

AFRL-RQ-WP-TR-2013-0030

STRUCTURAL TECHNOLOGY EVALUATION AND
ANALYSIS PROGRAM (STEAP)
Delivery Order 0035: Dynamics and Control and Computational
Design of Flapping Wing Micro Air Vehicles
David O. Sigthorsson and Isaac Weintraub
General Dynamics Information Technology

Christopher Smithson
Data Science Automation

OCTOBER 2012
Final Report

Approved for public release; distribution unlimited.
See additional restrictions described on inside pages

STINFO COPY

AIR FORCE RESEARCH LABORATORY
AEROSPACE SYSTEMS DIRECTORATE

WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7542
AIR FORCE MATERIEL COMMAND

UNITED STATES AIR FORCE

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for any
purpose other than Government procurement does not in any way obligate the U.S. Government.
The fact that the Government formulated or supplied the drawings, specifications, or other data
does not license the holder or any other person or corporation; or convey any rights or permission
to manufacture, use, or sell any patented invention that may relate to them.

This report was cleared for public release by the USAF 88th Air Base Wing (88 ABW) Public
Affairs Office (PAO) and is available to the general public, including foreign nationals.

Copies may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RQ-WP-TR-2013-0030 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION STATEMENT.

*//Signature// //Signature//
MICHAEL W. OPPENHEIMER PHILIP S. BERAN
Project Manager Design and Analysis Branch
Control Automation Branch Aerospace Vehicles Division
Power and Control Division

//Signature// //Signature//
JEFFREY C. TROMP, Chief DANIEL B. THOMPSON, Principal Scientist
Control Automation Branch Power and Control Division
Power and Control Division Aerospace Systems Directorate
Aerospace Systems Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

*Disseminated copies will show “//Signature//” stamped or typed above the signature blocks.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YY) 2. REPORT TYPE 3. DATES COVERED (From - To)
October 2012 Final 31 December 2010 – 07 October 2012

4. TITLE AND SUBTITLE

STRUCTURAL TECHNOLOGY EVALUATION AND ANALYSIS PROGRAM
(STEAP)
Delivery Order 0035: Dynamics and Control and Computational Design of Flapping
Wing Micro Air Vehicles

5a. CONTRACT NUMBER
FA8650-04-D-3446-0035

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER
62201F

6. AUTHOR(S)

David O. Sigthorsson and Isaac Weintraub (General Dynamics Information
Technology)
Christopher Smithson (Data Science Automation)

5d. PROJECT NUMBER
2403

5e. TASK NUMBER
5f. WORK UNIT NUMBER

 Q079
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES): 8. PERFORMING ORGANIZATION
General Dynamics Information Technology
5100 Springfield Pike, Suite 509
Dayton, OH 45431

Data Science Automation
375 Valley Brook Road
McMurray, PA 15317

 REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
Air Force Research Laboratory
Aerospace Systems Directorate
Wright-Patterson Air Force Base, OH 45433-7542
Air Force Materiel Command
United States Air Force

AGENCY ACRONYM(S)
AFRL/RQQA, AFRL/RQVC

11. SPONSORING/MONITORING
 AGENCY REPORT NUMBER(S)
 AFRL-RQ-WP-TR-2013-0030

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
PA Case Number: 88ABW-2013-1005; Clearance Date: 01 Mar 2013. Report contains color.

14. ABSTRACT
The task objectives were to: understand the flight dynamics of flapping-wing micro air vehicles (FWMAVs), design and
test flight control laws on flapping FWMAV prototypes that enable controlled flight with the ability to hover and
maneuver forward/backward and sideways. The effort was aimed at developing a knowledge base that will lead to
intelligence, surveillance, and reconnaissance (ISR) platforms that can hide in plain sight, reject disturbances and operate
in cluttered/confined spaces. The related key science issues were to develop a control-oriented model of the
aerodynamics and structure; design and implementation of a control theory, where the control forces/moments are
constrained to a periodic form, and to use these periodic forces to precisely direct ISR sensors in cluttered/confined
spaces in the presence of disturbances such as gusts and steady winds.

15. SUBJECT TERMS

intelligence, surveillance, and reconnaissance (IRS), flapping wing micro air vehicles (FWMAV), degrees of freedom
(DOF)

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT:

SAR

18. NUMBER
OF PAGES

 80

19a. NAME OF RESPONSIBLE PERSON (Monitor)
a. REPORT
Unclassified

b. ABSTRACT
Unclassified

c. THIS PAGE
Unclassified

 Michael W. Oppenheimer (AFRL/RQQA)
 Philip S. Beran (AFRL/RQVC)
19b. TELEPHONE NUMBER (Include Area Code)

