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1. Introduction 

New advances in technology have led to the growth of advanced detection techniques in 

molecular biology.  This rise in turn has led to the availability of large amounts of biological 

data.  There has been a growing need to model biological systems to further understand 

biological processes, and facilitate the development of new techniques for medication and drug 

delivery (1).  

Genetic Regulatory Networks (GRNs) model the relationships between the activation and 

deactivation of genes.  They represent the signal transduction of proteins, as proteins indirectly 

and directly interact to regulate the expression of certain genes.  GRNs are responsible for many 

of the most fundamental biological processes, including T-cell production, mitosis, protein 

synthesis, metabolism, etc. (2).  

Modeling GRNs is important to facilitate medication and drug delivery.  Researchers can target 

specific genes or proteins in signal transduction pathways to cure a number of diseases and 

disorders, with applications in improving the immune response and treating cancer (2).  

However, this requires a detailed knowledge about the effects of activating or deactivating 

multiple genes in the network.  Statistical and logical models are natural choices to represent the 

complex relationships between genes and proteins as a signal propagates through the pathway.  

Furthermore, modeling techniques must be flexible and provide a basis to conduct inference on 

the activation of certain genes.  

However, it is difficult to develop models that can accurately describe the relationships between 

genes.  Furthermore, depending on the gene expression data, a gene may not always activate 

given certain conditions as the activation of a gene is stochastic in nature.  Therefore, to develop 

such complex processes one can use the paradigm of probabilistic logical programming.  

Probabilistic logical programming allows users to form connections between otherwise 

independent random variables and develop logical relationships.  Furthermore, it provides a 

simple but powerful framework to implement logical and statistical techniques (3).  Specifically 

in the case of GRNs, probabilistic logical programming allows one to implement and facilitate 

the structural and parameter learning of Bayesian networks, which can provide an accurate and 

flexible means of modeling GRNs from real gene expression data (4). 

Proteins are one of the most important biochemical compounds in living organisms.  Synthesized 

from genes, proteins are composed of 20 naturally occurring amino acids held together in 

polypeptide bonds.  Proteins serve in a number of important biological processes including 

metabolism, where they serve as enzymes for catalyzing reactions, the immune response, where 

antibodies target foreign compounds for destruction, and in cell signaling (5). 
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Two major types of proteins, extracellular and trans-membrane, participate in cell signaling.  

Trans-membrane proteins span the cell membrane and serve as receptors for signaling molecules.  

Extracellular proteins carry or transmit signals across cells.  When an extracellular protein hits a 

receptor on a cell, it induces a biochemical response inside the cell.  This response propagates 

through signal transduction pathways, eventually leading to the activation of a gene (6). 

It is important to recognize that each protein corresponds to a certain gene from which it is 

synthesized.  These genes have different “expression levels” that can be quantified in terms of its 

concentration.  There are a few major techniques to measure gene expression levels.  The first is 

through microarrays, where microscopic deoxy ribonucleic acid (DNA) probes are placed on a 

slide.  When another slide of tissue containing messenger ribooxy nucleic acid (mRNA) comes 

into contact with the slides, the mRNA hybridizes with its complementary probe, allowing one to 

measure the mRNA levels.  A significant assumption in using these measurements is that mRNA 

levels are directly proportional to gene expression.  Another method to measure expression levels 

is to use flow cytometry, which uses the principles of light scattering and light excitation to 

accurately measure absolute protein concentrations, as well as other properties (4).  The 

assumption is made that protein activity is proportional to its concentration.  Data from 

experiments for established GRNs are readily available from sources such as National Institute 

of Health. 

An important aspect of GRNs is that the expression levels of one gene may be related to the 

expression levels of another gene, either indirectly or directly through the interactions of their 

corresponding proteins.  When this happens, the gene is said to “regulate” the other gene (1).  

For example, when a cell receives a signal through a receptor on its membrane, it begins the 

process of gene activation and protein synthesis.  A certain gene is transcribed into mRNA, 

translated into amino acids, and finally folded into a structure forming a protein.  This protein 

then goes off to carry out other functions, which may then trigger the activation of another gene 

through cell signaling (6).  

The immune response can be modeled as a series of activations or deactivations of certain 

proteins.  The immune system functions by first monitoring the body for any pathogens or 

foreign material (6).  If detected, the immune system sends a signal from the source to other cells 

to combat the pathogen.  This signal causes the activation of a gene, which may then continue to 

activate another gene, and so on.  Such interactions between genes or proteins are known as 

GRNs and more traditionally known as signal transduction pathways (1). 
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2. MAPK/Raf Pathway 

The pathway that has been analyzed in this research is the MAPK/Raf pathway.  This pathway 

aids in human cell division or mitosis, and carries a signal from outside the cell to induce protein 

synthesis and mitosis inside the cell.  The pathway functions when some extracellular protein, 

known as a mitogen, hits a receptor on the cell membrane.  This causes a bio-chemical response 

in the cell that activates certain proteins, such as PKC and PKA.  The signal propagates through 

the pathway, hitting important proteins such as P38, JNK, Raf, and Mek.  The signal eventually 

reaches Erk, which activates a transcription factor that activates a gene, eventually leading 

mitosis (7). 

3. Bayesian Network 

Given biological data, such as microarray and flow cytometry data, the problem is to develop a 

model that can represent the GRN as closely as possible.  Basically, a model needs to be 

generated from the real data that can both describe the underlying structure of the network and 

show the effects of certain proteins activation on the entire network.  As the activation of a 

certain protein is probabilistic in nature, the activation of a certain gene may not always activate 

a protein downstream.  The uncertainty in the pathway given the statistical nature of the data has 

to be captured. 

