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Abstract 

 

To operate autonomously in forested terrain, unmanned ground vehicles (UGVs) must be 

able to identify the load-bearing surface of the terrain (i.e. the ground) and obstacles in 

the environment. To travel long distances, they must be able to track their position even 
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when the forest canopy obstructs GPS signals, e.g. by tracking progress relative to tree 

stems. 

 

This paper presents a novel, robust approach for modeling the ground plane and tree 

stems in forests from a single viewpoint using a lightweight lidar scanner. Ground plane 

identification is implemented using a two-stage approach. The first stage, a local height-

based filter, discards most non-ground points. The second stage, based on a support 

vector machine (SVM) classifier, identifies which of the remaining points belong to the 

ground. 

 

Main tree stems are modeled as cylinders or cones to estimate the diameter 130 cm above 

the ground plane. To fit these models, candidate main stem data is selected by finding 

points approximately 130 cm above the ground. These points are clustered into separate 

point clouds for each stem. Cylinders and cones are fit to each point cloud, and heuristic 

filters identify which fits correspond to tree stems. 

 

Experimental results from five forested environments demonstrate the effectiveness of 

this approach. For ground plane estimation, the overall classification accuracy was 

86.28% with a mean error for the ground height of approximately 4.7 cm. For stem 

estimation, up to 50% of main stems were accurately modeled using cones, with a root 

mean square diameter error of 13.2 cm. 
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1. Introduction 

Classification and modeling of forested terrain is a major challenge in remote sensing. 

Accurate modeling of terrain is critical for autonomous navigation of unmanned ground vehicles 

(UGVs) and inventory management in the forestry industry. These applications require that a 

sensing system identify contours of the load-bearing surface (i.e. the ground) and recognize main 

tree stems. While vehicle-mounted terrestrial lidar sensors (TLS) have the ability to return high-

density point clouds from below the forest canopy, extracting estimates of ground height and 

locations and diameters of tree stems is nontrivial. 

In the autonomous mobility domain, quickly and accurately modeling the environment in 

the forest is an important step towards autonomous UGV operation. Main stem locations, 

collected from a UGV-mounted lidar, can be used as inputs for simultaneous localization and 

mapping (SLAM) algorithms (Pradalier & Sekhavat, 2003). Digital terrain models (DTMs) 

generated using vehicle-mounted sensors can also be correlated to aerial data to enhance UGV 

localization (Vandapel et al., 2006; Carle et al., 2010). In the forestry domain, tree stem 

modeling can be used for estimating biomass (Lucas et al., 2006; Sharma and Parton, 2009; Li 

and Weiskittel, 2010) or characterizing forest stand structure (Lefsky et al., 2005; Lefsky et al., 

1999). 

Ground plane estimation based on terrestrial lidar can be challenging due to the 

occlusions of terrain by tree trunks and low vegetation. Due to the low observation angle of TLS, 

as compared with aerial laser scanning (ALS), nearby terrain can also occlude more distant 
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terrain. Previous researchers have proposed several approaches to address these challenges. Maas 

et al. (2008) combined sensor scans from multiple viewpoints to avoid occlusions, but this 

approach relies on accurately registered scans. Raber et al. (2002) identified different types of 

vegetation based on a vertical histogram, but relied on the consistent observation angle available 

in aerial lidar data. Working in an agricultural scenario, Wellington & Stentz (2003) and 

Wellington et al. (2005) assumed that for any given horizontal coordinate either the ground or 

the upper extent of the vegetation above it will have lidar returns, but this may not be true for 

terrestrial lidar in forests. Other researchers assumed explicit constraints on the terrain geometry, 

including height relative to the scanner (Aschoff et al., 2004) and maximum slope (Aschoff et 

al., 2004; Lalonde et al., 2006). Rather than using strict bounds on each geometric attribute, this 

paper combines height, slope, error from a plane fit, and other features using a novel machine 

learning approach to classify a lidar point as belonging to the ground surface. 

Tree stem modeling in the forest based on terrestrial lidar can be challenging due to the 

presence of understory vegetation (e.g. shrubs), low branches, and multiple trees, which make it 

difficult to identify the lidar points corresponding to each tree. One promising approach, 

proposed in (Forsman & Halme, 2005), fits circles to segments of individual lidar scan lines, but 

no estimation of the accuracy of the algorithm is available. Other researchers have demonstrated 

measurement of tree stems diameters using lidar data (e.g. Henning & Radtke, 2006; Maas et al., 

2008) with RMS errors of 1.0 cm, but this has been done with little or no understory vegetation 

present, making the tree stems clearly detectable. Even without understory vegetation, 

researchers have shown that automatic detection of trees is challenging, particularly when using 

lidar data from a single viewpoint (Thies & Spiecker, 2004). This paper proposes an approach to 
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measuring stem locations and diameters from a single viewpoint, and presents results from five 

test environments, four of which include understory vegetation.  

A flowchart for the proposed approach for ground plane identification and stem diameter 

estimation is shown in Fig. 1. As with previous work (Wellington & Stentz, 2003; Aschoff et al., 

2004), ground plane estimation begins with a local height-based filter, selecting the lowest lidar 

return in each 0.5 m × 0.5 m horizontal grid cell.1 Next, a set of eight geometrically defined 

features are computed for each of the remaining points. A support vector machine (SVM), 

trained on hand-labeled lidar data, operates on the eight computed features to identify points 

belonging to the ground. 

 

Fig. 1. Information flow in proposed ground plane estimation and stem modeling approach.  

To model main tree stems, candidate stem data is selected by taking a horizontal slice of 

lidar data centered at 130 cm above the estimated ground height. This data is then clustered to 

determine which points belong to the same stems. Stems are modeled by fitting each cluster of 

data to cylinders and cones. Finally, physics-based constraints are introduced to assess the 

                                                 
1 These dimensions were chosen to roughly correspond to the width of our robotic data collection 
platform, which has a width of approximately 0.5 m. 
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quality of these fits, and poor fits are discarded. The effectiveness of this approach is 

demonstrated using data collected from five different forested environments, and estimated stem 

diameters are compared against stem diameters measured using a diameter tape. Note that this 

approach is intended specifically to identify tree stems. General lidar-based obstacle detection 

algorithms have been described elsewhere, e.g. (Manduchi et al., 2005). 

 

2. Methods 

2.1 Study area 

 Study areas for this work included three different vegetated environments near Boston, 

Massachusetts, USA. One research location was the Arnold Arboretum of Harvard University. 

The total area of the arboretum is 265 acres and includes moderately sloped terrain. The Arnold 

Arboretum contains 4,099 taxa, with most species hailing from North America and Eastern Asia. 

Stands are mixed age and very diverse, making this an appealing test site in terms of tree variety. 

 Another research area was Breakheart Reservation. This reservation covers 640 acres and 

has highly sloped terrain. Stands are predominately oak, hemlock and pine. 

