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1. Introduction 

Anthropomorphic test dummies (ATDs) are used as test devices by automotive and aircraft 

industries and regulatory bodies and the military to evaluate vehicle safety in crash 

environments.  Early designs of ATDs only required that the size and weight be similar to their 

human counterparts, whereas more modern ATDs are designed to assess type and severity of 

injury and to mimic human response in these dynamic environments (1).  

Several iterations of ATDs have been made throughout the past 70 years in an attempt to more 

closely approximate the response of humans in dynamic environments, such as auto crashes.  

The earliest ATD was used in 1949 to investigate the effects of ejection seats.  The first ATD 

used in automotive compliance testing was the Hybrid II (HII), designed in 1972 by General 

Motors.  The HII featured high repeatability, durability, human-like shape and weight, and 

realistic motion for some joints and was instrumented to measure head, chest, and pelvic 

accelerations, and femoral loads.  In 1976, the HII was further improved and renamed as Hybrid 

III (HIII).  The HIII is differentiated from the HII by a curved lumbar spine and a biofidelic neck, 

head, chest, and knees for blunt and knee impact response.  The HIII has an improved 

measurement capability over the HII as there are 44 measurement locations on the HIII ATD 

compared to a few for the HII (1). 

While the HIII dummy is an adept tool for collecting data and measuring accelerative loads in 

automotive and aerospace crash situations, there is a need for an ATD to measure accelerative 

loads at even higher loading rates, such as those encountered by Soldiers in vehicles during mine 

blasts.  The Warrior Injury Assessment Manikin (WIAMan) program has been established to 

understand the requirements for an ATD that will be used in these high-loading rate scenarios 

and to develop a new ATD to elucidate human response to blast loads.  To develop constitutive 

models for numerical simulation of the ATDs, the materials used in these devices must be 

investigated to understand how the material in ATDs behaves at elevated loading rates.  

The split-Hopkinson pressure bar (SHPB) has been used extensively to study the high-rate 

behavior of rubber materials.  Chen et al. (2) developed a technique to measure weak signals 

associated with soft materials, such as the material studied in this work.  Song and Chen (3) 

studied the relationship between specimen length and stress equilibration on a room-temperature 

vulcanizing silicone rubber.  In different works, they provided techniques for loading soft 

materials in dynamic hysteretic loops (4) and studied the rate dependence of ethylene propylene 

diene monomer (EPDM) rubber under high-rate uniaxial compression using an SHPB (5).  

Additionally, Song and Chen used a strain energy-based function to describe a one-dimensional 

constitutive relation to describe the high strain rate behavior of the EPDM rubber, which agreed 

with the experimental results over the range of strains and strain rates.  Lee et al. (6) conducted 
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experiments to obtain the compressive stress-strain behavior of a nitrile rubber under dynamic 

compression.  

In the current study, the strain rate dependence of the butyl neck rubber material used in a typical 

HIII dummy has been investigated over a wide range of compressive loading rates from quasi-

static (0.001 s
-1

) and intermediate (1 s
-1

) up to loading rates in the SHPB regime (500 s
-1

,  

1300 s
-1

, and 2300 s
-1

).  The stress relaxation behavior of the rubber was also characterized at 

quasi-static and intermediate rates.  In addition, the response of the rubber under small amplitude 

vibratory loading condition was also studied under different frequencies to obtain the storage and 

loss moduli as a function of loading frequency.  The results from all experiments were used to 

explore the ability of most available constitutive models to describe the behavior of the rubber.   

2. Experiments 

A Bose Electroforce setup was used to determine the quasi-static and intermediate rate behavior 

of the HIII neck rubber at rates of 0.001 s
-1 

and 1 s
-1

, respectively.  The rubber specimens used in 

this study were made of butyl rubber, with a durometer of 70–80 (7) taken from sheet ID no. 

0001 HIII 50th Neck (H) produced on 20 September 2012 at 1:35 p.m.  The thickness of the 

sheet was 1.55 mm.  

An SHPB setup was used to determine the dynamic uniaxial stress-strain behavior of the neck 

rubber material.  The compression test setup used solid 19.05-mm-diameter incident, 

transmission, and striker bars.  The length of the striker was 0.6 m.  Pulse shaping was used to 

reach a constant strain rate of deformation during the experiments.  A schematic of the 

conventional SHPB used for high-rate experiments is shown in figure 1, and a typical 

oscilloscope record from a high-rate experiment is shown in figure 2. 

