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Abstract 

 

The main research objective is the development of photoacoustic sensor capable 

of detecting weak terahertz (THz) electromagnetic radiation. The feasibility of THz 

remote sensing is seen in the utilization of Microelectromechanical systems (MEMS) 

cantilever-based sensor. The overall sensing functionality of the detector in development 

is based on the photoacoustic spectroscopy and direct piezoelectric effect phenomena, as 

a result of which significant part of investigation has been conducted in the area of 

terahertz electromagnetic radiation detection. The main focus of this research work was 

the detector analytical and Finite Element Method (FEM) simulation modeling, involving 

necessary material properties investigations and adequate selections which were, beside 

the sensors’ geometry considerations, heavily engaged in the device modeling. Five 

different MEMS detector configurations have been analyzed and modeled as potential 

THz photoacoustic sensing options: Three configurations of rectangular shape, single 

piezoelectric layer cantilever-based sensors, Circular membrane sensing configuration 

and Square membrane sensing configuration. Some level of disagreement was discovered 

between the analytical and FEM simulated results, which has been analyzed and possible 

reasons were established. The obtained results indicated that the Square membrane has 

demonstrated the ability to respond effectively to any radiation level from the entire THz 

photoacoustic range exhibiting high sensitivity and thus was selected as the best terahertz 

photoacoustic sensing solution. 
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PHOTOACOUSTIC DETECTION OF TERAHERTZ RADIATION FOR 
CHEMICAL SENSING AND IMAGING 

 
 

I.  Introduction 

1.1. General Issue 

This chapter provides the motivational reasons for researching in the field of 

terahertz photoacoustic sensing in the context of an enormously increased number of 

detection applications and provides a general overview of the nature of work investigated 

in this thesis.  

This work is mainly based on the previously developed theoretical assumptions 

and experimental techniques that have been widely used in the past for spectral detection 

in solids and gasses. This study uses analytical, as well as Finite Element Method (FEM) 

modeling and analysis to design and develop a novel photoacoustic detector responsive to 

sub-millimeter/terahertz radiation. Moreover, in addition to mentioned modeling methods 

the utilization of a micro-cantilever transducer using MEMS manufacturing is also 

explored. 

1.2 Problem Statement 

The basis of terahertz (THz) radiation which distinguishes its spectral region from 

others is manly described through its interactions with low-pressure gasses, interactions 

with gasses near atmospheric pressure, and interactions with liquids and solids [1]. 

Majority of the successful applications of this spectral region have been arisen from its 

interactions with low-pressure gasses [1]. Based on this the feasibility of terahertz 
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sensing has been seen in the utilization of the extremely sensitive detectors embedded 

within low-pressure environment such is photoacoustic cell filled by appropriate gas 

sample. The possible solution is a proposed MEMS cantilever-based sensor. The idea of 

using the microcantilever as a sensor in various sensing application is not new at all but 

its unique design, geometry, material choice and fabrication process make it different and 

unique from application to application. The choice of using a cantilever as a sensing 

element is based on the proven cantilever benefits, such as their small size, fast response, 

high sensitivity, as well as their relatively easy fabrication and integration with 

electronics. Furthermore and most importantly the cantilever sensitivity can be easily 

adjusted by changing materials or beam dimensions. Based on these factors, the proposed 

research aimed to develop a novel photoacoustic terahertz radiation detector. The novelty 

of this work is the miniature size of the acoustic cell with the use of the fabricated MEMS 

cantilever transducer. 

In this work the analytical and FEM simulated and results of a number of different 

cantilever configurations have been collected, analyzed, validated and compared with 

each other in respect to the best sensing performance. The full potential of this sensing 

capability will be discussed in detail, along with its limitations, performance deviations 

and implementation feasibility.  

1.3 Research Focus 

The purpose of this research project was to investigate and develop a novel 

photoacoustic detector responsive to sub-millimeter/terahertz radiation. The proposed 

research activity assumed the utilization of a micro-cantilever transducer using MEMS 
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manufacturing as well as the design of an acoustic cell. As briefly described in the 

previous introduction section the intended transducer sensing functionality is based on 

photoacoustic spectroscopy and direct piezoelectric effect phenomena. Before attempting 

to fabricate any of the piezoelectric cantilevers a number of things needed to happen. 

First, a comprehensive research in the field of piezoelectricity and terahertz radiation 

needed to be conducted. This was accomplished and will be presented in Chapter II. 

Second, during the initial stage of the detector development the main focus was on the 

cantilever analytical modeling including appropriate material investigations and its 

selection for cantilever fabrication. Based on the analytical predictions and material 

selection, several versions of the complete MEMS cantilever designs, L-Edit surface 

modeling, and related CoventorWare design and testing simulations were performed. The 

CoventorWare Finite Element Method (FEM) simulation tool has been used extensively 

in some advanced cantilever multi-layer structures investigations and were conducted to 

get an idea of how the cantilevers/membranes should respond to an applied terahertz 

acoustic wave and to get an estimate of the cantilever/membrane sensitivity. Based on L-

Edit sensor surface modeling designs and fully developed device fabrication process, 

developed configurations of micro-cantilever transducers are ready for fabrication and 

laboratory testing. Analytical and simulated results of a number of different sensor’s 

configurations have been collected, analyzed and compared among each configuration as 

well as in respect with design specifications. In each case the effect of variations in 

models’ geometrical dimensions and impact of materials electromechanical properties on 

sensing performance has been investigated and results will be presented and discussed to 

define the best sensor design in terms of maximum voltage sensitivity. 
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1.4 Preview 

This research is presented in five chapters. Chapter I introduces the problem, 

reveals motivational reasons for researching in the field of terahertz photoacoustic 

sensing and through the problem statement clearly identifies the main research objective. 

The Research Focus section sets boundaries and specifies project execution order.  

Chapter II presents the background theory in support of understanding the 

research work presented in later chapters. In particular, special emphasis is given to the 

basic terahertz photoacoustic sensing principles including a brief overview of the 

importance of the THz frequency band for the future terahertz based applications. 

Furthermore, the basics of beam theory, piezoelectric cantilever analytical model, 

Gaussian statistics, and the basis of kinetic theory of gasses including detector fabrication 

process description and its overall functionality as an integral terahertz detection device, 

have been discussed and presented.   

Chapter III discusses the key aspects involved in the modeling of piezoelectric 

THz photoacoustic detectors with an accent on analytical and Finite Element Method 

(FEM) modeling. In support, topics, such are Photoacoustic Spectroscopy and Kinetic 

Theory of Gases as integral parts of the modeling process have been covered accordingly. 

In addition, a theoretical illustration of stochastic cantilever modeling has been presented. 

Chapter IV discusses, evaluates, and compares the sensing performance of each 

proposed terahertz sensing configuration, modeled during this research work. In 

particular after the description of the analytical and the simulated detectors conditions, 

the results of the three cantilever-based and two so called membrane-based sensing 
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configurations have been analyzed in order to define the best sensor design in terms of 

maximum voltage sensitivity. 

Chapter V provides conclusion and suggestions for future work. The results in 

Chapter IV and contributions stated in Chapter V reflect the overall research success.    

 

II. Background 

2.1 Chapter Overview 

This chapter summarizes the foundations upon which this work was built. First, 

the basis of terahertz electromagnetic radiation detection has been discussed and 

presented accordingly. Secondly, the theoretical background on the topics, such are beam 

theory, piezoelectric and piezoresistive sensing including comparison between two 

sensing principles are introduced and key points highlighted. Furthermore, the 

piezoelectric cantilever analytical model, the brief introduction of the basis of Gaussian 

statistics and its role in the statistical analysis of physical phenomena has been presented, 

too. Lastly, the basis of kinetic theory of gasses and the detector’s overall functionality as 

a sensor and its fabrication process are described.   

2.2 Terahertz Detection 

In order to be able to monitor and control a vast number of physical processes, 

mechanical motions, material testing or microscopic imaging including monitoring of air 

pollutants there is an increased need to find and develop new methods and instruments 

capable of providing accurate measurements of acoustic waves properties. In this thesis 
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section, the physical basis of photoacoustic detection as well as the nature of terahertz 

radiation in general and its potential practical use in future applications have been 

discussed. This section provides a brief background on the generation of terahertz 

radiation, its detection with an accent on the photoacoustic sensing principles, as well as 

the increased importance of this frequency band including current and future terahertz 

based applications. 

Terahertz radiation refers to the electromagnetic waves radiation in the frequency 

range between 300GHz and 3000GHz, or between 0.3 THz and 3 THz with 

corresponding wavelength ranging from 0.1mm (infrared) to 1 mm (microwave). Some 

authors refer to the THz band simply as sub-millimeter radiation, or even as 

tremendously high frequency. The terahertz frequency band is known as the least 

explored portion of the electromagnetic spectrum, mainly due to the initial difficulties of 

generating and detecting radiation at these frequencies [1]. However, according to D. 

Mittleman “It is no longer problem in the THz radiation production and its sensing so, 

researches are able to concentrate more on what to do with this radiation, and less on how 

to produce it [2].”  These days, market demands for commercial use of terahertz sensors 

and sources have had a rapid increase and there is an indication that further progress in 

some areas without development of terahertz technology (mainly instrumentations) is 

practically impossible. It is obvious that recent availability of reliable sources in a variety 

of THz ranges will have a wide impact on science and industry. New terahertz 

applications such are imagining through materials, fog or dust; point and remote gas 

detection; detection of prohibited and dangerous substances or pharmaceutical 
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applications [3] are some examples that will find their practical use in a number of 

different areas.   

Since the photoacoustic effect was investigated and discovered by A.G. Bell in 

the late 1800s, it has not attracted particular attention until the development of lasers 

and very sensitive detection techniques [4]. During that time this effect has been 

mainly utilized in instrumentation development where relevant gas measurements have 

been required. The photoacoustic effect is based on the conversion of light energy into 

sound energy by a gas, liquid or solid. The energy conversion occurs when light is 

absorbed by molecules causing their rotation at a higher energy level. An increase in 

vibration will result in local heating (temperature increase) and a certain increase in 

pressure. The modulated pressure will result in an acoustic wave, which can be 

detected with an appropriate measuring device, such as a microphone or a cantilever 

(photoacoustic membrane). The intensity of the acoustic wave greatly depends on the 

geometry of the gas cell, the intensity of the incident electromagnetic wave and 

absorption coefficient of the sample gas [5]. There are a number of theoretical models 

for the generation and detection of photoacoustic signals; however, for the purpose of 

this thesis a brief illustration of a model involving piezoelectric detection is shown in 

Figure 1. 
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Figure 1. Diagram of physical principles of Photoacoustic Microscopy (PAM) 
and Photothermal Beam Deflection (PBD) [4] 
 
 
 
When an electromagnetic wave (probe beam) is absorbed by a solid (e.g. 

semiconductor), certain amount of light energy is converted into local heat causing 

thermal wave propagation through a solid sample [4]. As the thermal wave propagation 

intensity increases it can be then detected by a piezoelectric transducer attached directly 

to the sample. Besides the piezoelectric there are a number of other methods and 

techniques that can be used for signal detection and its measurements. Most common, but 

not limited to are Optical Beam Deflection (OBD), Photo Radiometry (PTR), 

Microphone gas-cell detection, Photoacoustic Microscopy (PAM), Photothermal Beam 

Deflection (PBD) [4], etc. However, majority if not all them emphasize the contribution 

of the optical and thermal parameters to the acoustic signal generation. Thus, generation 

of photoacoustic signal is basically a three step process consisting of optical energy 

absorption, followed by generation and propagation of thermal energy, and detection of 

modulated thermal radiation by a piezoelectric transducer or any other appropriate 
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pressure sensitive measuring device. Without going further into a comprehensive 

explanation of the photoacoustic phenomena just a final remark that firm grasp of the 

acoustic response is becoming essential for the future THz wave detection applications. 

Due to the fact that terahertz radiation is capable of penetrating through a wide 

variety of non-polar and non-conducting (non-metallic) materials [6] such as fabrics, 

plastics, paper, wood or ceramics including even penetration through fog and clouds, the 

development of wide range of THz sources and detectors capable of measuring both 

broad-band and narrow-band signals are going to find their application in areas such as 

communications, security, biomedical and scientific use of imaging, quality control and 

process monitoring, etc. Also, the unique property of the acoustic waves which is a low 

attenuation in the air due to its moisture will enable remote THz spectroscopy as well as 

THz wave sensing using acoustic waves in remote operation.  

2.3 Beam Theory 

2.3.1 Introduction 

Beam deflection is essentially a displacement caused by a loading condition. 

When designing a beam, deflection is generally undesired. Critical factor in beams design 

is its stiffness which is defined as the ability of the beam to resist deflection or simply 

based on materials elastic properties is the ability of a material to resist deformation. 

Deflection is described analytically by the Euler-Bernoulli equation [7] that serves as a 

governing equation in solving MEMS related problems. The two key assumptions in the 

Euler-Bernoulli beam theory are that the material is linear elastic (Hooke’s law) and that 
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cross sections of the beam remain planar and perpendicular to the neutral axis during 

bending [7]. 

2.3.2 Derivation   

The static Euler-Bernoulli beam equation is a result of a combined relationship 

between the kinematic, constitutive, force resultant, and equilibrium equations. The 

resulting outcome of this relationship is briefly summarized within this sub-section. 

Kinematics, in accordance with linear beam theory basically describes the amount the 

created strain in the beam as function of deflection taking into account the amount of 

each beam’s cross-sectional point movement in the length direction [7]. For a small 

deflection there is negligible strain in the y direction and consequently the neutral plane 

does not change in length. The beam bends towards the neutral plane with arc of 

curvature χ, rotation angle Ѳ, and beams’ displacement ԝ. The beams’ cross section 

rotation is expressed as the negative slope of displacement w. 

 

                                                         𝜒 = −Ѳ = − 𝑑𝑤
𝑑𝑥

                                                     (1) 

 

For approximately linear materials the relationship between stress σ and strain ε within 

the beam is described by the constitutive equation employing Hooke’s law [7]. 

 

 σx = 𝐸 ∙ εx                                                                 (2)    
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 Beam theory usually uses the 1- dimensional Hooke’s law (2), however, the stress 

and strain are functions of entire beam cross-section and then they can vary with y as 

indicated in the following equation (3)                                                                               

 

                𝜎(𝑥, 𝑦) = 𝐸 ∙ 𝜀(𝑥, 𝑦)                                                (3) 

 

where σ is the stress, ε is the strain, and E is the Young’s Modulus.  

Furthermore, the force resultant equations in the mentioned combined relationship 

are used to describe the direct and shear stress in a beam as a function of x and y. The 

equations integrate the individual, small moments M and shear stresses V over entire 

beams’ cross-sectional area.  

 

                                                    𝑀(𝑥) = ∬ 𝑦 ∙ 𝜎 (𝑥, 𝑦) ∙ 𝑑𝑦 ∙ 𝑑𝑧                                         (4) 

 

                                   𝑉(𝑥) = ∬ 𝜎𝑥𝑦 (𝑥, 𝑦) ∙ 𝑑𝑦 ∙ 𝑑𝑧                                           (5) 

 

Last equations involved in the relationship which form Euler-Bernoulli beam 

equation are the equilibrium equations. These equations relate the beam’s external 

pressure loads with its internal stresses. The equilibrium in this relation is established by 

equating the change in shear force to pressure load p and change in moment to shear 

force resultant for each small section of the beam. 

𝑑𝑉
𝑑𝑥

= 𝑝                                                                    (6)                      
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𝑑𝑀
𝑑𝑥

= −𝑉                                                                (7) 

 

Furthermore, substituting equation (6) into equation (7) will provide the 

relationship between the bending moment M, the distributed load p and axial force N.  

Then the substitution of the obtained relationship into following equation 

 

                         𝐸𝐼 𝑑²𝑦
𝑑𝑥²

= 𝑀                                                                   (8)  

 

which relates the applied bending moment M and the curvature will give us equation 

known as Euler-Bernoulli beam equation. 

  𝑑²
𝑑𝑥²

�𝐸𝐼 𝑑2𝑤
𝑑𝑥2  � = 𝑝(𝑥)                                                        (9) 

 

where EI is the flexural rigidity or bending modulus [7]. 

 

 Considering this fourth order differential equation, each successive equation’s 

derivative of the deflection has a unique physical interpretation. The first derivative with 

respect to the length represents the angle between the beam and neutral axis. The second 

and third derivatives are the net moment and shear force on the beam respectively, while 

the fourth derivative is a net load per unit length. Using boundary conditions and 

balancing derivative terms in equation to desired static or dynamic forcing will determine 

the beam operational model. Different set of boundary conditions will result in different 

solutions of beams equation determining its operation model. For example solving 
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equation with the set of boundary conditions 𝑦 = 0, 𝑑𝑦
𝑑𝑥

= 0 at length 𝑥 = 0 will define 

one end fixed beam configuration (cantilever) [7].  

2.4 Piezoelectric Sensing 

This section provides a brief background on the piezoelectricity as a physical 

phenomenon in general with an accent on the piezoelectric sensing principles. By 

definition, piezoelectricity is an electric charge (or voltage) generated in a material under 

applied mechanical pressure (stress) [8]. Alternately, the materials change their physical 

shapes when an electric field is applied to them. Both effects, widely known as direct and 

inverse effect of piezoelectricity are result of the same fundamental property of the 

crystal [8]. A basic understanding of the electromechanical coupling, which virtually 

describes ability of piezoelectric material to convert mechanical energy into electrical, 

and vice versa [9], is briefly explained through the electromechanical coupling 

coefficient, usually denoted by a small letter k. If we apply a mechanical pressure to one 

side of a single piezoelectric element, a fraction of the applied pressure will be converted 

to an electric charge on the opposite element’s side. When the pressure is removed from 

the element, the generated electric charge will disappear. This simplified physical 

phenomenon can be easily stated by the following formula: 

 

 

               𝑘2 = 
𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑡𝑜 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦
  [8] 

 
 

This same basic relationship holds true in the case of inverse effect of piezoelectricity, 
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where change in element’s shape occurs when an electric field is applied to it. It is 

expressed as: 

 

                           𝑘2 = 
𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑡𝑜 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦

𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑒𝑛𝑒𝑟𝑔𝑦
  [8] 

 

 

All of what has been said above can be easily summarized through the use of the 

configuration shown in Figure 2 which is generally used in MEMS devices to illustrate 

the piezoelectric effects. 

 

          

         Figure 2. Piezoelectricity [7]  
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In Figure 2a the thin piezoelectric film of length l, thickness t and width w is 

sandwiched between two metal electrodes. When an input voltage Vi is applied across the 

film as depicted in Figure 2b, the shape of the film is deformed. In a case when a force or 

stress is applied to the film in Figure 2c, due to its capacitors’ role the film first generates 

an electrical charge Q and then provides open circuit voltage Vo= 𝑄
𝐶

  as result of direct 

piezoelectric effect. As long as force or stress remains constant or their acting on 

piezoelectric element is removed after certain amount of time the generated electrical 

charge Q  will disappear as a result of its leakage through film resistance itself or an 

outside resistance resulting in zero output voltage V0. This property of piezoelectric 

materials is used for sensing purposes when dealing with time-varying signals [6] while 

for actuating purposes the film works under AC as well as under DC voltage, as electrical 

charge Q is supplied from a voltage source Vi [7]. 

Furthermore, analytical expressions which describe the direct and inverse effects 

of piezoelectricity relating the electrical and mechanical properties of materials involved 

in sensors’ structure are as shown in equations (10) and (11) respectively [9]. 

 

                                 𝐷 =  𝜀𝑇𝐸 + 𝑑𝑇                                                                  (10) 

 

                                 𝑆 = 𝑑𝐸 + 𝑠𝐸𝑇                                                                   (11) 

 

where D is the dielectric displacement, E is the electric field, T is the mechanical stress, S 

is the mechanical strain, d is the transverse piezoelectric coefficient, ε is the permittivity 
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and s is the mechanical compliance. The subscript T means the piezoelectric material is 

under constant stress, i.e. a mechanically free condition, and the subscript E means that it 

is under constant electric field, i.e. a short-circuit condition [9]. 

 The above piezoelectric constitutive equations can be rewritten using matrix 

notation to represent the stress and strain relationship in vector notation [9]. 