 A manicured landscape was also selected for initial testing, and was collected in Killian 

Court on the campus of the Massachusetts Institute of Technology. The terrain in Killian Court is 

flat and contains mature oak trees. 

 

2.2 Lidar data 

 To facilitate the collection of lidar data, a nodding (i.e. automated tilt) device was 

constructed by mounting a sensor platform atop a camera tripod. Sensors included a Hokuyo 

UTM-30LX scanning range finder and a MicroStrain 3DM-GX2 inertial measurement unit 
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(IMU) for inertially referencing the Hokuyo data. The UTM-30LX lidar scans an angular range 

of 270° in 25 ms, with an angular resolution of 0.25° along the scan line, a depth range of 30 m, 

and an accuracy of ±50 mm. It weighs only 370 g and was selected because it is light enough to 

be mounted on a small man-portable mobile robot. For comparison, the high-resolution lidar 

scanners used in previous studies (Thies & Spiecker, 2004; Forsman & Halme, 2005; Maas et al., 

2008) have weighed 14 kg or more. The orientation of the setup, as detected using the IMU, was 

recorded immediately following each lidar scan. A laptop was also used to stream data from the 

sensors. Fig. 2 depicts the setup. Note that while many TLS applications use a lidar scanner 

oriented so the scan lines lie in a vertical plane, here the plane of the scans is roughly horizontal. 

This allows a single scan to intersect multiple tree stems, which is expected to improve 

estimation of relative positions of tree stems in future studies using a moving platform. 

 

 

Fig. 2. Nodding device for collection of lidar data. 

 Three of the five data sets presented in this paper were collected in the summer of 2009. 

The first set of data, baseline, was collected in Killian Court on the campus of MIT. A panoramic 
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photo of this scene is shown in Fig. 3(a) and contains several mature oak trees distributed about a 

near-flat ground plane. This data set, meant to serve as a baseline, will be compared to the other, 

more challenging scenes. Two other data sets, sparse and moderate, were collected at Harvard’s 

Arnold Arboretum; panoramic images of these environments are shown in Fig. 3(b) and Fig. 

3(c), respectively. The sparse scene in Fig. 3(b) contains several deciduous trees and shrubs, but 

is largely open. The moderate scene, shown in Fig. 3(c), is cluttered with numerous deciduous 

trees and shrubs, and significant ground cover. 

 The remaining two data sets, dense1 and dense2 were collected at Breakheart Reservation 

in January of 2010. Panoramic images of these scenes, dense1 and dense2, are shown in Fig. 3(d) 

and Fig. 3(e), respectively. Both scenes contain a significant number of deciduous trees and have 

considerably sloped terrain. Since both scenes were collected during winter, there was snow on 

the ground and no leaf cover on the deciduous trees. 

 For each of these scenes, the nodding device was operated by hand, and swept between 

pitch angles of –85º and +55º, with scans spaced at 0.7° on average. The baseline scene utilized 

180º of the angular range of the lidar, while the other sets used the full 270º. Each scene 

encompasses 200 scan lines and can contain as many as 216,200 data points (slight variation is 

caused when the nearest surface, within the lidar line-of-sight, is out of range). 
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Fig. 3. Panoramic images of (a) baseline (b) sparse, (c) moderate, (d) dense1 and (e) dense2 

scenes. 

 These five scenes were chosen with the intention of gathering diverse data to illustrate 

that the classification and modeling techniques in this paper can be applied to a wide range of 

forested environments, and not only carefully selected test cases. For example, when estimating 

the ground plane, it is important to test algorithm performance on sloped terrain, because slopes 
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are generally more difficult to correctly estimate than flat terrain surfaces. This is a recognized 

challenge in the literature (Aschoff et al., 2004), where inadequate ground plane estimation is 

often obtained on sloped terrain. This issue is addressed by including hilly terrain in our testing. 

The dense1 scene exhibits a total elevation change of 4.2 m over the 30 m range of the sensor, 

and lidar scanning is performed facing down a slope. The dense2 scene exhibits a total change of 

3.1 m over 30 m, and lidar scanning is performed facing up the hill. Table 1 shows the total 

elevation change for each of the five data sets as estimated through manual examination of the 

lidar point clouds. 

 

Table 1 

Statistics for Experimental Test Scenes 

Scene Total Elevation 
Change Number of Trees 

baseline 0.681 m 4 
sparse 1.784 m 5 

moderate 1.832 m 16 
dense1 4.202 m 48 
dense2 3.126 m 40 

 

 For robust stem estimation, a range of different tree sizes and types were included in the 

test data. The five experimental test scenes presented in this paper contained trees of various 

species and sizes, allowing for testing over a range of tree sizes and shapes. The baseline scene, 

collected at MIT in Killian Court, contained mature oak trees with tall, easily visible trunks. The 

sparse and moderate scenes from Arnold Arboretum, contained mostly broadleaved trees, some 

with large distinct trunks and others with low trunk-obscuring branches and leaves. Breakheart 

Reservation, where the dense1 and dense2 scenes were collected, contained a mixture of 
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broadleaved and needle-leaved trees, including some sparse evergreen foliage. Among the five 

scenes, 113 trees were sensed. Table 1 shows the number of trees in each scene. 

 The scene selection also incorporated seasonal variation: the baseline, sparse and 

moderate scenes were collected during summer, and the dense1 and dense2 scenes were 

collected during winter. This affects ground plane estimation because a 6 cm layer of snow is 

present in the winter scenes. It also affects stem estimation because there are no leaves on 

deciduous trees after the seasonal abscission, reducing the number of non-stem lidar returns. A 

robust algorithm should yield consistent results across environments and seasons. 

 

2.3 Field data 

 Stem diameter at breast height (1.3 m, dbh) was measured for each of the trees in the five 

scenes using a diameter tape. Field measured dbh values were obtained for comparison to 

diameters estimated by the lidar stem modeling algorithm. To identify which diameter 

corresponded with which tree, a rough map of the trees was created in the field. The X-Y 

position of each tree in the lidar reference frame was identified afterwards based on manual 

examination of the lidar point clouds.  

 

2.4 Data Processing 

 To quantify the accuracy of the algorithms presented, the lidar data was hand-labeled 

using Quick Terrain Modeler, a software package developed by Applied Imagery (Quick Terrain 

Modeler, 2009). Each data point was classified into one of the following categories: (1) ground, 

(2) bushes/shrubs, (3) tree main stems and (4) tree canopy. For situations when the class of the 

lidar point was unclear, photographs of the environment (shown in Fig. 3) were used to assist in 
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classification. For the work in this paper, the key distinction is between “ground” and “not 

ground,” and this information is used to train the classifier. Other classes are used only to get a 

fine-grained analysis of classification results. Fig. 4 shows the hand-labeled lidar data projected 

into a global reference frame, with the location of the lidar marked with a star and trees labeled 

with letters to show correspondence to Fig. 3. 

