mem(34) ≤ wdat;
126 when "100011" => mem(35) ≤ wdat;
127 when "100100" => mem(36) ≤ wdat;
128 when "100101" => mem(37) ≤ wdat;
129 when "100110" => mem(38) ≤ wdat;
130 when "100111" => mem(39) ≤ wdat;
131 when "101000" => mem(40) ≤ wdat;
132 when "101001" => mem(41) ≤ wdat;
133 when "101010" => mem(42) ≤ wdat;
134 when "101011" => mem(43) ≤ wdat;
135 when "101100" => mem(44) ≤ wdat;
136 when "101101" => mem(45) ≤ wdat;
137 when "101110" => mem(46) ≤ wdat;
138 when "101111" => mem(47) ≤ wdat;
139 when "110000" => mem(48) ≤ wdat;
140 when "110001" => mem(49) ≤ wdat;
141 when "110010" => mem(50) ≤ wdat;
142 when "110011" => mem(51) ≤ wdat;
143 when "110100" => mem(52) ≤ wdat;
144 when "110101" => mem(53) ≤ wdat;
145 when "110110" => mem(54) ≤ wdat;
146 when "110111" => mem(55) ≤ wdat;
147 when "111000" => mem(56) ≤ wdat;
148 when "111001" => mem(57) ≤ wdat;
149 when "111010" => mem(58) ≤ wdat;
150 when "111011" => mem(59) ≤ wdat;
151 when "111100" => mem(60) ≤ wdat;
152 when "111101" => mem(61) ≤ wdat;
153 when "111110" => mem(62) ≤ wdat;
154 when others => mem(63) ≤ wdat;
155 end case;
156 end if;
157 end if;
158 end process shmem;
159

160 with rsel1 select
161 rdat1 ≤ mem(0) when "000000",
162 mem(1) when "000001",
163 mem(2) when "000010",
164 mem(3) when "000011",
165 mem(4) when "000100",
166 mem(5) when "000101",
167 mem(6) when "000110",
168 mem(7) when "000111",
169 mem(8) when "001000",

178

170 mem(9) when "001001",
171 mem(10) when "001010",
172 mem(11) when "001011",
173 mem(12) when "001100",
174 mem(13) when "001101",
175 mem(14) when "001110",
176 mem(15) when "001111",
177 mem(16) when "010000",
178 mem(17) when "010001",
179 mem(18) when "010010",
180 mem(19) when "010011",
181 mem(20) when "010100",
182 mem(21) when "010101",
183 mem(22) when "010110",
184 mem(23) when "010111",
185 mem(24) when "011000",
186 mem(25) when "011001",
187 mem(26) when "011010",
188 mem(27) when "011011",
189 mem(28) when "011100",
190 mem(29) when "011101",
191 mem(30) when "011110",
192 mem(31) when "011111",
193 mem(32) when "100000",
194 mem(33) when "100001",
195 mem(34) when "100010",
196 mem(35) when "100011",
197 mem(36) when "100100",
198 mem(37) when "100101",
199 mem(38) when "100110",
200 mem(39) when "100111",
201 mem(40) when "101000",
202 mem(41) when "101001",
203 mem(42) when "101010",
204 mem(43) when "101011",
205 mem(44) when "101100",
206 mem(45) when "101101",
207 mem(46) when "101110",
208 mem(47) when "101111",
209 mem(48) when "110000",
210 mem(49) when "110001",
211 mem(50) when "110010",
212 mem(51) when "110011",
213 mem(52) when "110100",
214 mem(53) when "110101",
215 mem(54) when "110110",
216 mem(55) when "110111",
217 mem(56) when "111000",
218 mem(57) when "111001",
219 mem(58) when "111010",
220 mem(59) when "111011",
221 mem(60) when "111100",

179

222 mem(61) when "111101",
223 mem(62) when "111110",
224 mem(63) when others;
225

