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Aspects of differential geometry and tensor calculus in anholonomic
configuration space

J.D. Clayton

In the context of finite deformation mechanics, a tangent mapping is anholonomic
over some domain when it is not a gradient of a motion; conversely, a deformation
gradient is holonomic when it is integrable to a motion field everywhere in that
domain. This brief report addresses covariant differentiation for four possible
choices of basis vectors in anholonomic space. As an example from continuum
physics, the theory is applied towards description of divergence of the heat flux.
An extensive treatment of anholonomic mathematics can be found in a recent
article [1]; however, this report includes material not found in [1], and vice-versa.

As suggested by Schouten [2], consideration of differential geometry of anholo-
nomic spaces dates back to at least 1926 [3]. Many important identities are derived
in [2, 4]. Various coordinate systems and associated metric tensors in anholonomic
space are considered in [5], with particular focus on convected basis and Cartesian
representations. Correspondences among mathematical objects from differential
geometry and their continuum physical counterparts in defect field theory of crys-
tals are described at length in a more recent monograph [6].

The present description is limited to the time-independent case, such that spa-
tial coordinates xa are related to reference coordinates XA by one-to-one and at
least twice-differentiable mappings xa(X) and XA(x), with X a material particle
and x its spatial representation. Let the usual holonomic deformation gradient
F (X) be decomposed multiplicatively as

(1) F = F̄ F̃ , F a
¦A = F̄ a

¦αF̃α
¦A;

(2) F = ∂Axaga ⊗GA, F̄ = F̄ a
¦αga ⊗ g̃α, F̃ = F̃α

¦Ag̃α ⊗GA.

Denoting ∂A = ∂/∂XA and ∂a = ∂/∂xa, partial differentiation proceeds as

(3) ∂α(·) def= F̄ a
¦α∂a(·) = F̃−1A

¦α∂A(·), ∂A(·) = ∂Axa∂a(·) = F a
¦A∂a(·).

Attention is restricted to a simply connected domain in reference and current
configurations such that {XA} and {xa} are global coordinate charts. Let indices
in brackets be skew, e.g., A[AB]

def= 1
2 (AAB−ABA). Since XA and xa are holonomic

coordinates,

(4) ∂[A∂B](·) = 0, ∂[a∂b](·) = 0; ∂[AF a
¦B] = 0, ∂[aF−1A

¦b] = 0.

Similar identities do not always hold for ∂α(·) since F̄
−1 and F̃ are not necessarily

integrable functions of xa or XA. Anholonomic object κκκ obeys [1, 2]

(5) κ¦¦α
βχ

def= −F̄−1α
¦a∂[βF̄ a

¦χ] = −F̃α
¦A∂[βF̃−1A

¦χ] = −κ¦¦α
χβ ;

(6) ∂[α∂β](·) = −κ¦¦χ
αβ∂χ(·).

Holonomic charts {x̃α(X)} [or {x̃α(x)}] exist in a one-to-one fashion with X or x
if and only if κ¦¦α

βχ = 0 throughout a simply connected domain.
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Let A be a generic differentiable tensor field. Covariant differentiation in an-
holonomic space is defined as

(7) ∇νAα...φ
γ...µ

def= ∂νAα...φ
γ...µ +Γ¦¦α

νρ Aρ...φ
γ...µ+· · ·+Γ¦¦φ

νρ Aα...ρ
γ...µ−Γ¦¦ρ

νγAα...φ
ρ...µ−· · ·−Γ¦¦ρ

νµAα...φ
γ...ρ .

Connection coefficients can be expressed in general form as [2]

(8) Γ¦¦α
βχ = 1

2 g̃αδ(∂{β g̃δχ} − 2T{βδχ} + 2κ{βδχ} + M{βδχ}),

where g̃αχg̃χβ = δα
β and the following definitions apply:

(9) (·){αβχ}
def= (·)αβχ − (·)βχα + (·)χαβ , (·)βχδ

def= (·)¦¦α
βχg̃δα;

(10) g̃αβ
def= g̃α · g̃β , T ¦¦α

βχ
def= Γ¦¦α

[βχ] + κ¦¦α
βχ, Mαβχ

def= −∇αg̃βχ.

In this report attention is restricted to metric connections so that Mαβχ = 0 and

(11) ∂αg̃β = Γ¦¦χ
αβ g̃χ, ∂αg̃

β = −Γ¦¦β
αχg̃

χ;

(12) ∂α ln
√

g̃ = Γ¦¦β
αβ , ∇αεβχδ = ∂αεβχδ − Γ¦¦φ

αφεβχδ = 0;

(13) g̃
def= det(g̃αβ), εαβχ

def=
√

g̃eαβχ, εαβχ def= (1/
√

g̃)eαβχ.

The covariant derivative of a generic differentiable vector field V = V αg̃α is then

(14) ∇V = ∂βV ⊗ g̃β = (∂βV α + Γ¦¦α
βχV χ)g̃α ⊗ g̃β .