 

Fig. 4. Hand-labeled point clouds of (a) baseline (b) sparse, (c) moderate, (d) dense1 and (e) 

dense2 scenes.  
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2.5 Ground Plane Estimation Algorithm 

 Given a set of lidar data points in Cartesian space, the goal of ground plane estimation is 

to identify which of those points belong to the ground. The approach proposed here divides the 

ground plane estimation task into two stages. The first stage is a local height-based filter, which 

encodes the fact that, in any vertical column, only the lowest points may belong to the ground. In 

practice, this eliminates a large percentage of non-ground points from further consideration. The 

second stage is a support vector machine (SVM) classifier, which combines eight geometric 

measures—the classification features—to determine which of the remaining points belong to the 

ground plane. All algorithms presented in this paper were implemented in Matlab. 

 

2.5.1 Stage 1: Height Filter 

 Candidate points are represented in an inertial frame with coordinates (x,y,z), where the x 

and y axes lie on a horizontal plane, and the z axis is positive upward. The point cloud volume is 

divided/tessellated into 0.5 m × 0.5 m vertical columns identified by indices (i,j), where 

 5.0/xi =  and  5.0/yj = . Thus, a point located at (2.9 m, 4.1 m, 1.7 m) will be located in column 

(5,8). In each of these columns, only the lowest point (i.e. the point with minimum z) is retained 

as a possible ground point. For simplicity, the lowest point in column (i,j) is hereafter denoted as 

a vector, Pi,j , with coordinates [xi,j, yi,j, zi,j].  

 

2.5.2 Stage 2: Feature Extraction 

 In the second stage of this approach, a variety of features are used to represent attributes 

of each lowest point Pi,j and the lowest points in each of the neighboring columns. Here, the 



 Page 14 

neighborhood of a column (i,j) is defined as the column and its eight 8-connected neighboring 

columns. 

 A set of eight features was defined based on their usefulness in discriminating ground 

from non-ground. These features, denoted f1,…,f8 are combined into a feature vector 

Fi,j=[f1,…,f8] for each point, which is used by a classifier to identify whether that point belongs to 

the ground. These features include: 

• f1: Number of occupied columns in the neighborhood of column (i,j) 

• f2: Minimum z of all neighbors minus zi,j 

• f3: Value of zi,j 

• f4: Average of all z values in neighborhood 

• f5: Normal to best fit plane of points in neighborhood 

• f6: Residual sum of squares (RSS) of best fit plane of points in neighborhood 

• f7: Pyramid filter 

• f8: Ray tracing score 

 The features above are described in detail below. 

 

f1: Number of occupied columns in neighborhood 

  f1 is the number of occupied columns, N, in the neighborhood of column (i,j): 

 f1 = N , (1) 

where an occupied column is defined as a column containing at least one point. This feature is 

used to quantify the density of points around column (i,j). This measures occlusion that bushes, 

shrubs and tree trunks typically create in lidar data, thus reducing the number of occupied 

neighbors. 
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f2, f3, f4: Features using z height values 

 Feature f2 calculates the difference of zi,j and the minimum z of all neighboring columns: 

 f2 = min(zi-1,j-1, zi-1,j, zi-1,j+1, zi,j-1, zi,j+1, zi+1,j-1, zi+1,j, zi+1,j+1) − zi,j . (2) 

This feature encodes the unevenness of terrain around column (i,j). Intuitively, ground is 

expected to have a relatively smooth surface compared to the edges of tree stems or shrubs. In 

the case of smooth ground, f2 will be near zero. When Pi,j is part of a tree or shrub and has a 

neighboring point on the ground, f2 will be relatively large. 

 f3 is defined as the value of zi,j, and f4 is the average of all z values in the neighborhood of 

zi,j: 

 f3 = zi,j – zlidar (3) 

 f4 = (zi-1,j-1+zi-1,j+zi-1,j+1+zi,j-1+zi,j+zi,j+1+zi+1,j-1+zi+1,j+zi+1,j+1) / f1 – zlidar, (4) 

where zlidar is the height of the lidar sensor. Features f3 and f4 utilize the z value in each column. 

This allows the classifier to consider that points significantly higher than the lidar sensor are less 

likely to be ground than points lower than the lidar sensor (i.e. the ground probably won’t be 

located at tree canopy height). This assumption is expected to be true except for cases with 

extremely sloped terrain. 

 

f5, f6: Features using best fit plane 

 For features f5 and f6, a best fit plane is calculated using all points in the neighborhood of 

column (i,j). Given the set of N points in the neighborhood of column (i,j), where each point is 

denoted Pk, the mean is computed as: 

 ∑
=

=
N

kN 1

1
kPP  (5) 
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 The normal vector of the best-fit plane that minimizes orthogonal distances to the points 

in the neighborhood of column (i,j) is calculated as: 

 ( )( )∑
==ℜ∈

⋅−=
N

k 1

2

1, 23
minarg nPPn k
nn

ji,
 (6) 

 Feature f5 is the z-component of the unit normal vector, ni,j: 

 f5 = ni,j ∙ (0,0,1). (7) 

 f5 is expected to have a value near one for flat horizontal ground. This is useful for 

differentiating between the ground and near-vertical structures, such as steep rock faces. 

 Feature f6 is the normalized orthogonal residual sum of squares (RSS) of the best fit 

plane: 

 ( )( )∑
=

⋅−=
N

kN
f

1

2
6

1
ji,k nPP  (8) 

 This feature measures smoothness of the terrain around column (i,j). The ground is 

expected to lie nearly within a plane. Meanwhile, discontinuities will occur at the edges of trees, 

shrubs, or large rocks, and this will be reflected in a larger RSS of the best fit plane. Although 

this feature will be similar to f2 on open flat ground, it is intended to provide additional 

robustness to ground point classification on sloped terrain. 

 

f7: Pyramid filter 

 An inverted pyramid filter was used as feature f7, similar to the inverted cone filter used 

in Thies et al. (2004). Here, feature f7 is computed as the number of other minimum z points 

which lie within a pyramid of 0.5-meter cubic voxels with its apex at point Pi,j. This discretized 

pyramid approach was used to improve computational efficiency over the inverted cone filter. 
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f8: Ray Tracing Score 

 The last feature involves ray tracing. It is obvious that the ground (or any other structure) 

cannot lie directly between the lidar and any point it observes. Similarly, the ground cannot lie 

above the line segment formed between the lidar and any point it observes. Feature f8 quantifies 

this insight using a voxel-based approach. For each 0.5 m × 0.5 m × 0.5 m cubic voxel 

containing a lowest point, Pi,j, f8 is a sum of the number of line segments that pass through a 

voxel in column (i,j) that is below the voxel that contains Pi,j. Intuitively, a point lying on flat 

ground should have a ray tracing score of zero. A point lying on sloped ground should be close 

to zero. The ray tracing concept is illustrated in Fig. 5. The heavy line represents a ray traced 

from the lidar to a data point. The voxels that this ray passes through are shaded, and the voxels 

above this ray are outlined but transparent. Any Pi,j in a transparent voxel would have its ray 

tracing score incremented by one. 