226 with rsel2 select
227 rdat2 ≤ mem(0) when "000000",
228 mem(1) when "000001",
229 mem(2) when "000010",
230 mem(3) when "000011",
231 mem(4) when "000100",
232 mem(5) when "000101",
233 mem(6) when "000110",
234 mem(7) when "000111",
235 mem(8) when "001000",
236 mem(9) when "001001",
237 mem(10) when "001010",
238 mem(11) when "001011",
239 mem(12) when "001100",
240 mem(13) when "001101",
241 mem(14) when "001110",
242 mem(15) when "001111",
243 mem(16) when "010000",
244 mem(17) when "010001",
245 mem(18) when "010010",
246 mem(19) when "010011",
247 mem(20) when "010100",
248 mem(21) when "010101",
249 mem(22) when "010110",
250 mem(23) when "010111",
251 mem(24) when "011000",
252 mem(25) when "011001",
253 mem(26) when "011010",
254 mem(27) when "011011",
255 mem(28) when "011100",
256 mem(29) when "011101",
257 mem(30) when "011110",
258 mem(31) when "011111",
259 mem(32) when "100000",
260 mem(33) when "100001",
261 mem(34) when "100010",
262 mem(35) when "100011",
263 mem(36) when "100100",
264 mem(37) when "100101",
265 mem(38) when "100110",
266 mem(39) when "100111",
267 mem(40) when "101000",
268 mem(41) when "101001",
269 mem(42) when "101010",
270 mem(43) when "101011",
271 mem(44) when "101100",
272 mem(45) when "101101",
273 mem(46) when "101110",

180

274 mem(47) when "101111",
275 mem(48) when "110000",
276 mem(49) when "110001",
277 mem(50) when "110010",
278 mem(51) when "110011",
279 mem(52) when "110100",
280 mem(53) when "110101",
281 mem(54) when "110110",
282 mem(55) when "110111",
283 mem(56) when "111000",
284 mem(57) when "111001",
285 mem(58) when "111010",
286 mem(59) when "111011",
287 mem(60) when "111100",
288 mem(61) when "111101",
289 mem(62) when "111110",
290 mem(63) when others;
291 end structural;

1 library ieee;
2 use ieee.std logic 1164.all;
3 use ieee.numeric std.all;
4 use ieee.std logic unsigned.all;
5

6 entity hopset selector b is
7 port(
8 signal clk, reset : in std logic;
9 signal lower bw mask : in std logic vector(31 downto 0);

10 signal upper bw mask : in std logic vector(31 downto 0);
11 signal start : in std logic;
12 signal next hop : in std logic;
13 signal new rems : in std logic;
14 signal new key : in std logic;
15 signal hopset ready : out std logic;
16 signal finished : out std logic;
17 signal hop number : out std logic vector(10 downto 0);
18 signal hop channel : out std logic vector(10 downto 0);
19

20 signal rem rdat : in std logic vector(31 downto 0);
21 signal rem rsel : out std logic vector(5 downto 0);
22

23 signal key rdat : in std logic vector(31 downto 0);
24 signal key rsel : out std logic vector(5 downto 0);
25

26 signal bram write en : buffer std logic;
27 signal bram read en : out std logic;
28 signal bram fill : out std logic;
29 signal bram addr : buffer std logic vector(10 downto 0);
30 signal bram data in : out std logic vector(10 downto 0);
31 signal bram data out : in std logic vector(10 downto 0)
32);

181

33 end entity;
34

35 architecture behavioral of hopset selector b is
36 −− FSM states
37 type ahg state is (s idle, s count, s ready, s finished);
38 signal current state, next state : ahg state;
39

40 −− Loading metrics
41 signal load index : integer := 0;
42 constant load increment : integer := 32;
43 signal read count : integer := 0;
44 constant read total : integer := 64;
45 signal key index count : integer := 0;
46

47 −− Aggregate rems
48 signal rem buffer prev : std logic vector(31 downto 0) := ...

(others => '0');
49 signal rem buffer curr : std logic vector(31 downto 0) := ...

(others => '0');
50 signal rem buffer next : std logic vector(31 downto 0) := ...

(others => '0');
51 signal rem buffer all : std logic vector(95 downto 0) := ...

(others => '0');
52 signal rem buffer temp : std logic vector(64 downto 0) := ...

(others => '0');
53 signal rem buffer mask : std logic vector(64 downto 0) := ...

(others => '0');
54

55 −− Key
56 signal key buffer : std logic vector(31 downto 0) := (others => ...

'0');
57 signal key slice : std logic vector(10 downto 0) := (others => ...

'0');
58

59 −− Counting metrics
60 signal open channels : integer := 0;
61 signal channel index : integer := 0;
62 signal count total : integer := 0;
63

64 −− Hop index tracker
65 signal single complete : std logic := '0';
66 signal hop output index : integer := 0;
67 signal hop output index buffer : integer := 0;
68 signal run of ones mask : std logic vector(10 downto 0) := ...