The interactions between these genes can be modeled graphically through a network where the 

nodes correspond to gene (or protein) names and the edges indicate relationships.  More 

specifically, a type of network that can be used to model these complex relationships is the 

Bayesian network (4).  Formally, a Bayesian network is a probabilistic directed acyclic graph 

(DAG) where the nodes represent random variables and the edges represent conditional 

dependencies.  Each node contains a probability distribution that gives the conditional 

probability of that node activating depending on its parents.  Although the relationships are 

statistical in nature, they can still be used to indicate causality (2).  

In the case of GRNs, a Bayesian network can be developed where the nodes correspond to the 

genes (or proteins) and the edges represent conditional dependencies.  The probability 

distribution at each node would represent the probability of that protein activating given the 

activation/deactivation of its parents. 

Bayesian networks are attractive structures to use as they can easily model complex relationships 

and find the posterior probabilities given the activation of certain nodes. Furthermore, Bayesian 

networks appeal to the naturally probabilistic nature of signal transduction.  A protein, at least 
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from a high-level statistical standpoint, may not always activate depending on certain conditions.  

By representing the uncertainty in activation, Bayesian networks are more flexible than other 

statistical analysis techniques.   

4. Methods 

The main learning problem can then be stated as creating a Bayesian network that models 

genetic regulatory networks from microarray or flow cytometry data.  This problem essentially 

reduces to two sub-problems, which are (1) parameter learning and (2) structure learning. 

Parameter learning consists of finding the correct probability distribution for each node in the 

network.  Structural learning, the more complicated of the two, is learning the actual structure or 

which edges connect to which nodes.  For structural learning, each network requires a score for 

comparison.  Since it is computationally intractable to compare each possible network, it is 

appealing to use artificial intelligence techniques to generate the structure.  

There are a few issues in the computations required for a Bayesian network.  First, the data might 

be incomplete with hidden or latent variables.  Second, finding the likelihood exactly for the 

network is impossible in most cases, since the integral that arises is usually intractable.  The 

method that can be used to solve this problem is known as Variational Bayes-Expectation 

Maximization (VB-EM), which can provide an approximation to the marginal likelihood for the 

network by using the mean field approximation.  Rather than use a point estimate for the 

parameters, Variational Bayes treats both the parameters and any hidden variables as unknowns 

from a Bayesian standpoint.  In the process, Variational Bayes also obtains a set of optimal 

parameters (8).  The estimation to the marginal likelihood, also known as the (negative) free 

energy, can be used as a score for model selection.  This technique is different from other 

methods such as ML (Maximum Likelihood) and MAP (Maximum a posteriori), which use point 

estimates for the parameters.  Monte Carlo methods are able to take random samples and 

evaluate integrals at different values of the parameter, but are computationally intensive (2).  

Since the Variational Bayes method can be implemented iteratively it is a method of choice for 

use in learning problems (8).  

A derivation of Variational Bayes based on Sato et al. (9) and Beal (8) is given in equation 1.  It 

is of interest to find some posterior probability, p(M|D), where M is the model and D is the 

observed data.  Bayes theorem says 

 p(M|D)p(D|M)p(M). (1)
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So, we must then compute this likelihood, p(D|M).  However, first the model is parameterized by 

some parameters .  Second, there may be hidden or latent variables Z that have not been 

observed.  Then, p(D|M) can be expressed as 

 ( | ) ( , , | )
z

p D M p D z M d 


  . (2) 

We must somehow evaluate this expression to compute the marginal likelihood.  However, the 

above integral is intractable.  So, instead of considering this expression, we can rather consider 

the log of this expression, L(D): 

 ( ) log ( , , | )
z

L D p D z M d 


   . (3) 

We can then re-express this as 

   



zz

d
MDzq

MzDp
MDzqdMzDpDL 






),|,(

)|,,(
).|,(log)|,,(log)( , (4) 

where q(.) is the distribution of the hidden variables and the parameters given the data and 

model.  

Finally, using this form of the equation, we can then make an appeal to Jensen’s inequality: 

 

( , , | )
( ) log ( , , | ) log ( , | , )

( , | , )

( , , | )
( , | , ) log  .                                 

( , | , )

z z

z

p D z M
L D p D z M d q z D M d

q z D M

p D z M
q z D M d

q z D M


   




 



 



 



  

 

 (5) 

Jensen’s inequality allows to put a lower bound on the marginal likelihood.  The right side of this 

inequality is known as F(q), the (negative) variational free energy: 

 
( , , | )

( ) ( , ) log
( , )z

p D z M
F q q z d

q z


 




  . (6) 

Also, if we subtract L(D)-F(q): 

 
( , )

( ) ( ) ( , ) log ( || ) ,
( , | , )z

q z
L D F q q z d KL q p

p z D M


 




     (7) 

we arrive at the KL divergence, where KL(q||p) is the KL divergence between q(z,θ) and 

( , | , )p z D M . 

This means that maximizing F(q) is equivalent to minimizing the KL divergence between the 

distributions.  As such, the entire procedure of Variational Bayes can then be thought of as 
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maximizing F(q), this lower bound to the marginal likelihood, to minimize the KL divergence as 

much as possible to obtain an accurate approximation. 

As stated before, variational methods typically use some kind of approximation.  In this case, we 

can use the mean-field approximation 

q(z,θ) ≈ q(z)q(θ). 