 

Fig. 5. Ray tracing visualization 

 

 This process can be represented mathematically such that the ray tracing score for a point 

Pi,j is the count of points Pi1,j1 located such that their line segments pass below the voxel 

containing Pi,j. For example Pi,j, with  5.0/lidarxi > ,  5.0/lidaryj >  and    5.0/5.0/, lidarji zz < : 
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Similar equations can be written for other ranges of i, j, and zi,j. 

 

2.5.3 Stage 2: SVM Classifier Description 

 Given the feature vectors Fi,j=[f1,…,f8] for all potential ground points Pi,j in a training set, 

and the hand-attributed labels of whether each point Pi,j lies on the ground surface, a SVM 

classifier is trained (Schölkopf, 2000). Tunable kernel parameters, including the kernel and 

misclassification cost C were found by minimizing the cross-validation error rate within the 

training data. For this work, the SVM classifier was implemented using LIBSVM (Chang & Lin, 

2008), and based on cross-validation, a linear kernel was used with misclassification cost C=100. 

Using the trained classifier, minimum z points belonging to a previously unlabeled scene can be 

classified as ground or not ground. 

 

2.5.4 Ground Plane Modeling 

 If a column contains a ground point from the classifier stage, the height of that point is 

used as the ground height in that column. In a column not containing a classified ground point, 

such as when occlusions or sparse data leave gaps between ground points, interpolation is 

necessary to estimate the ground height. For this work, Delaunay triangulation is used to 

interpolate between classified ground points. Thus, the ground height for a column is calculated 

as the height of the Delaunay triangle at the center of the column. 
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2.6 Stem Estimation Algorithm 

 The proposed approach models the main stems of trees (i.e. trunks) using cylinders and 

cones as geometric primitives. The first step of this process takes a horizontal slice of lidar data 

vertically centered at breast height. These points are then clustered, and fit to cylinders and 

cones. Finally, physical constraints are used to reject unrealistic fits. 

 

2.6.1 Breast-Height Slice 

 The first step of stem estimation is to identify which lidar data points belong to a single 

main stem. In the approach described here, candidate main stem points are chosen based on their 

height above the ground. This is based on the intuition that at a certain height, stem data is likely 

to be above low lying vegetation and obstructions (e.g. shrubs, grass, rocks) and below higher 

vegetation (e.g. secondary stems and other canopy). For this work, we used the standard 130 cm 

breast height. 

To obtain sufficient data to accurately model tree stems, candidate lidar data must be 

gathered within a pre-specified vertical range above and below breast height. The size of this 

range is important because it has significant effects on tree modeling results. A larger range 

typically contains more lidar data, which generally leads to more accurate cylinder and cone fits, 

while a smaller range often reduces unwanted non-trunk data from above (canopy) and below 

(shrubs, rocks, etc.). However, if the range is too small it could miss a tree entirely, due to 

occlusion or data sparsity. Here, the range is selected to balance these two competing effects. 

 In the literature (Aschoff et al., 2004; Henning & Radtke, 2006), very thin slices of data 

have been used (10 cm and roughly 2 cm, respectively), enabled by very high resolution lidar 
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sensors and relatively close standoff distance. Generally, the slice width should be large enough 

to contain lidar data at the working range of the sensor. This means that the width must be 

greater than the vertical distance between two scan lines at maximum working range (see Fig. 6). 

The Hokuyo UTM-30LX lidar used for this work has a functional range of 29 m and the average 

change in pitch angle during collection was 0.7º. At a range of 29 m, the difference in height of 

two consecutive horizontal scans is approximately 35 cm, so the slice width must be at least 35 

cm to ensure that the slice contains at least one horizontal scan. 

 

Fig. 6. Two consecutive vertical lidar scan lines, and height difference.  

 

 For this work, a two step strategy was implemented to obtain candidate main stem data. 

The first step identifies probable stem locations in the X-Y plane while the second step selects a 

set of data points at each of those locations to be used for model fitting. Since the ground plane 

estimation algorithm in this paper uses a 0.5 m × 0.5 m grid cell discretization, this algorithm 

will be discretized at the same resolution.  

 Barring occlusion, every tree taller than 1.3 m should have trunk data at a height of 130 

cm above the ground.2 In addition, 130 cm was observed to be higher most of the non-tree 

                                                 
2 It should be noted that trees with dbh less than 13 cm may also be missed at a range of 29 m, 
due to the horizontal spacing of points between scans. 
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vegetation, while still being below most of the trees’ foliage. So, to identify stem locations, a 

search is performed at this height. Since the difference in the height of two consecutive scans can 

be as large as 38 cm, a range of 40 cm was used for this algorithm (i.e. 130 ± 20 cm). If a column 

contains any lidar data within this 40 cm range, that column is presumed to contain trunk data. 

For each of these columns, a larger 60 cm slice of data (i.e. 130 ± 30 cm) is then selected as 

candidate main stem data to be used to model fitting. All data points within that column and 

range will be selected for analysis. This slice width of 60 cm was chosen based on empirical data 

from the five test scenes. This analysis is presented in Section 3.2.3.. 

 To determine whether a lidar data point (x,y,z) lies within the 60 cm slice width, the 

height of that point is calculated with respect to the ground height described in Section 2.5.4. If a 

data point is in a column that does not have an estimation for ground height (i.e. it lies outside 

the convex hull of the convex hull of the sensed ground points), it will not be considered a 

candidate main stem point regardless of its height. 

 

2.6.2 Clustering 

 The next step in the stem estimation algorithm is to determine which candidate main stem 

data points belong to individual trees, since one stem could have points in multiple columns. 

This is accomplished by clustering the candidate data points. The most prevalent clustering 

algorithm is K-Means, which assigns data points to clusters such that each point belongs to the 

cluster with the nearest centroid. This method requires that the number of clusters is known a 

priori, however the number of trees in any given forested scene is generally unknown. 

 Instead of K-Means, a single-linkage clustering algorithm is applied in this work (Jain & 

Dubes, 1988). In this algorithm, any two points which are closer to each other than a pre-
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specified threshold distance l are considered to be “connected” and belong to the same cluster. 

Here l is 50 cm. Two points are considered to be part of different clusters if there is no chain of 

such connected points linking the same cluster. For this work, the threshold physically implies 

that the distance between the visible surfaces of any two neighboring trees cannot be less than l.  