"11101111110";
69 begin
70 key slice ≤ key buffer(10 downto 0);
71 bram read en ≤ next hop;
72 hop channel ≤ bram data out;
73

74 rem buffer all ≤ rem buffer next & rem buffer curr & ...
rem buffer prev;

182

75 rem buffer temp ≤ rem buffer all(channel index+64 downto ...
channel index);

76 rem buffer mask ≤ upper bw mask & '1' & lower bw mask;
77

78 selector: process(clk, reset, next state)
79 begin
80 current state ≤ current state;
81

82 if(reset = '1') then
83 current state ≤ s idle;
84 elsif(rising edge(clk)) then
85 current state ≤ next state;
86 end if;
87 end process selector;
88

89 fsm: process(clk, reset, current state, start, next hop, ...
new rems, new key)

90 −−variable channel lookup : integer := 0;
91 begin
92 if(reset = '1') then
93 −− State logic
94 open channels ≤ 0;
95 channel index ≤ 0;
96 key buffer ≤ (others => '0');
97 hop output index ≤ 0;
98 single complete ≤ '0';
99 run of ones mask ≤ "11111111110";

100

101 −− BRAM signals
102 bram write en ≤ '0';
103 bram fill ≤ '0';
104 bram addr ≤ (others => '0');
105 bram data in ≤ (others => '0');
106 rem rsel ≤ (others => '0');
107 key rsel ≤ (others => '0');
108

109 −− Output signals
110 hopset ready ≤ '0';
111 finished ≤ '0';
112 hop number ≤ (others => '0');
113 −−hop channel ≤ (others => '0');
114

115 −− Next state logic
116 next state ≤ s idle;
117 elsif(rising edge(clk)) then
118 −− Default logic
119 open channels ≤ open channels;
120 channel index ≤ channel index;
121 key buffer ≤ key buffer;
122 hop output index ≤ hop output index;
123 single complete ≤ single complete;
124

183

125 case current state is
126 when s idle =>
127 −− Current state logic
128 open channels ≤ 0;
129 channel index ≤ 0;
130 key buffer ≤ (others => '0');
131 single complete ≤ '0';
132 hop output index ≤ 0;
133 run of ones mask ≤ "11111111110";
134

135 −− BRAM signals
136 bram write en ≤ '0';
137 bram fill ≤ '0';
138 bram addr ≤ (others => '0');
139 bram data in ≤ (others => '0');
140

141 −− Output signals
142 hopset ready ≤ '0';
143 finished ≤ '1';
144 hop number ≤ (others => '0');
145 −−hop channel ≤ (others => '0');
146

147 −− Next state logic
148 if(start = '1') then
149 next state ≤ s count;
150 rem rsel ≤ std logic vector(to unsigned(read count+1, ...

6));
151 rem buffer prev ≤ rem buffer curr;
152 rem buffer curr ≤ rem buffer next;
153 rem buffer next ≤ rem rdat;
154 else
155 next state ≤ s idle;
156 end if;
157 when s count =>
158 −− Current state logic
159 rem rsel ≤ std logic vector(to unsigned(read count+1, 6));
160 count total ≤ count total + 1;
161

162 if(channel index = 31) then
163 channel index ≤ 0;
164

165 read count ≤ read count + 1;
166 rem buffer prev ≤ rem buffer curr;
167 rem buffer curr ≤ rem buffer next;
168 rem buffer next ≤ rem rdat;
169

170 if((rem buffer temp and rem buffer mask) = ...
rem buffer mask) then

171 open channels ≤ open channels + 1;
172

173 bram write en ≤ not bram write en;

184

174 bram addr ≤ ...
std logic vector(to unsigned(open channels, 11));

175 −−bram fill ≤ '0';
176 bram data in ≤ ...

std logic vector(to unsigned(count total, 11));
177 end if;
178 elsif(read count < 64) then
179 channel index ≤ channel index + 1;
180

181 if((rem buffer temp and rem buffer mask) = ...
rem buffer mask) then

182 open channels ≤ open channels + 1;
183

184 bram write en ≤ not bram write en;
185 bram addr ≤ ...

std logic vector(to unsigned(open channels, 11));
186 bram fill ≤ '0';
187 bram data in ≤ ...

std logic vector(to unsigned(count total, 11));
188 end if;
189 end if;
190

191 −− BRAM signals
192 −−bram write en ≤ '0';
193 −−bram addr ≤ 0;
194 −−bram data in ≤ (others => '0');
195