If we plug in this approximation, we arrive at 

 

( , , | )
( ) log ( , , | ) log ( , )

( , )

( , , | )
( ) ( , ) log                         

( , )

( , , | )
( ) ( ) log  .                                 

( ) ( )

z z

z

z

p D z M
L D p D z M d q z d

q z

p D z M
F q q z d

q z

p D z M
q z q d

q z q


   




 




 



 





 

 



  

 

 

 (8) 

Plugging in this approximation then allows us to take the functional derivatives, letting us 

maximize the expression 

 ( ) exp( ( ) log ( , | , ) )q z q p D z M d  


  ,  

 ( ) ( | )exp( ( )log ( , | , ))
z

q p M q z p D z M    . (9) 

This leads to two coupled iterative equations, which we can loop over until they converge.  

When they converge, we will have maximized our lower bound, F(q), which can then be used as 

a score for model selection. 

5. Structural Learning 

To address the problem of structural learning, we can use a greedy algorithm in place of an 

exhaustive search to find the optimal network.  Specifically, a hill-climbing algorithm that 

conducts a local search using a heuristic can be implemented (2).  Basically, we can generate a 

random network to represent an initial state.  After that, we can conduct three local operations on 

this network, which include adding, deleting, or reversing an arc.  After each operation, the score 

of the network is determined corresponding to a fitness function.  The score that can be used is 

actually the (negative) variational free energy, which we obtained from the Variational Bayes 

procedure itself.  When the network with the highest score after the local operations is 

determined, the hill-climbing algorithm moves to this network and sets this as the current state, 

repeating the local search.  This process is repeated until the convergence.
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Hill climbing, as opposed to other greedy algorithms, does not retain any information about its 

previous states.  To address this issue, so that the algorithm does not get stuck on a local 

maximum, the algorithm can be repeated or rerun with other random graphs as the initial states.  

After that, all the generated networks can be model averaged, where high confidence arcs from 

the networks can be selected and included in the final network. 

6. Probabilistic Logical Programming 

To process data that is incomplete and uncertain, the framework of probabilistic logical 

programming can be used to obtain meaningful relations.  It is a framework that combines three 

different paradigms, namely first-order logic, statistical learning, and probability.  Logical 

programming is the process of using first order logic in the form of declarative statements or 

clauses to describe relationships between entities and infer their consequences.  In logical 

programming, facts are represented as propositions.  The goal or solution can be obtained 

starting with the negation of a proposition to be proved and deriving a contradiction by 

systematic deduction using the facts.  Recently, there has been interest in extending logical 

programming to include probabilities figure 1.  This approach can allow for more realistic 

modeling capabilities by taking into account the uncertainties in the data obtained in real world 

that has significant applications in machine learning (3).   

 

Figure 1.  Schematics of probabilistic logic paradigm. 

PRISM is a probabilistic logical framework based on B-prolog the language extends the Horn 

clauses to include random variables.  The semantics of the programming language is based on 

distribution semantics defined on DB = {F} U {R}, where {F} is the set of atoms with random 

variables, called msw atoms, {R} is a set of definite clauses whose head atoms are not msw 

atoms, and DB is a PRISM program.  The distribution semantics consists of defining a 

probability measure PF(.) first on the Herbrand models containing the msw atoms.  Then by 

Kolmogorov’s extension theorem the measure is extended to PDB(.) the product space of {F} and 
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{R}.  In practice, PRISM allows users to easily specify discrete probability distributions through 

its syntax.  Furthermore, it supports the use of conditional probabilities, providing the 

mechanisms needed to model Bayesian networks.  Most importantly, it has support and 

implementations of some of the most popular and complex statistical learning algorithms, 

including ML, MAP, and Variational Bayes (9). 

To program a Bayesian network in PRISM, one has to generate what is known as a “probabilistic 

clause.”  Basically, this is a clause that takes a random variable and generates a probabilistic call  

on the variables (9).  To make the example clearer, consider a simple probabilistic model that 

contains three binary random variables A, B, and C.  To specify the binary distribution in  

PRISM’s syntax, one can simply use PRISM’s random “switch” declaration:  values(_, [0,1]). 

Next, to model the three random variables a probabilistic call must be made to each of the 

variables.  This is done through PRISM’s version of the switch statement, known as “msw” (9).  

A simple probabilistic clause named “world” that considers the three variables would be: 

world(A,B,C):- msw(a,A),msw(b,B),msw(c,C). 

Now that a probabilistic model can be created, generating a Bayesian network simply requires 

one addition: conditional probabilities.  This is easily implemented using the prolog/PRISM 

complex functor syntax, which is a term with parenthesis containing another term (9).  

So consider a simple Bayesian network with three binary random variables, A, B, and C, and let 

us say the graph consists of an edge from A to C and an edge from B to C.  A probabilistic 

predicate to model this would be: 

world(A,B,C):-msw(a,A),msw(b,B),msw(c(A,B),c). 

The project consists of generating such a probabilistic clause, a representation of a Bayesian 

network, which best models the real gene expression data (4).  With this clause, one can easily 

use PRISM to conduct inference from this model. 

7. Experiment 

Flow cytometry data was obtained for the well-established “Raf” pathway in a discretized format 

into three levels using one-dimensional K-means. 

The random generation method was implemented where two nodes are randomly selected and an 

edge is added on the condition that the graph remains acyclic.  This process is repeated and the 

algorithm outputs a random graph that can be used as the initial state. 
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After that, the hill-climbing algorithm was implemented, where a local search was performed on 

the graph.  The three operations, which are add, delete, and reverse, were conducted on pairs of 

nodes to generate the new graphs that comprised the local search space.  The acyclic condition 

was checked for each of these three operations to generate failure-free clauses.  