 

                   

⎣
⎢
⎢
⎢
⎢
⎡
𝑆1
𝑆2
𝑆3
𝑆4
𝑆5
𝑆6⎦

⎥
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎢
⎡

𝜀11
𝜀22
𝜀33

2𝜀23
2𝜀31
2𝜀12⎦

⎥
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎢
⎡
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6⎦

⎥
⎥
⎥
⎥
⎤

   and    

⎣
⎢
⎢
⎢
⎢
⎡
𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12⎦

⎥
⎥
⎥
⎥
⎤

  

⎣
⎢
⎢
⎢
⎢
⎡
𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6⎦

⎥
⎥
⎥
⎥
⎤

 = 

⎣
⎢
⎢
⎢
⎢
⎡
𝑇1
𝑇2
𝑇3
𝑇4
𝑇5
𝑇6⎦

⎥
⎥
⎥
⎥
⎤

                               (12) 

 

The subscripts 1, 2 and 3 correspond to the x-axis, y-axis and z-axis in the 

Cartesian coordinate system respectively. In double subscripts notation such as for 

example d31 the first subscript corresponds to the electrical term while the second to the 

mechanical term. So, using matrix notation from above the piezoelectric constitutive 

equations can be written in the following forms [9];  

 

      𝐷𝑖 =  𝜀𝑖𝑗
𝑇𝐸𝑗 + 𝑑𝑖𝑗𝑇𝑗                                                 (13)                                                            

 

                                                  𝑆𝑖 =  𝑑𝑖𝑗𝐸𝑗 + 𝑠𝑖𝑗
𝐸𝑇𝑗                                                  (14) 

 

From presented it appears that there are several parameters that are used to 

specify the electromechanical properties of piezoelectric materials. Besides the 
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electromechanical coupling factor k that was introduced at the beginning of this section 

among important are dielectric constant K (relative permittivity), the elastic compliance s 

and piezoelectric coefficient d. The elastic compliance s is defined as the strain produced 

per unit stress while the dielectric constant is the ratio of the permittivity of the material 

to that of vacuum (K = ε /εo). Among mentioned the piezoelectric coefficient d is the 

parameter that more or less describe the piezoelectric material ability to convert the 

mechanical stress in the electrical charge and consequently open circuit voltage across 

piezoelectric element. The piezoelectric coefficient is a measure of generated charge Q in 

response to external mechanical excitations such are moment M, tip force F or uniformly 

distributed photoacoustic pressure load p. The piezoelectric transducer (sensor) typically 

transduces the longitudinal stress as a polarization charge proportional to its transverse 

piezoelectric coefficient, d. In general the piezoelectric coefficient d is defined [9] as the 

electric polarization P, generated in a material per unit of mechanical stress T, i.e.   

 

                                                     P = dT                                                           (15) 

 

More detailed analytical approach which relates the electrical charge Q generation 

to external mechanical excitations is presented in Section 2.7 which summarizes 

piezoelectric cantilever analytical modeling.  

In addition to all what has been said so far, before concluding this section just a 

few final remarks related to the piezoelectric effect and piezoelectric sensing in general. 

It turns out that the most important properties of the piezoelectric materials and their 

ability to sense are coming from their crystal structures which have impact on energy 
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band gaps height and consequently a change in semiconductor resistivity. Therefore, 

piezoelectric materials such are ceramics or certain types of single crystals (e.g. GaAs or 

Quartz SiO2) are widely used for sensing and actuation purposes. In their applications the 

direct effect is normally used for sensing technology, while the inverse effect is used for 

actuating technology. Piezoelectric sensors have been widely proven as reliable and 

versatile measurement tools in many industrial sensing applications. They have been 

successfully used in areas, such are aerospace, medicine, nuclear instrumentation, process 

control or for research and development purposes. Beside their well-known classic 

applications such are microphones, acoustic modems or acoustic imaging for underwater 

or underground objects and many others, now they have found their application in 

MEMS technology too, mainly as a pressure, inertia, tactile or flow sensors. The rise of 

piezoelectric technology is mainly driven by the piezoelectric materials’ native 

characteristics. Their high modulus of elasticity enables the development of piezoelectric 

sensing elements with almost zero deflection. This, in nature mechanical property makes 

piezoelectric sensors rugged, with extremely high natural frequency and linearity over a 

wide amplitude range. Piezoelectric technology is practically insensitive to 

electromagnetic fields and radiation. Also, there are some practical piezoelectric 

materials, which exhibit high temperature stability. So, all of these enables this type of 

sensors to perform measurements under harsh environmental conditions.  

2.5 Piezoresistive Sensing 

In contrast to the piezoelectric effect, the piezoresistive effect does not produce 

electrical charge (voltage) at all. The piezoresistive effect only causes a change in 
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electrical resistance. An electrical resistor will simply change its resistance due to the 

applied mechanical stress. This effect is commonly used in the MEMS field for a wide 

range of sensing applications [10]. A quite simple physical explanation and 

understanding of piezoresistive effect can be efficiently summarized through the use of 

general expression for piezoresistivity (16) and graphical illustration of piezorezistance 

shown in Figure 3. The rectangular beam of length l, width w, and thickness t is stretched 

by tensile force F while a voltage V is applied across beams’ length. Taking into account 

geometrical dimensions and material resistivity the resistance value of the beam can be 

calculated using the following resistance equation derived from Ohm’s law: 

 

 

                                      𝑅 = 𝜌𝑟
𝑙
𝐴

= 𝜌𝑟
𝑙

𝑤𝑡
   [7]                                                (16) 

 

where 𝜌𝑟 is the material’s resistivity. 
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         Figure 3. Piezoresistance [7] 
 
 
 

 
Considering the equation from above it can be clearly seen that the overall 

resistance value as result of applied strain can be changed in a two main ways. First, the 

resistors’ length and cross section will change with strain. An increase in length will 

likely cause a decrease in resistors’ cross section and consequently an increase in 

resistance as carriers that make current have to travel longer distance, while an increase 

in cross-sectional area will result in resistance decrease, as carriers in this case can flow 

in parallel. Secondly, the change in strain besides having an impact on resistors’ 

dimensions will cause the change in resistivity of certain materials. The magnitude of 

resistance change through the change in bulk resistivity is much greater than in case 

related to the change in resistors’ dimensions. Based on this fact piezoresistors are strictly 

defined as resistors whose resistivity changes with applied strain [10]. The change in 
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resistance, caused only by the physical deformation of resistor is a unique property of 

metals. In case of semiconductor materials, the mechanical force will not only have an 

impact on the resistor’s geometry, but it will also cause a change in the internal crystal 

structure by changing the atomic spacing. This type of change will have an impact on 

energy band gaps and consequently a change in semiconductor resistivity. Will resistivity 

in this case increase or decrease depends on the material type and strain. Different 

materials have different energy gaps (smaller or larger), and then it is just a matter of 

applied mechanical force to increase or decrease electrons’ (carrier charges) travel 

distance and mobility (affected by the number of collisions per travel distance) on their 

way to conduction band. Some deformation will simply decrease travel distance and 

increase mobility, and make it easier for electrons to be raised into the conduction band, 

having for result decreased resistivity while in some cases it is going to be the opposite, 

where increased travel distance and decreased mobility will simply result in increased 

resistivity. The dependence of resistivity of a semiconductor’ material on the mobility of 

charge carriers is expressed by the following mobility formula [10]: 

 

                                µ = qt˟
m̽

                                       (17) 

 

where q is the charge per unit charge carrier, t˟ is mean free time between carrier 

collision events, and m̽ is the effective mass of a carrier in the crystal lattice. So, it is 

obvious that piezoresistivity has a much greater impact on resistance than just a simple 

change in geometry. As a result of this simplified and brief analysis it can be seen that 
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semiconductors in their nature are much more sensitive to applied mechanical force, as 

well as to the environmental conditions (e.g., temperature, light) than metals. The 

piezoresistive effect in some most popular semiconductor materials, such are silicon 

(polycrystalline, amorphous) or germanium can be several orders of magnitudes more 

pronounced than the geometrical effect in metals. All these are making semiconductors 

more suitable for a variety of sensing applications. There is a wide range of products 

using piezoresistive effect. Due to its processing, electrical and a number of other 

qualities, silicon is a material of greatest interest for use in the development and 

fabrication of piezoresistive devices (e.g., pressure or acceleration sensors).  

 Furthermore, the transduction (sensing) principle for both detectors types 

(piezoelectric and piezoresistive) is that external mechanical excitations (force F, 

pressure p) applied at the bending mode element such is cantilever beam will cause 

mechanical deformations inducing bending stress in the cantilever. The resulting stress 

can be transformed into a measurable output signals by either the piezoelectric or 

piezoresistive effect. Piezoelectric sensor, as mentioned in previous section typically 

transduces the longitudinal stress as polarization charge proportional to its transverse 

piezoelectric coefficient d31 while piezoresistor typically transduces the longitudinal 

stress as a change in resistivity proportional to its longitudinal piezoresistive 

coefficient 𝜋𝑙, which is defined as  

 

                                                             𝜋𝑙 =  𝛥𝜌𝑟/𝜌𝑟
𝜎𝑥

  [7]                                                 (18) 
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where 𝜎𝑥 is the longitudinal stress defined as F/A. The above equation can be used to 

measure the resistance of the beam in both, x and y directions. As indicated in Figure 3a 

in case of a measurement in x direction the stress the direction of the electric field is the 

same as the direction of the applied stress 𝜎𝑥, while in case of measurement in y direction 

(Figure 3b) the direction of electric field is perpendicular to that of stress 𝜎𝑥. The 

piezoresistive coefficients can be obtained experimentally as illustrated in Figure 3a and 

b or maybe evaluated from published data [7]. 

2.6 Piezoelectric vs Piezoresistive 

In previous two sections basic theoretical background on the piezoelectric and 

piezoresistive sensing has been presented. Special emphasis was given on sensing 

principles including review of current and future sensing applications. Piezoelectricity 

and piezoresistivity are two transduction mechanisms that are widely used in a variety of 

sensing applications. Due to their widespread use in many diverse and often unrelated 

fields it is important to compare their performance. Even though an indirect but clearly 

visible comparison between these two sensing principles already has been outlined within 

respective sections (Section 2.4 and Section 2.5), a brief summary, mainly related to their 

differences and limits is presented here, too. Despite their importance and widespread 

use, their performance has not been directly compared to date [11]. According to [11] an 

indirect but not quality performance comparison can be found in literature survey [12].  

The most common fact for both sensing principles is that mechanical stress 

(pressure) can be easily transformed into measurable signal by either the piezoresistive or 

the piezoelectric effect. As already mentioned in Section 2.4, one but still not fully 
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proven disadvantage of piezoelectric sensors is that they cannot be used for fully static 

measurements. Based on the fact that pressure sensors use both piezoelectric and 

piezoresistive operating principles, here is a brief advantage-disadvantage summary 

between these two sensing principles. Piezoelectric pressure sensors have advantages 

such as fast response, self-generating signal, and they are rugged, small in size and have a 

wide temperature operating range, while their disadvantages are mainly related to low 

sensitivity, they are greatly affected by environmental temperature changes, have high 

output impedance, and they are vibration sensitive and responsive to AC signals only. 

The main disadvantage of piezoresistive pressure sensors is their temperature sensitivity, 

while they have several advantages such as DC response, high sensitivity, fast response 

and small size. Also, as a general observation [11] in case of other sensing applications 

such are piezoresistive and piezoelectric cantilevers, the piezoresistive cantilever has a 

slight performance advantage, mainly due to its smaller low frequency noise. In power 

constrained applications the performance of piezoresistive sensing greatly declines. 

Based on the power dissipation observations, generally piezoresistive sensing 

outperforms piezoelectric sensing in application where power dissipation is not an issue. 

As a final remark to this comparison the piezoelectricity is in general preferred for 

sensing within noisy ambient. This preference is based on the fact that piezoresistive 

sensing has lower noise and lower sensitivity than piezoelectric sensing. 
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2.7 Piezoelectric Cantilever Analytical Model 

Theoretical analysis of the sensing effect of cantilever-based piezoelectric sensor 

promotes understanding of the photoacoustic detection of electromagnetic radiation and 

allows meaningful exploration of possible sensing solutions. 

 

 

         Figure 4. Piezoelectric cantilever [13] 
 
 

 
 

 As indicated in Figure 4 voltage generation across cantilever piezoelectric plate is 

subject to external mechanical excitations such are uniform distribution of photoacoustic 

load P, tip force F, and moment M. General analytical expressions (19) and (20) relating 

generated electric charge Q to the mentioned excitations have been derived by Jan G. 

Smits and Wai-shing Choi [14]. The equations describe the behavior of the single 

piezoelectric layer cantilever sensor under static conditions. If an external moment M, an 

external force F, a uniformly distributed load p, and an electric voltage V are applied to 

the sensor, then the generated electrical charge can be expressed by the following 

equations: 
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                                𝑄= 6𝑑₃₁𝑠ᵐ₁₁𝑠ᵖ₁₁𝑡𝑚(𝑡𝑚 +𝑡𝑝)𝐿     
𝐾

 M                                                   (19) 
 
 

                                     +  
3𝑑₃₁𝑠ᵐ₁₁𝑠ᵖ₁₁𝑡𝑚(𝑡𝑚 +𝑡𝑝)𝐿²     

𝐾
  F    

   
             

                                    + 𝑑₃₁𝑠ᵐ₁₁𝑠ᵖ₁₁𝑡𝑚(𝑡𝑚 +𝑡𝑝)𝐿³     
𝐾

 P 
 
 

                                    + 𝐿𝑤
𝑡𝑝

(𝜀˟₃₃ − 𝑑²₃₁𝑡𝑚(𝑠ᵖ₁₁𝑡³𝑚 +𝑠ᵐ₁₁𝑡³𝑝)𝐿² 
𝐾

) ×V 
 
            Where 
 
 
                                   K = (𝑠ᵐ₁₁)²(𝑡𝑝)⁴ + 4 𝑠ᵐ₁₁𝑠ᵖ₁₁𝑡𝑚(𝑡𝑝)³                                          (20) 
 
                                       + 6 𝑠ᵐ₁₁𝑠ᵖ₁₁(𝑡𝑚)²(𝑡𝑝)²  
 
                                       + 4 𝑠ᵐ₁₁𝑠ᵖ₁₁(𝑡𝑚)³𝑡𝑝 
 
                                                          + (𝑠ᵖ₁₁)²(𝑡𝑚)⁴ 

 

 

d31 is transverse piezoelectric coefficient while  𝑠ᵐ₁₁ and 𝑠ᵖ₁₁ are elastic compliances of 

the elastic and the piezoelectric layer respectively. L is cantilever length and w is 

cantilever width. In order to analyze the coupling effect between the two constitutive 

layers and consequently their impact on the cantilever sensing performance the above 

equations are slightly modified by defining; 

 

                          A= 𝑆ᵖ₁₁
𝑆ᵐ₁₁

 =  𝐸𝑚 
𝐸𝑝

  and B =  𝑡𝑚 
𝑡𝑝

 [13]                                            (21) 
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where Em  and  Ep  are Young’s modulus of elastic and piezoelectric layers respectively. 

Substituting (21) into (19) will give 

 

        𝑄 = 6𝑑₃₁𝐿  
𝑡²𝑝

 𝐴𝐵(𝐵 +1)     
1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴

 ×M                                          (22) 

 

     + 3𝑑₃₁𝐿²  
𝑡²𝑝

 𝐴𝐵(𝐵 +1)     
1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴

 × 𝐹  

 

     +  𝑑₃₁𝐿³𝑤  
𝑡²𝑝

 𝐴𝐵(𝐵 +1)     
1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴

× 𝑝       

 

    + 𝐿𝑤𝜀˟₃₃  
𝑡𝑝

(1- 𝑘²₃₁  𝐴𝐵(1+𝐴𝐵³)     
1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴

) ×V 

 

The cantilever capacitance between bottom side of the top metal plate and top side of the 

bottom metal plate is 

                       

            C =  𝐿𝑤𝜀˟₃₃ 
𝑡𝑝

×  (1-k²31 
 𝐴𝐵�1+𝐴𝐵³�     

 1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴) [15]                      (23)  

                                                                  

where ε˟₃₃= ε0K˟₃ is the dielectric constant of the piezoelectric material under a free 

condition and 𝑘²₃₁  is the transverse piezoelectric coupling coefficient. From the 

modified constitutive equation (22) when only external load p (uniformly distributed 
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pressure, acoustic signal) is applied the total electric charge generated at piezoelectric 

plate is  

 

   𝑄 = 𝑑₃₁𝐿³𝑤  
𝑡²𝑝

 𝐴𝐵(𝐵 +1)     
1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴

  ×p                                      

 
   
 

 + 
𝐿𝑤𝜀˟₃₃  

𝑡𝑝
 (1- 𝑘²₃₁  𝐴𝐵(1+𝐴𝐵³)     

1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴
 ) ×V                                          (24) 

 
 

                                                                               
As by definition voltage V =   𝑄    

𝐶  , dividing equation (24) by equation (23) will give us 

the total open circuit electric voltage generated across cantilever piezoelectric plate 

(transducer), i.e. 

 

               V = 
𝑑₃₁𝐿²
𝜀˟₃₃𝑡𝑝

 × 
𝐴𝐵(𝐵+1)

1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴2𝐵4−𝑘²₃₁ 𝐴𝐵(1+𝐴𝐵3)
× 𝑝                    (25) 

 

 

Furthermore, above generated voltage can also be related to the tip displacement 

by following equation    

 

 

             V =   3𝑑₃₁ 𝑡²𝑝

4𝜀˟₃₃ 𝑆𝐷₁₁𝐿²
 × 𝐴𝐵(𝐵+1)

𝑅−𝑘²₃₁ 𝐴𝐵(1+𝐴𝐵3)
 × 

  𝑅
𝐴𝐵+1

 𝛿 [13]                        (26) 
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where 𝑆𝐷₁₁ =   1
 𝐸𝑝

, δ is tip deflection and 𝑅 = 1 + 4𝐴𝐵 + 6𝐴𝐵² + 4𝐴𝐵³ + 𝐴2𝐵4. By 

measuring the tip deflection the electric voltage generated on the piezoelectric cantilever 

can be obtained from the above equation. 

2.8 Gaussian Statistics  

Gaussian statistics has an important role in the statistical analysis of physical 

phenomena. This section provides only a brief review of Gaussian statistics in order to 

support cantilever stochastic response analysis presented in Chapter III. The concept of 

statistical problem modeling is based on definition and properties of Gaussian random 

variables and Gaussian random process. A random variable U is called Gaussian (or 

normal) if its characteristic function is given in the form  

 

 𝑀𝑈(𝜔) = 𝑒𝑥 𝑝 � 𝑗𝜔ū − 𝜔2𝜎2

2
 �    [11]                                         (27) 

 

Well-known Gaussian probability density functions (PDF) is defined as  

 

  𝑃𝑈(𝑢) = 1
√2𝜋𝜎

𝑒𝑥 𝑝 � − (𝑢−ū)
2𝜎2  �     [11]                                        (28) 

   

The most important properties of random variable are its  

 

mean value,                      ū = ∫ 𝑢 𝑃𝑈(𝑢) 𝑑𝑢∞
−∞  ,                                                            (29) 
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mean – square value,      ū² = ∫ 𝑢² 𝑃𝑈(𝑢) 𝑑𝑢∞
−∞  ,          (30)      

 

 variance,       𝜎² = ∫ (𝑢 −  ū)² 𝑃𝑈(𝑢) 𝑑𝑢∞
−∞  ,                                             (31)   

 

and standard deviation    𝜎 = √𝜎2                                                                                 (32) 

 

The standard deviation describes dispersion of random variables around mean.        

Random variables U₁, U₂, U₃, . . ., Un are called jointly Gaussian random variable if their 

joint characteristic function is defined as  

   

       𝑀𝑈(ῳ) = 𝑒𝑥 𝑝 � 𝑗ū˟𝑡ῳ −  1
2

 ῳ𝑡𝐶ῳ�                                         (33) 

where   

 ū˟= [ū₁;  ū₂;  ū₃, … , ū𝑛],  ῳ = [ω₁; ω₂; ω₃, …,ωn]  

 

and C is an n x n covariance matrix defined as the following expectation 

 

                                     𝜎²𝑖𝑘 = 𝐸[(𝑢𝑖 − ū𝑖)(𝑢𝑘 −  ū𝑘)]                                               (34) 

 

Moreover, a random process U(t) is said to be a Gaussian random process if 

random variables U(t₁), U(t₂), U(t₃),…,U( tk) are jointly Gaussian random variables for 

given sets of times. Then for time instants t₁, t₂, t₃… tn the joint probability density 

function is given in the form 
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  𝑃𝑈(𝑢˟) = 1
(2𝜋)𝑎𝑛/2𝐶1/2 𝑒𝑥 𝑝 � − 1

2
 (𝑢˟ −  ū˟)𝐶−1(𝑢˟ − ū˟) �                  (35)      

where 

    u˟ = [u (t₁); u (t₂); u (t₃)…u (tn) and ū˟ = [ū (t₁); ū (t₂); u (t₃)… ū (tn)],  

C is once again covariance matrix, with element 𝜎²𝑖𝑗 in the  𝑖𝑡ℎ row and  𝑗𝑡ℎ column 

defined as 

 

                                    𝜎²𝑖𝑗 = 𝐸�𝑢(𝑡𝑖) − ū (𝑡𝑖) ] [𝑢�𝑡𝑗) − ū (𝑡𝑗� �                              (36) 

 

 As Gaussian random variables and random process are widely used in most 

physics and engineering applications, there is enormously huge amount of literature 

available elsewhere detailing their unique properties. 