 Single-linkage clustering algorithms typically require that the distances between all pairs 

of points be calculated, a process that is computationally costly when (as in the dense1 and 

dense2 datasets) there are over 10,000 data points to be clustered. To address this problem a two-

stage clustering approach is used, as illustrated in Fig. 7. To cluster the points shown in Fig. 7(a), 

the first step is to calculate the occupied grid cells (Fig. 7(b)). These grid cells are then clustered, 

such that any occupied grid cells within 50 cm of each other belong two the same cluster (Fig. 

7(c)). Finally, for each grid cell cluster (e.g. “Cluster B”), the points within that cluster are 

themselves clustered with a threshold distance of 50 cm (e.g. into “Cluster B1” and “Cluster 

B2”). Each of these final point clusters (“A1,” “B1,” “B2,” and “C1”) is assumed to correspond 

to a single tree. For the data sets used in this paper, this two-stage approach yielded a 12-fold 

increase in clustering speed. 
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Fig. 7. Two-stage clustering example: (a) initial data, (b) occupied grid cells, (c) clustered grid 

cells, (d) final clusters. 

 

2.6.3 Stem Modeling with Cylinders and Cones 

 To model tree stems given a cluster of candidate main stem data points near breast height, 

best-fit cylinders and cones are computed. The fits are found by solving a traditional least-

squares problem, where n is the number of points in the cluster and fi is the distance from the ith 

point to the surface of the cylinder/cone (i.e. residual): 
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For this work, Matlab’s lsqnonlin function is used for optimization. 
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 Here, the cylinder is represented by five parameters: the angles to rotate the cylinder axis 

(about the roll and pitch axes) to vertical, è=[α, β]; the x and y coordinates of the intersection of 

the cylinder with the X-Y plane, pt=[xt, yt]; and the cylinder radius, r. Using these parameters, it 

is straightforward to compute the transformation between inertial coordinates and cylinder-

centered coordinates, where the z axis is aligned with the cylinder axis. In this formulation, the 

sum of squared residuals, s, can be calculated as 

 ( )∑
=

−+=
n

i
ii ryxs

1

2
22 , (11) 

where (xi, yi, zi) is the ith data point in cylinder-centered coordinates and r is the radius of the 

cylinder being fit. 

 To obtain least-squares cylinder results that are more realistic for trees, it is useful to 

constrain the optimization parameter search space. For example, the cylinder axis should be near 

vertical, and the radius should be constrained to prevent tree models with excessively large radii. 

For this work, the upper bound of the radius was set to 0.75 m. This upper bound was chosen 

based on the largest trunk that was measured for this work, which had a radius of 0.531 m.  

 The cylinder axis is more difficult to constrain due to the transformation of the cylinder 

axis’ direction cosines, a=[ax, ay, az], into the optimization parameters, è=[α, β]. To speed the 

optimization, α and β are constrained, rather than directly constraining az. From experimental 

results, it has been determined that a constraint of |az|>0.9 yields good modeling results. A 

direction cosine of 0.9 corresponds to an angle of approximately 26o from the vertical. Trees do 

not grow perfectly straight, and this constraint is meant to prevent gross errors where the axis is 

very far from vertical. Thus, since az=cos(α)cos(β), for az to be constrained to be greater than 0.9 

means that α and β will each be constrained to the ranges [-arccos(0.9), arccos(0.9)], or [-0.45, 

0.45] radians. 
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 A similar process is used to perform least-squares optimization and constraints for cones. 

We would expect a frustum of a cone to be a better model for the breast-height slice of a tree 

stem due to the natural taper of a tree stem. Here, each cone is specified by eight degrees of 

freedom. These include three degrees for the direction cosines of the cone axis, a=[ax, ay, az], 

three degrees for a point on the cone axis, pinit=[xinit, yinit, zinit], one degree for the cone’s radius, 

r, at point pinit , and one degree for the cone’s vertex angle, φ (half of the included vertex). 

 The cone axis is constrained in the same way that the cylinder axis is constrained. The 

upper bound of the cone angle is set to 0.1 radians (≈6°) and the lower bound is zero. These 

bounds were selected based on empirical observations. This is significantly larger than the taper 

expected at breast height for average trees (Li and Weiskittel, 2010). 

 

2.6.4 Rejection Criteria for Tree Models 

 The final step in the tree modeling algorithm is to determine the quality of the least-

squares fits and reject models that are unrealistic, or poorly fit the data. Four heuristically-

inspired constraints to characterize poor fits are described below. If any of these criteria are met 

for a given tree, it will be rejected as a poor fit. The following explanations specifically refer to 

cylinder fits, but the same criteria are also used for cone fits. For criteria that are based on radius, 

the radius of the cone at a height of 130 cm above the ground is used. 

 

Rejection Criterion 1: Distance from center of fit to centroid of data 

 The first rejection criterion discriminates based on the ratio of the cylinder radius, R, to 

the distance, r, from the center of the cylinder to the centroid of the data (in the X-Y plane). Fig. 

8 and Fig. 9 show examples of overhead views to illustrate the reasoning for this criterion. In 



 Page 26 

each plot, the main stem data is gray and cylinder cross-sections (at breast height) are in black. In 

addition, the centroid of the data is marked with an asterisk and the center of the cylinder cross-

section is marked with a “+.” 

 

 

Fig. 8. Example overhead views for good cylinder/cone fits. 

 

 The plots in Fig. 8 exemplify the variability in resolution and shape of data among 

different trees. In Fig. 8(a), almost the entire visible surface (from the static position of the lidar) 

of the main stem has lidar returns, which gives the data a semicircular shape. In Fig. 8(b), only 

the front surface of the stem has lidar returns, which gives the data a “flat” look. It should be 

noted that the plots in Fig. 8 are not from the same scene and are not scaled equally. However, 

given the input data, both of these cylinder fits look reasonable. Also note that the distance from 

the center of the cylinder to the centroid of the data is slightly less than the radius in both of these 

cases. The ratio of the radius to the distance from the center to centroid is approximately 1.46 for 

the left example and 1.21 for the right. 

 Fig. 9 shows an example where the axis of the least-squares cylinder intersects the data. 

Clearly, this is not a reasonable fit, because the data does not lie on the surface of the cylinder. In 

this case, the center of the cylinder is very close to the centroid of the data and the ratio of the 

radius to the distance from the center to centroid is approximately 22.5. For this work, 
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cylinder/cone fits are rejected if their radius to distance from center to centroid ratio is greater 

than 2, a value selected based on empirical data. 

 

 

Fig. 9. Bad ratio of radius to distance from cylinder center to distance centroid. 

 

Rejection Criterion 2: Maximum data spacing within a cluster 

 The next rejection criterion uses the ratio of the estimated cylinder diameter, D, to the 

maximum spacing (in the X-Y plane), d, of main stem data within that cluster. This is essentially 

a method to reject tree models with diameters that are too large, without using a naïve cutoff. A 

predefined cutoff is not viable because the trees in these experiments vary widely in size. 

Instead, the cutoff should be scaled to the size of the input data (e.g. maximum spacing of the 

data). 