196 −− Output signals
197 −−hopset ready ≤ '0';
198 finished ≤ '0';
199 −−hop number ≤ (others => '0');
200 −−hop channel ≤ (others => '0');
201

202 −− Next state logic
203 if(count total < 2047) then
204 next state ≤ s count;
205 else
206 bram fill ≤ '1';
207 read count ≤ 0;
208 key buffer ≤ key rdat;
209 next state ≤ s ready;
210 end if;
211 when s ready =>
212 −− Current state logic
213 bram fill ≤ '0';
214

215 if(next hop = '1' and single complete = '0' and ...
read count < 64) then

216 key rsel ≤ std logic vector(to unsigned(read count, 6));
217 hop output index ≤ hop output index + 1;
218 single complete ≤ '1';
219

185

220 if(key index count = 31) then
221 key index count ≤ 0;
222 key buffer ≤ key rdat;
223 read count ≤ read count + 1;
224 else
225 key index count ≤ key index count + 1;
226 key buffer ≤ key buffer(30 downto 0) & key buffer(31);
227 hop output index ≤ hop output index + 1;
228 end if;
229

230 if(key slice = "11111111111") then
231 run of ones mask ≤ run of ones mask(9 downto 0) & ...

run of ones mask(10);
232 bram addr ≤ (key slice and run of ones mask) xor ...

std logic vector(to unsigned(open channels, 11));
233 else
234 bram addr ≤ key slice xor ...

std logic vector(to unsigned(open channels, 11));
235 end if;
236 end if;
237

238 if(next hop = '0') then
239 single complete ≤ '0';
240 end if;
241

242 −− Output signals
243 hopset ready ≤ '1';
244 finished ≤ '0';
245 hop number ≤ ...

std logic vector(to unsigned(hop output index, 11));
246

247 −− BRAM signals
248 −−bram write en ≤ '0';
249 −−bram addr ≤ 0;
250 −−bram fill ≤ '0';
251 −−bram data in ≤ (others => '0');
252

253 −− If all ones, rotate mask left one bit and use mask
254

255 −− Next state logic
256 if(hop output index < 2048) then
257 next state ≤ s ready;
258 else
259 next state ≤ s finished;
260 end if;
261 when s finished => −− Equivalent to s finished
262 −− Current state logic
263 −− (NONE)
264

265 −− Output signals
266 hopset ready ≤ '0';
267 finished ≤ '1';

186

268 −−hop number ≤ (others => '0');
269 −−hop channel ≤ (others => '0');
270

271 −− Next state logic
272 if(new rems = '1' or new key = '1') then
273 next state ≤ s idle;
274 else
275 next state ≤ s finished;
276 end if;
277 end case;
278 end if;
279 end process fsm;
280 end behavioral;

1 library ieee;
2 use ieee.std logic 1164.all;
3 use ieee.numeric std.all;
4 use ieee.std logic unsigned.all;
5

6 entity key loader is
7 port(
8 signal clk, reset : in std logic;
9 signal load key : in std logic;

10 signal new key : in std logic;
11 signal input : in std logic vector(31 downto 0);
12

13 signal key wen : out std logic;
14 signal key wsel : out std logic vector(5 downto 0);
15 signal key wdat : out std logic vector(31 downto 0)
16);
17 end entity;
18

19 architecture behavioral of key loader is
20 signal index : integer := 0;
21 begin
22 load maps: process(clk, reset)
23 begin
24 if(reset = '1') then
25 key wen ≤ '0';
26 key wsel ≤ "000000";
27 key wdat ≤ (others => '0');
28

29 index ≤ 0;
30 elsif(rising edge(clk)) then
31 index ≤ index;
32

33 if(index = 64 or new key = '1') then
34 key wen ≤ '0';
35 key wsel ≤ "000000";
36 key wdat ≤ (others => '0');
37

187

38 index ≤ 0;
39 elsif(load key = '1') then
40 key wen ≤ '1';
41 key wsel ≤ std logic vector(to unsigned(index, 6));
42 key wdat ≤ input;
43

44 index ≤ index + 1;
45 end if;
46 end if;
47 end process load maps;
48 end behavioral;

1 library ieee;
2 use ieee.std logic 1164.all;
3 use ieee.numeric std.all;
4 use ieee.std logic unsigned.all;
5

6 entity rem merger is
7 port(
8 signal clk, reset : in std logic;
9 signal load rem : in std logic;

10 signal new rems : in std logic;
11 signal input : in std logic vector(31 downto 0);
12