2.9 Kinetic Theory of Gases 

Kinetic theory of gases will play an important role in the functionality of the 

future terahertz photoacoustic detector. As an accurate model is essential to the function 

of a sensor, before progressing with any model simulations the necessary estimation of 

the THz photoacoustic pressure range needs to be determined first. In relation to that, this 

section presents the Beer-Lambert and ideal gas laws that will be used in Chapter III to 

estimate the pressure change inside the photoacoustic gas chamber as result of absorption 

of energy from incoming terahertz radiation.  
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The state of an amount of gas is determined by its pressure P, temperature T and 

volume V. The relationship between these parameters is expressed by well-known 

molecular ideal gas law [15]; 

 

           𝑃𝑉 = 𝑁𝑘𝑇                                                  (37)                                                                                                               

 

where k is a Boltzmann constant and N is the number of particles in the gas. The measure 

of gas absorption can be expressed using the Beer-Lambert law [16]  

 

           𝐴 = 𝜀𝑙𝑐                                                                (38)                                 

 

where ε is the molar absorptivity, 𝑙 is the path length and c is the concentration of the 

compound in solution. Hence, as already mentioned the only purpose of this section is to 

introduce these two laws which will be used in Section 3.5 to describe the intensity of 

photoacoustic waves generated inside gas chamber as result of absorption of terahertz 

radiation. 

2.10 Detector Functionality 

As already mentioned in the introduction the photoacoustic detection of radiation 

is an experimental technique widely used for spectral detection in solids and gasses [17, 

18]. The basic functionality of the proposed terahertz photoacoustic detector and the 

photoacoustic effect in general can be efficiently summarized through the illustration of 

the block diagram shown in Figure 5.  
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Figure 5. Signal generation from the laser to the cantilever 
 

 

As in the case of a number of different spectroscopy applications there is no 

exception here, the generation of photoacoustic signal which is going to be detected by 

cantilever will be initiated by a laser beam transmission towards target material (solids, 

gasses, etc.). An optical source which is integral part of the detector emits terahertz 

radiation. When the radiation beam is absorbed by the target sample due to molecular 

collisions heat is generated in the material. The generated heat spreads inside material 

increasing pressure in a space limited sample. Consequently as a result of the thermal 

expansion, generated heat leaves material and in a region of the infrared or light beam 

(thermal light) producing acoustic (pressure) wave. A photoacoustic sensor such as 

cantilever is going to be used to detect this acoustic wave. The modulation of the 

transmitted infrared beam with a desired THz modulation frequency will generate 

acoustic signal with a frequency equal to that of the modulation. As the frequency 

response of the micromachined cantilever depends on the amplitude of the pressure wave 

generated by heating of the sample it is obvious that the choice of infrared modulation by 

appropriate terahertz modulation frequency will determine the operation mode. The 

cantilever can be simply described as a harmonic oscillator. So, choosing its resonant or 

non-resonant frequency as a modulation frequency will determine the mode of operation. 

The cantilever is usually used in non-resonant mode due to the better noise performance.  
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Furthermore, once terahertz photoacoustic signal has reached the top side of 

piezoelectric cantilever will cause its bending and due to the direct piezoelectric effect 

the electrical charge generation on the opposite cantilever side will occur. The resulting 

cantilever deflection caused by the photoacoustic waves will be measured with optical 

interferometers. It is important to keep the cantilever inside a well-sealed evacuated 

photoacoustic chamber in order to avoid pressure broadening. Another equally important 

reason to keep the photoacoustic cell internal pressure constant but below atmospheric 

pressure (vacuum) is related to the photoacoustic spectroscopy detection requirements. 

An increase in operating pressure inside the chamber will result in frequency broadened 

photoacoustic signals. Conversely a decrease in the pressure will ensure a narrower 

photoacoustic response and aid in the identification of signals within the frequency 

spectrum for very closely spaced absorption lines.  

2.11 Device Fabrication 

The initial cantilever fabrication has been performed on a 100mm silicon-on-

insulator (SOI) wafer with <100> crystal orientation and overall thickness of 500µm. The 

proposed beam geometry with optimal device and Lead Zirconate Titanate (PZT) layer 

thickness ratio for maximum voltage sensitivity is intended to be used in the sensing 

configuration shown in Figure 6. Fabrication process described in this section is related to 

the mentioned cantilever configuration and as such due to the characteristic multi-layer 

beam structure without major changes is applicable to all sensing configuration discussed 

within this thesis document. Full step by step fabrication procedures can be also seen in 

Appendix A. In general, established fabrication procedure consists of the following 
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fabrication steps; deposition of oxide layer, deposition of bottom contact metal, 

deposition of PZT, deposition of top metal contact, backside etch, and removal of buried 

oxide. 

 

           

                          Figure 6. Cantilever L-Edit design layouts 
 
 
 
As depicted in Figure 7 the cantilever physical structure were comprised of three 

thin films; a 1 μm thick PZT layer sandwiched between two metal contacts with 

individual thickness of 0.1 μm. The thickness of a device layer is 5 μm while the 

cantilever length and width are 5 mm and 2 mm respectively. To release the cantilever, a 

hole was etched through the backside of the wafer and the buried oxide was removed 
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with hydrofluoric acid. Also, in addition to 5 μm the cantilever configurations with 

device layers of 10 μm and 20 μm have been fabricated and analyzed accordingly.     

 

               

                                Figure 7. L-Edit 3D cantilever cross section 
  

Fabrication process brief summary is illustrated in Figure 8 through delivery of 

main process steps supported by appropriate diagrams enabling avoidance of unnecessary 

broad and detailed steps description. As depicted in the diagram after wafer cleaning, the 

fabrication begins with the deposition of 0.25 µm thin film of silicon dioxide onto 100 

mm silicon-on-insulator (SOI) wafer to provide electrical isolation from the silicon 

cantilever. This deposition has been accomplished through the use of Plasma Enhanced 

Chemical Vapor Deposition (PECVD) process followed by 3 minutes annealing at 900 ̊ 

C. To form the sensor layers; photoresist was patterned and lift-off was accomplished 

after the deposition of each layer. The bottom metal contact was put down followed by 

the piezoelectric layer of RF sputtered PbZr0.52Ti0.48O3, and finally the top metal contact 

layer was deposited. The remaining fabrication steps have been mainly used for 

cantilever shape definition. This has been accomplished through the use of adequate 
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etching solutions. As indicated in Figure 8 (diagram C) the buffered oxide etching (BOE) 

has been used to etch patterned window in silicon dioxide layer followed by the Deep 

reactive-ion etching (DRIE) of Si device layer. The precise etch stopping has been 

provided by buried SiO2 layer. The final beam shaping has been accomplished through 

the backside substrate etching using DRIE (diagram D) and cantilever release (diagram 

E) by HF removal of buried oxide. After every single fabrication step the necessary 

inspections, measurements and if required step repetition have been performed in order to 

satisfy strict fabrication requirements. The 3D model of released cantilever and almost 

fabricated cantilever device before its actual backside etch and HF device layer release is 

shown in Figure 8 (F) and Figure 9, respectively. The laser interferometer has been used 

to measure the cantilever deflection while the piezoelectric voltage signals are recorded 

for identifying detector terahertz sensitivity. 
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Figure 8. Fabrication process (A-E) and 3-D model view of released cantilever (F) 
[19] 
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Figure 9. Image of piezoelectric cantilever sensor before backsides etch and HF 
device layer release [19] 
 
  

2.12 Summary 

This chapter outlined the foundation necessary to move forward in this area of 

research. The required theoretical background and understanding of terahertz 

electromagnetic radiation generation with an accent on its detection has been presented, 

including piezoelectric cantilever analytical model, the basis of beam theory and the 

importance of Euler-Bernoulli equation in solving MEMS related problems and the basis 

of Gaussian statistics, which plays an important role in the statistical analysis of physical 

phenomena. Moreover, the basis of kinetic theory of gasses with accent on Beer-Lambert 

and ideal gas laws has been introduced, too. Furthermore, a basic background on the 

piezoelectric and piezoresistive sensing has been presented with a special emphasis on 

the comparison between these two sensing principles, including a brief performance 

based analysis of some current sensing applications. Lastly, the overall functionality of 
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the proposed terahertz photoacoustic detector has been summarized and the detector 

fabrication process is described step by step, and key points in its physical 

implementation have been highlighted.  

 

III. Modeling 

3.1 Chapter Overview 

This chapter presents a discussion of the key aspects involved in the modeling of 

piezoelectric THz photoacoustic detectors. It covers topics, such as analytical and FEM 

modeling method analysis of developed, single piezoelectric layer rectangular and 

membrane shape sensor configurations. Furthermore, Photoacoustic Spectroscopy will be 

presented as an intended method for detection of terahertz photoacoustic signals. Further 

discussion will focus on Kinetic Theory of gasses with accent on Beer-Lambert and ideal 

gas laws, which have been used in this research to describe the part of detectors’ 

functionality associated with photoacoustic cell, and to determine the expected 

measurable terahertz photoacoustic pressure range inside the gas chamber. The final three 

sections of this chapter will present the Cantilever-based Piezoelectric Sensor and the 

Membrane-based Piezoelectric Sensor as main sensor configurations, developed in this 

project including a theoretical illustration of stochastic piezoelectric cantilever modeling. 
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3.2 Analytical Modeling 

Based on the analytical model for the single piezoelectric layer cantilever 

presented in Section 2.7 and derived model equations [13] for the capacitance between 

cantilevers’ top and bottom metal plates   

 

                       C =  𝐿𝑤𝜀˟₃₃ 
𝑡𝑝

×  (1-k²31 
 𝐴𝐵�1+𝐴𝐵³�     

 1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴),                    (23)  

 

the generated electrical charge between top and bottom metal plates 

 

                               𝑄 = 𝑑₃₁𝐿³𝑤  
𝑡²𝑝

 𝐴𝐵(𝐵 +1)     
1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴

  ×p                                      

 
   
 

                          + 
𝐿𝑤𝜀˟₃₃  

𝑡𝑝
 (1- 𝑘²₃₁  𝐴𝐵(1+𝐴𝐵³)     

1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴²𝐵⁴
 ) ×V,                            (24) 

 
 
and model equations relating generation of the open circuit voltage across cantilevers’ 

PZT element as functions of uniformly distributed photoacoustic load p  

 

               V = 
𝑑₃₁𝐿²
𝜀˟₃₃𝑡𝑝

 × 
𝐴𝐵(𝐵+1)

1+4𝐴𝐵+6𝐴𝐵²+4𝐴𝐵³+𝐴2𝐵4−𝑘²₃₁ 𝐴𝐵(1+𝐴𝐵3)
× 𝑝                    (25) 

 

and cantilever deflection δ 
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             V =   3𝑑₃₁ 𝑡²𝑝

4𝜀˟₃₃ 𝑆𝐷₁₁𝐿²
 × 𝐴𝐵(𝐵+1)

𝑅−𝑘²₃₁ 𝐴𝐵(1+𝐴𝐵3)
 × 

  𝑅
𝐴𝐵+1

 𝛿 [13]                        (26) 

 

comprehensive cantilever analysis for a wide range of thickness ratios B has been 

conducted in order to determine the best beam configuration in terms of maximum 

voltage sensitivity. During the modeling process, the device layer thickness  𝑡𝑚 has been 

kept fixed while the thickness of the PZT layer  𝑡𝑝 has been continuously changed in 

appropriate thickness increments until the thickness ratio B for maximum voltage 

sensitivity has been observed. In respect to the cantilever configurations with variable  𝑡𝑝 

and fixed device layer thickness of  𝑡𝑚 = 5μm and with  𝑡𝑝 ranging from 0.1μm up 

to  𝑡𝑝=3.3μm with an increment rate of 100nm have been modeled and continuously 

investigated for the entire terahertz photoacoustic pressure range. Moreover, besides 

thickness ratios B, the configurations with different geometrical dimensions including 

cantilevers’ length, width and PZT coverage area have been modeled and investigated 

accordingly. Full investigation process and obtained results analysis of each cantilever 

based developed sensing option is presented in relevant sections of Chapter IV. 

Furthermore, analytical modeling of circular membrane configuration has not been 

developed and its sensing performance analysis is based on performed FEM modeling.  

3.3  FEM Modeling 

In theory, finite element method (FEM) which is generally used in the MEMS 

design field is known as a technique in which a given domain is represented as a 

collection of simple domains, called finite elements. The FEM modeling does not lead to 
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or provide the exact solution of the problem; it offers approximation (simulation) of the 

solution based on the series approximations of each problem functional element, 

however, when required data is not available this technique provides highly accurate and 

satisfactory results. With the current computing resources available to designers and fact 

that FEM enables verification of all aspects of MEMS designs with simulations all new 

devices are simulated before sending them to fabrication. The CoventorWare® 

simulation software is known as the most comprehensive suite of MEMS design tools 

and as such has been used extensively in these project investigations. The suite is filled 

with MEMS-specific features for accurate and efficient simulation of all types of MEMS, 

including inertial sensors, microphones, pressure sensors, resonators, and actuators. The 

software field solvers provide comprehensive coverage of MEMS-specific solvers such 

as piezoelectric, piezoresistive, electrostatics, electromechanics or damping effects. The 

FEM modeling initially starts using software DESIGNER module to create device 2-D 

layout in the Layout Editor, or more commonly it imports the actual two-dimensional 

device design layout from third-party design tools such as L-Edit or any other software 

package capable of providing compatible 2-D model formats. The software Solid 

Modeler then uses the imported layout, in conjunction with the properties of the materials 

involved in device structure and the written fabrication process information in the Process 

Editor to automatically build a 3-D solid model. The properties of materials used during 

FEM as well as analytical modeling are listed in Appendix A. During this research work 

five different sensing configurations have been developed and full CoventorWare® 

Process Editor Fabrication process for each investigated sensing option can be seen in 

respective Appendix (A to D). Once a 3-D model has been generated, further work on a 
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3-D view is required to prepare the solid model for automatic mesh generation. 

Generating a valid, high-quality mesh and performing mesh analysis is a pre-requisite for 

using any of the field solvers in the software ANALYZER module. After a mesh has 

been generated, the selections from the comprehensive suite of field solvers that simulate 

the physical behavior of MEMS device enable the full device modeling. As already 

mentioned above using ANALYZER 3-D solvers, it is possible to perform analyses that 

incorporate or compute device physical behavior and effects such as deformation from 

applied pressure or forces, residual stress (from the fabrication process), modal analysis 

of the natural vibration frequencies of MEMS devices, piezoelectric or piezoresistive 

effects and many other which are not listed mainly due to the long software capability list 

and project relevance. Due to the nature and the purpose of this project’s assignment and 

the specific cantilever multi-layer structure advanced CoventorWare® FEM simulations 

and testing mainly utilizing the MemMech and piezoelectric domain solver (MEMPZE) 

have been conducted, analyzed and presented in Chapter IV. 

Although MEMS cantilever based sensors have been widely used in many sensing 

and actuating applications, and there is a significant amount of research work detailing 

their operational principles and applications, it is found, however, that there is no many 

quality analysis of the sensing performance of these devices employing FEM modeling to 

predict and demonstrate the accuracy of the numerical models or experimental studies 

that were carried out in laboratory. A significant number of research papers have 

presented employment of FEM simulations to predict the static and dynamic performance 

of single or multi-layer cantilever models under different loading conditions. In all these 

cases the FEM simulations have been carried out mainly to model the deformations of the 
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cantilever beams under different loading distributions. Furthermore, the FEM modeling 

can be successfully employed to demonstrate that a change in cantilever geometry, such 

as an increase or decrease in cantilever thickness, width or length under applied periodic 

force at the top of the cantilever, will for each result have a change in cantilever natural 

frequency [20]. An increase in cantilever thickness or width will result in resonant 

frequency increase while an increase in lengths results in resonant frequency decrease. 

So, it appears that FEM modeling can be used to perform a wide range of simulations on 

any MEMS structure and can provide significantly accurate models, increasing 

confidence in the design validity before actual device fabrication. Lastly, in addition to 

all that has been said above, it has been found out that there is significant research work 

that has been conducted employing FEM modeling in order to investigate MEMS based 

detector sensing or actuating ability in a wide range of applications, but at the same time 

it seems there is no recent or if any at all well documented work that has employed this 

technique in the investigation and modeling the of terahertz photoacoustic radiation 

detection. Beside the miniature size of the acoustic cell, combined with the use of the 

fabricated piezoelectric MEMS cantilever transducer, this additional FEM modeling 

approach distinguishes this work from others in the field giving this project an additional 

novelty dimension.  

3.4 Photoacoustic Spectroscopy 

The intended method for detection of terahertz photoacoustic radiation is a 

technique based on photoacustic spectroscopy (PAS) where MEMS cantilever pressure 

sensor is a key component of PAS system and as such must be designed with care in 
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order to optimize sensing performance in terms of maximum voltage sensitivity. Besides 

PAS techniques the absorption spectroscopy methods are most commonly used for 

detection of trace gases. The choice of using the photoacoustic method over one of the 

absorption techniques is usually based on its ability to detect and retrieve the desired 

signal from the relatively noisy background, wide dynamic range of measurement and 

most importantly small sample volume requirements which allows the chamber 

dimensions to be greatly reduced.  

 

                      

          Figure 10. Chamber setup with piezoelectric cantilever detector [19] 
 
 
 
The photoacoustic cell with cantilever as sensing element is shown in Figure 10 

above. Cantilever is placed in a closed, low pressure cylindrical shape chamber. When 

sample gas is illuminated with incoming terahertz radiation (light) modulated at desirable 
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frequency; absorption of radiation results in a periodic heat flow from the sample, which 

generates sound (acoustic pressure) that is detected by embedded cantilever-based sensor. 

This sensing technique is known as photoacoustic technique. The main source of the 

acoustic wave is the repetitive heat flow from the absorbing gas sample to the 

surrounding gas, followed by propagation of the acoustic wave. The detection of acoustic 

signals by cantilever-based sensors is achieved by measuring the cantilever deflections or 

the amount of generated electrical voltage across cantilever piezoelectric plate caused by 

generated photoacoustic waves. The deflections are measured with laser optical 

interferometers. Besides cantilever deflection the detection of generated photoacoustic 

signal will be primarily detected piezoelectrically. Instead of being dissipated as heat, the 

absorbed radiant energy transformed into acoustic wave will be detected by piezoelectric 

detector/transducer and converted into piezoelectric voltage in a way previously 

described in Section 2.7 and Section 2.10, respectively. To date, most investigations 

using IR laser sources in conjunction with cantilever-based photoacoustic cells have been 

primarily focused on single-species detection, although the detection of multiple species 

is highly desirable in an increased number of applications such as atmospheric 

monitoring, detection of airborne pollutants, combustion products and volatile 

compounds and industrial process monitoring [5]. The detection of multiple species can 

be effectively achieved using multiple IR laser sources with corresponding number of 

detectors or through the use of a single detector. The simplest detection method involving 

one detector is based on sequential gas detection achieved by time-division multiplexing 

(TDM) modulation of propagated laser wave or detecting the signals simultaneously 

through the implementation of modulation frequency division multiplexing (MFDM) to 
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modulate each laser beam at a different frequency [5]. Due to its implementation 

simplicity the TDM method is usually preferred option for multispecies detection in 

photoacoustic cells containing cantilever-based detectors [5].  

In addition to all of what has been said above the cantilever photoacoustic 

response besides its geometrical dimensions and the elastic and electromechanical 

properties of structural layers is also greatly dependent on the cell sample pressure and 

modulation frequency. The curve in Figure 11 depicts the effect of modulation frequency 

on cantilever photoacoustic response.   

 

    

Figure 11. Variation in the magnitude of the second-harmonic C2H2 photoacoustic 
signal at constant analyte concentration (0.5 %) and 1000 mbar with modulation 
frequency [5] 

 

 The generated plot shows that resonance frequency for a given sample gas 

occurred at 300Hz and that cantilever response increase with modulation frequency 

decrease. Furthermore, the resulting curve clearly indicates that optimal photoacoustic 
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signal generation occurs well below resonance frequency. So, in order to optimize 

cantilever sensing performance in terms of maximum voltage sensitivity the modulation 

frequency, which in fact determines the detector operation mode, should be chosen 

carefully.  

A curve which shows the variation in the cantilever response with sample 

pressure effect for the same gas species is presented in Figure 12. 

 

 

Figure 12. Photoacoustic signal response as a function of sample pressure for the 
cantilever cell for acetylene (C2H2) [5] 
 
 

The curve shows that photoacoustic signal has been increased in the 0 – 100 mbar 

range and then decreased as the pressure in the cell was increased. So, as in a case of 

modulation frequency in order to maximize detector sensing performance the pressure 

inside photoacoustic cell must be set at the optimum level. Further details regarding 

photoacoustic spectroscopy and supporting theories are beyond the scope of this 
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document and there is a significant amount of literature and publications detailing this 

spectroscopy type.  

3.5 The Estimation of Terahertz Photoacoustic Pressure Range  

In Section 2.2 and Section 3.4, the basis of photoacoustic spectroscopy was 

presented in order to support the description and overall understanding of the 

functionality of the proposed terahertz photoacoustic detector. In addition, this section 

utilizing the basis of kinetic theory of gasses, primarily the Beer-Lambert and ideal gas 

laws, is used to estimate the pressure change in the photoacoustic gas chamber as a result 

of absorption of energy from incoming modulated infrared radiation. The accurate 

estimate of resulting pressure change 𝛥𝑝 is very important for cantilever FEM modeling 

and determination of its sensitivity level.  

The simple diagram below (Figure 13) shows a beam of monochromatic terahertz 

radiation of radiant source power Ps, directed at a cylindrical photoacoustic cell filled 

with appropriate gas solution. Absorption takes place and beam of radiation leaving the 

cell has radiant power Po.  