For each operation, the variational free energy was calculated to be used as a score.  During the 

course of the algorithm, the graph was stored as a list of edges, i.e., [edge(pKC,pKA), 

edge(raf,mek)].  However, to obtain the free energy, the graph was then converted to a PRISM 

program model to take advantage of PRISM’s learning system.  A probabilistic predicate, known 

as “world,” was generated based on the graph edges and then saved to a .psm file, which was 

then loaded into the database.  The system was then set up for VM-EM learning through 

PRISM’s syntax, by calling learning on the hyper-parameters of a Dirichlet distribution. 

Learning was begun and the free energy was obtained by calling “learning_statistics.”  

The graph with the highest score after the local operations was selected to be the next state.  This 

algorithm continued until the graph reached convergence. 

This process was repeated on 500 random graphs to avoid getting stuck on local maxima.  To 

speed up the program, a multi-threaded version was implemented using Java, where a call was 

made to PRISM through batch-execution, to run the hill-climbing algorithm on each random 

graph in a separate thread.  The threads were run concurrently, causing the overall time of the 

program to decrease by a factor depending on the number of cores in the computer.  It is possible 

to run this multi-threaded application on a supercomputer to immensely speed up the program. 

Finally, to obtain the true final structure, the frequency of all the edges found in the 500 

converged graphs was recorded.  Edges that appeared in at least 50% of the structures, or in this 

case edges that had a frequency greater than 250 were selected to be included in an averaged 

graph.  Variational Bayes was run for a final time to obtain the hyper-parameters for this 

structure. 

To visually display the graphs, the Graphviz software was used.  Specifically, the edges in the 

graph structure from prolog were converted to Graphviz’s “dot” language and outputted to a file.  

The command-line dot operator from Graphviz was called within PRISM on the exported file to 

generate a visual of the network.  

The source code for the PRISM and Java programs is provided for the reader’s convenience. 

Directions on using the program are included in the readme.
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8. Results/Discussion 

Table A-1 in the appendix shows the frequency of the edges from the 500 graphs.  Edges that 

had a frequency above 250 were selected to be included in the final averaged model.  The hyper-

parameters for this final structure obtained using Variational Bayes is listed in the appendix.  The 

MAPK/Raf pathway as defined by the literature is given in figure 2, as compared to the final 

generated model given in figure 3.  

 
 

Figure 2.  MAPK pathway from literature (4). 

 

Figure 3.  Generated pathway from algorithm.
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The final structure contained a total of 22 edges.  Each edge and its accuracy based on other 

models and literature is shown in table 1. 

Table 1.  Accuracy of edges. 

 Edge Result 

PKC->PKA Expected 

PKC->Raf Expected 

PKC->Mek Expected 

PKC->Erk Expected 

PKC->Akt Expected 

PKC->Plcg Reversed 

PKC->P38 Expected 

PKC->Jnk Expected 

PKA->Raf Expected 

PKA->P38 Expected 

PKA->PIP2 Undefined/Misplaced 

PKA->Akt Expected 

PKA->Jnk Expected 

PIP3->PKC Misplaced 

PIP3->Plcg Expected 

PIP3->PIP2 Expected 

Erk->PKA Reversed 

Erk->Akt Expected 

Mek->Raf Reversed 

Raf->Akt Expected 

P38->Jnk Undefined 

Plcg->PIP2 Expected 

Mek->Erk Missed  

Out of the 22 edges, 17 are well defined in the literature, indicating the generated model was 

relatively accurate.  However, the arc from PKA->Erk was reversed in the structure.  This 

presumably caused the arc from Mek->Erk to be missed, as adding this connection would violate 

the acyclic condition.  The arc Mek->Raf was also reversed.  

When considering the phospholipids PIP2 and PIP3, it is important to recognize that there is a 

feedback mechanism between them.  That is, the connection between PIP2 to PIP3 is direct both 

ways in the literature:  PIP3<->PIP2.  However, the Bayesian network can only handle acyclic 

arcs, so the arc was pointed in just one direction from PIP3->PIP2, a similar result obtained by 

earlier studies (4).  Also, this feedback mechanism made it difficult to determine where to place 

the connection between the phospholipids to PKC, so while the literature defines the connection 

as PIP2->PKC, the model found PIP3->PKC.  The arc between Plcg->PKC was reversed as well.  
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Finally, additional arcs were added between P38->Jnk and PKA->PIP2, both of which are 

plausible but must be verified through literature and experimentation.  

When comparing the results with Sachs et al. (4) (who conducted the original experiment), the 

models appear very similar.  Fourteen out of seventeen arcs in Sachs et al. (4) results directly 

match the generated model.  Also, Sachs et al. (4) reported two not well-defined connections, 

PKC->PKA and Erk->AKT, which were corroborated by this generated model.  However, while 

Sachs et al. (4) reversed the connection between PIP3->Plcg, the generated model actually 

correctly identified the direction of the connection.  Furthermore, while Sachs et al. (4) 

completely missed the arcs from PIP2->PKC and Plcg->PKC, the generated model found a 

connection from PIP3->PKC and reversed the connection to find PKC->Plcg.  Sachs et al. (4) 

also did not find the connection from PIP3->Akt, while the generated model indirectly found the 

connection through PIP3->PKC->Akt.  This might give further insight as to why the connection 

was added from PIP3->PKC rather than PIP2->PKC, since adding the connection from  

PIP3->PKC made the indirect connection PIP3->PKC->Akt possible. 