13 signal rem rdat : in std logic vector(31 downto 0);
14 signal rem rsel : out std logic vector(5 downto 0);
15 signal rem wen : out std logic;
16 signal rem wsel : out std logic vector(5 downto 0);
17 signal rem wdat : out std logic vector(31 downto 0)
18);
19 end entity;
20

21 architecture behavioral of rem merger is
22 signal index : integer := 0;
23 begin
24 load maps: process(clk, reset)
25 begin
26 if(reset = '1') then
27 rem rsel ≤ "000000";
28 rem wen ≤ '0';
29 rem wsel ≤ "000000";
30 rem wdat ≤ (others => '1');
31

32 index ≤ 0;
33 elsif(rising edge(clk)) then
34 index ≤ index;
35

36 if(index = 64 or new rems = '1') then
37 rem rsel ≤ "000000";
38 rem wen ≤ '0';
39 rem wsel ≤ "000000";

188

40 rem wdat ≤ (others => '0');
41

42 index ≤ 0;
43 elsif(load rem = '1') then
44 rem rsel ≤ std logic vector(to unsigned(index+1, 6));
45 rem wen ≤ '1';
46 rem wsel ≤ std logic vector(to unsigned(index, 6));
47 rem wdat ≤ rem rdat and input;
48

49 index ≤ index + 1;
50 end if;
51 end if;
52 end process load maps;
53 end behavioral;

1 library ieee;
2 use ieee.std logic 1164.all;
3 use ieee.numeric std.all;
4 use std.textio.all;
5 use ieee.math real.all; −− for UNIFORM, TRUNC functions
6

7 entity tb adaptive hopset selector b is
8 generic(
9 period: time := 10 ns

10);
11 end entity;
12

13 architecture behavioral of tb adaptive hopset selector b is
14 −− Component signals
15 signal clk, reset : std logic;
16 signal load rem : std logic := '0';
17 signal load key : std logic := '0';
18 signal new rems : std logic := '0';
19 signal new key : std logic := '0';
20 signal input : std logic vector(31 downto 0) := (others => '0');
21 signal key : std logic vector(31 downto 0) := (others => '0');
22 signal lower bw mask : std logic vector(31 downto 0);
23 signal upper bw mask : std logic vector(31 downto 0);
24 signal start : std logic := '0';
25 signal next hop : std logic := '0';
26 signal hopset ready : std logic;
27 signal finished : std logic;
28 signal hop number : std logic vector(10 downto 0);
29 signal hop channel : std logic vector(10 downto 0);
30

31 component adaptive hopset selector synthesis is
32 port(
33 signal clk, reset : in std logic;
34 signal load rem : in std logic;
35 signal load key : in std logic;
36 signal new rems : in std logic;

189

37 signal new key : in std logic;
38 signal input : in std logic vector(31 downto 0);
39 signal key : in std logic vector(31 downto 0);
40 signal lower bw mask : in std logic vector(31 downto 0);
41 signal upper bw mask : in std logic vector(31 downto 0);
42 signal start : in std logic;
43 signal next hop : in std logic;
44 signal hopset ready : out std logic;
45 signal finished : out std logic;
46 signal hop number : out std logic vector(10 downto 0);
47 signal hop channel : out std logic vector(10 downto 0)
48);
49 end component;
50

51 −− function str to stdvec(input: string) return std logic vector is
52 −− variable temp: std logic vector(input'range) := (others => ...

'0');
53 −− begin
54 −− for i in input'range loop
55 −− if(input(i) = '1') then
56 −− temp(i) := '1';
57 −− elsif(input(i) = '0') then
58 −− temp(i) := '0';
59 −− end if;
60 −− end loop;
61 −−

62 −− return temp;
63 −− end function str to stdvec;
64 begin
65 selector: adaptive hopset selector synthesis
66 port map(
67 clk => clk,
68 reset => reset,
69 load rem => load rem,
70 load key => load key,
71 new rems => new rems,
72 new key => new key,
73 input => input,
74 key => key,
75 lower bw mask => lower bw mask,
76 upper bw mask => upper bw mask,
77 start => start,
78 next hop => next hop,
79 hopset ready => hopset ready,
80 finished => finished,
81 hop number => hop number,
82 hop channel => hop channel
83);
84

85 test: process
86 −− file infile : text;
87 file outfile : text;