 

                                        

    Figure 13 Photoacoustic cell 
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The amount of radiation absorbed can be measured in terms of transmittance T or 
absorbance A, where 
 
 

                              T = 𝑃𝑠
𝑃𝑜

      or    %T=100T, [21]                                  (39) 

and                                

                               𝐴 = 2 − 𝑙𝑜𝑔₁₀%𝑇, [21]                                                       (40)   

 

The Beer-Lambert law is simply a measure of absorption expressed by following 

equation (Section 2.9, Equation 38); 

 

             𝐴 = 𝜀𝑙𝑐                                                                         

 

where ε is the molar absorptivity, 𝑙 is the path length and c is the concentration of the 

compound in solution. Molar absorptivity ε is a constant for a given gas substance. The 

gas with a high molar absorptivity is often desirable for effective absorption and 

detection of low intensity light such is weak terahertz radiation. Moreover, the state of an 

amount of gas is determined by its pressure P, temperature T and volume V. The 

relationship between these parameters is expressed by molecular ideal gas law (Section 

2.9, Equation 37); 

 

                  𝑃𝑉 = 𝑁𝑘𝑇, [15]                                                     
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where P is the absolute pressure of the gas, V is the volume, N is the number of particles 

in the gas, T is absolute temperature, and k is Boltzmann constant. The average 

translation kinetic energy of the N molecules of gas is given as; 

 

𝐸 = 3
2

 𝑁𝑘𝑇, [15]                                                       (41) 

 

For the given photoacoustic cell dimensions of r = 5 mm, 𝑙 = 2 inch (5.08 mm) and 

terahertz source power of Ps = 1mW the expected pressure change 𝛥𝑝 inside the gas 

chamber (Figure 10, Section 3.4), which is filled with a gas solution with molar 

absorptivity ε, can be determined by combining equations (38) and (41). According to 

Beer-Lambert law the amount of absorbed power in a small absorption limit can be 

expressed as; 

 

  𝛥𝑝 = 𝑃0 − 𝑃𝑠 = 𝑃𝑠𝑙ε                                          (42) 

 

Per cycle of modulation  𝑓𝑚 the average kinetic energy is given in the form of 

 

 ΔE = 
𝛥𝑃
𝑓𝑚

= 𝑃𝑠𝜀𝑙
𝑓𝑚

                                                           (43)   

 

Rearranging equations (38) and (41) in terms of Δp and ΔT gives 
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      Δp = 𝑁
𝑉

𝑘𝛥𝑇                                                                     (44) 

and 

ΔE = 3
2

𝑁𝑘𝛥𝑇                                                                   (45)    

 

From equation (45) we have N = 
2
3

 𝛥𝐸
𝑘𝛥𝑇

 . Substituting for N into equation (44) gives 

                                                                           

Δp = 
2
3

 𝛥𝐸
𝑉

                                                                       (46)  

 

Then substituting equation (43) and chamber volume 𝑉 = 𝑙𝜋𝑟2 into (46) gives estimated 

pressure increase inside photoacoustic cell filled with particular gas having absorption 

coefficient ε. 

 

                                     Δp = 
2
3

 𝑃𝑠𝜀
𝑓𝑚𝜋𝑟2                                                                     (47)    

 

 

Based on derived equation and actual photoacoustic cell dimensions the Table 1 

bellow shows Δp calculations for some randomly selected gas absorption coefficients ε, 

modulating frequencies of 1Hz and 500Hz and THz radiation of 1mW.    
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 Table 1. Pressure change inside photoacoustic cell for various ε and Ps of 1 mW 
    

 Δp [Pa], 𝑓𝑚 = 1 𝐻𝑧 Δp [Pa], 𝑓𝑚 = 500 𝐻𝑧 

1 848.82 1.6976 

1e-1 84.882 0.1697 

1e-2 8.4882 1.69e-2 

1e-3 0.8488 1.69e-3 

1e-6 8.48e-4 1.69e-6 

1e-9 8.48e-7 1.69e-9 

1e-12 8.48e-10 1.69e-12 
  

 

Taking into account all that has been discussed above, the nature of terahertz radiation 

and obtained results, it is realistic to expect that terahertz electromagnetic waves will 

generate photoacoustic loads within μPa and mPa pressure range. It is important to have 

in mind that the obtained results are just estimations that will slightly deviate from actual 

results once we know the actual modulation frequencies and the absorption coefficients 

of the gases to be used inside the photoacoustic cell. However, the estimated terahertz 

photoacoustic pressure range is based on valid scientific assumptions, and as such it can 

be considered correct and without any doubt can be used in sensor FEM modeling as 

valid data.  

 Furthermore, in the presented photoacoustic pressure loads calculations 

the portion of reflection of the incoming terahertz radiation has not been taken into 

account, and the estimations have been based purely on the gas absorption properties. 

Based on the fact that there is no gas with 100% absorption, there is always a portion of 

incoming radiation that will not be absorbed. However, as already stated, the aim is to use 
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gas with a high molar absorptivity in order to ensure effective absorption and detection of 

low intensity terahertz radiation.  

3.6 Cantilever-Based Piezoelectric Sensor 

Beside membrane-based piezoelectric detector consideration as possible terahertz 

photoacoustic sensing option, presented in the next section, the detector design on which 

the present work is composed is shown in Figure 14. The cantilever-based rectangular 

shape piezoelectric sensor is a 5 mm by 2 mm rectangular shape multi-layer device 

comprised of two constitutive beam layers, Si device and PZT, followed by a thin 

insulation silicon dioxide layer and two metal contact layers.    

 

 

Figure 14. Piezoelectric photoacoustic cantilever detector [19] 
 

 
 
Besides its role as an actuator the proposed cantilever configuration can be 

considered as a typical example of piezoelectric device that can be used for acoustic 

sensing applications. Cantilever bending caused by external excitations such are a 
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uniformly distributed acoustic (pressure) loads p will result in non-uniform stress 

distributions in cantilever constitutive layers. Tensile stresses are induced in the upper 

cantilever plate (PZT) while compressive stresses are induced in the lower (Si device 

layer) plate in the direction of the length of the beam. Consequently, due to this non-

uniformity in stress distribution with maximum values that occur at the top and bottom 

PZT sides’ negative electrical charges are generated at the PZT top side while positive 

charges at the bottom of PZT element. 

 

Since at the top surface, 

 

   P₃ = d₃₁T₁, [15]                                                                    (48) 

    

where P₃ is polarization in the thickness direction in units of C/m², T₁ is stress in the 

length direction in units of N/m², and d₃₁ is the transverse piezoelectric coefficient (C/N); 

at the bottom surface, 

 

P₃ = d₃₁ (-T₁),                                                                (49) 

 

d₃₁ is a negative value for piezoelectric materials such as PbZr0.52Ti0.48O3. Therefore, due 

to the direct piezoelectric effect an open circuit voltage is built up across PZT sensing 

element. For sensing applications, high generated voltage is frequently desired. In respect 

to that the effect of variations in models’ geometrical dimensions and impact of materials 

electromechanical properties on sensing performance has been investigated. The initial 
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modeling and model performance investigations of presented configuration (Figure 16) 

has been performed on device with the layer thickness of 5µm and the thickness of 

remaining layers of 0.1 µm. As research progressed, based on this early work a number 

of various geometry configurations have been designed and investigated using both; 

analytical and FEM modeling methods. The device geometry has been constantly 

changed and analyzed until configuration with the best sensing performance in terms of 

maximum voltage sensitivity has been observed. Besides presented single beam 

configuration another two beam-based sensing options have been designed and 

investigated accordingly. One of mentioned configurations is solution involving four 

single cantilever based sensors whose L-Edit design layout shown in Figure 15 below. 

                                     

                                    

                Figure 15. Four cantilevers sensing configuration 
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All four beams in configuration are of the same length and width; 5 mm and 1 mm 

respectively while the initial layers thickness remain the same as before; device layer 5 

μm and the remaining layers 0.1 μm.  

The third and last cantilever based proposed sensing option is so called cross 

tethers sensing configuration shown in Figure 16 below. The greatly enlarged version 

(device only) can be seen in Figure 44 in Section 4.4.  

  

 

               Figure 16. 3D solid model of cross tethers sensing configuration 
 
 
 

 Besides the obvious difference in geometry, PZT effective sensing area, MEMS 

fabrication process, etc., the main distinguishing feature between this and previous two 

cantilever based sensing options is the fact that the tethers with deposited PZT 
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transducers on their top sides now acting as cantilever with both fixed ends. The expected 

impact of this design change and many other design issues relating to this and the other 

two configurations on the overall device sensing performance are analyzed and presented 

in Chapter IV.     

3.7 Membrane-Based Piezoelectric Sensor 

This section serves to summarize modeling approach of the two, membrane-based 

piezoelectric sensors’ configurations as simulated in CoventorWare®. In addition to 

previously presented cantilever modeling the motivation of this work was to investigate 

feasibility of different terahertz photoacoustic sensing options using different sensing 

element geometry. In recent years acoustic devices such are a thin, flat multilayer silicon 

membranes combined with a good quality of piezoelectric thin films have been developed 

by MEMS technology resulting in a various novel micro-devices among which are 

acoustic sensors, accelerometers, actuators or pressure sensors [21]. Based on some 

research reports it has been found that the circular membranes fabrications often have 

experienced some difficulties mainly due to its complex traditional bulk micromachining 

fabrication process [22]. However, bulk micromachining through silicon substrates using 

Deep Reactive Ion Etching (DRIE) is possible to achieve high aspect ratio deep etches. 

Moreover, MEMS membrane is considered highly sensitive acoustic sensing device 

which like piezoelectric cantilever under low pressure loadings produces an electrical 

output (voltage). So, all these considerations and requirements for detecting very weak 

terahertz photoacoustic radiation imply that the use of piezoelectric membrane as a sensor 

sounds as reasonable design solution. One of the sensing options presented here is a thin 
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piezoelectric circular membrane configuration whose three-dimensional CoventorWare® 

solid model shown in Figure 17 below.    

 

        

Figure 17. 3D solid model of circular membrane with diameter of 6 mm  
 
 

The 6 mm diameter circular multi-layer membrane is supposed to be implemented 

on a 100 mm silicon-on-insulator (SOI) wafer with <100> crystal orientation and overall 

thickness of 500 µm. As depicted in Figure 17 above (greatly enlarged 3-D for visibility 

reasons), the membrane is comprised of Si device layer, followed by a sandwich stack 

with a PZT between two metal layers deposited on the top of very thin SiO₂ insulation 

layer. Once again, as it was case in cantilever FEM modeling the thickness of device 

layer (5 μm), two metal layers (100 nm) and single insulation layer (100 nm) have been 

kept unchanged while the thickness of piezoelectric layer has been constantly changed 

until the thickness for maximum voltage generation has been observed.  
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The second membrane considered as potential sensing solution is the square 

membrane configuration whose L-Edit design layout and 3-D FEM solid model shown in 

Figure 18 and Figure 19 respectively. 

 

  

       Figure 18. L-Edit D square membrane design layout 
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Figure 19. CoventorWare 3D solid model of square membrane 
 
 
 
 

The membrane has been implemented on the same silicon wafer, having the same 

electromechanical properties as it was case in any of the previous sensing configurations 

while the CoventorWare® fabrication process for each design option has been slightly 

changed due to the different detectors’ geometry. As indicated in Figure 19 above, the 

four piezoelectric transducers of the same size (300μm x 300μm) and shape have been 

deposited on four symmetrically separated membranes’ locations. Besides the obvious 

difference in the geometry the most significant and important characteristic which 

distinguish this configuration from others is a very small PZT sensing area. After 

importing the 2-D device design layouts from L-Edit©, the CoventorWare® 3-D solid 

models generation, and conducted mesh analysis and adequate mesh generation both 

configurations have been then simulated and analyzed using appropriate FEM domain 

solver. The specific membranes’ multi-layer structures have been designed simulated and 

tested mainly utilizing the mechanical and piezoelectric domain solvers. The Chapter IV 
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discuss, evaluate and compare the sensing performance of both proposed membrane-

based sensing configurations including the way in which analysis has been conducted. 

3.8 Stochastic Cantilever Modeling  

As mentioned in Section 2.8 statistics has an important role in the statistical 

analysis of physical phenomena. In addition to Section 2.4 (Piezoelectric sensing) this 

section presents stochastic response analysis of piezoelectric sensor such is piezoelectric 

cantilever which has been used and analyzed as sensing element in a number of sensing 

configurations presented in this research work. When an acoustic pressure load P is 

applied to one side of a single piezoelectric element (beam) as shown in Figure 20, a 

fraction of the applied pressure will be converted to an electric charge on the opposite 

element’s side. For the purpose of this analysis the applied pressure P and amount of the 

created electric charge (Voltage V) has been approximated by a Gaussian Probability 

Density Function (PDF) and monotonic transfer function respectively.     

 

       

               Figure 20. Pressure loaded beam 
 
 

The main purpose of this analysis was to investigate the conversion relationship 

between pressure and electrical charge (voltage) which provides a deeper insight and 
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understanding in the area of electromagnetic terahertz radiation sensing. As depicted in 

Figure 21 the two main regions where this conversion in fact occurs and on which this 

analysis is based are;  

Region 1: 0 < P < Pc →  V = 0 and Region 2: Pc < P <∞ → V= αP where Pc is critical or 

threshold pressure. 

 

                                  
 
Figure 21. Voltage generation as function of applied pressure on top of PZT beam 
 
 

 

The applied pressure P (acoustic load) on the top of piezoelectric beam 

(transducer) is approximated by Gaussian PDF (Section 2.8, equation 28). 

 

 𝑃 = 𝑓𝑃(𝑃)
1

√2𝜋  𝜎𝑝
exp �−(𝑃−𝑃𝑚)2

2𝜎²𝑝
�, where P is the pressure (random variable), and 

Pm is mean.   

The created amount of the charge (voltage V) on the bottom of piezoelectric beam 

is assumed to be as 
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𝑉 = 𝛼𝑃 = 𝛼(𝑃 − 𝑃𝑐)                                                    (50) 

 

Then the function that describes transformation of pressure P into electrical voltage V is 

given by monotonic transfer function  

                                               𝑓𝑉(𝑣) = 𝑓𝑃(𝑃 = 𝑣
𝛼

)| 𝑑𝑃
𝑑𝑉

|      [11]                                    (51)     

               

We need to know what is  𝑓𝑉(𝑣) and 𝑃(𝑉=0), where 𝑓𝑉(𝑣) is the voltage distribution 

on the bottom sensors’ side and 𝑓𝑉(𝑣) is the probability mass function, i.e. probability 

that 𝑉 = 0. 

 

        As    𝑓𝑉(𝑣) = 𝑓𝑃(𝑃 = 𝑣
𝛼

)| 𝑑𝑃
𝑑𝑉

|, and 

              𝑉 = 𝛼𝑃 = 𝛼(𝑃 − 𝑃𝑐 )  

   𝑉 = 𝛼𝑃 − 𝛼𝑃𝑐 → 𝛼𝑃 = 𝑉 + 𝛼𝑃𝑐 → 𝑃 = 𝑉
𝛼

+ 𝑃𝑐, then                                   

       𝑓𝑉(𝑣) = 𝑓𝑃(𝑃 = 𝑣
𝛼

+ 𝑃𝑐)| 𝑑𝑃
𝑑𝑉

|, using Gaussian PDF and substitutes for  

 𝑃 = 𝑉
𝛼

+ 𝑃𝑐, gives   

                         𝑓𝑃(𝑝) = 1
√2𝜋  𝜎𝑝

 exp �−(𝑃−𝑃𝑚)2

2𝜎²𝑝
� | 𝑑𝑃

𝑑𝑉
|,  

 

Once again substitute for 𝑑𝑝
𝑑𝑉

 = 1
  𝛼

  into above give us 

 

𝑓𝑉(𝑣) = 𝑓𝑃(𝑃) = 1
√2𝜋  𝜎𝑝

 exp �
−�𝑉

𝛼+𝑃𝑐−𝑃𝑚�
2

2𝜎²𝑝
� 1

𝛼
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Rearranging exponential part in numerator for 𝛼 provide  

 

𝑓𝑉(𝑣) = 1
√2𝜋  𝜎𝑝

 exp �−
(𝑉+𝛼𝑃𝑐−𝛼𝑃𝑚)2

𝛼2

2𝜎²𝑝
� 1

𝛼
 , and further simplification gives 

 

𝑓𝑉(𝑣) = 1
𝛼 √2𝜋  𝜎𝑝

 exp �−[𝑉−(𝛼𝑃𝑚−𝛼𝑃𝑐)]2

2𝜎²𝑝𝛼2 �                                        

Thus, for V < 0  →  𝑓𝑉(𝑣) = 0, 

 

while for V ≥ 0  → 𝑓𝑉(𝑣) = 1
𝛼 √2𝜋  𝜎𝑝

 exp �−[𝑉−(𝛼𝑃𝑚−𝛼𝑃𝑐)]2

2𝜎²𝑝𝛼2 �         

 

Then we can say that voltage distribution on the bottom beams’ side is also random 

variable with Gaussian PDF, i.e. 

 

V ≈ N (𝛼𝑃𝑚 −  𝛼𝑃𝑐, 𝜎𝑃
2 𝛼2),  

 

where N is the Normal or Gaussian distribution. 

 

Furthermore, probability that V = 0 i.e.  P (V = 0) (Figure 22)   
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Figure 22. PDF for V=0 for Pc > α (Pm – Pc) 
 
 

By definition 𝛼 > 0 and 𝜎𝑝 > 0 ,    

𝑃(𝑉=0) = 𝑃(−∞ < 𝑃 < 𝑃𝑐) 

𝑃(𝑉=0) = ∫ 1
√2𝜋  𝜎𝑝

𝑃𝑐
−∞  𝑒− (𝑃−𝑃𝑚)2

2𝜎²𝑝
 𝑑𝑝 for 𝑃𝑐 > 𝛼𝑃𝑚 − 𝛼𝑃𝑐 

 

Considering integral  ∫ 1
𝜎√2𝜋

𝑒−�(𝑥−𝜇)2

2𝜎2 �𝑥
0 𝑑𝑥 = − 1

2
�erfc �−𝑥+𝜇

𝜎√2
��, 

 

where erfc is error function; erfc(x) = ∫ 𝑒−𝑡2𝑑𝑡 = 1 − erfc(x)𝑥
0 , then 

 

            𝑃(𝑉=0) = ∫ 1
√2𝜋  𝜎𝑝

𝑒
−(𝑃−𝑃𝑚)2

2𝜎²𝑝𝑃𝑐
−∞ 𝑑𝑃  

 

𝑃(𝑉=0) = − 1
2

 �𝑒𝑟𝑓𝑐(∞) −  �− 1
2

erf �−𝑃𝑐+𝑃𝑚
𝜎𝑃√2

���, as  𝑒𝑟𝑓𝑐(∞) = 1 then 

 

   𝑃(𝑉=0) = − 1
2

+ 1
2

erf �−𝑃𝑐+𝑃𝑚
𝜎𝑃√2

� , for 𝑃𝑐 < 𝛼𝑃𝑚 − 𝛼𝑃𝑐 

𝑥 
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So, as depicted in Figure 23 for result we have negative distribution. 

                          

        Figure 23. PDF for V=0 for Pc > α (Pm – Pc) 
 
 
 

 
Based on the presented statistical analysis, all what has been said so far in relation 

to the voltage distribution (charge distribution) on the bottom side of PZT element can be 

summarized through the following two cases; 

a. If variance  𝜎𝑃
2 = 1  and mean  𝑃𝑚 = 0, and substituting it into obtained  

voltage PDF     𝑓𝑉(𝑣) = 1
𝛼 √2𝜋  𝜎𝑝

 exp �−[𝑉−(𝛼𝑃𝑚−𝛼𝑃𝑐)]2

2𝜎²𝑝𝛼2 �, the expected distribution    

is as shown in Figure 24.   
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  Figure 24. Voltage PDF for Variance =1, and mean Pm = 0   
 

 

b. If  𝑃𝑚 = 1 and 𝜎𝑃
2 = 0  then, as shown in Figure 25 there is no voltage 

generation on the bottom of piezoelectric beam. 
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             Figure 25. Voltage PDF for Variance = 0, and mean Pm = 1 
 

 

Furthermore, pressure is always 𝑃𝑚, and its distribution can be approximated by  

Dirac function (Figure 26). 

 

 

    Figure 26. Approximated (Dirac) pressure PDF 
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Then, as P {P = Pm} = 1 and P {P ≠ Pm} = 0 the voltage value is always given 

as P {𝑉 = 𝛼(𝑃𝑚 − 𝑃𝑐)} = 1.   

In summary, from a statistics point of view this analysis has shown that uniformly 

distributed pressure P on the top of piezoelectric beam as a random variable (Gaussian 

PDF) will result also in random Normal Gaussian voltage distribution variable 

parameters 𝜎𝑝 and 𝑃𝑚 on the bottom of PZT beam. 