 

Figure 1.  SHPB used for high-rate rubber experiments. 



 

3 

 

Figure 2.  Oscilloscope output from a high-rate experiment on the HIII neck rubber. 

For experiments with soft materials, such as rubber, quartz disks are typically embedded in the 

ends of the incident and transmission bars of the SHPB to check the requirement of dynamic 

equilibrium of the sample throughout the experiment.  This quartz disk method is typically used 

when the compliance of the soft material is so low that nearly all of the incident pulse is reflected 

back.  However, the stiffness of the HIII neck rubber was high enough that the dynamic 

equilibrium requirement could be verified using the traditional method instead of direct 

measurement by calculating that the forces on each end of the specimen are the same throughout 

the experiment, or in terms of strain in the bar, 

         . (1) 

Here,   ,   , and    are the incident, reflected, and transmitted waves in the bars, respectively.  A 

typical result for the dynamic equilibrium check is shown in figure 3.  The thin specimen reached 

dynamic equilibrium fairly early during the experiments.  Both ends of the sample reached the 

same value early in the experiment.  To reduce friction effects at the bar-specimen interface, 

petroleum jelly was used as a lubricant at the bar and specimen interfaces. 
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Figure 3.  Strain profiles at the ends of the specimen, showing dynamic equilibrium 

during a high-rate experiment of the HIII neck rubber specimen. 

Since rubbers are considered incompressible during deformation, the cross section of the 

specimen may exceed the diameter of the bars at high axial strains.  Using this incompressibility 

assumption, which leads to constant volume of the specimen under axial compression, the 

maximum diameter of a sample,   , at a desired engineering strain is calculated using the 

following (5): 

               , (2) 

where      is the bar diameter and    is the maximum engineering strain before the sample 

exceeds the diameter of the bars.  Using equation 2, samples 8 mm in diameter and 1.55 mm in 

thickness were selected so that valid experiments could be conducted at engineering strains of up 

to 82%.  This sample geometry was used for all experiments.  Five experiments at each rate were 

conducted.  

Since a traditional SHPB setup was used, the engineering stress, strain rate, and strain (taken as 

extension divided by original length) are calculated using the following (8): 

     
  

  
     , (3) 

         
  

  
  , (4) 

and 

        
  

  
      

 

 
   , (5)
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where E is the Young’s modulus of the bar and,    and    are the area of the transmission bar 

and sample, respectively, and    and    are the length of the specimen and the wave speed in the 

bar.  Conversions to true stress and true strain are simply made by the classical method. 

When soft materials are tested at high strain rates on an SHPB, radial inertia can play a 

significant role in the measured response from the experiment.  Warren and Forrestal (9) derived 

a relation to describe the extra stress in the measured output signal induced by radial inertia.  The 

inertia induced stress is as follows: 

     
    

 

         
   

  
   

 

        
    , (6) 

where    and r are the density and radius of the specimen and    ,    , and    are the strain 

acceleration, strain rate, and strain in the specimen.  The approximate amount of extra stress on a 

sample of the HIII neck rubber, assuming    = 1250 kg/m
3
,    = 0.58,    = 2300 s

-1
, and  

r =4 mm, is about 0.27 MPa.  As shown later in the experimental results, the measured response 

of the rubber is on the order of 100 MPa at this strain rate.  Hence, for these experiments on the 

neck rubber, radial inertia effects can be ignored. 

Using a Bose Electroforce experimental setup, the neck rubber was also studied at room 

temperature to understand the compressive response of storage (E’) and loss (E”) moduli as a 

function of frequencies from 0.1 to 100 Hz.  Disk specimens 4.76 mm in diameter and 1.55 mm 

thick were used for these experiments.  During these experiments, mean strain was kept constant 

at ~0.1 and strain amplitudes at ~0.0075.  For each frequency, the specimen was loaded for 

around 20 cycles.  These series of experiments provided the response of E’ and E” as a function 

of frequency for constitutive modeling. 