190

88 −− variable inline : line;
89 variable outline : line;
90 −− variable indata : string(64 downto 1);
91 variable outdata : string(64 downto 1);
92 variable maps : integer := 3;
93

94 variable seed1, seed2 : positive; −− Seed ...
values for random generator

95 variable rand : real; −− ...
Random real−number value in range 0 to 1.0

96 variable int rand : integer; −− ...
Random integer value in range 0..4095

97 variable randVector : std logic vector(31 downto 0); −− ...
Random input vector

98 variable index : integer;
99 begin

100 −− Reset the system
101 reset ≤ '1';
102 wait for period;
103 reset ≤ '0';
104

105 −− Toggle new rems
106 new rems ≤ '1';
107 wait for period;
108 new rems ≤ '0';
109

110 −− Toggle new keys
111 new key ≤ '1';
112 wait for period;
113 new key ≤ '0';
114

115 −− Load the REMs
116 for m in 1 to maps loop
117 for i in 0 to 63 loop
118 UNIFORM(seed1, seed2, rand); ...

−− ...
generate random number

119 int rand := INTEGER(TRUNC(rand*4294967295.0)); ...
−− rescale to 0..2ˆ32−1, ...

find integer part
120 randVector := std logic vector(to unsigned(int rand, ...

randVector'LENGTH)); −− convert to std logic vector
121

122 input ≤ randVector;
123 −−input ≤ x"FFFFFFFF";
124

125 load rem ≤ '1';
126 wait for period;
127 load rem ≤ '0';
128 wait for period;
129 end loop;
130 end loop;

191

131

132

133 −− Load the key
134 for i in 0 to 63 loop
135 index := i * 32;
136

137 UNIFORM(seed1, seed2, rand); ...
−− generate ...

random number
138 int rand := INTEGER(TRUNC(rand*4294967295.0)); ...

−− rescale to 0..2ˆ32−1, find ...
integer part

139 randVector := std logic vector(to unsigned(int rand, ...
randVector'LENGTH)); −− convert to std logic vector

140

141 key ≤ randVector;
142

143 load key ≤ '1';
144 wait for period;
145 load key ≤ '0';
146 wait for period;
147 end loop;
148

149 −− Set half−bandwidth
150 lower bw mask ≤ x"80000000";
151 upper bw mask ≤ x"00000001";
152

153 −− Toggle start flag
154 start ≤ '1';
155 wait for 10*period;
156 start ≤ '0';
157

158 −− Wait until the hopset has been calculated
159 wait until hopset ready = '1';
160

161 −− Wait a clock cycle for good measure
162 wait for 15*period;
163

164 −− Open the file for reading
165 −−file open(outfile, (".\hopsets\hopset" & integer'image(i) & ...

".txt"), WRITE MODE);
166 file open(outfile, (".\hopsets\hopset.txt"), WRITE MODE);
167

168 −− Retrieve all hopsets in order
169 for i in 0 to 2047 loop
170 next hop ≤ '1';
171 wait for 5*period;
172 next hop ≤ '0';
173 wait for 5*period;
174

175 write(outline, ...
integer'image(to integer(unsigned(hop channel))));

192

176 writeline(outfile, outline);
177 end loop;
178

179 −−report "Wrote hopset " & integer'image(i) & " to file";
180 report "Wrote hopset to file";
181

182 file close(outfile);
183

184 wait for 10*period;
185

186 new rems ≤ '1';
187 wait for 5*period;
188 new rems ≤ '0';
189

190 new key ≤ '1';
191 wait for 5*period;
192 new key ≤ '0';
193

194 −− End test
195 wait;
196 end process test;
197

198 clock: process
199 begin
200 clk ≤ '1';
201 wait for period / 2;
202 clk ≤ '0';
203 wait for period / 2;
204 end process clock;
205 end behavioral;

1 library ieee;
2 use ieee.std logic 1164.all;
3 use ieee.math real.all; −− for UNIFORM, TRUNC functions
4 use ieee.numeric std.all; −− for TO UNSIGNED function
5

6 entity tb hopset selector is
7 generic(
8 period: time := 10 ns
9);

10 end entity;
11

12 architecture behavioral of tb hopset selector is
13 signal clk, reset : std logic;
14 signal start : std logic := '0';
15 signal aggregate rem : std logic vector(2047 downto 0) := ...