 It is easy to see that for good fits, such as those in Fig. 8, the cylinder diameter is 

approximately equal to the maximum horizontal span of the data. Fig. 10 shows an example 

where the diameter of the cylinder is too large, considering the input data. In this case, the ratio 

of the diameter to the maximum horizontal span is approximately 2.95. 
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Fig. 10. Bad ratio of diameter to maximum data spacing. 

 

 While the fit in Fig. 10 looks reasonable for the given data, it grossly extrapolates the 

data, which has been shown to yield poor results in practice. Thus, this is another viable option 

for rejecting potentially erroneous least-squares fits. This problem of overestimating radius is 

fairly common, particularly for sparse data which lacks the expected curvature to fit a cylinder. 

For this work, fits are rejected if their diameter to maximum data spacing ratio is greater than 2. 

 

Rejection Criterion 3: Intersection between tree models 

 There are cases where two estimated cylinders overlap each other, or an estimated 

cylinder is completely contained within another. This problem can be caused by a least-squares 

fit of excessively large radius. It can also be caused by improper clustering, where data from two 

nearby trees is grouped into the same cluster, or data from one tree is grouped into two clusters. 

Fig. 11 shows a representative situation with two overlapping cylinders. 

 To detect this problem we calculate pairwise distances between the centers of each 

cylinder, then subtract the radii of both cylinders from that distance. If this difference is negative, 

the two cylinders must have intersecting boundaries, or one is contained inside the other. When 

this happens, the cylinder with the larger radius will be rejected. In the case of an excessively 



 Page 29 

large radius, or two nearby trees being grouped into the same cluster, rejecting the larger cylinder 

is the favorable solution because it is clear that this cylinder is breaking the constraint. In the 

case when data from one tree is grouped into two clusters, it is less important which fit gets 

rejected if the other criteria in this section are being met. 

 

 

Fig. 11. Intersecting tree models. 

 

Rejection Criterion 4: Data on the far side of trees 

 In some cases, a cylinder is fit such that the cylinder is positioned on the “wrong” side of 

the data (i.e. a surface that is physically unobservable from the sensor location). In practice this 

would be equivalent to a lidar sensor scanning the back of a tree (with respect to the position of 

the lidar), which is impossible. This problem usually arises with sparse data exhibiting indistinct 

curvature. 

 Detection of this condition can be performed by comparing the distance from the lidar to 

center of the cylinder with the distance from the lidar to the centroid of the stem data. If the data 

is on the “back” of the cylinder, the distance to the centroid will be greater than the distance to 

the center of the cylinder. This difference must be greater than 0.25 cylinder radii to be rejected. 
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This buffer is used as a margin of safety to reduce the possibility of erroneously rejecting good 

fits. 

 An example of this is shown in Fig. 12. The lidar sensor is marked by the black dot at the 

origin, and the cylinder in the upper-left corner marked with an arrow is clearly positioned on the 

“wrong” side of the data with respect to the sensor. The distance between the centroid and 

cylinder center is approximately 0.76 of the cylinder radius, so this cylinder would be rejected as 

a poor fit. 

 

Fig. 12. Cylinder position on wrong side of data. 

 

3. Results and Discussion 

3.1. Ground Plane Estimation Results 

3.1.1 Stage 1 

 The two-stage approach for identifying points on the ground plane was applied to the five 

experimental data sets described previously in this paper. On average, the local height-based 

filter eliminated 98.77% of the data points from consideration. Thus, this filter drastically 
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reduced the number of points to be analyzed. To assess the effectiveness of this method, it is 

useful to analyze what types of data points were present in each grid cell. For example, columns 

that are farther away from the lidar may not have any ground points because the ground is 

occluded by trees and shrubs. However, if a column contains both ground and non-ground 

points, this filter should select a ground point. These results are summarized in Table 2. Here 

accuracy is defined as the fraction of columns containing both ground and non-ground points in 

which the true label of the lowest point was ground. True labels were determined using the 

approach presented in Section 2.4. 

 As expected, there are many columns in each scene that contain only non-ground points, 

unavoidably leading to error. However, in columns containing both ground and non-ground 

points, this filter stage selected ground points an average of 98.65% of the time. 

Table 2 

Stage 1 Height Filter: Column Analysis 

Scene 
True Label 
of Lowest 

Point 

Columns 
with Only 
Ground 

Data 

Columns 
with Only 

Non-Ground 
Data 

Columns 
with Both 

Ground and 
Non-Ground 

Accuracy in 
Columns 
with Both 

baseline Ground 542 0 135 100% Non-Ground 0 261 0 

sparse Ground 509 0 622 99.35% Non-Ground 0 1174 4 

moderate Ground 251 0 193 97.41% Non-Ground 0 1176 5 

dense1 Ground 815 0 384 97.66% Non-Ground 0 313 9 

dense2 Ground 694 0 521 98.66% Non-Ground 0 352 7 

Totals Ground 2811 0 1855 98.65% Non-Ground 0 3276 25 
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3.1.2 Stage 2 

 The second stage in the ground plane identification approach uses an SVM classifier to 

assign each of the minimum z points as either ground or non-ground. The results are presented in 

Table 3. For each data set, the SVM was trained using all other data sets. For example, the 

baseline scene was trained on the sparse, moderate, dense1 and dense2 scenes; the sparse scene 

was trained on the baseline, moderate, dense1 and dense2 scenes; etc. In Table 3, the quality of 

the classifier is assessed using the positive predictive value (PPV), which is calculated as the 

number of ground points correctly classified divided by the total number of points classified as 

ground.  

Table 3 

Stage 2 Classifier 

  True Label  

Scene 
SVM 

Classification 
Result 

Ground Non-Ground 
Positive 

Predictive 
Value (PPV) 

baseline Ground 666 10 98.52% Non-Ground 11 248 

sparse Ground 1032 163 86.36% Non-Ground 99 1011 

moderate Ground 441 443 49.89% Non-Ground 3 738 

dense1 Ground 1131 71 94.09% Non-Ground 68 251 

dense2 Ground 1077 86 92.61% Non-Ground 138 272 
 

 The results suggest that the classifier can accurately identify points lying on the ground 

surface in 4 of the 5 test scenes. The average positive predictive value over the five data sets is 

84.29%. Fig. 13 shows the lidar data classified as ground by the SVM. This includes true 

positives (i.e. ground points correctly classified as ground), false positives (i.e. non-ground 
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points incorrectly classified as ground), and false negatives (i.e. ground points incorrectly 

classified as non-ground). 

 These results show that the proposed algorithm works well for sloped terrain. Both the 

dense1 and dense2 scenes have considerable slope, with maximum ground slopes of 44.7% and 

78.9%, respectively, and total elevation changes of 4.2 m and 3.1 m, respectively. The point 

clouds in Fig. 13(d) and (e) show that there were more false negatives at higher elevations. 