3. Results and Discussion 

3.1 Experimental Results 

3.1.1 Compressive Stress-Strain Experiments at Constant Loading Rates 

3.1.1.1  Slow and Intermediate Loading Rates 

The stress-strain behavior of the HIII neck rubber for quasi-static and intermediate rates is shown 

in figure 3.  The plots shown in figure 4 represent the average behavior from five experiments at 

each rate.  Quasi-static and intermediate rate experiments were carried out up to engineering 

strains of 43%.  The HIII neck rubber showed a small amount of rate sensitivity when the strain 

rate was varied from 0.001 s
-1 

to 1 s
-1

.  The increase in flow stress was noted at about 12%, when 

the strain rate increased from 0.001 s
-1 

to 1 s
-1

.  The full results of all the quasi-static and 

intermediate rate experiments in terms of engineering stress-strain and true stress-strain plots are 

shown in appendix A.
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Figure 4.  Engineering stress-strain behavior of the HIII neck rubber at quasi-static 

and intermediate rates. 

3.1.1.2  High Loading Rates 

Dynamic behavior of the neck rubber was determined for three strain rates:  500 s
-1

, 1300 s
-1

, and 

2300 s
-1

.  Figure 5 shows the strain rate histories of the 2300 s
-1

 dynamic experiments; additional 

strain rate histories can be found in appendix A.  After a rise time of 100 µs, the samples 

achieved constant strain rate.  The neck rubber was nonlinear at the quasi-static strain rate, while 

a nearly linear behavior was seen at the intermediate rates.  The dynamic stress-strain behavior of 

the rubber was averaged over the five experiments for all experimental data sets (shown in figure 

5).  Comparing the quasi-static and dynamic experiments, the HIII neck rubber was rate-

dependent and highly nonlinear.
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Figure 5.  Strain rate histories from the 2300/s rubber experiments. 

As the average behavior in figure 6 shows, the specimen responds by hardening when high axial 

strains are applied.  Due to the limited length of the SHPB used in this study, the level of strain 

in the sample at intermediate rates was limited.  A longer incident bar and striker were required 

to attain high strains at intermediate rates (10).  Since the scale of the stress-strain response was 

drastically different at high rates, the high-rate and quasi-static and intermediate rate results 

could not be combined on the same plot.  As seen in figure 3, the response of the material is 

about 3 MPa at quasi-static and intermediate rates at a strain of 43%; however, when the strain 

rate is increased to 2300 s
-1

, the response of the material is about 57 MPa, an increase in strength 

of about 20.  When comparing the quasi-static and intermediate rate data to the 500 s
-1

 SHPB 

results, the flow stress of the rubber increases from about 0.5 MPa at the quasi-static and 

intermediate rate to about 6 MPa at 500 s
-1

.  This behavior and rate dependence was similar to 

the EPDM rubber studied by Chen and Zhang (2), which also displayed this nonlinear and 

hardening behavior at elevated strain rates.  Making a direct comparison, the butyl rubber used in 

the HIII was about 6× stronger than the EPDM rubber at the same strain (50%) and strain rate of 

~2000 s
-1

.  The results of all high-rate
 
experiments in terms of engineering stress-strain and true 

stress-strain are shown in appendix A.
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Figure 6.  Engineering stress-strain behavior of the HIII neck rubber at high 

strain rates. 

3.1.1.3  Effect of Strain Rate on the Flow Stress 

Flow stress is plotted as a function of strain rate and is shown in figure 7 for strains of 0.1 and 

0.2.  For both strains, flow stress data can be represented by double slope curves, with a 

transition from one slope to the other occurring at a strain rate of ~250/s.  This indicates that a 

single model covering strain rates from 0.001 to 2300/s does not exist, as shown later in  

section 3.2.
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Figure 7.  Flow stress as a function of strain rate at 0.1 and 0.2, showing two-slope 

response and transitioning from one slope to the other at ~250/s. 

3.1.2 Stress Relaxation 

Stress relaxation experiments were conducted at quasi-static and intermediate rates of initial 

loading.  For both strain rates, the rubber samples were loaded and held at a constant strain of 

43% for 300 s, with the exception of one experiment at the quasi-static rate held for 600 s.  The 

stress relaxation curves at quasi-static and intermediate rates are shown in figures 8 and 9, 

respectively.  In all cases, the HIII neck rubber displayed viscoelastic behavior, as seen by 

relaxation of the stress when the sample was held at a constant strain. 



 

10 

 

Figure 8.  Stress relaxation of the HIII neck rubber at the quasi-static rate. 