(others => '0');
16 signal key : std logic vector(2047 downto 0) := (others => '0');
17 signal next hop : std logic := '0';
18 signal hopset ready : std logic := '0';
19 signal finished : std logic := '0';

193

20 signal hop number : std logic vector(10 downto 0) := (others => ...
'0');

21 signal hop channel : std logic vector(10 downto 0) := (others ...
=> '0');

22

23 component hopset selector b is
24 port(
25 signal clk, reset : in std logic;
26 signal start : in std logic;
27 signal aggregate rem : in std logic vector(2047 downto 0);
28 signal key : in std logic vector(2047 downto 0);
29 signal next hop : in std logic;
30 signal hopset ready : out std logic;
31 signal finished : out std logic;
32 signal hop number : out std logic vector(10 downto 0);
33 signal hop channel : out std logic vector(10 downto 0)
34);
35 end component;
36 begin
37 selector: hopset selector b
38 port map(
39 clk => clk,
40 reset => reset,
41 start => start,
42 aggregate rem => aggregate rem,
43 key => key,
44 next hop => next hop,
45 hopset ready => hopset ready,
46 finished => finished,
47 hop number => hop number,
48 hop channel => hop channel
49);
50

51 test: process
52 variable seed1, seed2 : positive; −− Seed ...

values for random generator
53 variable rand : real; −− ...

Random real−number value in range 0 to 1.0
54 variable int rand : integer; −− ...

Random integer value in range 0..4095
55 variable randVector : std logic vector(31 downto 0); −− ...

Random input vector
56 variable index : integer;
57 begin
58 −− Reset the system
59 reset ≤ '1';
60 wait for period;
61 reset ≤ '0';
62

63 −− Load the aggregate REM
64 for i in 0 to 63 loop
65 index := i * 32;

194

66

67 UNIFORM(seed1, seed2, rand); ...
−− generate ...

random number
68 int rand := INTEGER(TRUNC(rand*4294967295.0)); ...

−− rescale to 0..2ˆ32−1, find ...
integer part

69 randVector := std logic vector(to unsigned(int rand, ...
randVector'LENGTH)); −− convert to std logic vector

70

71 aggregate rem(index+31 downto index) ≤ not randVector;
72

73 wait for period;
74 end loop;
75

76

77 −− Load the key
78 for i in 0 to 63 loop
79 index := i * 32;
80

81 UNIFORM(seed1, seed2, rand); ...
−− generate ...

random number
82 int rand := INTEGER(TRUNC(rand*4294967295.0)); ...

−− rescale to 0..2ˆ32−1, find ...
integer part

83 randVector := std logic vector(to unsigned(int rand, ...
randVector'LENGTH)); −− convert to std logic vector

84

85 key(index+31 downto index) ≤ randVector;
86

87 wait for period;
88 end loop;
89

90 start ≤ '1';
91 wait for 2*period;
92 start ≤ '0';
93

94 wait until hopset ready = '1';
95

96 wait for 5 * period;
97

98 for i in 0 to 2047 loop
99 next hop ≤ '1';

100 wait for period;
101 next hop ≤ '0';
102 wait for period;
103 end loop;
104

105 −− End test
106 wait;
107 end process test;

195

108

109 clock: process
110 begin
111 clk ≤ '1';
112 wait for period / 2;
113 clk ≤ '0';
114 wait for period / 2;
115 end process clock;
116 end behavioral;

1 library ieee;
2 use ieee.std logic 1164.all;
3

4 entity tb rem merger is
5 generic(
6 period: time := 50 ns
7);
8 end entity;
9

10 architecture behavioral of tb rem merger is
11 −− Component signals
12 signal clk, reset : std logic;
13 signal load : std logic := '0';
14 signal new maps : std logic := '0';
15 signal input upper, input lower : std logic vector(31 downto 0) ...

:= (others => '0');
16 signal output upper, output lower : std logic vector(31 downto ...

0) := (others => '0');
17

18 −− Internal signals
19 signal output : std logic vector(63 downto 0);
20

21 component rem merger is
22 port(
23 signal clk, reset : in std logic;
24 signal load : in std logic;
25 signal new maps : in std logic;
26 signal input upper, input lower : in std logic vector(31 ...

downto 0);
27 signal output upper, output lower : out std logic vector(31 ...

downto 0)
28);
29 end component;
30 begin
31 merger: rem merger
32 port map(
33 clk => clk,
34 reset => reset,
35 load => load,
36 new maps => new maps,
37 input upper => input upper,

196

38 input lower => input lower,
39 output upper => output upper,
40 output lower => output lower
41);
42