3.9 Summary 

The main focus of this chapter was on the modeling process of the proposed 

terahertz photoacoustic detector configurations as potential sensing solutions, 

firstly with an accent on a theoretical modeling of the sensing effects of 

cantilever-based piezoelectric sensors. Next, the sensors’ FEM simulations 

modeling approach was covered through the full description of each FEM 

modeling stage based on the use of CoventorWare® simulation tools. Moreover, 

the importance and the role of the photoacoustic spectroscopy in the terahertz 

photoacoustic detection process have been outlined. Due to the high degree of gas 

involvement in the photoacoustic sensing process, the kinetic theory of gasses was 

used in order to develop firm understanding of the required sample gas pressure 

change calculations inside the photoacoustic cell.  To complete the whole 

modeling process it was important to select the sensors that will be employed. The 

ones selected are the cantilever and membrane based piezoelectric sensors. In the 
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last chapter section a theoretical approach of stochastic cantilever modeling is 

presented.  

 

IV. Results and Analysis 

4.1 Chapter Overview 

This chapter discusses and analyzes five different MEMS sensor configurations 

that could be considered as potential sensing solutions for the intended THz photoacustic 

detector design. The chapter provides analytical as well as FEM analysis for the three 

different cantilever-based single piezoelectric layer rectangular shape sensor 

configurations. In addition two sensing options involving multi-layer circular and square 

membranes are introduced.  

4.2 Rectangular piezoelectric cantilever beam – Configuration I           

This section reflects on the analytical and FEM modeling of the single 

piezoelectric layer rectangular shape cantilever, whose L-Edit cross section is shown in 

Figure 27, and it presents results analysis and discussion of sensing Configuration I. 
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               Figure 27. Cantilever L-Edit cross-section 
  
 

As already mentioned in Section 2.11 the initial fabrication of the proposed 

cantilever is performed on a 100 mm Silicon On Insulator (SOI) wafer with <100> 

crystal orientation and overall thickness of 500µm. The thickness of the device layer is 

5μm while the cantilever length and width are 5 mm and 2 mm respectively. Since the 

cantilever will act as a piezoelectric photoacoustic transducer there is a requirement for 

deposition of a thin PZT film on top of the 5 μm device layer. The additional layers as 

shown in the figure above are deposited on top of each other, starting with SiO₂ as an 

insulation layer followed by a sandwich stack with a PZT between two metal (platinum) 

layers. The proposed beam geometry with optimal device and PZT layer thickness ratio B 

for maximum voltage sensitivity is intended to be used in the following sensor 

configuration (Figure 28).   
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   Figure 28. CoventorWare 3D solid model cantilever configuration 
 

 
 
 

In addition, the configurations with device layer thickness of 10μm and 20μm are 

considered and analyzed as possible solution options. The expected functional 

performance of the sensor in development mainly depends on the cantilever geometrical 

dimensions and the elastic and electromechanical properties of the two beams’ 

constitutive layers, namely device (mechanical) and PZT layer. The thickness of the 

remaining layers in this configuration is kept very small in order to minimize their effects 

on detectors’ sensing performance. The cantilever electromechanical properties can be 

more or less summarized by defining the Young’s modulus and the dielectric constants of 

the piezoelectric and device layers, the transverse piezoelectric coefficient and transverse 

piezoelectric coupling coefficient. In recent years PZT has been an attractive choice for 
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MEMS application mainly due to its high piezoelectric coefficient. Among others are 

zinc-oxide (ZnO), Aluminum Nitride (AlN), polyimide or Polyvinylidene Fluoride 

(PVDF), but their use has been restricted in MEMS to certain extent, mainly due to very 

low piezoelectric coefficients [23]. Therefore, based on research work and published 

results in the past years, Silicon (Si) and PZT are known as materials with the best 

electromechanical coupling properties, and as such have been selected as preferred option 

for the sensor in development. The selection of silicon as a cantilever mechanical layer 

has been based on the requirement for a stiffer mechanical layer with clamping properties 

capable to ensure desired PZT dielectric constant decrease.  

Based on analytical and FEM modeling methods presented in Chapter III and on 

all these considerations from above the rest of this section presents cantilever 

performance analysis using both analytical and finite element approach. In both cases a 

comprehensive investigation for a variety of beams configurations has been conducted. In 

this case the different beams’ configurations refer to different thickness ratio 𝐵 = 𝑡𝑚
𝑡𝑝

   

between the device and PZT layers, while the cantilever length L=5 mm and width w=2 

mm remain the same. The thickness ratio 𝐵 for cantilever maximum voltage sensitivity 

can be achieved in two different ways; keeping the piezoelectric layer thickness 𝑡𝑝 fixed, 

while the elastic layer is etched by appropriate etching solution (wet or dry etching) to 

desired thickness 𝑡𝑚, or a more common approach (assumed in this sensor modeling) is 

to keep the elastic layer thickness 𝑡𝑚 fixed, while the piezoelectric layer of desired 

thickness 𝑡𝑝 is deposited onto the elastic layer. 
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Using either of these two approaches it is obvious that the optimal thickness ratio 

B must be somewhere between two limiting cases; between B→0 and B→∞.  When B→0 

the cantilever becomes almost pure monolithic piezoelectric structure as the thickness  𝑡𝑚 

becomes negligibly small in comparison with  𝑡𝑝. Applying external load p to this 

monolithic piezoelectric beam will not produce the expected voltage generation. Simply, 

the cantilever will not act as transducer at all. Applied terahertz photoacoustic signal will 

cause cantilever bending; however, due to polarization of the piezoelectric beam in the 

beam’s thickness direction, the same electric charge will be generated on the top and the 

bottom PZT surface. As voltage, by definition is a difference between potentials (open 

circuit voltage) in this case the difference is zero and the overall voltage across PZT plate 

is zero. In case B→∞ the cantilever becomes very monolithic Si structure. Applying 

pressure on the top of this beam configuration will not cause electric charge generation 

(no piezoelectric material involved in structure) and electric voltage will once again 

approach zero. Therefore, as mentioned above a maximum generated voltage is expected 

to be observed somewhere between the boundary conditions.  

   4.2.1 Theoretical Analysis 

Based on the analytical modeling presented in Section 2.7 and Section 3.2 and the 

derived model equations for generated cantilever capacitance C (equation 23), electrical 

charge Q (equation24) and open circuit electric voltage V (equations 25 and 26), 

comprehensive cantilever analysis for a wide range of thickness ratios B has been 

conducted in order to determine the best beam configuration in terms of maximum 

voltage sensitivity. The sensor in development is supposed to detect relatively weak 

(1mW - 3mW) THz radiation signals, which after their conversion into photoacoustic 
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radiation are expected to produce very small pressure loads on the top of PZT plate. As 

presented in Section 3.4 the expected THz photoacoustic pressure loads fall within μPa 

and mPa pressure range. Which photoacoustic range will be employed mainly depends 

on the absorption properties (ε) of the gas surrounding the cantilever inside the 

photoacoustic cell, the power of the terahertz source and terahertz radiation modulation 

frequency. Taking into account the expected sensitivity level the cantilever behavior 

investigations have been conducted for the entire μPa and mPa pressure range. The 

configurations which have not responded significantly (to measurable level) to the loads 

within prescribed pressure range are not considered as possible sensing solution and have 

not been subject for the further investigations. During the analysis, device layer 

thickness  𝑡𝑚 has been kept fixed while the thickness of the PZT layer 𝑡𝑝 has been 

continuously changed in appropriate thickness increments until the thickness ratio B for 

maximum voltage sensitivity has been observed. In respect to that the cantilever 

configurations with variable  𝑡𝑝 and fixed device layer thickness of  𝑡𝑚 = 5μm, 𝑡𝑚= 

10μm, and 𝑡𝑚= 20μm with  𝑡𝑝 ranging from 0.1μm up to  𝑡𝑝=3.3μm with an increment 

rate of 0.1μm have been continuously investigated for a pressure range defined in Section 

3.4 (1 μPa up to 1 Pa). 

Cantilever response to a range of uniformly distributed pressure loads p has been 

observed in respect to each single beam configuration as well as in a case of gradual PZT 

layer thickness increments. As expected, in a case of single beam configuration, i.e. 

configuration with a unique 𝑡𝑚 and  𝑡𝑝 an increase in applied pressure load p will cause 

more beams’ bending, more electric charge; Q is going to be generated and a linear 
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increase in the open circuit voltage V across PZT will be observed while the capacitance 

C for analyzed  𝑡𝑚 and 𝑡𝑝 combination remains constant regardless of the pressure 

increments. An illustration of the mentioned observation for a beam with L= 5mm, w=2 

mm, 𝑡𝑚=5 μm and  𝑡𝑝=100 nm for entire mPa pressure range (1mPa to 1Pa) can be seen 

in Figure 29 and Figure 30, respectively.  

 

 

                 

                       Figure 29. Cantilever PZT charge distribution 
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                                      Figure 30. Open circuit voltage V across PZT 
 
 
 

In addition to presented MATLAB plots the same observations related to the same 

beam length L, width w, and thickness 𝑡𝑚 and  𝑡𝑝 of 0.1 μm, 0.5 μm, and 1 μm for a 

pressure range portions of 0.1 mPa, 0.5 mPa, 1 mPa, 0.5 Pa and 1 Pa can be seen in the 

following tables: Table 2, Table 3 and Table 4. 

 

 

Table 2. Voltage distribution for tp=100 nm 
 

p 0.1 mPa 0.5 mPa 1 mPa 0.5 Pa 1 Pa 

V [V] -1.39e-7 -6.98e-7 -1.39e-6 -0.69e-3 -1.39e-3 

C [pF] 2.31e-6 2.31e-6 2.31e-6 2.31e-6 2.31e-6 
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Table 3. Voltage distribution for tp = 500nm  
 

P 0.1 mPa 0.5 mPa 1 mPa 0.5 Pa 1 Pa 

V [V] -5.94e-7 -2.97e-6 -5.94e-6 -2.97e-3 -5.94e-3 

C [pF] 4.74e-7 4.74e-7 4.74e-7 4.74e-7 4.74e-7 

 
 
 
 
Table 4. Voltage distribution for tp=1μm 
 

P 0.1 mPa 0.5 mPa 1 mPa 0.5 Pa 1 Pa 

V [V] -9.74e-7 -4.87e-6 -9.74e-6 -4.87e-3 -9.74e-3 

C [pF] 2.42e-7 2.42e-7 2.42e-7 2.42e-7 2.42e-7 

 
 

 

Furthermore, keeping the device layer 𝑡𝑚 = 5 𝜇𝑚 fixed and increasing  𝑡𝑝 in 

mentioned increments steps, it has been observed that in a case of any  𝑡𝑝 increment in 

comparison with previous beam thickness ratio B even there is less beams’ bending (due 

to the overall beam thickness increase) and less electric charge Q generation for the same 

pressure loads; the open circuit voltage V across PZT element still increases linearly. This 

is true and is going to happen for any  𝑡𝑝 increment until thickness ratio B for maximum 

voltage sensitivity has been once reached. The reason for this gradual voltage increase is 

mainly due to the change in configuration capacitance C. It is true that when 

increasing 𝑡𝑝 and consequently increasing the overall cantilever thickness there is less 

beam bending under the same pressure loads and the amount of generated electric charge 
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Q slightly decreases, and in accordance with the direct piezoelectric effect we should 

expect an open circuit voltage V decrease, too. However, due to the fact that the 

generated voltage V = 
 𝑄 
𝐶

  and that the total configuration capacitance C decreases much 

more rapidly than the decrease in the generation of the electric charge Q is; then the 

actual voltage V in fact increases. Therefore, based on the obtained calculation results, the 

thickness ratio for the maximum voltage sensitivity occurred to be B=1.96 and it belongs 

to the cantilever configuration with the device layer thickness of  𝑡𝑚 = 5 𝜇𝑚 and 𝑡𝑝 =

2.55 𝜇𝑚. The following table (Table 5) shows the generated electrical voltages V across 

the PZT layers for indicated  𝑡𝑝 increments and applied pressure load p of 1Pa. 

 

                      Table 5. Generated voltage across PZT layers for p=1Pa     
 

PZT thickness 𝑡𝑝 [μm] Voltage V [mV]  
2 -13.316 

2.1 -13.481 
2.2 -13.622 
2.3 -13.719 
2.4 -13.749 
2.5 -13.765 
2.55 -13.767 
2.6 -13.766 
2.9 -13.699 
2.7 -13.754 
2.8 -13.732 
3 -13.657 

 

    It can be seen that the maximum open circuit voltage V of - 13.767 mV has 

been generated across piezoelectric layer with corresponding thickness of  𝑡𝑝 = 2.55 μm. 

So, the thickness ratio of B=1.96 is a configuration turning point at which the cantilever 
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as a photoacoustic sensor for any pressure load p will most likely be able to detect THz 

photoacoustic radiation. Any increase or decrease in B, i.e. any deviation from 1.96 will 

decrease the overall configuration sensitivity. It basically means (as highlighted in Table 

5) that for a cantilever with fixed device layer thickness to 5μm any increase in  𝑡𝑝 above 

2.55 μm or any decrease in  𝑡𝑝 below 2.55 μm will for result have a decrease in the 

amount of generated voltage V across PZT layer. These observations are depicted in the 

following MATLAB plot (Figure 31) which represents voltage generation across PZT 

layer as function of thickness ratio B. It can be clearly seen that analyzed sensing 

configuration for any photoacoustic load within predicted pressure range exhibits highest 

sensitivity (maximum voltage generation) for B= 1.96.  

 

 

                 

   Figure 31. Calculated cantilever voltage generation as function of thickness ratio B 
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 All of what has been said so far can be also summarized through the following 

MATLAB graphs (Figure 32) and (Figure 33) which are simple representations of the 

performed sensor mathematical modeling.  

 

                 
         Figure 32. Cantilever PZT charge distribution (Different PZT thickness) 
 
 
 

      
The plots in Figure 32 depict the predicted PZT charge distribution based on the 

cantilever response to the expected acoustic range of uniformly distributed pressure loads 

on the top of PZT surface for a three different beam configurations among which one 

belongs to the cantilever configuration with a predicted maximum voltage sensitivity 

(𝑡𝑝=2.55 μm) while one belongs to the configuration with a 𝑡𝑝 which is well below and 
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displayed plots that in a case of variable piezoelectric layer configurations it is not always 

true that a configuration with the largest amount of generated charge Q will in fact 

produce voltage with highest magnitude across PZT element. From Figure 32 it can be 

seen that the highest amount of generated charge Q belongs to the configuration with 𝑡𝑝 

of 1.3 μm (well below optimal PZT thickness) while from Figure 33 it can be seen that 

the maximum voltage generation actually belongs to the configuration with 𝑡𝑝of 2.55 μm.    

  

 
               

                 
           Figure 33. Open circuit voltage V across PZT (Different PZT thickness)   

 
 
 
     

Moreover, in relation to Figure 33 it was intended to plot on the same graph the 

voltage distributions across cantilever PZT layers for 𝑡𝑝 of 2.55 μm, 2.5 μm and 2.6 μm 

(i.e. configurations with close PZT thickness) in order to match the Table 5 calculation 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0
Open Circuit Voltage

Pressure in [Pa]

V
ol

ta
ge

 [V
]

 

 
tp=2.55microm
tp=1.3microm
tp=3.9microm



 

85 

 

results as close as possible and observe actual turning points in the open circuit voltage 

increase/decrease, but due to the extremely small difference between the so called turning 

points voltages, the actual plotting would produce graphs overlapping which could not be 

used for effective visual model analysis. However, the selections of any 𝑡𝑝 below and 

above 2.55 μm that will ensure minimum required plotting visibility do not have any 

impact on the analysis validity. 

 Furthermore, the configurations with the device layer thickness of 10 μm and 

20μm are considered and analyzed as possible solution options. The mentioned 

configurations have been investigated in the same way and under the same analytical 

assumptions as 5 μm device layer configuration. The brief results summary related to the 

configurations’ voltage sensitivity levels and their comparisons among each other for the 

randomly selected   𝑡𝑚 and  𝑡𝑝 combinations and pressure load of 1Pa is presented in 

Table 6. 

 

 

 

 

 

 

 

 

 



 

86 

 

Table 6. Voltage distribution across PZT for p=1 Pa and various tm, tp configuration 
combinations     
         

Elastic layer 
𝑡𝑚 [μm] 

PZT layer 
𝑡𝑝 [μm] 

V [mV] 
 

5 0.1 -1.39 
10 0.1 -0.37 
20 0.1 -0.10 
5 0.2 -3.35 
10 0.2 -0.74 
20 0.2 -0.19 
5 0.3 -3.86 
10 0.3 -1.08 
20 0.3 -0.29 
5 0.4 -4.95 
10 0.4 -1.41 
20 0.4 -0.38 
5 0.5 -5.94 
10 0.5 -1.73 
20 0.5 -0.47 
5 1 -9.74 
10 1 -3.13 
20 1 -0.89 

 
 
 

The presented results show that any increase in the elastic layer thickness 𝑡𝑚 will 

cause decrease in the cantilever voltage sensitivity. It is true that voltage sensitivity for 

configurations with elastic layer thicknesses of 10 μm and 20 μm can be improved by 

finding appropriate thickness ratio B (increasing 𝑡𝑝) but it requires further piezoelectric 

layer thickness increase that will have for a result an undesirable (already thick) overall 

beam thickness increase. Thus, the sensor becomes too thick and too difficult to bend. As 

THz photoacoustic pressure loads are expected to be within μPa or mPa pressure range, it 

is obvious that bending will not occur and configurations like these cannot be considered 

as potential solutions. 
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4.2.2 FEM Analysis 

The CoventorWare® FEM simulations were performed on the same cantilever 

configurations used in the analytical modeling in order to investigate the effect of 

variations in the thickness on the microcantilever voltage sensitivity. The simulations 

have been conducted, analyzed and compared with the theoretical computations 

presented in the previous sub-section (4.2.1). As pointed out in the FEM Modeling 

section (Section 3.3) the CoventorWare® simulation software is known as the most 

comprehensive suite of MEMS design tools and as such has been used extensively in 

these project investigations. Due to the nature and the purpose of this research assignment 

and the specific cantilever multi-layer structure, advanced CoventorWare® simulations 

and testing, utilizing mechanical (MemMech) and the piezoelectric domain solver 

(MEMPZE) have been conducted. MemMech is used to compute the mechanical 

solutions for the cantilever, mainly to solve for mechanical stress and displacement as 

well as modal analysis calculations in order to compute the natural resonant frequencies 

of the sensor structure, while MEMPZE is used to investigate the cantilever piezoelectric 

behavior in terms of electrical charge (voltage) generation.  

In accordance with the FEM simulation modeling process presented in Chapter 

III, based on the actual 2-D L-Edit© device layout designs, the cantilever 3-D solid 

models for configurations with L=5 mm, w=2 mm and device layers thicknesses of 5 μm, 

10 μm and 20 μm have been generated first. In each generated solid model configuration, 

as it was case during the analytical cantilever modeling the thickness of the top and the 

bottom metal layers including SiO2 layers were 0.1 μm, while the thickness of the PZT 

layers was varied from 0.1 μm to 3.3 μm with increments of 100 nm.  
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An accurate model is essential to the function of a sensor; thus, before progressing 

further with a full model simulation and the testing process, utilizing the  

CoventorWare® domain solvers, the adequate mesh analysis and model meshing have 

been conducted in order to obtain acceptable results accuracy in an acceptable amount of 

computation time. In this cantilever modeling, due to its orthogonal geometry the 

Manhattan bricks mesh model has been chosen as the most appropriate meshing option. 

For this particular beam structure with cantilever length L=5 mm, width w=2 mm and the 

overall beam thickness of 8 μm (the device and PZT layer thickness is 5 μm and 2.7 μm 

respectively, plus two metal and one oxide layer each of individual thickness of 0.1 μm) 

the same analysis has been run for the models with mesh densities shown in Table 7. 

 

Table 7. Cantilever response to uniformly distributed pressure load of 1Pa  

Mesh model 
number 

Mesh size in x,y, z 
direction [μm] Deflection [μm] 

1 1000x1000x1000 14.60506 
2 500x500x500 14.60506 
3 300x300x300 14.27953 
4 200x200x200 14.20623 
5 100x100x100 14.20623 

 

 

From the obtained results, presented in Table 7, it can be seen that the analyzed 

cantilever configuration deflection response converges to a unique numerical value as the 

mesh density increase. As the two meshes (minimum requirement), mesh model number 

4 and mesh model number 5 give essentially the same deflection results, the model can be 

considered mathematically accurate. It is true that the mesh density could be increased 
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further but it will lead to negligible differences in results, but significant increase in 

simulation time. Even the difference between mesh model number 3 and mesh model 

number 5 is only 0.51%, and any further mesh refining will not have significant impact 

on simulation accuracy. Once the model has been appropriately meshed reducing 

cantilever geometry into smaller and simpler finite element bricks, the full FEM analysis 

using CoventorWare® domain solvers has been conducted with confidence that the 

model is producing mathematically accurate results. An illustration of meshed cantilever 

configuration with optimal Manhattan bricks mesh density (x = 200 μm, y = 200 μm and 

z = 200 μm) that has been used throughout sensor FEM analysis is shown in Figure 34.  