However, most of these points were near the edge of the sensor range where data was sparse and 

thus were penalized by feature f1, which counts the number of occupied columns in the 

neighborhood of column (i,j). Despite the fact that the false negative rate was higher for higher 

elevations, enough ground points were correctly classified at these higher elevations to allow a 

rough estimate of ground height to be calculated. 

 The least accurate results were for the moderate scene, where the positive predictive 

value was 49.89%. Examining the numerical results (Tables 2 and 3) and the associated point 

cloud (Fig. 13(c)), it can be seen that there is significant ground cover immediately in front of the 

lidar scanner. Since there were no ground points in front of the sensor, bush/shrub data points 

were selected by the minimum z filter. This can be verified by analyzing Table 2. Compared to 

other scenes, there were relatively few columns in the moderate scene that contained only 

ground points, and there were many columns that contained only non-ground points. However, 

there were only five instances where non-ground points were chosen in columns that contained 

both ground and non-ground points. Since the ground cover was so low (in z height) in this 

scene, bush/shrub data was frequently identified as ground by the SVM. It should be noted that 

this was the densest scene acquired in the summer, so with respect to understory foliage it was 

more challenging than the dense1 and dense2 scenes. 
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Fig. 13. Ground plane point cloud for (a) baseline (b) sparse, (c) moderate, (d) dense1 and 

(e) dense2 scenes.  
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 If a lower rate of false positives is desired, as would be the case with the moderate scene, 

the threshold of the SVM classifier can be tuned accordingly. Fig. 14 shows the receiver 

operating characteristic (ROC) curves for the five data sets. In this figure, true positive rate and 

false positive rate are plotted for a range of classifier thresholds. If the threshold is high, few 

points will be labeled as ground, and both true positive and false positive rates will be low. If the 

threshold is low, many points will be labeled as ground, and both true positive and false positive 

rates will be high. Random assignment of points to classes would yield a line from (0%, 0%) to 

(100%, 100%). 

 

 

Fig. 14. ROC curves for baseline, sparse, moderate, dense1 and dense2 scenes. 

 

 In Fig. 14, it can be observed that low false positive rates can be achieved while 

maintaining relatively high true positive rates. For example, for the baseline scene, a 70% true 

positive rate can be achieved with less than a 0.8% false positive rate. The same 70% true 
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positive rate can be achieved with less than 5% false positives for the sparse, moderate and 

dense1 scenes. A 70% true positive rate can be achieved with less than 10% false positives for 

the dense2 scene. 

 The SVM threshold can be tuned depending on the user’s accuracy requirements. Tuning 

can reduce the number of false positives while retaining as many true positives as possible, at the 

expense of not classifying all available data.  

 

3.2. Stem Estimation Results 

3.2.1 Linkage Clustering Results 

 60 cm slices of candidate stem data are clustered using the divide and conquer linkage-

based clustering algorithm described earlier. For this work, a cutoff distance of l=0.5 m was used 

for clustering subset data. 

 Table 4 summarizes the clustering results by comparing the number of potential clusters 

(identified as a connected cluster of data points by a human expert) within the convex hull of 

ground data to the number of clusters that the algorithm computed. Note that the number of 

potential clusters do not correspond exactly to the number of trees from Table 1, because some 

potential clusters contain purely non-trunk data. This table also quantifies the two types of errors 

that can occur during clustering. One error occurs when two distinctly different groups of points 

(e.g. points from two different trees) are grouped into the same cluster. This typically occurs 

when two clusters lie very close to each other. The other type of error occurs when points from 

one group are split into two different clusters. This typically occurs when there is a discontinuity 

in the data due to occlusion. The error rate is computed as the number of errors divided by the 

number of potential clusters. 
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Table 4 

Linkage Clustering Performance 

   Errors  

Scene Potential 
Clusters 

Clusters 
Found By 
Algorithm 

Two Clusters 
Grouped into 

One 

One Cluster 
Grouped as 

Two 

Error 
Rate 

baseline 4 4 0 0 0% 
sparse 6 6 0 0 0% 

moderate 18 19 0 1 5.55% 
dense1 63 57 6 0 9.52% 
dense2 40 40 0 0 0% 
Totals 131 126 6 1 5.34% 

 

 Since this algorithm experienced errors caused by data from multiple trees being too 

closely spaced (i.e. two clusters grouped into one cluster) and data from a single tree being too 

widely spaced (i.e. one cluster grouped into two clusters), it can be concluded there is no static 

cutoff distance that can ameliorate all of these clustering errors. Empirical performance has 

shown 0.5 m to be a reasonable choice for the cutoff distance. Future research into an adaptive 

clustering threshold could yield techniques to provide better clustering performance. 

 

3.2.2 Tree Modeling Results 

 Each cluster is fit to a cylinder and cone using constrained least-squares optimization. 

The resulting least-squares cylinder and cone fits are plotted for the dense1 and dense2 datasets 

in Fig. 15 and Fig. 16, respectively. The plots contain the final results after the rejection criteria 

are applied to the fits. The location of the lidar in each scene is shown with a star. 
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Fig. 15. Cylinder fit tree models and ground model for (a) dense1 and (b) dense2 scenes. 

 

 

Fig. 16. Cone fit tree model and ground model for (a) dense1 and (b) dense2 scenes. 
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 Table 5 summarizes the number of trees that were successfully modeled using cylinders 

and cones. The number of trees include of all stems with data in the initial breast-height slice of 

data. Any fit that was not eliminated by the rejection criteria as an unrealistic fit is considered 

successfully modeled. 

Table 5 

Number of Trees Successfully Modeled Using Cylinders and Cones 

Scene Number of 
Trees 

Number of 
Trees 

Successfully 
Modeled Using 

Cylinders 

Percent of 
Trees 

Successfully 
Modeled Using 

Cylinders 

Number of 
Trees 

Successfully 
Modeled 

Using Cones 

Percent of 
Trees 

Successfully 
Modeled Using 

Cones 
baseline 4 3 75.0% 4 100.0% 
sparse 5 2 40.0% 3 60.0% 

moderate 16 6 37.5% 8 50.0% 
dense1 48 16 33.3% 16 33.3% 
dense2 40 12 30.0% 16 40.0% 
Totals 113 39 34.5% 47 41.6% 

 

3.2.3 Slice Width Analysis 

The size of the slice of candidate stem data has a significant effect on the accuracy of the final 

tree modeling results. The average model accuracy and number of modeled trees are plotted as a 

function of the slice width in Fig. 17 and Fig. 18, respectively. 
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Fig. 17. Diameter error vs. slice width. 

 Fig. 17 plots the root mean square (RMS) and median error of the final modeling results 

as a function of the slice width. The error refers to the absolute difference for each tree between 

the dbh estimated from the fit model and the actual (hand-measured) dbh. Here we can see a 

clear trend of increasing error with increasing slice width. While a few large errors introduce 

significant variation in the plot of RMS error, the median exhibits a nearly monotonic upward 

trend. Thus, to achieve the minimum error, a small slice width is desirable. 