 

Figure 9.  Stress relaxation of the HIII neck rubber at the intermediate rate. 
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3.1.3 Cyclic Response to Small Amplitude Loading:  Storage and Loss Moduli 

3.1.3.1  Uniaxial Compressive Dynamic Mechanical Analysis (DMA) Experiments at Room 

Temperature as a Function of Frequency 

In addition to stress-strain and relaxation experiments, rubber mechanical response was also 

evaluated under small amplitude vibratory loading conditions over different frequencies at room 

temperature using DMA techniques.  Storage (E’) and loss (E”) moduli were calculated from 

experimental measurements using Fourier transformation of the input and output sinusoidal 

loading and strain waves for each frequency.  Results from these experiments are given in the 

table 1 and figure 10. 

Table 1.  DMA (E’ and E”) response of the neck rubber. 

-mean -amp 
Frequency E’ (MPa) E” (MPa) T 

(Hz) (0.0075 A) (0.0075 A) (K) 

–0.1000 0.0075 0.10 14.8 3.2 293 

–0.1000 0.0077 10.12 21.6 7.3 293 

–0.1000 0.0077 19.55 23.6 9.3 293 

–0.1000 0.0077 29.33 25.5 10.5 293 

–0.0999 0.0073 39.10 27.3 11.5 293 

–0.1001 0.0077 48.88 29.1 12.2 293 

–0.0998 0.0078 58.65 31.0 13.0 293 

–0.0999 0.0078 70.87 32.3 13.0 293 

–0.0997 0.0082 78.20 33.0 13.5 293 

–0.1002 0.0082 87.98 35.3 14.4 293 

–0.1002 0.0092 102.64 36.2 13.8 293 

 

 

Figure 10.  Storage and loss moduli as a function of the frequency of 

sinusoidal straining.
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3.1.3.2  Uniaxial Tensile DMA Experiments at a Frequency of 1 Hz as a Function of 

Temperature 

Tensile DMA experiments on the neck rubber were also completed over a wide temperature 

range (presented in figure 11).  The rubber was held at a constant frequency of 1 Hz, and the 

temperature varied from –100 to 150 °C.  The temperature DMA experiments were not used in 

determining the constitutive representation of the mechanical response of the material. 

  

Figure 11.  Results from tensile DMA experiments. 

3.2 Constitutive Representation of the Mechanical Response 

Various polymeric constitutive models were evaluated for their ability to represent the 

experimentally obtained mechanical response from different loading types and rates.  The 

Bergstrom-Boyce (BB) model (11) represented most of the experimental data reasonably well.   

The BB model is an advanced model to predict the time-dependent large-strain behavior of 

elastomeric type materials.  It is based on applied deformation gradient acting on two interacting 

parallel macromolecular networks—A (representing equilibrium response with a hyperelastic 

element) and B (representing time-dependent response where hyperelastic element is in series 

with a time-dependent element):  F = FA = FB.  Rheological representation of the model is given 

in figure 12.  Deformation gradient acting on the network B, which provides the time-dependent 

viscous response, is further divided into elastic and viscoelastic components:       
    

 .
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Figure 12.  Rheological representation of the BB model. 

In the BB model, elastic response of the two networks is given by the statistical mechanics-

based, three-dimensional (3-D), eight-chain model from Arruda and Boyce (12) and is 

represented by Langevin springs in figure 8.  Here, the macromolecular chains are aligned along 

the diagonals of the unit cell, which are assumed randomly distributed.  In this representation, 

chains deform with the cell. 

A detailed description of the 3-D theory and uniaxial simplification of the BB model can be 

found in Bergstrom and Boyce (11, 13, and 14).  For uniaxial loading experiments in this study, 

the total Cauchy (true) stress is given by  =  A +  B.  Following Arruda and Boyce (12),  

    
 

  
 
     

 
  

  

       
  

    
 

 
 , (7) 

and 

    
  

  
      

    
  
     

  
  

       
  

    
    

 

  
     (8) 

In equations 7 and 8, s is a dimensionless material parameter specifying the shear modulus of 

network B relative to network A,  is the shear modulus, L is the limiting chain stretch, and 

       is the inverse of the Langevin function.  The Langevin function given by      

              and        is approximated by 

         
                                                    

 
                                                                 

  (9) 

Strain stretch terms are given for both networks by

Network A Network B

Bergstrom-Boyce
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  (10) 

and 

   
      

 

 
    

    
 

  
  . (11) 

The rate equation for viscous flow in network B is 

    
         

             
     

      
        

 

, (12) 

where 

    
      

 

 
    

    
 

  
  , (13) 

        is a constant for dimensional consistency, R(x) = (x + |x|)/2 is the ramp function, and 

      is a cut-off stress below where no flow will occur.  C,           and m are material constants. 