 

    

Figure 34. Meshed cantilever model for tm =5 μm, tp=2.7 μm metal and SiO2 of 0.1 μm 
 

 

The beam is 5 mm by 2 mm, so 250 bricks will be created for the beam layer in 

the XY plane. The beam is only 8 μm in height, so the mesher will create a single layer of 

bricks.  
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Once again as in the case of theoretical modeling the FEM simulation analysis has 

been performed for a wide range of configurations, where the device layer thickness  𝑡𝑚 

has been kept fixed while the thickness of the PZT layer  𝑡𝑝 has been continuously 

changed in appropriate thickness increments until the thickness ratio B for maximum 

voltage sensitivity has been observed. Specifically, the cantilever configurations with 

variable  𝑡𝑝 and fixed device layer thickness of  𝑡𝑚 = 5 μm, 𝑡𝑚= 10 μm, and 𝑡𝑚= 20 μm 

with  𝑡𝑝 ranging from 0.1 μm up to  𝑡𝑝=3.3 μm with an increment rate of 100 nm have 

been simulated and analyzed for a pressure loads ranging from 1 μPa up to 1 Pa covering 

entire μPa and mPa photoacoustic pressure range. As expected and already observed 

during the theoretical modeling there is no exception here; different configurations have 

responded differently, exhibiting different sensitivity levels under the same pressure 

exposure. Before presenting and discussing the numerical collection of the obtained 

results, an example of simulated cantilever configuration just as a visual illustration of 

CoventorWare® FEM modeling can be seen in Figure 35. The resulting profile belongs 

to the cantilever configuration with device and PZT layer thickness of 5 μm and 2.7 μm 

respectively and optimal mesh density with Manhattan bricks element size of 200 μm x 

200 μm x 200 μm. The individual thickness of metal and oxide layers is 0.1 μm. It can be 

seen that the FEM simulation, in contrast to the analytical cantilever modeling, produces 

a very smooth bended profile under the same uniformly distributed photoacoustic 

pressure loads. The different resulting profiles produce different numerical descriptions 

of cantilever piezoelectric sensing behavior in terms of electrical charge (voltage) 
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generation. The reasons and justification for these deviations between the two modeling 

methods are presented and discussed later within the results comparison section.       

 

                 
 
                         Figure 35. Typical cantilever FEM simulation results 
 
 
     

The CoventorWare® FEM simulations (Figure 35) were performed on a vast 

number of beam configurations to investigate the effect of variations in thickness on the 

cantilever voltage sensitivity. In order to determine the level of voltage response, in 

addition to the geometry models the FEM analysis takes into account the cantilever 

electromechanical properties, too. Hence, the FEM simulated voltage across cantilevers’ 

PZT layers is not just function of pure model geometry and mechanical properties of 

materials involved in the structure; it is also a function of cantilever electrical (mainly 

piezoelectric) and coupling properties. Furthermore, beside the numerical results, the 

CoventorWare® FEM modeling offers a deeper meaningful insight into the device 

behavior through its simulations, during the actual sensing process. It enables 

visualization (see Figure 35 and Figure 36) of the expected amount of beam bending, the 
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stress distributions in cantilever thickness and length direction or expected charge 

distributions across the cantilever surface.  

 

                    

Figure 36. Mises stress distribution of piezoelectric cantilever 
 

 

4.2.2.1 Observations 

The same investigation approach, previously used in theoretical cantilever 

modeling, has been implemented, here but this time utilizing CoventorWare® FEM 

modeling tools. Once again cantilever response to a wide range of uniformly distributed 

pressure loads p has been investigated in both cases; single beam configurations and 

configurations involving gradual PZT layer thickness increments. As pointed out 

previously, the single beam configuration assumes observations related only to the beam 
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with unique elastic and piezoelectric layer thickness, i.e. observing the change in 

cantilever response due to the change in applied acoustic load p only, but for the same 

thickness ratio B. As expected, based on the performed observations and the obtained 

simulation results, the way the cantilever responds is found to be the same as in the case 

of mathematical modeling. In case of single beam configurations, any increase or 

decrease in applied pressure load p will cause linear increase or decrease in open circuit 

voltage generation. An illustration of the mentioned observation for investigated beam 

configuration with L=5 mm, w=2 mm, 𝑡𝑚=5 μm and  𝑡𝑝 of 100 nm and 1 μm and pressure 

load range of 1 mPa to 1 Pa can be seen in Figures 37 and Figure 38.  

 

 

                

                 Figure 37. FEM voltage across 100 nm PZT layer 
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                        Figure 38. FEM voltage across 1μm PZT layer 
 

 

In addition to the above plots the same observations for randomly selected 

pressure loads p and piezoelectric layer thickness 𝑡𝑝 are presented in Table 8, Table 9 and 

Table 10 respectively.  

 

             
Table 8.  CW FEM voltage distribution for tp = 100nm  

 
p 0.1 mPa 0.5 mPa 1 mPa 0.5 Pa 1 Pa 

V [V] -4.87e-8 -2.43-7e -4.87e-7 -2.49e-4 -4.87e-4 
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Table 9. CW FEM distribution for tp =1μm 
 

p 0.1 mPa 0.5 mPa 1 mPa 0.5 Pa 1 Pa 

V [V] -3.08e-7 -1.54e-6 -3.08e-6 -1.55e-3 -3.09e-3 

 
 
 
Table 10. CW FEM distribution for tp =2.5μm 
 

p 0.1 mPa 0.5 mPa 1 mPa 0.5 Pa 1 Pa 

V [V] -4.09e-7 -2.05e-6 -4.09e-6 -2.05e-3 -4.09e-3 

 
 

 
Furthermore, in order to determine the cantilever configuration with thickness 

ratio B for a maximum voltage sensitivity, FEM modeling using the piezoelectric domain 

solver, and MEMPZE have been conducted and analyzed for the wide range of beam 

configurations, where the device layer thickness  𝑡𝑚 has been kept fixed (5μm), while the 

PZT layer thickness 𝑡𝑝 has been continuously changed in appropriate thickness 

increments until the thickness ratio B for a maximum voltage sensitivity has been 

observed. In the same fashion as in the case of theoretical sensor modeling, the cantilever 

configurations with variable  𝑡𝑝 and fixed device layer thickness to  𝑡𝑚 = 5 μm, 𝑡𝑚= 10 

μm, and 𝑡𝑚= 20 μm with  𝑡𝑝 ranging from 0.1 μm up to  𝑡𝑝=3.3 μm and an increment rate 

of 100nm have been continuously simulated and investigated for pressure loads ranging 

from 1 μPa up to 1 Pa. The brief results summary for selected portion of simulated 

results with highlighted open circuit voltage V that has been observed across piezoelectric 
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layer that belongs to configuration with maximum voltage sensitivity is shown in Table 

11.  

 
                      Table 11.  CW FEM voltage across PZT layers for p=1Pa 
 

PZT thickness 𝑡𝑝 [μm] Voltage V [mV]  
0.1 -0.48733 
1 -3.08735 

2.5 -4.09210 
2.65 -4.09832 
2.7 -4.09836 
2.8 -4.09569 
2.9 -4.08995 
3 -4.09836 

 

 

On the strength of the FEM simulation results, the thickness ratio for the 

maximum voltage sensitivity occurred to be B=1.85, and it belongs to the cantilever 

configuration with the device layer thickness of  𝑡𝑚 = 5 𝜇𝑚 and 𝑡𝑝 = 2.7 𝜇𝑚. Once 

again, as depicted in the MATLAB plot in Figure 39, it has been observed that any 

change in thickness ratio B that deviates from 1.85 will cause the change (decrease) in 

detector sensitivity. 
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     Figure 39. FEM cantilever voltage generation as function of thickness ratio B 
 

 

 The more detailed analysis related to the cantilever behavior under uniform 

distribution of pressure loads on the beam’s top surface is already discussed in the 

theoretical analysis section (Section 4.2.1), and as such is fully applicable here. Due to 

the same reasons, the analysis related to the configurations involving beams with device 

layers of 10 μm and 20 μm and wide range of variable piezoelectric layers thickness are 

intentionally omitted; however, will be discussed and analyzed within the results 

comparisons section. 

Finally, modal frequencies and shapes of a cantilever finite element model have 

been calculated and visualized using CoventorWare® MemMech solver and 3D viewer. 

The resonant frequencies and their associated mode shapes are of particular interest in 

designing this, as well as the other sensor configurations presented in this research work 
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because they indicate when the sensor will have its maximum response under uniformly 

distributed photoacoustic pressure loads. The initial cantilever modal analysis has been 

performed for the 100 Hz to 1600 Hz harmonic frequency range on the 10 mPa pressure-

loaded beam configuration with requested 10 frequencies display. The device is 

examined for various mode shapes and its resonant frequencies are determined. The 

resulting vibrating pattern of the investigated cantilever configuration for various modes 

and the calculated natural resonant frequencies when the pressure load of 10 mPa is 

applied on its top side is shown in Figure 40. 
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                 Mode 1 (508.223 Hz)                                            Mode 2 (2533.68 Hz) 

 

                                    

                  Mode 3 (3202.92 Hz)                                                    Mode 4 (8114.89 Hz) 

                                 

                            

                Mode 5 (9043.71 Hz)                                                  Mode 6 (15183.9 Hz)             
Figure 40. Resulting vibrating pattern and resonant frequencies for a load of 10 
mPa 
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Besides analyzing mode shapes (the deformation of the mechanical structure), the 

understanding of the impact and the contribution of the individual mode shapes to the 

harmonic cantilever response can be acquired by looking at the generated generalized 

harmonic response results shown in Table 12 below.  

 
Table 12. MemMech generalized harmonic display table 
 

 
Frequency 

[Hz] 
Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

0 100 0.0331 7.574e-8 4.480e-4 1.810e-10 3.358e-5 6.220e-11 

1 116.4 0.0336 7.578e-8 4.482e-4 1.810e-10 3.358e-5 6.220e-11 

2 136.3 0.0343 7.584e-8 4.484e-4 1.810e-10 3.358e-5 6.220e-11 

3 162.5 0.0354 7.593e-8 4.487e-4 1.810e-10 3.359e-5 6.220e-11 

4 205.9 0.0379 7.612e-8 4.494e-4 1.811e-10 3.359e-5 6.220e-11 

5 402.2 0.0785 7.754e-8 4.546e-4 1.814e-10 3.364e-5 6.224e-11 

6 445.6 0.0109 7.799e-8 4.563e-4 1.815-10 3.366e-5 6.225e-11 

7 471.9 0.0137 7.829e-8 4.573e-4 1.816e-10 3.367e-5 6.225e-11 

8 491.8 0.0156 7.852e-8 4.582e-4 1.816e-10 3.368e-5 6.226e-11 

9 508.2 0.0159 7.873e-8 4.589e-4 1.817e-10 3.368e-5 6.226e-11 

 

The table lists the real components of the generalized displacements for each 

requested frequency in the harmonic frequency range. The presented results clearly show 

that all six modes contribute to the cantilever response. The corresponding generalized 

Displacements plots (displacement as function of frequency) for each mode shape are 

presented in Figure 41. 
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          Mode 1 (508.223 Hz)                                             Mode 2 (2533.68 Hz) 

                 
      Mode 3 (3202.92 Hz)                                           Mode 4 (8114.89 Hz) 

                                                  

       Mode 5 (9043.71 Hz)                                               Mode 6 (15183.9 Hz) 
 
Figure 41. Generalized Displacements plots 



 

102 

 

Among the various modes, the mode 1 shown in Figure 36 was found to be the 

suitable one for the operation of rectangular piezoelectric cantilever beam because of its 

first harmonic type oscillation wave patterns. As depicted in Figure 36, in comparison 

with other modes, Mode 1 with corresponding resonant frequency of 508.22Hz will 

provide maximum cantilever response (displacement) to a uniformly distributed pressure 

loads.  

Moreover, it is important to have in mind that during mode-based harmonic 

analysis the harmonic response is also reconstructed from a modal damping factor. In a 

case of vibration of an undamped structure the magnitude of the oscillation is constant. In 

reality, the energy is dissipated by the structure’s motion and the magnitude of the 

oscillation decreases until the oscillation stops. The energy dissipation is known as 

damping. Most engineering problems involve some kind of damping, in general small. 

During this and all other sensing configurations modal analysis, the direct modal 

damping has been taken into account, i.e., the fraction of critical damping associated with 

each mode has been defined through direct modal damping. This is achieved through the 

use of CoventorWare® MemMech Settings typically involving values in the range of 1% 

to 10% of critical damping. In a case of each developed sensing configuration the modal 

analysis involving 10% of critical damping factor has been performed. An example that 

illustrates the impact of changing the Modal Damping Coefficient on the device 

photoacoustic response can be seen in the Figure 42, Figure 43, and Figure 44, 

respectively. 
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        Figure 42. Frequency response involving Modal Damping Coefficient of 0.1 
 
 
 

                            
       Figure 43. Frequency response involving Modal Damping Coefficient of 0.05 
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   Figure 44. Frequency response involving Modal Damping Coefficient of 0.01 
 
 
 The above plots belong to the 5 mm x 2 mm rectangular shape multi-layer 

cantilever sensing configuration with device layer thickness of 5 µm, PZT of 2.65 µm 

and the rest (SiO2 and two metal layers) of 100 nm.  Figure 42 is a result of performed 

harmonic analysis involving Modal Damping value of 10% of critical damping, while 

Figure 43 and Figure 44 depict frequency response in case of 5% and 1% respectively. 

These figures illustrate that a decrease in damping value will result in a cantilever 

response (deflection) increase and generation of narrower THz photoacoustic pulse which 

with a further decrease of damping coefficient becomes more like Delta function pulse.   
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4.2.3 Results Summary and Comparisons 

This section discusses, evaluates and compares the sensing performance of 

rectangular piezoelectric cantilever sensing configurations as well as the level of 

agreement/disagreement between the analytical and the simulated results presented in 

Section 4.2.1 and Section 4.2.2. The analysis has been performed using both 

mathematical calculations and FEM simulations. In both cases a comprehensive analysis 

for a variety of beam configurations has been conducted in order to determine the 

cantilever voltage sensitivity range. As presented and discussed in Section 4.2.2.1, the 

cantilever configurations with variable tp and fixed device layer thickness of tm = 5 μm, 

tm=10 μm, and tm=20 μm with tm ranging from 0.1 μm up tm=3.3 μm with appropriately 

chosen increment rates have been continuously investigated for a pressure loads ranging 

from 1 μPa up to 1 Pa until the thickness ratio B for maximum voltage sensitivity has 

been observed. Based on the obtained results it has been found out that in each analysis 

the analyzed cantilever models under simulated THz radiation environment exhibit pretty 

much the same sensing behavior. Saying that, it mainly means that both analyses have 

predicted cantilever linear voltage response as it can be seen in Figure 45.  
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Figure 45. Analytical and FEM cantilever response observed for maximum voltage 
sensitivity thickness ratios B. 

 

 

Furthermore, both analyses have clearly indicated and confirmed the same 

reasons for the open circuit voltage changes. At the end both models have indicated 

almost the same thickness ratio B for maximum voltage sensitivity. In the case of FEM 

modeling the B is found to be 1.85, while the calculated value is 1.96. So, the difference 

between the two predictions is just about 5.6% which can be considered as reasonably 

good match and results agreement. The ratios B could be considered even much closer to 

each other if we just observe one of the two tables (Table 5, Table 11) which are 

indicating the turning points at which voltage changes its decrease direction from the 

maximum value. In Table 11 it is clearly indicated that FEM maximum open circuit 

voltage V of -4.098 mV has been observed for piezoelectric layer thickness of 2.7 μm. 
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However, if we look at the voltage of -4.092 mV which has been observed for 

piezoelectric layer thickness of 2.5 μm, then what is the difference between these two 

observed values? The difference is just in the third digit after decimal point or 0.1%. 

Hence, based just on this fact and taking into account software error tolerance we could 

easily say that maximum voltages have been observed across the same PZT thickness that 

will give us a perfect thickness ratio B match. However, as we are dealing here with 

numerical analytical analysis involving high accuracy, it is reasonable to avoid 

approximations and stick with calculated and simulated results.  

    All having been said above looks promising, and in general there is a good 

agreement between the two models. However, the major concern which could cause 

certain level of doubt in the validity of the obtained results (in either way) is their 

numerical difference. Table 13 below shows brief results summary and comparison 

between randomly selected voltages that have been observed across piezoelectric layers 

for cantilever configurations with maximum voltage sensitivity in the case of FEM 

simulations and analytical calculations.  

 

    Table 13. FEM and calculated cantilever response for the maximum voltage 
sensitivity ratios B 
 

Pressure p MATLAB  V  [V] for 
B=1.96 FEM V  [V] for B=1.85 

0.1mPa -1.37e-6 -4.09e-7 
0.5mPa -6.88e-6 -2.05e-6 
1mPa -1.37e-3 -4.09e-6 
0.5Pa -6.88e-3 -2.05e-3 
1Pa 13.76e-3 -4.09e-3 
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According to Table 13 data, it can be clearly seen that the two models predict 

different detector sensitivity levels. In comparison with FEM, the theoretical predictions 

are pointing to configuration with much higher sensitivity. It turns out that the FEM 

based cantilever configuration (THz sensing solution) in comparison with the theoretical 

solution is more than three times less sensitive (3.36). Now, it does not matter which 

solution among the two is going to be chosen. Of course as THz radiation is very weak, 

low pressure acoustic signals are expected; then we obviously prefer a detector with 

higher sensitivity. A problem arises in deciding which of the two possible solutions the 

correct solution is. The reason for running two different models is to confirm validity of 

the obtained results through their agreement and disagreement, and based on the obtained 

data to verify the design solution as acceptable (feasible) or not. Thus, the main problem 

and question is why there is such a difference in the obtained results between the two 

different models and is the difference as such acceptable? 

The only reasonable explanation that can be used to approach and justify this 

distinction is by analyzing the cantilever’s beam deflection in both models resulting from 

application of pressure. The analytical model results in an almost straight line deflection 

with curved bend at the fixed end, whereas the simulated model results in curved 

deflection. However, both deflections have almost the same length at the loose end with 

only 5.1% difference, which is negligible. The voltage difference can be assigned to the 

curve at the fixed end of the stiffer beam deflection produced by the analytical model. 

The stiffer beam deflection results in higher curve only at the fixed end which produces 

higher voltage. The simulated model, on the other hand, results in flexible curving 

deflection with less voltage production at the fixed end. In support of this explanation are 
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the equations (25) and (26) used in the analytical model to calculate the deflection, which 

directly depends on the calculated voltage. The result of this calculation matches the 

deflection results in the simulated model (see Table 14), indicating correctness in 

generated voltage predictions and the above explanation as valid results disagreement 

justification.  

 
Table 14. Calculated and simulated cantilever deflection and voltage generation for 
different PZT layer thickness and applied pressure of 1Pa 
 

PZT  thickness 
Calculated  

Deflection 

Simulated 

Deflection 

Simulated 

Voltage 

Calculated 

Voltage 

2.7 μm -15.05 μm -14.27 μm -4.098 mV -14.75 mV 

2.5 μm -16.87 μm -15.34 μm -4.092 mV -13.91 mV 

1 μm -28.87 μm -27.37 μm -3.07 mV -9.747 mV 

Difference 5.1% Simulated < Calculated~3.3 times 

 

 

Furthermore, considering the obtained results from another perspective, some sort 

of additional justification and certain acceptance level could be still considered. It is true 

that the difference between the observed open circuit voltages across sensing element is 

more than three times higher or lower in case of these two analytical models. Also, based 

on the fact that the observed voltages for both analytical models and for any investigated 

configuration always fall within the same expected sensitivity range (mV and μV) it 

could be considered as not so bad results agreement, too.  
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    In addition, as it is already pointed out several times throughout this thesis, the 

cantilever sensitivity depends on the model geometry, i.e. on the variations in the 

thickness, length and width, as well as on the electromechanical properties (Em, Ep, 

d31, 𝑘₃₁, and ε˟₃₃) of the materials involved in the structure. During each configuration 

analysis all these parameters have been kept the same for both models. Considering the 

equations (24), (25) and (26), beside geometry, it is clear that charge and voltage 

generation across PZT mainly depends on  𝑑₃₁ and ε˟₃₃, while it is partially dependent on 

coupling coefficient 𝑘₃₁. In each modeling approach the way these parameters have been 

used is more than obvious except of 𝑘₃₁ in a case of CoventorWare® FEM modeling. It 

has been found out that coupling coefficient is not involved in FEM modeling at all, and 

that there is no possibility for its inclusion. Hence, all that has been said here is that no 

use of 𝑘₃₁ by FEM modeling is not one of the main reasons for the different voltage 

generations but its involvement could further minimize the occurred difference by ~ 20% 

(based on calculations involving 𝑘₃₁=0.344). The nominal piezoelectric coupling 

coefficient value for the selected PZT is unknown and is going to be determined during 

actual device lab testing. Based on research results, the 𝑘₃₁, for the majority of the PZT 

materials usually takes values of 0.333, 0.334, 0.344, 0.35, or in some cases 6 or 8, but it 

is most often a small value ranging below 1. In the case of all analytical modeling 

presented in this report 𝑘₃₁ of 0.344 has been used.   