When considering the results as a whole, the generated graph was remarkably similar to the 

literature.  Only one arc, Mek->Erk, was completely missed because of the acyclic condition, and 

a few arcs were misplaced or reversed.  Although this missed connection between Mek->Erk was 

found by Sachs et al. (4), the generated model was successfully able to identify relationships 

between the phospholipids that Sachs et al. (4) missed or reversed.  This shows that the hill-

climbing method can be successfully utilized as compared to the simulated annealing approach 

Sachs et al. (4) used. 

9. Conclusions 

The first-order probabilistic logic framework as implemented in PRISM was successfully 

utilized to facilitate both parameter and structural learning of Bayesian networks to model GRNs.  

This approach was applied to the “Raf” pathway, and a structure that is in good agreement with 

the literature was generated.  Variational Bayes was utilized for parameter learning and to obtain 

an approximation to the marginal likelihood.  The free energy was used as a fitness function for 

model selection in structural learning.  

The final structure generated by the algorithm was very close, with only a few arcs missing or 

reversed.  Both direct and indirect connections between genes were detected, indicating how 

Bayesian networks can adapt to hidden or unobserved variables.  Furthermore, the algorithm was 

able to identify connections previously missed by other research.  Such probabilistic reasoning 

can be successfully used on flow cytometry data, where a hill-climbing approach can be 

implemented to generate the Bayesian networks.  PRISM was also found to be a flexible and 
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stable platform that can be used to implement powerful and applicable learning algorithms 

through simple syntax.  

A number of techniques can be used to extend or change the project.  First, a different 

discretization technique can be applied on the data to obtain more accurate results.  Also, results 

between flow cytometry and microarray data can be compared.  Furthermore, the base 

implementation of PRISM only supports discrete distributions for Bayesian networks.  The 

framework could be extended to include continuous, perhaps linear, Gaussian distributions and 

attempt learning using this broader class of probability distributions.  Most importantly, Bayesian 

networks are defined as DAGs, or contain the acyclic condition.  However, it has been noted that 

the “Raf” pathway that was tested, as well as numerous other biological pathways, included self-

feedback mechanisms.  Alternative approaches can be used to address this issue, such as the 

implementation of dynamic Bayesian networks, whose states are temporal.  Given time-series 

data for gene activation, this approach can be readily applied.  This provides numerous 

opportunities for further research and investigations.  

The project explored the applicability of probabilistic logical programming as a platform to 

analyze data and generate models for GRNs.  Bayesian networks can be used to identify 

statistical as well as causal relations, making them valuable inference models.  The PRISM 

framework along with prolog is a flexible language that can easily be integrated in a wide variety 

of “omics” data, including genomics, proteomics, and metabolomics.  Most significantly, an 

implementation of such an algorithm can be used to analyze new and old data to help identify 

connections and networks that either have not been identified or have been overlooked.  

Modeling GRNs using these methods has enormous applications in medication and drug 

delivery.  Automatically generating probabilistic models from real data can help scientists 

explore the effect of activating/inhibiting certain genes.  By identifying and simulating important 

proteins and pathways, researchers can use the pathways to develop highly effective medication 

and drug delivery techniques.  Targeting specific proteins and transduction pathways can help 

lead to solutions for a number of diseases, including cancer, HIV/Aids, genetic disorders, etc.  

Further research in Bayesian approaches using probabilistic logical programming can help 

establish methods to automatically analyze the large amounts of available biological data and 

create robust statistical and probabilistic models to conduct inference. 
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Appendix.  Dirichlet Posteriors 

PRISM is a framework that supports statistical learning of parameters that would correspond to a 

family of probability distributions to model given data.  This is done by assuming a set of priors 

for the Bayesian network and outputting a set of posteriors after processing the data.  At the end 

of a successful execution of the learning paradigm after processing the evidence data, PRISM 

outputs the hyper-parameters and the ML edges connecting the nodes of the Bayesian network. 

The frequencies of the edges and the corresponding hyper-parameters from the successful run are 

listed in table A-1. 
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Table A-1.  Frequency of edges from 500 random graphs. 
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Hyper-parameters for Final Structure: 

switch(akt(3,3,2,2),unfixed,[1,2,3],[2.104781072191722e+01,1.302414590884339e+01,2.129136866551005e+00]). 

switch(akt(3,2,2,2),unfixed,[1,2,3],[2.702103495541760e+01,2.610940210600353e+01,7.648154374561678e-03]). 

switch(akt(3,1,2,2),unfixed,[1,2,3],[8.904400206989899e+01,5.038733461992049e+00,1.661432285509123e-02]). 

switch(akt(3,1,2,1),unfixed,[1,2,3],[5.686115457087260e-02,1.495745678542937e-02,1.008150350524013e+01]). 

switch(akt(3,1,1,1),unfixed,[1,2,3],[1.909226234055026e+01,2.001003736795894e+01,5.033884889921850e+00]). 

switch(akt(2,3,3,3),unfixed,[1,2,3],[9.544254268681751e-02,4.010649754500932e+00,2.063750589049270e+00]). 

switch(akt(2,3,3,2),unfixed,[1,2,3],[6.050761168370066e+00,3.501144129192212e+01,1.206650284576236e+01]). 

switch(akt(2,3,2,3),unfixed,[1,2,3],[2.023651088929181e+00,2.300974528871280e-02,3.527255964274190e-02]). 

switch(akt(2,3,2,2),unfixed,[1,2,3],[1.650277613476413e+02,4.603671943101045e+01,4.906807508632433e+01]). 