 

Fig. 18. Number of modeled trees vs. slice width. 
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Fig. 18 plots the final number of trees that were modeled (after the rejection criteria were 

applied) as a function of slice width, out of a total of 113 actual trees. These plots have a 

parabolic trend. For cylinders, slice widths between 60 cm and 130 cm model similar numbers of 

trees. For cones, widths between 60 cm and 160 cm model similar numbers of trees. For smaller 

widths, less data is available to compute the least-squares fits. This causes some of these fits to 

be inaccurate, and thus more likely to be rejected according to the criteria in Section 2.6.4. 

Meanwhile, larger slice widths include more data, which is likely to include data points from 

canopy and understory. This extraneous data causes erroneous least-squares fits, which are 

eliminated by the rejection criteria, so all of the final tree models represent actual trees. Based on 

the number of trees fit, the optimal slice width is between 60 cm and 130 cm for cylinders, and 

between 60 cm and 160 cm for cones. 

 Fig. 17 shows that errors are similar when comparing cylinder and cone estimates. 

However, Fig. 18 shows that cones successfully model more trees for every slice width. For this 

reason, cones have superior overall performance compared to cylinders. This is to be expected, 

since tree main stems exhibit a natural taper, and thus cones represent a fundamentally more 

accurate representation of tree stem geometry. 

 

3.2.4 Range Cutoff Analysis 

As plotted in Fig. 17, the RMS errors for main stem diameter estimates for cylinders and cones 

were approximately 28.9 cm and 26.8 cm, respectively, using a 60 cm slice width. Meanwhile, 

the median error was 11.2 cm for cylinders and 10.2 cm for cones. The individual errors are 

plotted as a function of distance from the lidar in Fig. 19. This plot contains the absolute value of 

the errors as well as a linear best-fit to show the trend of the data.  
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Fig. 19. Stem estimation error as a function of range from the lidar. 

 Fig. 19 shows a trend that stem estimation errors increase at greater ranges from the 

sensor. This is to be expected because stems that are closer to the sensor tend to have a higher 

point density and yield a more accurate fit. Meanwhile, data that are far from the sensor 

frequently suffer from sparseness and/or occlusion. 

 A few of the points in Fig. 19 show relatively large errors (>15 cm) for ranges less than 

7 m. These errors are due to either low branching of the main stem or partial occlusions by other 

trees and vegetation. Low branching can cause large variations in the stem diameter over a small 

change in height, potentially causing discrepancies between the measured and estimated 

diameter. When a tree is partially occluded, the algorithm relies on sensor data from only a small 

segment of the tree’s perimeter to estimate its diameter, making the algorithm sensitive to small 

variations in the shape of the tree’s cross section. 

 It should be noted that a single outlier—an error of 135 cm at a range of 14 m—was 

removed from this plot so that the other points could be more easily observed. This outlier was 
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the result of a tree directly in line with the pitch axis of the nodding device that was used to 

collect the lidar data. This resulted in sharp discontinuities and data only being collected on the 

lower portion of the trunk, which led to a least-squares fit with a large radius. In practice, the 

models of trees located in line with the pitch axis should be treated with caution until they can be 

sensed with the lidar in a different orientation. 

 Based on the evidence in Fig. 19, it is beneficial to use only part of the full range of lidar 

data to obtain more consistent and accurate stem estimates. Here we consider a cutoff set at a 

range of 13 m from the lidar sensor (i.e. no data beyond 13 m is considered). Fig. 20 and Fig. 21 

show the accuracy and number of trees modeled trees with this 13 m cutoff, out of a maximum 

of 113 actual trees. 

 

 

Fig. 20. 13 m Cutoff: Error vs. slice width. 
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Fig. 21. 13 m Cutoff: Number of modeled trees vs. slice width. 

 Fig. 20 shows that the RMS errors with the 13 m cutoff are significantly lower than 

without the cutoff (from Fig. 17). The RMS and median errors are compared in Table 6. The 13 

m cutoff has very little effect on the number of final trees modeled, according to Fig. 21. This is 

expected because most of the data greater than 13 m from the sensor is too sparse to result in an 

accurate least-squares fit. 

Table 6 

RMS and Median Diameter Errors Using Cylinders and Cones 

Range of 
Data Utilized 

RMS Error 
Using Cylinders 

Median Error 
Using Cylinders 

RMS Error 
Using Cones 

Median Error 
Using Cones 

No cutoff 28.9 cm 11.2 cm 26.8 cm 10.2 cm 
13 m cutoff 13.1 cm 10.2 cm 13.2 cm 9.8 cm 

 

4. Conclusions 

 This paper has presented a unified, novel approach for classification and modeling of 

forested terrain using remotely sensed lidar data. Particularly, this work focuses on ground plane 

and stem estimation. Ground plane estimation is performed using a local height-based filter to 
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eliminate a large percentage of non-ground points. A novel SVM-based supervised classification 

approach operating on eight geometrically defined features identifies which of the remaining 

points belong to the ground. The stem modeling technique first selects a slice of lidar data 

centered at a height of 130 cm off the ground. This data is then clustered using an efficient 

linkage-based clustering algorithm. Trees are modeled by fitting the clustered data to cylinders 

and cones, and constraints are introduced to reject unrealistic fits. This approach was tested using 

lidar data collected during experiments from five distinct forested environments. Results 

demonstrate that this approach can accurately and reliably model both the ground and tree stems 

in conditions with sparse ground cover, such as open forested environments in summer or denser 

environments in winter. Errors in ground height estimation may occur when low groundcover is 

too dense to be penetrated by lidar. 

 The algorithm presented here does have limitations, including the inability to model tree 

stems leaning more than 26°, due to restrictions in the assumed fits. While the dbh estimates are 

not as accurate as some previously reported (e.g. Henning & Radtke (2006)), this is to be 

expected when using a lidar scanner that weighs only 370 g and is easily mounted on a man-

portable robot. Additionally, the single-scan tree detection rate exceeds that reported elsewhere 

using a significantly larger and heavier unit (Thies & Spiecker, 2004). Additionally, due to the 

reliance on lidar data from a single viewpoint, this algorithm can only model trees in the sensor’s 

line of sight—trees which are hidden at breast height will not be modeled. 

 Future work will involve extending this method to a moving vehicle, where it can be used 

for many applications. Both the ground plane and obstacle (stem) locations must be known for 

safe path planning of a UGV. Stem locations and diameters can also be used for UGV 

localization. The ability to collect this information from a moving platform would also be 
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valuable in forestry applications, such as mapping and forest characterization. It is expected that 

robust performance from a moving vehicle will depend on accurate estimation of the relative 

sensor pose between one scan line and the next. 
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