Geometry can be attributed for additional effects on the cantilever sensitivity. The 

analytical model is based on the governing equations (24), (25) and (26), considering two 

layers (elastic and piezoelectric) involvement only, while in the case of FEM modeling, 



 

111 

 

as mentioned earlier, the full multi-layer device structure has been used. The full 

configuration involves additional three layers (SiO2 and two metal electrodes) with total 

increase in cantilever thickness of 0.3μm. It is obvious that in case of the thicker beam, 

there is less bending and consequently less voltage generation for the same applied 

pressure loads. Thus, if we simulate device structure involving only two constitute layers 

as in the mathematical modeling then the difference in voltage generation between two 

models is going to be further reduced. The following table (Table 15) shows FEM 

simulation results for the full multi-layer structure and for the so called reduced device 

structure, structure without SiO2 and two electrodes’ layers. 

 

 
Table 15. FEM voltage generation for full and reduced layers structure 
 

Pressure P 

Full  

𝑡𝑚=5μm,𝑡𝑝=2.5μm +0.3μm 

V [Volts] 

Reduced 

 𝑡𝑚=5μm, 𝑡𝑝=2.5μm only 

V [Volts] 

1mPa -4.09e-6 -4.54e-6 

10mPa -4.09e-5 -4.54e-5 

100mPa -4.09e-4 -4.54e-4 

500mPa -2.04e-3 -2.22e-3 

1Pa -4.09e-3 -4.54e-3 
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From the presented results it occurs that in the case of FEM model simulation 

without SiO2 and electrodes layers an increase of 10% in voltage generation has been 

observed (~0.5 mV in case of 1mPa pressure load). Therefore, taking into account this 

fact and the previously discussed coupling coefficient impact (20%) on the voltage 

generation in case of FEM modeling, it turns out that the expected simulated detector 

sensitivity is in fact more than 30% higher than initially observed. Based on all these 

considerations at the end the total difference in cantilever sensitivity predictions between 

the analytical and the FEM modeling is further reduced. Taking into consideration an 

increase of 30% in the FEM modeling predictions, the predicted analytical model 

detector sensitivity is now about two times (2.352) higher than the detector sensitivity 

predicted by the FEM modeling.         

      Before concluding this paragraph it is important to clarify that the expected 

cantilever sensitivity in the case of FEM simulation modeling remains the same as 

predicted by simulations based on the full model (including SiO2 and both electrodes 

layers) analysis. The full model is the potential sensing solution that is going to be 

implemented and integrated within the sensor configuration shown in Figures 6 and 28. 

The reduced model analysis from above and associated 30% increase in sensitivity level 

in case of FEM modeling is just a descriptive insight and justification why the difference 

in predictions (results) between two models occurred. In other words results validation 

and verification. 

  In addition to all that has been said above, just as a final remark to this 

comparison overview, there is another important discussion issue that must be addressed. 

Based on the actual cantilever design considerations and its physical implementation 
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feasibility, there are some indications related to the insulation layer (SiO2) thickness 

increase requirement. This requirement is directly related to the bonding issue between 

SiO2 and PZT layers. In all analyzed cantilever configurations so far the thickness of 

SiO2 layer has be assumed to be negligibly small (100 nm) and its effect on the detector 

sensing performance has been ignored. Now, due to the bonding effect between SiO2 and 

PZT layers and the facts that PZT layer in that bond tends to curl-up while SiO2 layer 

tends to curl-down, another requirement for the thickness balance between these two 

layers has arisen. In order to achieve this balance and avoid cantilever curling there are 

some indications that the SiO2 layer thickness is going to be increased from 100 nm up to 

250nm or 500nm (or even more). If this is going to be the case then it is obvious that due 

to the overall beam thickness increment for another 400 nm (in addition to initial 100 nm 

thickness) the overall predicted detector sensitivity is going to fall down for 

approximately 27%. Taking into account this sensitivity drop, according to the previous 

sensor modeling analysis and the designs related to the cantilever configurations for 

maximum voltage sensitivity (B=1.96 and B=1.85) there is a concern that the detector 

will then lose the portion of its capability related to the detection of THz signals which 

belong to lower μV measurable voltage range.  

4.3 Rectangular piezoelectric cantilever beam – Configuration II 

This section presents a brief investigation summary of the cantilever configuration 

as another possible THz sensing solution intended to be used in the following sensor 

configuration (Figure 46). 
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Figure 46. Rectangular cantilever L-Edit design layout (Configuration II)  
 

 

As in case of previous model investigation, the full analytical and 

CoventorWare® FEM modeling has been conducted once again. In comparison with the 

previous modeling the new proposal is in fact a beam with the same geometry 

(rectangular shape) but with different cantilevers’ length L and width w. The new sensing 

configuration (Figure 43) consists of four identical, symmetrically arranged, one side 

fixed beams inside a 6mm circle. The beams’ length and width are 2mm and 1mm 

respectively. As already pointed out each single beam from the presented sensing option 

is identical in geometry (shape) as the beam whose investigation results have been 

presented and analyzed in previous section. Therefore, the descriptive mathematical and 

physical behavior of the same beam, which has been just integrated as a sensing element 
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within a different sensing configuration has been already presented before and all that has 

been said there without exception is applicable here, too. Of course, due to the change in 

geometrical dimensions (L, w) different sensitivity levels (voltage response) under the 

same photoacustic exposure range (1μPa-1Pa) are expected, observed and discussed 

accordingly. With respect to that, based on the previously derived model equations (24), 

(25) and (26) for generated electrical charge Q, open circuit electric voltage V and 

observed thickness ratios B of 1.96 and 1.85, corresponding maximum voltage sensitivity 

configurations have been analyzed and compared with Configuration I sensitivity levels.  

The brief results summary related to the maximum voltage sensitivity beams’ 

configurations with L=2 mm, w=1 mm, and  𝑡𝑝 of 2.55 μm (analytical model) and 2.7 μm 

(FEM model) for a pressure load range of 1 mPa to 1 Pa can be seen in the following 

tables: Table 16 and Table 17, respectively. Both tables depict the open circuit electric 

voltage sensitivity levels response for randomly selected uniformly distributed pressure 

loads p from expected THz acoustic pressure range. The presented results for voltage 

generation in each modeling case associated with Configuration II belong to individual 

cantilever voltage generation. So, the total (cumulative) sensor voltage generation is four 

times higher (four cantilevers in sensing configuration) than depicted in Table 16 and 

Table 17.  
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Table 16. Calculated voltage response for maximum voltage sensitivity 
configuration (B=1.96) for tm=5 μm and tp=2.55 μm in case of Configuration I and 
Configuration II modeling (comparison)  
 

Pressure p Voltage V, Configuration I 
L=5 mm, w=2 mm 

Voltage V, Configuration II 
L=2 mm, w=1 mm 

0.1mPa -1.37e-6 V -2.202e-7 V 

0.5mPa -6.88e-6 V -1.101e-6 V 

1mPa -1.37e-5 V 2.202e-6  V 
0.5Pa -6.88e-5 V -1.101e-5 V 
1Pa -13.76e-3 V -2.202e-3 V 

 
 
 

 
Table 17. FEM simulated voltage response for maximum voltage sensitivity 
configuration (B = 1.85) for tm = 5 μm and tp = 2.7 μm in case of Configuration I 
and Configuration II modeling (comparison) 
 

Pressure p Voltage V, Configuration I 
L=5 mm, w=2 mm 

Voltage V, Configuration II 
L=2 mm, w=1 mm 

0.1mPa -4.09e-7 V -7.24e-8 V 
0.5mPa -2.05e-6 V -3.62e-7 V 
1mPa -4.09e-6 V -7.24e-7 V 
0.5Pa -2.05e-3 V -3.62e-4 V 
1Pa -4.09e-3 V -7.24e-4 V 

 
 
                   

As expected and already observed before, different configuration has responded 

differently, exhibiting different sensitivity levels under the same pressure exposures. Due 

to the change in length and width for the same maximum voltage thickness ratios B=1.96 

and B=1.85 the new beam configuration in comparison with the previous one has shown 

tremendous sensitivity decrease. The 2.5 times shorter and twice less wide beam with the 
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same overall thickness as the previous one obviously becomes more difficult to bend for 

the same pressure loads. Smaller electrical charge amount Q has been created and 

reasonably lower open circuit voltages across PZT have been observed. From the 

obtained results (Table 16, Table 17) it appears that the new cumulative sensing 

configuration solution (Configuration II) is 1.56 (calculated) or 1.41 (FEM simulated) 

times less sensitive to acoustic THz radiation then the single L × w (5 mm× 2 mm) beam 

solution (Configuration I). Once again for the reasons mentioned earlier the calculated 

(theoretical) and simulated (FEM) results are different, but reasonably close to describe 

the actual beam behavior in each case.  

So, Configuration II is less sensitive THz radiation sensing solution, and as such 

is less acceptable (preferred) than Configuration I. As mentioned several times 

throughout this thesis, the predicted THz acoustic radiation (Section 3.5) is expected to 

occur within μPa and mPa pressure range. So, based on the modeling predictions in either 

case (theoretical, FEM) the new beam configuration proposal which is approximately 1.5 

times (or 5.5 times per individual cantilever in configuration) less sensitive will not be 

able to detect appearance of any measurable THz signal within lower half if not entire  

μPa range. 

  It is true that Configuration II sensitivity could be significantly improved if we 

use another, the earlier mentioned approach in achieving thickness ratio B for maximum 

voltage sensitivity. The way of doing it is to significantly reduce device (elastic) 

layer  𝑡𝑚  in order to decrease beams’ overall thickness and increase cantilever bending 

feasibility. Assuming the device layer to be let say tm= 2 μm instead of 5 μm and using 

one of the thickness ratios B (1.96 or 1.85) for maximum voltage sensitivity we could 
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have much more sensitive configuration with L=2 mm, w=1 mm, tm= 2 μm and tp= 1 

μm (based on B). This configuration, let say for a pressure load p of 1Pa will give us an 

open circuit voltage generation across PZT of V=-5.5 mV (calculated) which compared 

with the initial tm=5 μm configuration generated voltage of V=-2.2 mV (Table 16) is 

~2.5 times higher. It is obvious that this approach has increased cumulative configuration 

sensitivity for ~2.5 times (-22.02 mV), and comparing it with Configuration I sensitivity 

of V= -13.76 mV (Table 16) this configuration is ~1.6 times more sensitive and as such is 

considered as preferred THz sensing solution. However, according to some overall sensor 

design considerations, the cantilever physical implementation with device layer thickness 

below 5μm is not currently considered as an acceptable option. Several attempts to 

fabricate cantilever with device layer thickness of 5 μm failed. Thus, Configuration I still 

remain preferred sensing option only based on sensor physical implementation feasibility 

rather than on sensing performance.   

4.4 Cross tethers sensing configuration 

As stated in Section 3.6 the cross tethers sensing configuration is the last 

cantilever based sensing option, the sensing performance of which has been analyzed and 

investigation findings have been presented within this research work. The proposed 

sensing configuration (greatly enlarged version of Figure 16 from Section 3.6) is as 

shown in Figure 47 below. Besides configuration geometry the main difference between 

this and previous two cantilever sensing configurations are greatly reduced PZT covering 

area and tethers (beams’) movement freedom (no loose beams ends) when exposed to 

pressure loads.  
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                 Figure 47. 3D solid model of cross tethers sensing configuration 
 
 
 

The device design and FEM simulation modeling have been conducted in the 

same fashion as it was case in previous two analyzed configurations. After initial 2-D L-

Edit© layout designs the CoventorWare® 3-D solid models have been generated, the 

mesh analysis has been conducted and the adequate mesh models have been generated. 

The 3-D mesh model that belong to the configuration with thickness ratio for maximum 

voltage sensitivity (B=1.85) is shown in Figure 48.  
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Figure 48. Manhattan bricks mesh model with mesh optimal density of x = 200 μm, 
y = 200 μm and z = 200 μm 

 

 

The device behavior and sensing performance in terms of maximum voltage 

generation have been analyzed by series FEM simulations through the use of the 

CoventorWare® MemMech and piezoelectric solvers. The simultaneous voltage 

generation across each PZT layer (four) under uniformly distributed pressure loads from 

expected terahertz photoacoustic range (Section 3.5) has been observed and analyzed. 

The FEM calculated amounts of generated electrical voltage at the top of each PZT plate 

for a randomly selected photoacoustic pressure loads are as presented in Table 18.  
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Table 18. Generated voltages for the cross tethers beam based sensing configuration 
 

Pressure P 
Voltage   

PZT-top 1 

Voltage   

PZT-top 2 

Voltage 

 PZT-top 3 

Voltage V 

PZT-top 4 

Total 

Voltage 

0.1 mPa -0.22 μV -0.22 μV -0.22 μV -0.22 μV -0.87 μV 

0.5 mPa -1.08 μV -1.08 μV -1.08 μV -1.08 μV -4.33 μV 

1 mPa -2.16 μV -2.16 μV -2.16 μV -2.16 μV -8.67 μV 

500 mPa -1.07 mV -1.07 mV -1.07 mV -1.07 mV -4.29 mV 

1 Pa -2.15 mV -2.15 mV -2.15 mV -2.15 mV -8.59 mV 

 

 

As can be seen from obtained results the equal amount of the generated voltage 

has been observed on the top of all four PZT plates. This equal voltage distribution is a 

result of perfect device solid model and mesh modeling. Less accurate solid or mesh 

models usually produce more or less different voltage generation levels on the 

symmetrically arranged PZT transducers. What is the most important is the fact that this 

device responds significantly and most importantly responds to a measurable voltage 

levels even for a very low pressure loads such are those generated by weak terahertz 

electromagnetic radiations. An example is a voltage (total cumulative value) of 0.86 μV 

which has been generated as result of uniformly distributed pressure load (100 nPa) from 

a bottom of μPa photoacoustic pressure range. Thus, based on the obtained results, the 

new sensor design had an expected impact on the device overall sensing performance 

with pay off in improved detector sensitivity. The Table 19 provides brief results 
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summary and comparison in sensitivity levels between this and the sensing options 

analyzed in Section 4.2 and Section 4.3. The results in the last two table columns 

represent the total (cumulative) voltage generation across all four symmetrically arranged 

configurations’ transducers shown in Figure 43 (Section 4.3) and Figure 44 above.    

  

   Table 19. Generated voltages across PZT for three different sensing configurations 
 

Pressure p 
Voltage 

Configuration I 

Total Voltage 

Configuration II 

Total voltage 

Cross tethers beams 

0.1 mPa -0.41 μV -0.29 μV -0.86 μV 

0.5 mPa -2.05 μV -1.445 μV -4.33 μV 

1 mPa -4.09 μV -2.89 μV -8.67 μV 

500 mPa -1.45 mV -1.45 mV -4.29 mV 

1 Pa -4.09 mV -2.89 mV -8.59 mV 

 

 

The results indicate that the single rectangular shape cantilever sensor 

(Configuration I) is approximately about 30% more sensitive than Configuration II but 

52% less sensitive than cross tethers sensing option. So, the cross tethers (beams) based 

configuration in terms of maximum voltage sensitivity performs much better than the 

CoventorWare® MemMech other two previously analyzed options. 

Furthermore, using solver the modal analysis of the structure has been performed. 

The aim of this analysis was to investigate the device mechanical response (deformation 

modes) under uniformly distributed photoacoustic pressure loads and to calculate the 
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natural resonant frequencies associated with each modal shape. The investigation results 

have indicated which mode will ensure maximum device response based on its 

displacements and consequently the maximum amount of electrical charge generation as 

result of induced stress in device x, y, and z directions. The analysis has been performed 

for the very low 100Hz to 1600Hz harmonic frequency range on the 10mPa pressure-

loaded tethers configuration with requested 10 frequencies display. The device is 

examined for various mode shapes and its resonant frequencies have been determined 

accordingly. The obtained results for each modal shape are shown in Table 20. 

 

    Table 20. Calculated resonant frequencies for cross tethers beam configuration 
 

Modes Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Resonant 

frequencies 
2.01 kHz 4.32 kHz 4.33 kHz 6.23 kHz 7.89 kHz 10.12 kHz 

 

 

Once again it has been found that Mode 1 impact on the device response is much 

higher than are impacts of the other modal shapes. The resulting vibrating pattern (greatly 

enlarged) of this mode and its generalized displacement response as a function of 

frequency is presented in Figure 49 and Figure 50. The remaining mode shapes of 

vibrating pattern with associated resonant frequencies and generalized displacements 

response can be seen in Appendix B.  
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        Figure 49. Mode 1 vibrating pattern with resonant frequency of 2013.2 Hz  
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        Figure 50. Sensor Generalized Displacement for Mode 1    
 
 
 

4.5 Circular membrane sensing configuration 

The first of two membrane based sensing configurations which were considered 

and analyzed as a potential THz sensing solution is a multilayer circular membrane. The 

main consideration objective was to design, analyze and then if it turns out to be 

reasonably good sensing option to fabricate a flat, thin multilayer circular membrane with 

a high quality piezoelectric thin film which could be then used as effective sensing 

element in the detection of electromagnetic terahertz radiation.    

The initial plan was to conduct membrane modeling and performance analysis 

using FEM simulations, and then if the simulated results give us strong indication that the 

simulated membrane could be considered as possible THz sensing option, the simulations 
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will be validated by analytical calculations based on appropriate analytical sample case. 

Based on actual L-Edit© design layout and using CoventorWare® FEM Simulation 

Process Editor Tools, the device solid model generation (Section 3.7, Figure 17), the 

mesh model analysis and adequate model meshing (Figure 51) have been performed.  

        

 

 
              Figure 51. Membrane 3D FEM mesh model 
 
 
 

Due to the membrane specific circular geometry and huge computing time 

required the extruded tetrahedrons with parabolic element order has been selected as the 

appropriate meshing option. The mesh sometimes looks irregular (as in case above), 

however, the Extruded/Pave meshing in general generate accurate results for all solvers 

[24]. The mesh analysis has been performed and it has been found that two meshing 

options with different mesh density produce the same results. The Table 21 provides a 

brief summary of the performed mesh analysis. 
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     Table 21. Membrane deflection response to uniformly distributed pressure loads 
 

     Element size 1000 μm  Element size 600 μm  Element size 300 μm 

Pressure p Deflection ‘z’      Deflection ‘z’     Deflection ‘z’ 

   1μPa            -2.7e-11 μm      -5.3e-11 μm      -5.3e-11 μm 

   1mPa            -2.7e-8 μm      -5.3e-8 μm      -5.3e-8 μm 

   1Pa            -2.7e-3 μm      -5.3e-3 μm      -5.3e-3 μm 

     

 

From the obtained results it can be seen that the two meshes (minimum 

requirement) with parabolic element order and element size in planar direction of 600 μm 

and 300 μm and 5 μm in extruded direction, generate essentially the same deflection 

results; therefore, the model can be considered mathematically accurate. Due to the 

significant difference in computing time the mesh model with mesh density involving 

element size of 600 μm in planar and 5 μm in extruded direction has been used 

throughout entire model simulation and testing process.  

The initial FEM simulations and analysis have been firstly performed on the 

standard, then on the reduced in thickness membrane configurations. Standard manly 

refers to the membrane model implemented on a 100 mm Silicon On Insulator (SOI) 

wafer with device and piezoelectric layer thickness of 5 μm and 2.7 μm (B=1.87) 

respectively. So, the model with an overall membrane thickness of 8 μm (including SiO2 

and two metal layers) has been exposed to the expected THz photoacoustic pressure 

range (1μPa - 1Pa). After the performed simulations it has been found out that the 

membrane does not respond to the prescribed acoustic pressure levels at all. Due to the 
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relatively high overall thickness and the fact that the membrane has been entirely fixed all 

around its circumference the applied loads have not been able to produce any significant 

device deformation or any deformation at all. Just as an illustration of the membranes 

insensitivity, here are a few deflection results (Table 22) related to the pressure loads of 

10 Pa, 20 Pa and 40 Pa, respectively. 

 
 
Table 22. Membrane deflections for maximum voltage sensitivity configuration 
(B=1.85) for tm=5 μm and tp=2.7 μm  
 

Pressure p Deflection z 

10 Pa - 0.53 nm 

20 Pa -1.06 nm 

40 Pa -2.2 nm 
 
 
 

The typical 3D FEM simulation result of the piezoelectric membrane simulations 

is presented in Figure 52.  
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Figure 52. FEM simulation result of circular membrane for a pressure load of  
10 Pa  
 
 
  

As can be noticed, due to negligible membrane deflection, even for a uniformly 

distributed pressure load of 10 Pa, the visible sensing deformation could not be observed 

without huge simulation enlargement, as shown in the following figure (Figure 53). 



 

130 

 

     
 

Figure 53. Enlarged FEM simulation result of circular membrane for a pressure 
load of 10 Pa 
 
   
 

From the obtained results, even for simulations related to pressure loads that are 

well outside the THz photoacoustic range, there is no indication of any electric charge 

and voltage generation. Based on presented, the observed membrane configuration with 

an overall thickness of 8μm, without a question, is not a sensing solution that we are 

looking for. In respect to all these, it is obvious that if we want a membrane as integrated 

open circuit sensing solution, in that case the membrane must a be really thin device with 

a high quality PZT. Furthermore, as an attempt, and of course as a part of research work, 

in order to get an estimation insight into thin membranes’ sensitivity levels, and how far 

we can go in membranes’ thickness decrease, another so called reduced model membrane 
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(reduced in thickness) has been designed, simulated and investigated. Due to some 

considerations associated with the sensor physical implementation feasibility it is still 

unknown (testing required) how far below 5 μm we can go in device layer thickness 

decrease. With respect to that, in order to analyze a reasonably feasible thin membrane 

and to observe its sensitivity level the tm =1.5 μm has been randomly selected. So, based 

on the FEM thickness ratio (1.85) for a maximum voltage sensitivity, the membrane 

configuration with an overall thickness of 2.6μm (tm =1.5 μm, tp=0.8 μm, SiO2 and metal 

layers 0.1 μm) has been investigated. The selected portion of obtained results for selected 

pressure loads of 1 Pa, 5 Pa and 10 Pa are as presented in Table 23.    