switch(akt(2,2,3,3),unfixed,[1,2,3],[8.031390009854023e-02,1.042941156924351e+00,2.775819529603951e-02]). 

switch(akt(2,2,3,2),unfixed,[1,2,3],[7.635126078280541e-02,1.001450362448501e+01,1.029750756933185e+00]). 

switch(akt(2,2,2,3),unfixed,[1,2,3],[1.508114445380454e+01,6.139717993942639e-04,1.012409764263014e+00]). 

switch(akt(2,2,2,2),unfixed,[1,2,3],[3.620358814443809e+02,5.003708448000258e+01,9.701399397950583e+01]). 

switch(akt(2,1,3,1),unfixed,[1,2,3],[7.587027867548279e-03,1.325605952552555e-02,1.157067997461093e+00]). 

switch(akt(2,1,2,3),unfixed,[1,2,3],[1.030104757437537e+00,4.986257948555739e-02,8.735301999628131e-02]). 

switch(akt(2,1,2,2),unfixed,[1,2,3],[1.620528975976645e+02,9.052373133566819e+00,4.044824724313071e+00]). 

switch(akt(2,1,2,1),unfixed,[1,2,3],[6.322135163539344e-02,1.144056160246998e-02,3.004576601118258e+01]). 

switch(akt(2,1,1,1),unfixed,[1,2,3],[6.401420666732027e+01,8.507328991582474e+01,3.402030457025943e+01]). 

switch(akt(1,3,3,3),unfixed,[1,2,3],[7.629887443197281e-02,5.102241602398782e+01,4.013531999235901e+01]). 

switch(akt(1,3,3,2),unfixed,[1,2,3],[3.702188237863437e+01,1.390581763968984e+02,5.901970134920614e+01]). 

switch(akt(1,3,2,3),unfixed,[1,2,3],[6.200131723214648e+01,1.913649690307136e+01,1.111061150413528e-02]). 

switch(akt(1,3,2,2),unfixed,[1,2,3],[8.120369838156221e+02,1.270506744139521e+02,1.450177631943929e+02]). 

switch(akt(1,2,3,3),unfixed,[1,2,3],[2.762721948184277e-02,2.100642249662979e+01,6.006052095909494e+00]). 

switch(akt(1,2,3,2),unfixed,[1,2,3],[5.087355558004219e+00,1.517886338460945e+01,5.103631814113593e+00]). 

switch(akt(1,2,2,3),unfixed,[1,2,3],[3.580371737611946e+02,1.506818532038199e+01,4.221181654750450e-02]). 

switch(akt(1,2,2,2),unfixed,[1,2,3],[1.158083907679590e+03,6.204915110131702e+01,2.801120823110234e+02]). 

switch(akt(1,1,3,1),unfixed,[1,2,3],[2.878554788046239e-02,1.093109810252222e-01,1.031329958006125e+00]). 

switch(akt(1,1,2,3),unfixed,[1,2,3],[8.011623813061377e+00,4.304486356509662e-02,1.663247993759054e-03]). 

switch(akt(1,1,2,2),unfixed,[1,2,3],[1.340004012397598e+02,4.035511080561404e+00,2.106812918324229e+01]). 

switch(akt(1,1,2,1),unfixed,[1,2,3],[7.983588400113573e-02,3.946743798642527e-02,6.701914698956455e+01]). 

switch(akt(1,1,1,1),unfixed,[1,2,3],[1.000302912475963e+02,1.260116025557360e+02,3.807539969641256e+01]). 

switch(raf(3,2,3),unfixed,[1,2,3],[6.653632520297448e-02,3.129486203435872e-02,1.056938302610241e+00]). 

switch(raf(3,2,2),unfixed,[1,2,3],[1.276925111159146e-01,2.551826935791457e-02,1.066266364755704e+00]). 

switch(raf(3,1,1),unfixed,[1,2,3],[9.177258184164905e-02,2.202788392653714e+01,5.404702033917637e+01]). 

switch(raf(2,3,3),unfixed,[1,2,3],[1.013878502919621e+00,1.066833475670973e+00,1.956089773097234e-01]). 

switch(raf(2,3,2),unfixed,[1,2,3],[1.019824006764122e+00,2.034032489419806e+00,8.375180461278764e-02]). 

switch(raf(2,2,3),unfixed,[1,2,3],[3.351641677917283e-02,1.807959689063284e+01,2.027938715904647e+00]). 

switch(raf(2,2,2),unfixed,[1,2,3],[3.091634980616806e+00,5.805835814402766e+01,1.018739776632871e+00]). 

switch(raf(2,2,1),unfixed,[1,2,3],[1.414132590104125e-01,2.044005778014749e+00,7.796811692921679e-04]). 

switch(raf(2,1,1),unfixed,[1,2,3],[1.310066539887782e+02,1.920556235187734e+02,5.595885558280189e-02]). 

switch(raf(1,3,3),unfixed,[1,2,3],[1.710158398816957e+02,7.005434752837283e+00,8.915524787266715e-02]). 

switch(raf(1,3,2),unfixed,[1,2,3],[3.990690077941641e+02,1.506741231598041e+01,1.731682980632976e-02]). 

switch(raf(1,3,1),unfixed,[1,2,3],[8.096261227547782e+00,1.098506550842028e+00,1.019592947714285e-01]). 

switch(raf(1,2,3),unfixed,[1,2,3],[1.319073469920082e+03,2.950569849716813e+02,3.304022587047738e+01]). 