43 output ≤ output upper & output lower;
44

45 test: process
46 begin
47 −− Reset the system
48 reset ≤ '1';
49 wait for period;
50 reset ≤ '0';
51

52 −− Test #1
53 input upper ≤ x"FFFF0000";
54 input lower ≤ x"0000FF00";
55 load ≤ '1';
56 wait for period;
57 load ≤ '0';
58

59 wait for period;
60

61 −− Check
62 assert (output = x"FFFF00000000FF00")
63 report "Test #1 failed!"
64 severity error;
65

66 −− Test #2
67 input upper ≤ x"0FF00000";
68 input lower ≤ x"FFFFFFFF";
69 load ≤ '1';
70 wait for period;
71 load ≤ '0';
72

73 wait for period;
74

75 −− Check
76 assert (output = x"0FF000000000FF00")
77 report "Test #2 failed!"
78 severity error;
79

80 −− Test #3
81 input upper ≤ x"0FFF0000";
82 input lower ≤ x"0000FFFF";
83 load ≤ '1';
84 wait for period;
85 load ≤ '0';
86

87 wait for period;
88

89 −− Check

197

90 assert (output = x"0FF000000000FF00")
91 report "Test #3 failed!"
92 severity error;
93

94 −− Test #4 (Soft−reset for existing output)
95 new maps ≤ '1';
96 wait for period;
97 new maps ≤ '0';
98

99 wait for period;
100

101 −− Check
102 assert (output = x"FFFFFFFFFFFFFFFF")
103 report "Test #4 failed!"
104 severity error;
105

106 −− End test
107 wait;
108 end process test;
109

110 clock: process
111 begin
112 clk ≤ '1';
113 wait for period / 2;
114 clk ≤ '0';
115 wait for period / 2;
116 end process clock;
117 end behavioral;

198

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

21–03–2013 Master’s Thesis Aug 2012–Mar 2013

An Architecture for Coexistence with Multiple Users in Frequency
Hopping Cognitive Radio Networks

13G298

McLean, Ryan K., Second Lieutenant, USAF

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB, OH 45433-7765

AFIT-ENG-13-M-34

Dr. Vasu Chakravarthy
2241 Avionics Circle
WPAFB, OH 45433

AFRL/RYWE

12. DISTRIBUTION / AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED
13. SUPPLEMENTARY NOTES

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT

The radio frequency (RF) spectrum is a limited resource. Spectrum allotment disputes stem from this scarcity as many
radio devices are confined to a fixed frequency or frequency sequence. One alternative is to incorporate cognition within
a reconfigurable radio platform, therefore enabling the radio to adapt to dynamic RF spectrum environments. In this
way, the radio is able to actively observe the RF spectrum, orient itself to the current RF environment, decide on a
mode of operation, and act accordingly, thereby sharing the spectrum and operating in more flexible manner. This
research presents a novel framework for incorporating several techniques for the purpose of adapting radio operation
to the current RF spectrum environment. Specifically, this research makes six contributions to the field of cognitive
radio: (1) the framework for a new hybrid hardware/software middleware architecture, (2) a framework for testing and
evaluating clustering algorithms in the context of cognitive radio networks, (3) a new RF spectrum map representation
technique, (4) a new RF spectrum map merging technique, (5) a new method for generating a random key-based
adaptive frequency-hopping waveform, and (6) initial integration testing toward implementing the proposed system on
a field-programmable gate array (FPGA).

15. SUBJECT TERMS

cognitive radio, adaptive frequency hopping, coexistence

U U U UU 220

Maj Mark D. Silvius

(937) 255-3636 ext. 4684

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Statement
	Research Contributions
	Thesis Organization

	Related Work
	Cognitive Radio
	Adaptive Frequency Hopping (AFH)
	RF Spectrum Sensing & Mapping
	Clustering
	FPGA-Based Cognitive Radio
	Background Summary

	Methodology
	Whole System
	Network Clustering
	Adaptive Hopset Selection

	Results
	Network Clustering
	Adaptive Hopset Selection

	Conclusions
	Research Contributions
	Whole System
	Network Clustering
	Adaptive Hopset Selection
	Final Remarks

	Future Work
	Appendix A: DYSE-Generated RF Spectrum Maps
	Appendix B: Node Distributions
	Appendix C: Additional FPGA Design Figures
	Appendix D: Additional Clustering Visualization Plots
	Appendix E: Additional ICSS Plots
	Appendix F: MATLAB Code
	Appendix G: VHDL Code