With the viscous flow given in equation 12, the evolution of the viscoelastic deformation 

gradient (FB) of network B is given by 

   
       

             
 . (14) 

Uniaxial data from experiments were used to extract the optimum set of material parameters for 

the BB model that represent most of the experimental response fairly well.  Material parameters 

for the BB model are given in table 2.  Best material parameters were obtained by optimizing to 

reduce the errors using PolyUMod numerical routines (15).  Since the BB model describes the 

behavior of the rubber well, incorporating the model directly into LSDYNA will be part of our 

future work. 

Table 2.  BB model constants for the neck rubber for different loading rate scenarios. 

Model Parameter 

Description 

Case 
A1 

Impact Rates 

B1  

Blast Rates 

C1  

Auto Rates 

A2  

Impact Rates  

(+ Cyclic) 

B2  

Blast Rates 

(+ Cyclic) 

C2  

Auto Rates 

(+ Cyclic) 

Model 

Constant 

s 

2300, 

1300, 

500, 1/s 

500, 1, 

0.001/s 
1,0.001/s 

2300, 1300 

500, 1/s, 

{E’, E”}– 

freq  

500, 1/, 

0.001/s, 

{E’, E”}– 

freq 

1,0.001/s 

{E’, E”}– 

freq 

Shear modulus of 

network A (MPa) 
μ 1.22156 2.49584 2.17583 1.22156 2.17881 2.17583 

Locking stretch λ L 6.05826 1.20723 1.18675 6.05826 1.15367 1.18675 

Bulk modulus (MPa) k 500 500 500 500 500 500 

Stiffness of network B 

relative to A 
s 28293.5 12.9004 7.21539 28293.5 9.5676 7.21683 

Strain adjustment 
factor 

ξ 0.01909 0.229882 0.317087 0.01909 0.337517 0.317087 

Strain exponent C –1.71847 –0.97316 –1.01733 –1.71847 –0.95967 –1.01733 

Flow resistance (MPa) base 3.93878 0.070253 0.296996 3.93878 0.693538 0.296996 

Stress exponent m 1.16972 1.11285 1.51296 1.16972 1.26362 1.51296 

Normalized cut-off 
stress for flow 

      0.01 0.01 0.005 0.01 0.01 0.005 

R2 for goodness of fit — 0.699 0.959 0.966 0.559 0.712 0.652 
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Table 2 provides BB model constants for six different loading rate scenarios (cases A1, B1, C1, 

A2, B2, and C2), with corresponding experimental data used for optimization to obtain the 

model constants.  Appendix B shows the comparison of experimental data with what is being 

predicted by the model for these six different cases.  We propose that case A1 or A2 model 

parameters to be used for impact events, where strain rates could be higher (A2 when cyclic 

loading is relevant).  For blast events, we recommend that model parameters from either case B1 

or B2 be used for numerical simulation (B2 when cyclic loading is relevant).  For automotive 

crash events, model constants from cases C1 (or C2 when cyclic loadings are relevant) may be 

used.  In this study, relaxation data were not used for calibration simulation due to additional 

issues associated with the convergence of the calibration simulations.  The relaxation data has 

lower importance compared to monotonic loading rate, stress-strain data on actual numerical 

simulation of the events of interest.  In the case of A2 with higher rates during cyclic loading, it 

was not possible to obtain an optimized calibration solution that would make predictions to also 

match reasonably well with DMA data in a reasonable time of calibration simulation.  In general, 

optimized model constants reasonably predict the stress-strain response under monotonically 

increasing load compared to the cyclic small amplitude DMA experiments.  For the loading 

scenarios of interest, such as a car crash and blast loading, monotonically increasing stress-strain 

data is more relevant.  In future work, other viscoelastic materials from the HIII dummy, as well 

as other surrogate materials proposed for future generations of ATDs, will be investigated. 