 

 
Table 23. Membrane deflections and corresponding voltage response in a case of 
reduced thickness configuration (B=1.85) with tm=1.5 μm and tp=0.8 μm  
 

Pressure p Deflection z Generated V 

1 Pa -0.1 nm -0.029 μV 

5 Pa -0.51 nm -0.15 μV 

10 Pa -1 nm -0.29 μV 
 
 
 
  Once again the obtained results show that membrane even with a decrease in 

overall thickness of almost three times in comparison with previous version is not 

sensitive enough to be able to detect any measurable signal from THz radiation range. 

The reason for membrane sensing inefficiency, as already pointed out, is due to the fact 

that the membrane in contrast to cantilever (one or both sides fixed) is fully fixed around 

entire circumference. As a result, as observed, much higher pressure levels are required to 
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produce the same deflections in “z” direction, and consequently to cause the same 

piezoelectric deformation in the membrane edge areas, where the electrical charge in fact 

is going to be generated. Thus, based on observed device insensitivity the membrane as 

such should not be considered as potential terahertz sensing option.   

 In addition to all that has been said above in relation to the circular membrane 

insensitivity, Appendix C contains FEM results related to membrane Modal and the 

Mises Stress analysis which give a deeper insight into the behavior of the membrane 

under uniformly distributed photoacoustic pressure loads.    

4.6 Square membrane sensing configuration 

This section presents a brief FEM investigation summary of the square membrane 

sensing configuration. Its L-Edit© design layout and the generated 3-D solid model are 

shown in Figure 18 and Figure 19 (Section 3.7) respectively. Due to the device specific 

geometry the extruded bricks with parabolic element order has been selected as the 

appropriate meshing model. The mesh analysis has been conducted and the adequate 

mesh model has been generated, which can be seen in Figure 54. 
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        Figure 54. FEM 3D meshed model of the square membrane  
 

 
 

As indicated in Figure 51, the four piezoelectric transducers of the same size (300 

μm x 300 μm x 3 μm) and shape have been deposited on four symmetrically separated 

membrane locations. The transducers belong to configuration with thickness ratio B=1.85 

for maximum voltage sensitivity where the thickness of device and PZT layer is 5 μm and 

2.7 μm respectively and the individual thickness of the metal (top and bottom) and SiO2 

layers is 0.1 μm. The membrane behavior and sensing performance in terms of maximum 

voltage generation have been analyzed by a series of FEM simulations utilizing the 

CoventorWare® mechanical and piezoelectric solvers. As it was case with cross tethers 

cantilever configuration, the simultaneous voltage generation across each PZT layer 

(four) under uniformly distributed pressure loads from the expected terahertz 

photoacoustic range (Section 3.5) has been observed and analyzed. The FEM calculated 
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voltage generation at the top of each PZT plate for selected pressure loads from terahertz 

photoacoustic pressure range is as presented in Table 24.  

 

   Table 24. Generated voltages for the square membrane sensing configuration  
 

Pressure P 
Voltage   

PZT-top 1 

Voltage   

PZT-top 2 

Voltage 

 PZT-top 3 

Voltage V 

PZT-top 4 

Total 

Voltage 

0.1 mPa -0.87 μV -0.87 μV -0.87 μV -0.86μV -3.46 μV 

0.5 mPa -4.31 μV -4.31 μV -4.31 μV -4.30μV -17.21 μV 

1 mPa -8.68 μV -8.68 μV -8.68 μV -8.62μV -34.66 μV 

500 mPa -4.34 mV -4.34 mV -4.34 mV -4.31mV -17.33 mV 

1 Pa -8.57 mV -8.57 mV -8.57 mV -8.51mV -34.22 mV 

 

 

As can be seen from the obtained results an equal amount of generated voltage 

has been observed on top of the three PZT plates, while the voltage generated on the 

fourth PZT plate is slightly different. The reason for this negligible difference (0.72%), 

which does not have any impact on the validity of the performed device performance 

analysis due to a small deviation in dimensions between the fourth and the other three 

transducers that occurred during membrane L-Edit© layout design. The most obvious 

reason could be extremely small misalignment in the overlapping layers that occurred in 

the case of the fourth transducer design. This deviation from the exact overlapping layers 

had an impact on the generated mesh accuracy and consequently produced negligibly 

small error in voltage generation.   
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 However, the most important observation is that this device with a significant 

change in configuration geometry exhibits tremendously high voltage sensitivity level 

like no one of the sensing options whose sensing performance have been discussed in this 

research work. Just as an illustration (Table 24) of its high sensitivity is a voltage 

generation of even 3.46 μV (cumulative value) as a response to uniformly distributed 

pressure load (100 nPa) from a very bottom of μPa photoacoustic pressure range. Having 

in mind the estimated terahertz photoacoustic pressure loads, ranging between μPa and 

mPa pressure levels (Section 3.5), this level of detector sensitivity is exactly what we are 

looking for. Based on the obtained results there is no doubt that a square membrane 

sensing configuration will be able to detect weak THz electromagnetic radiation.   

The Table 25 provides brief results summary and comparison in sensitivity levels 

between the square membrane and other two out of the four remaining analyzed sensing 

configurations, which were among the options with achieved better sensitivity results. 

 

 Table 25. Generated voltages across PZT for three different sensing configurations 
     

Pressure p 
Voltage V 

Configuration I 

Total voltage V 

Cross tethers beams 

Total voltage V 

Square membrane 

0.1 mPa -0.41 μV -0.86 μV -3.46 μV 

0.5 mPa -2.05 μV -4.33 μV -17.22 μV 

1 mPa -4.09 μV -8.67 μV -34.66 μV 

500 mPa -1.45 mV -4.29 mV -17.33 mV 

1 Pa -4.09 mV -8.59 mV -34.22 mV 
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The presented results clearly show that all three sensing configurations have 

demonstrated the ability to respond effectively to any pressure load from entire terahertz 

photoacoustic radiation range. These results indicate that the square membrane sensing 

performance is by far  superior compared to the other two solutions, exhibiting by 

approximately about four times more sensitivity than the configuration involving cross 

tethers beams, and more than eight times more sensitivity than Configuration I.  

As it was case with any of the previous configuration investigations, FEM 

simulations were also performed on square membrane in order to determine its resonance 

frequency and mechanical vibration mode patterns. The resulting vibrating pattern for the 

first six modes and associated resonant frequencies for a pressure load of 10 mPa and 

harmonic frequency range from 100 Hz to 1600 HZ is shown in Figure 55. 
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Mode 1 (1246.03 Hz)                                         Mode 2 (2805.52 Hz) 

                  

Mode 3 (2806.17 Hz)                                          Mode 4 (3734.37 Hz) 

                 

Mode 5(5869.87 Hz)                                          Mode 6 (7046.84 Hz) 
 
 

Figure 55. Resulting vibrating pattern and resonant frequencies for a load of 10 
mPa 
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From presented it can be clearly seen that all six modes more or less contribute to 

the membrane response. Among presented, the Mode 1 shown in Figure 48 with 

corresponding resonant frequency of 1246.03 Hz will provide maximum membrane 

response (displacement) to a uniformly distributed pressure loads. The corresponding 

generalized Displacements plot (displacement as function of frequency) is shown in 

Figure 56. 

 

 

 

                         Figure 56. Square membrane generalized displacements plot  
 
 
 
 In addition to the above the Mises stress is used to show the generalized stress 

distribution in the square membrane. Figure 57 shows that maximum Mises stress of 11 
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kPa is concetrated outside the 0.3 µm x 0.3 µm PZT coverage ares. In order to maximize 

configuration response (increase sensitivity) as part of FEM sensor optimization the PZT 

sensing area has been increased from 0.3 µm x 0.3 µm to 0.52 µm x 0.52 µm in order to 

cover membranes’ areas where Mises stress is most pronaunced. However, the expected 

increase in voltage sensitivity has not been achived. The obtained results in Apendix D 

shows that an increase in PZT area did not provide expected sensitivity increase so, the 

previous sensing geometry with PZT area of 0.3 µm x 0.3 µm is still prefered sensing 

option. The reason for this is that maximum Mises stress will always occur just below 

PZT ares where  silicon membrane is thiner while the effective bending in PZT covered 

areas will happened close to the fixed membranes ends. The obtained results for voltage 

generation of this optimization attempt for rendomly selected photoacoustic pressure 

loads and their comparison with configuration results involving 0.3 µm x 0.3 µm PZT 

transducers are presented in Appendix D.    
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Figure 57. Mises stress distribution of a square membrane configuration 
 

 
 

4.7 Summary 

This chapter went through the analysis of the sensing performance of five 

different MEMS detector configurations that can be used as potential THz photoacoustic 

sensing options. Analytical, as well as FEM modeling results were discussed. In each 

case the effect of variations in models’ geometrical dimensions and impact of materials 

electromechanical properties on sensing performance have been investigated and 

presented accordingly. Based on the obtained results the sensing options have been 

evaluated and compared with each other to determine the best sensing performance. After 



 

141 

 

the conducted investigations, it has been discovered that there is some level of 

disagreement between theoretical (calculated) and FEM simulated results. The possible 

reasons and justification for the observed disagreement have been discussed within 

relevant chapter sections. According to the obtained results, the square membrane is the 

best terahertz photoacoustic sensing solution. Compared to the others, the square 

membrane has demonstrated the ability to respond effectively to any radiation level from 

the entire THz photoacoustic range, while exhibiting tremendously high sensitivity. In 

addition to the square membrane, the cross tethers beam configuration has demonstrated 

reasonable high sensing performance, being able to respond significantly well with a 

significant measurable voltage response. The remaining configurations have 

demonstrated much lower sensitivities and inability to effectively cover the entire THz 

photoacoustic range or even to demonstrate almost any ability to respond to any 

photoacoustic pressure input.  

 
V.  Conclusions and Recommendations   

The objective of this research work was to design and develop a novel 

photoacoustic detector responsive to sub-millimeter/terahertz radiation. Due to the nature 

of the proposed research activity, many different terahertz sensing configurations were 

designed and analyzed. Initially, when the research began, it was not clear what the 

expected detector functionality was and which MEMS based sensing configuration would 

respond effectively and which would not; however, at this stage it is possible to draw 
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some conclusion about the outcomes, whether positive or negative, and based on these 

recommendations can be made. 

5.1 Conclusions  

The expected outcome of this research is a terahertz photoacoustic detection that 

may lead to the development of the hand held THz chemical sensors and THz detector 

arrays for imagining. Besides a number of other components that will be used to build a 

photoacoustic system, there is a requirement for the development of highly sensitive 

detector as the vital part of the intended terahertz photoacoustic sensor design. Based on 

the fact that THz electromagnetic radiation is a very short and weak pulse emission, the 

feasibility of its detection is seen in the utilization of MEMS cantilever-based sensors. 

This research has gone through the whole process of detector development with the main 

focus on sensor analytical and FEM modeling. Initially, based on L-Edit© detector 

surface modeling designs and fully developed device fabrication process, several 

cantilever sensing configurations have been intended to be fabricated and tested. The 

observed sensing performance was to be compared with analytical and simulated results. 

This research modeled five different detector configurations whose sensing performance 

has been evaluated, assessed and compared among each other. In each case, the effect of 

variations in the models’ geometrical dimensions and impact of materials’ 

electromechanical properties on sensing performance has been investigated. After 

conducted investigations, it has been determined that the square membrane sensing 

performance is by far superior compared to the other solutions and as such is 

recommended as the preferred terahertz sensing option.  
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5.2 Recommendations  

After completion of this investigation there are many recommendations that can 

be made. Some of them are obvious and already have been more or less recognized and 

stated within relevant thesis sections. First of all, during this research work several 

sensing configurations have been developed whose sensing performance have been 

assessed by analyzing the collections of analytical and simulated data results. Some of the 

configurations have been identified as potential terahertz sensing solution while some are 

not. Hence, to confirm assessment validity, verify and evaluate configurations that have 

been identified as potential sensing option the fabrication and actual device sensitivity 

measurements and comparison with simulated results would be required. Furthermore, 

based on the requirement for the development of highly sensitive MEMS based detector, 

responsive to a weak terahertz electromagnetic radiation in order to improve its 

sensitivity the modeling and sensing performance analysis of cantilever based sensing 

configurations involving double piezoelectric layer would be one possibility for 

improvement. This research work has been focused on the sensing options with single 

piezoelectric layer configurations, however based on some published research results [13] 

the use of double layer configurations with the same geometrical dimensions could 

significantly improve detectors sensitivity. Another recommendation could be to conduct 

an investigation related to device layer thickness decrease. From the sensor physical 

implementation point of view it is still unknown how far below 5μm device layer 

thickness it is possible to go. As mentioned earlier, several attempts of fabricating 

cantilever with 5μm device layer failed; hence, in order to determine the reason of failure 

and thin device layer fabrication feasibility an investigation into material properties and 
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fabrication process would be required. A sensing configuration with defined thickness 

ratio for maximum voltage sensitivity involving thinner device layer would increase 

detector sensitivity significantly as discussed and presented in Chapter IV. Besides the 

recommendations related to detector sensing performance improvement there is always 

room for sensor optimization options which mainly involve investigation in new 

configuration shape (geometry), optimal piezoelectric coverage area or possibility of 

using materials with different electromechanical properties. The last mentioned 

recommendation would be required especially in the case of MEMS membrane-based 

sensing configurations development, where thickness, shape and membranes’ elasticity 

are main factors that define detectors sensing performance.  

5.3 Contributions 

Some valuable contributions were made in the completion of this research work. These 

contributions are listed below.  

- The thickness ratio B for maximum voltage sensitivity has been observed and 

as such can be used as a valid data in the future cantilever sensing 

configurations designs involving Si and PZT materials as main device 

structural layers.  

- Two out of five developed sensing configurations, namely cross tethers and 

square membrane sensing configurations are unique sensing options which 

have demonstrated high sensitivity level and as such with a further 
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optimization can be thought as a possible THz radiation sensing solutions for 

a detector in development.   

- This research modeled five different sensing configurations with full L-Edit 

design layouts and FEM simulation results for the voltage generation across 

PZT sensing elements for the entire estimated terahertz photoacoustic pressure 

range. Based on the obtained results future work may require only device 

fabrication, its testing and obtained test results comparison with the already 

provided simulated results.  
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Appendix A   

A-1 THz Photoacoustic Cantilever Fabrication Procedures 
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A-2 Configuration I CoventorWare® Process Editor Fabrication Process 

 

 
 
 

Step No: 0 

 
                                          

 

Step No: 1 
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  Step No: 2                        

 
                                          
 
 

Step No: 3 

 
                                          

Step No: 4 
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Step No: 5                                          

 
 
 

   Step No: 6 

 
                                              
 
 

Step No: 7 
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Step No: 8 

 
                                                  
 

Step No: 9 

 
 
 

Step No: 10 
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    Step No: 11                                                  

 
                                                 
 

  Step No: 12 

 
                                      
 

Step No: 13 
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A-3 List of material properties used in the analytical and FEM modeling 

 
            - Si <100> Young’s modulus E = 130.18 GPa 
 
 
 - PZT Young’s modulus E = 89 GPa   
 
 
 - Gold Young’s modulus E = 57 GPa   
 
 
 - Platinum Young’s modulus E = 145 GPa   
 
 
 - Transverse piezoelectric coefficient d31 = 274e-12 m/V  
 
    
 - Electromechanical coupling coefficient k31 = 0.344  
 
       
 - Dielectric constant of the piezoelectric material under free conditions; 
 
   ε˟₃₃ = 1700 F/m    
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Appendix B 

B-1 Cross Tethers CoventorWare® Process Editor Fabrication Process 

 

Step No: 0 

    

Step No: 1                                             
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Step No: 2 

 

 

  Step No: 3                                             

 

   Step No: 4                     
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 Step No: 5                                        

 

Step No: 6 

                                  

 Step No: 7 
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Step No: 8 

 

 

 Step No: 9                                                  

 

 

 Step No: 10 
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Step No: 11 

 

 

Step No: 12                                                 

 

                                                 

Step No: 13 
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B-2 Cross tethers configuration modal analysis results 

 

 
Table 26. Cross Tethers Configuration FEM resonant frequencies results 
 

            

 

 
Table 27. Cross Tethers generalized harmonic display results 
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                 Mode 1 (2010.45 Hz)                                            Mode 2 (4318.6 Hz) 

                                    

                  Mode 3 (4318.6 Hz)                                                    Mode 4 (6219.11 Hz)                         

                              

                Mode 5 (7885.75 Hz)                                                  Mode 6 (10115.1 Hz)  
            
Figure 58.  Cross tethers resulting vibrating pattern and associated resonant 
frequencies for a load of 10 mPa 
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          Mode 1 (2010.45 Hz)                                             Mode 2 (4318.6 Hz) 

 

                 
      Mode 3 (4318.6 Hz)                                           Mode 4 (6219.11 Hz) 

 

                                                

       Mode 5 (7885.75 Hz)                                               Mode 6 (10115.1 Hz) 
Figure 59. Cross Tethers Generalized Displacements plots 
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Appendix C 

C-1 Circular Membrane CoventorWare® Process Editor Fabrication Process 

 

 

Step No: 0 

 

 

Step No: 1                                               
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Step No: 2                                                

 

 

Step No: 3                                                 

 

                                              

Step No: 4 
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Step No: 5                                                 

 

 

Step No: 6 

 

 

Step No: 7                                               
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C-2 Circular Membrane FEM Modal and Mises Stress analysis results 

  

 As mentioned in Section 4.5 the additional results presented in this appendix 

section provide a deeper insight into circular membrane insensitivity. As can be seen in 

Table 29 that depict modal analysis results, membrane (with overall thickness of 2. 6μm) 

does not respond at all even for photoacoustic pressure load of 5 Pa. Responses 

associated with Mode 3, Mode 4, and Mode 6 is clearly zero while response associated 

with remaining modes are well below measurable levels. The same observations can be 

seen from Figure 57 and Figure 58.     

 

Table 28. Circular membrane FEM natural resonant frequencies results 
 

 

 
   Table 29. Circular membrane generalized harmonic display results 
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                 Mode 1 (163838 Hz)                                            Mode 2 (503393 Hz) 

                               

                  Mode 3 (541925 Hz)                                                    Mode 4 (543230 Hz)                             

                            

                Mode 5 (646739 Hz)                                                  Mode 6 (710816 Hz)  
            
Figure 60. Circular membrane resulting vibrating pattern and resonant frequencies 
for a load of 5 Pa 
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          Mode 1 (163838 Hz)                                             Mode 2 (503393 Hz) 

                 
      Mode 3 (541925 Hz)                                           Mode 4 (543230 Hz) 

                      

                   Mode 5 (646739 Hz)                                                  Mode 6 (710816 Hz) 

Figure 61. Circular Membrane Generalized Displacements plots 
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Figure 62. FEM model result of the deflection of a clamped circular membrane for 5 
Pa photoacoustic load. 
 
 
 
 As can be seen in Figure 62 the maximum deflection of 5.1μm occurs at the 

center of membrane. The figure also shows that the deflection at fixed boundary (red 

color) between the membrane and the surrounding silicon frame is only 0.83nm. This 

deflection in critical stress area is so small that will not create any effective stress and 

charge generation at all as explained in Section 4.5. Furthermore, Figure 63 below, which 

is FEM Mises stress representation, clearly indicates that there is no radial and tangential 

stress generation as result of uniformly distributed pressure load.   
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Figure 63. Circular Membrane FEM Mises stress distribution for 5 Pa 
photoacoustic pressure load  
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Appendix D 

D-1 Square Membrane CoventorWare® Process Editor Fabrication Process 

 

 

 

Step No: 0

 

                                                

 Step No: 1 
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 Step No: 2 

 

 

 Step No: 3 

 

 

 Step No: 4 
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Step No: 5 

 

                                                  

Step No: 6 

 

Step No: 7 
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Step No: 8 

 

                                                 

   Step No: 9 

 

 

Step No: 10 
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D-2 Square Membrane FEM results for 0.52 µm x 0.52 µm PZT transducers 

 

 

 

   

Figure 64. FEM 3D meshed model of the square membrane (Extruded bricks, 
element order parabolic, element size in planar direction 200, element size in 
extrude direction 5) 
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Table 30. Generated voltages for the square membrane sensing configuration 
involving PZT transducers of 0.3 µm x 0.3 µm and 0.52 µm x 0.52 µm 
 

 
 
 
 
 

                                                                
 
 Figure 65. Square membrane deflection for 10mPa uniformly distributed pressure 
load 
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Figure 66. Mises stress distribution of a square membrane configuration involving 
0.52 µm x 0.52 µm PZT transducers   
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