switch(raf(1,2,2),unfixed,[1,2,3],[1.522038786515532e+03,4.620186580890551e+02,5.100152112356864e+01]). 

switch(raf(1,2,1),unfixed,[1,2,3],[1.590841679129034e+02,1.730555243963606e+02,9.404256993046322e+01]). 

switch(raf(1,1,1),unfixed,[1,2,3],[2.010560157273320e+02,2.404199771431847e-02,1.066541353855648e-01]). 

switch(pIP2(3,2,3),unfixed,[1,2,3],[4.001209893813110e+00,1.703542806927804e+01,4.806430607726624e+01]). 

switch(pIP2(3,2,2),unfixed,[1,2,3],[1.910316248831325e+01,1.914372839164787e+01,1.106829446665312e+01]). 

switch(pIP2(3,1,3),unfixed,[1,2,3],[3.405586949746278e+01,2.703795984707132e+01,4.902293919160907e+01]). 

switch(pIP2(3,1,2),unfixed,[1,2,3],[1.092005458339969e+03,4.280639217816594e+02,1.000306452511782e+02]). 

switch(pIP2(2,3,3),unfixed,[1,2,3],[5.303795067493677e-03,6.170360632643512e-02,2.121154199468894e+00]). 

switch(pIP2(2,2,3),unfixed,[1,2,3],[2.065960569795757e+00,3.030570590712228e+00,5.204677660508049e+01]). 

switch(pIP2(2,2,2),unfixed,[1,2,3],[1.307429095748783e+01,3.710093936292090e+01,2.009253234158498e+01]). 

switch(pIP2(2,1,3),unfixed,[1,2,3],[5.707735424846452e+01,3.608330938023343e+01,7.300007524174188e+01]). 

switch(pIP2(2,1,2),unfixed,[1,2,3],[1.563052622036350e+03,5.500583785593574e+02,1.070333210330277e+02]). 

switch(pIP2(1,3,3),unfixed,[1,2,3],[5.189687704245216e-03,1.390212089104614e-01,2.041364466879335e+00]). 

switch(pIP2(1,3,2),unfixed,[1,2,3],[9.423444990123153e-03,2.695017999057225e-02,2.012154162378584e+01]). 

switch(pIP2(1,3,1),unfixed,[1,2,3],[4.246389706613352e-02,4.139422989063424e-02,1.000450574320960e+02]). 

switch(pIP2(1,2,3),unfixed,[1,2,3],[1.043935900938110e+00,1.112492642073998e+00,1.013314544591726e+00]). 

switch(pIP2(1,2,2),unfixed,[1,2,3],[5.040965830325139e-02,3.041429338991394e+00,1.034337872165890e+00]). 

switch(pIP2(1,2,1),unfixed,[1,2,3],[1.001347837479365e-01,2.230195846083114e+02,3.902331965836363e+01]). 

switch(pIP2(1,1,3),unfixed,[1,2,3],[1.008582976980839e+00,7.048285773743402e+00,7.144418272563652e+00]). 

switch(pIP2(1,1,2),unfixed,[1,2,3],[3.460379159040597e+02,6.103609406415170e+01,1.204744426000652e+01]). 

switch(pIP2(1,1,1),unfixed,[1,2,3],[1.290411945843202e+02,8.309607521213042e+01,7.023195557334350e-02]). 

switch(jnk(3,3,2),unfixed,[1,2,3],[8.170430454994460e-02,1.024688439439217e+00,2.374367836317726e-03]). 

switch(jnk(3,2,3),unfixed,[1,2,3],[3.711132573641532e+01,8.399533624281141e-02,7.386758653356984e-02]). 

switch(jnk(3,2,2),unfixed,[1,2,3],[1.013199116552721e+00,1.000103868249331e+00,1.134664367181037e-02]). 

switch(jnk(3,1,1),unfixed,[1,2,3],[1.056438165848989e+00,1.406797633208276e+01,8.602382886156428e+01]). 

switch(jnk(2,3,3),unfixed,[1,2,3],[2.114473712215470e+00,7.673272499815553e-02,2.009462138228633e+00]). 

switch(jnk(2,3,2),unfixed,[1,2,3],[6.072286807279122e+00,9.029560057548634e+00,1.007838490508448e+01]). 

switch(jnk(2,3,1),unfixed,[1,2,3],[1.084375659091877e+00,5.107310505392459e-02,3.284847657072554e-02]). 

switch(jnk(2,2,3),unfixed,[1,2,3],[9.401724721402879e+01,6.042479771445067e+00,2.105155336122249e+00]). 

switch(jnk(2,2,2),unfixed,[1,2,3],[1.007314624160750e+01,1.509462686207449e+01,6.042423106016300e+00]). 

switch(jnk(2,2,1),unfixed,[1,2,3],[1.006529613207685e+00,7.298895301187280e-02,1.097588946130201e-01]). 

switch(jnk(2,1,1),unfixed,[1,2,3],[1.150666444507875e+02,1.621057906790526e+02,4.409114920385093e+01]). 

switch(jnk(1,3,3),unfixed,[1,2,3],[1.190916815111105e+02,5.506560385800171e+01,2.091981171398936e+00]). 

switch(jnk(1,3,2),unfixed,[1,2,3],[2.720047760154043e+02,1.170000599731376e+02,2.091598517261623e+00]).
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switch(jnk(1,3,1),unfixed,[1,2,3],[8.077910048079742e+00,5.354264384151852e-02,3.520228501363176e-02]). 