Total covariant derivatives of two-point tangent mappings F̃ and F̄
−1 are [1, 6]

(15) F̃α
¦A:B

def= ∂BF̃α
¦A + Γ¦¦α

βχF̃ β
¦BF̃χ

¦A − Γ¦¦C
BAF̃α

¦C = F̃α
¦A:βF̃ β

¦B ;

(16) F̄−1α
¦a:b

def= ∂bF̄
−1α

¦a + Γ¦¦α
βχF̄−1β

¦b F̄
−1χ

¦a − Γ¦¦c
ba F̄−1α

¦c = F̄−1α
¦a:βF̄−1β

¦b .

Metrics and Levi-Civita connections in reference and current configurations are

(17) GAB
def= GA ·GB = ∂AX · ∂BX , Γ¦¦A

BC
def= 1

2GAD∂{BGDC};

(18) gab
def= ga · gb = ∂ax · ∂bx , Γ¦¦a

bc
def= 1

2gad∂{bgdc}.

Letting g = det(gab) and G = det(GAB), Jacobian determinants are [5, 6]

(19) J =
√

g/G det(∂Axa) = J̄ J̃ , J̄ =
√

g/g̃ det(F̄ a
¦α), J̃ =

√
g̃/G det(F̃α

¦A).

Piola’s identities for possibly anholonomic Jacobian determinants are then [1, 4, 6]

(20) (J̃ F̃−1A
¦α):A = εαβχεABC F̃ β

¦AF̃χ
¦[B:C], (J̄−1F̄ a

¦α):a = εαβχεabcF̄−1β
¦aF̄−1χ

¦[b:c].

Let q̄ = q̄αg̃α denote the heat flux vector referred to anholonomic space, let kαβ

denote a covariant constant positive semi-definite tensor of thermal conductivity
with the particular form dictated by the material symmetry group, and let θ denote
temperature. Nanson’s formula and energy invariance among configurations lead
to relationships among q̄ , spatial flux q , and reference flux Q :

(21) q̄α = J̄ F̄−1α
¦aqa = J̃−1F̃α

AQA = −kαβ∂βθ.
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Heat transfer per unit anholonomic volume is the divergence [6, 7]

∇̄αq̄α def= ∇αq̄α + q̄αJ̄(J̄−1F̄ a
¦α):a = ∇αq̄α + q̄αJ̃−1(J̃ F̃−1A

¦α):A

= J̃−1∇AQA = J̄∇aqa.
(22)

Four choices of basis {g̃α} are considered. In the first case, the anholonomic
object is assumed to vanish such that Euclidean position vector x̃ (X) exists:

(23) g̃α = ∂αx̃ , Γ¦¦α
βχ = 1

2 g̃αδ∂{β g̃δχ}, (J̃ F̃−1A
¦α):A = 0, (J̄−1F̄ a

¦α):a = 0;

(24) ∇̄αq̄α = ∂αq̄α + q̄α∂α ln
√

g̃ = −kαβ(∂α∂βθ − Γ¦¦χ
αβ∂χθ).

In the second case, Cartesian intermediate bases {eα} are assigned, but tangent
maps need not be integrable:

(25) g̃α
def= eα, g̃αβ = δαβ , Γ¦¦α

βχ = 0, ∇α(·) = ∂α(·);

(26) ∇̄αq̄α = ∂αq̄α + q̄αJ̄∂a(J̄−1F̄ a
¦α) = −kαβ [∂α∂βθ + J̄∂a(J̄−1F̄ a

¦α)∂βθ].

In the third case, {g̃α} are chosen coincident with reference basis vectors {GA};
object κ¦¦α

βχ, torsion T ¦¦α
βχ , and curvature from Γ¦¦α

βχ all may be nonzero [1]; and

(27) g̃α
def= δA

α GA, Γ¦¦α
βχ = F̃−1B

¦β δα
AδC

χ Γ¦¦A
BC , ∇αV β = F̃−1A

¦α∇AV Bδβ
B ;

(28) ∇̄αq̄α = −kαβ [∂α∂βθ − F̃−1A
¦αδB

β δχ
CΓ¦¦C

AB∂χθ + J̃−1(J̃ F̃−1A
¦α):A∂βθ].

In the fourth case, {g̃α} are chosen coincident with spatial basis vectors {ga};
object κ¦¦α

βχ, torsion T ¦¦α
βχ , and curvature from Γ¦¦α

βχ all may be nonzero [1]; and

(29) g̃α
def= δa

αga, Γ¦¦α
βχ = F̄ b

¦βδα
a δc

χΓ¦¦a
bc , ∇αV β = F̄ a

¦α∇aV bδβ
b ;

(30) ∇̄αq̄α = −kαβ [∂α∂βθ − F̄ a
¦αδb

βδχ
c Γ¦¦c

ab∂χθ + J̄(J̄−1F̄ a
¦α):a∂βθ].

The second case (Cartesian) is most common and presumably most practical for
materials of arbitrary anisotropy; the third or fourth cases may prove useful for
structures with curved shapes and hexagonal or isotropic symmetry.
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