4. Conclusions 

The rate dependence of the neck rubber used in the HIII ATD has been studied over a wide range 

of strain rates using different types of loading.  Valid high-rate experiments were conducted to 

satisfy the requirements of constant strain rate and dynamic force equilibrium by carefully 

shaping the incident pulse of the loading device.  The neck rubber was highly rate dependent by 

an order of magnitude increase in strength from quasi-static rate to high rate.  Furthermore, the 

stress relaxation behavior was studied at quasi-static and intermediate rates, and the rubber was 

found to experience stress relaxation after being compressed to 43% strain and held for 300 s.  In 

addition, frequency dependence response of storage and loss moduli at room temperature for the 

neck rubber was also studied for constitutive modeling so that the models would be valid for 

most possible types of loading sequences.  After exploring many constitutive models in 

literature, it was found that compared to all other models, the BB model represented the 

experimental data reasonably well.  We hope to work with the LSDYNA Company to 

incorporate this model into the LSDYNA numerical code. 
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Figure A-1.  Engineering stress-strain behavior of the Hybrid III (HIII) neck rubber at  

the quasi-static strain rate. 

 

Figure A-2.  True stress-strain behavior of the HIII neck rubber at the quasi-static strain rate.
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Figure A-3.  Engineering stress-strain behavior of the HIII neck rubber at the intermediate 

strain rate. 

 

Figure A-4.  True stress-strain behavior of the HIII neck rubber at the intermediate strain rate.
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Figure A-5.  Average true stress-strain behavior of the neck rubber at the quasi-static and 

intermediate rates. 

 

Figure A-6.  Engineering stress-strain behavior of the neck rubber at 500 s-1.
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Figure A-7.  True stress-strain behavior of the neck rubber at 500/s. 

 

Figure A-8.  Strain rate histories from 500/s experiments.
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Figure A-9.  Engineering stress-strain behavior of the HIII neck rubber at a strain rate of 

1300/s. 

 

Figure A-10.  True stress-strain behavior of the HIII neck rubber at a strain rate of 

1300/s.
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Figure A-11.  Engineering stress-strain behavior of the HIII neck rubber at a strain rate of 

2300/s. 

 

Figure A-12.  True stress-strain behavior of the HIII neck rubber at a strain rate of 

2300/s.
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Figure A-13.  Strain rate histories from 1300/s experiments. 

 

Figure A-14.  True stress-strain behavior of the HIII neck rubber at high strain rate.
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Appendix B.  Bergstrom-Boyce (BB) Model Predictions Compared With 

Corresponding Experimental Data 
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B.1  Case A1:  1, 500, 1300, and 2300/s High-Rate, Biased Model 

 

Figure B-1.  Comparison of the BB model prediction with case A1 – higher rate  

(1–2300/s), biased experimental stress-strain data. 

B.2  Case A2:  1, 500, 1300, and 2300/s High-Rate, Biased Model With Dynamic Mechanical 

Analysis (DMA) Vibratory Response 

 

Figure B-2.  Comparison of the BB model prediction with case A2 – higher rate  

(1–2300/s), biased experimental stress-strain data with DMA vibratory 

data. 

 

Figure B-3.  Comparison of the BB model prediction with case A2 – DMA vibratory storage and loss moduli data.
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B.3  Case B1:  0.001, 1, and 500/s Lower Rate, Biased Model 

 

Figure B-4.  Comparison of the BB model prediction with case B1 – lower rate 

(0.001–500/s), biased experimental stress-strain data. 

B.4  Case B2:  0.001, 1, and 500/s High-Rate, Biased Model With DMA Vibratory Response 

 

Figure B-5.  Comparison of the BB model prediction with case B2 – lower rate 

(0.001–500/s), biased experimental stress-strain data with DMA 

vibratory data. 

 

Figure B-6.  Comparison of the BB model prediction with case B2 – DMA vibratory storage and loss moduli data. 
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B.5  Case C1:  0.001 and 1/s Lower Rate, Biased Model 

 

Figure B-7.  Comparison of the BB model prediction with case C1 – lower rate 

(0.001–500/s), biased experimental stress-strain data. 

B.6  Case C2:  0.001, 1/s High-Rate, Biased Model With DMA Vibratory Response 

 

Figure B-8.  Comparison of the BB model prediction with case C2 – lower-rate 

(0.001–500/s), biased experimental stress-strain data with DMA 

vibratory data. 

 

Figure B-9.  Comparison of the BB model prediction with case C2 – DMA vibratory storage and loss moduli data.
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