switch(jnk(1,2,3),unfixed,[1,2,3],[1.340109193565301e+03,1.802048611547423e+02,9.098326077897324e+00]). 

switch(jnk(1,2,2),unfixed,[1,2,3],[1.702085013619618e+03,3.380012366146435e+02,2.505470390984796e+01]). 

switch(jnk(1,2,1),unfixed,[1,2,3],[3.781036522854555e+02,4.601735814093122e+01,3.024419914039737e+00]). 

switch(jnk(1,1,1),unfixed,[1,2,3],[1.120108347300325e+02,3.806112270305465e+01,2.801085501655414e+01]). 

switch(plcg(3,3),unfixed,[1,2,3],[4.062373930439295e+00,3.121674374903056e+01,4.615050780152785e-03]). 

switch(plcg(3,2),unfixed,[1,2,3],[2.850503906638140e+02,9.813963657928241e+01,2.179180632025527e+00]). 

switch(plcg(3,1),unfixed,[1,2,3],[2.085593842284205e+00,4.365187122098946e-02,2.035541361892429e+00]). 

switch(plcg(2,3),unfixed,[1,2,3],[5.421193069092512e+02,2.911033672775044e+01,7.712251703199735e-02]). 

switch(plcg(2,2),unfixed,[1,2,3],[3.716029066902827e+03,9.303882248688838e+01,7.292427984205729e-02]). 

switch(plcg(2,1),unfixed,[1,2,3],[1.046719146284044e+00,1.125162630332833e+00,2.009449562128575e+01]). 

switch(plcg(1,1),unfixed,[1,2,3],[2.122082265166680e+02,2.620912551646054e+02,1.000006297949995e+02]). 

switch(pKA(3,3),unfixed,[1,2,3],[1.446217272069794e-02,2.800429836280441e+01,9.706578321660727e+01]). 

switch(pKA(3,2),unfixed,[1,2,3],[1.401800448152959e-01,3.607834454875815e+01,2.880342186161895e+02]). 

switch(pKA(3,1),unfixed,[1,2,3],[2.038690994437913e+00,3.579598885197188e-02,3.138774652535936e-02]). 

switch(pKA(2,3),unfixed,[1,2,3],[9.000996203824691e+00,3.890280244728064e+02,8.303463308550330e+01]). 

switch(pKA(2,2),unfixed,[1,2,3],[4.280079053433236e+02,2.062027591897890e+03,1.380068991726592e+03]). 

switch(pKA(2,1),unfixed,[1,2,3],[1.070401176521088e+02,9.933643024076355e-02,7.347088576956984e-02]). 

switch(pKA(1,1),unfixed,[1,2,3],[4.910394218881192e+02,2.392238953294190e-02,7.119191878955555e-02]). 

switch(p38(3,3),unfixed,[1,2,3],[1.761637573424001e+02,4.130919849775311e+00,3.685935906515314e-02]). 

switch(p38(3,2),unfixed,[1,2,3],[3.910580430640798e+02,2.503528874496706e+01,1.014357847346842e+00]). 

switch(p38(3,1),unfixed,[1,2,3],[8.145374339507320e+00,1.086558533401370e+00,1.059189294959750e-01]). 

switch(p38(2,3),unfixed,[1,2,3],[1.529061531429524e+03,1.020754013808111e+02,3.706418447213304e+01]). 

switch(p38(2,2),unfixed,[1,2,3],[2.065007893683377e+03,3.101627690104216e+01,2.025722854421660e+00]). 

switch(p38(2,1),unfixed,[1,2,3],[4.270206724679193e+02,1.048756975187821e+00,1.234923852097669e-02]). 

switch(p38(1,1),unfixed,[1,2,3],[1.780089094066029e+02,3.211590368828645e+02,1.010020740993941e+02]). 

switch(pKC(3),unfixed,[1,2,3],[4.000115967193832e+00,3.850771315893066e+02,3.514097733989625e+01]). 

switch(pKC(2),unfixed,[1,2,3],[2.202115549298599e+01,3.809047177502779e+03,5.710829507413882e+02]). 

switch(pKC(1),unfixed,[1,2,3],[5.740963616636188e+02,3.886825238351088e-02,8.783216870598354e-02]). 

switch(mek(3),unfixed,[1,2,3],[6.010545187647992e+02,5.002412891691504e+00,2.932344195904668e-02]). 

switch(mek(2),unfixed,[1,2,3],[4.108064390408638e+03,8.413150178526675e+01,2.105809311403344e+00]). 

switch(mek(1),unfixed,[1,2,3],[2.010915450673237e+02,3.230023848812932e+02,7.607755204783606e+01]). 

switch(erk(3),unfixed,[1,2,3],[2.753582588953640e-02,4.810623867503612e+02,1.250646310401586e+02]). 

switch(erk(2),unfixed,[1,2,3],[1.346505475383242e-01,3.870092554703287e+03,3.241480586358680e+02]). 

switch(erk(1),unfixed,[1,2,3],[4.910011082952420e+02,1.070252696126061e+02,2.092071430175520e+00]). 

switch(pIP3,unfixed,[1,2,3],[5.740464018132127e+02,4.402011909460151e+03,4.240664767051123e+02]). 
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List of Symbols, Abbreviations, and Acronyms 

AP   maximum a posteriori 

DAGs  directed acyclic graphs  

DNA  deoxy ribonucleic acid  

GRNs  Genetic Regulatory Networks  

MAP  maximum a posteriori 

ML   maximum likelihood 

mRNA  messenger ribooxy nucleic acid  

VB-EM Variational Bayes-Expectation Maximization 
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