N/A

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

i
Data subject to restrictions on cover and notice page

TABLE OF CONTENTS
Section Page

List of Figures .. iii
List of Tables .. v
1.0 SUMMARY .. 1
2.0 INTRODUCTION .. 4
3.0 METHODS, ASSUMPTIONS AND PROCEDURES ... 8
3.1 Modeling and Simulation .. 7
3.2 Control Design .. 8
3.3 Fabrication .. 11
3.4 Experiments .. 14
3.5 Principal Architecture ... 16
3.6 Implementation Architecture .. 17
4.0 RESULTS AND DISCUSSION .. 18
4.1 Simulation Results .. 18
4.2 Fabrication Results.. 19
4.3 Experimental Results .. 20
4.4 Problem Description ... 23
4.4.1 MAV Configuration (Geometry, Kinematics, Structure) .. 23
4.4.2 Pinned MAV .. 24
4.4.3 Free-to-move MAV with Control .. 24
4.4.4 Free-to-move MAV with Control .. 24
4.5 Fundamental Steps of analysis and Optimization ... 24
4.5.1 MAV Analysis ... 25
4.5.2 MAV Optimization .. 26
4.5.3 Case Management (input deck, output deck, leveraging resources) 27
4.6 Study Examples .. 28
4.6.1 Pinned MAV Analysis (QSCSD) .. 31
4.6.2 Pinned MAV Optimization (QSCSD and CONMIN) ... 33
4.6.3 Free-to-Move MAV with Pinned Constraint Analysis (Controls) 37
4.6.4 Free-to-Move MAV Trim Analysis (Controls).. 41
4.6.5 MUAV Closed Loop Flight in Gust (Controls) ... 43
5.0 TECHNOLOGICAL CHALLENGES FOR EXTENDING FSI .. 44
5.1 Errors from Approximation .. 44
5.2 Incompatibility from Reduction .. 45
5.3 Many to One Context Collaboration ... 46
5.4 Decomposition and Synchronization .. 46
5.5 Model Matching .. 47
5.6 Data Reporting and Aggregation .. 48
6.0 CONCLUSIONS... 50
6.1 Technological Challenges for Extending FSI ... 51
6.1.1 Solution Persistence ... 51
6.1.2 Reduced Fidelity .. 51
6.1.3 Reduced Modeling ... 51
6.1.4 Context Composition ... 51

ii
Data subject to restrictions on cover and notice page

6.1.5 Many to One Mapping ... 51
6.1.6 Iterative Synchronization ... 51
6.1.7 Module Matching ... 51
6.1.8 Unit Matching .. 52
6.1.9 Data Aggregation ... 52
6.2 MVC in FSOOA ... 52
6.3 Community Created Content .. 53
6.4 Next Steps (CROW) ... 53
6.4.1 CROW First-Meta .. 54
6.4.2 CROW Second-Meta ... 54
6.4.3 CROW Micro-Iteration .. 55
6.4.4 Chained Optimization .. 57
6.4.5 CROW Macro-Iteration ... 58
6.4.6 Workflow Concurrency ... 58
6.4.7 CROW Mega-Iteration... 59
6.4.8 CROW Logic Cell.. 59
6.4.9 CROW Query (CQ) ... 60
6.5 Key Pairing with CROW Query ... 60
6.5.1 Factory of Factories ... 60
6.5.2 Solution Persistence ... 61
6.5.3 Providers Contract ... 61
6.5.4 Implementation Methodology .. 63
6.5.4.1 Case Study Orientation ... 63
6.5.5 Populate the Workflow .. 62
6.5.6 Trailblazer .. 66
6.5.7 BAR ... 66
6.5.8 CROW Summary ... 66
7.0 SUMMARY .. 68
8.0 PUBLICATIONS AND PRESENTATIONS ... 69
REFERENCES ... 71
LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS .. 72

iii
Data subject to restrictions on cover and notice page

LIST OF FIGURES

Figure Page
Figure 1. General Assembly of a Minimally Actuated FWMAV ... 7
Figure 2. Split-Cycle Illustration, Longer Arrows Represent Faster Half Strokes and Shorter Arrows
Represent Slower Half Strokes ... 8
Figure 3. Block Diagram Example, 4-DOF Controller .. 9
Figure 4. Block Diagram of Stroke Position/Velocity Control ... 10
Figure 5. Fuselage Fabrication .. 11
Figure 6. Evolution of The Circuit Board Design ... 11
Figure 7. Wing Fabrication, CAD to Negative Mold to Carbon Fiber and Capran Wing 12
Figure 8. Split-Cycle High Speed Video Recording Demonstration ... 13
Figure 9. The Airtable Experiment Setup with a Prototype FWMAV Mounted on a Puck 13
Figure 10. Architecture Environment .. 15
Figure 11. M3CT Implementation ... 16
Figure 12. Provider Implementation ... 16
Figure 13. Leveraging Languages ... 17
Figure 14. Simulation Results Using a 5-DOF Controller (Frequency, Split-Cycle, Bias) on the 6-DOF
Quasi-Steady State FWMAV Model Including Rigid Body Velocity ... 18
Figure 15. Complete Prototype FWMAV Mounted on an Airtable Puck ... 19
Figure 16. Airtable Experiment, Demonstrating a Remote Controlled Prototype FWMAV Employing
Split-Cycle Stroke Modulation ... 20
Figure 17. MAV Coordinate System ... 26
Figure 18. Free-to-Move MAV Wing Geometries .. 27
Figure 19. Wing Chord (left) and Thickness (right) Distribution Results .. 33
Figure 20. Optimized Instantaneous Power (left) and Left (right) with Cycle-Averaged Values 33
Figure 21. Instantaneous Kinematic Motion at the Optimal and Initial Design Points............................... 33
Figure 22. Wing Tip Trace for Aeroelastic Wing at Optimal Design Point and for a Rigid Wing at the
Initial Design Point ... 34
Figure 23. Trim in Either Forward Flight or Hover .. 34
Figure 24. Discretization Errors Modify the Governing Equations .. 40
Figure 25. Fidelity Reduction Against Error Relationships (Notional) .. 41
Figure 26. Computational Reductions Against Time Relationships ... 41
Figure 27. Asymmetrical Synchronization of Iterative Values ... 43
Figure 28. Interpreting the Asynchronously Decomposed Value of X ... 43
Figure 29. The CROW Workflow ... 49
Figure 30. Connecting Outputs to Inputs .. 51
Figure 31. Progress Observation Example .. 51
Figure 32. Micro Iteration of Providers A, B, and C - CROW Syntax ... 51
Figure 33: Multi-disciplined Progress Synchronization Example .. 52
Figure 34. Asymmetrical Synchronization during Micro-Iteration ... 52
Figure 35. Chained Optimization - CROW Syntax .. 53
Figure 36. Chained Optimization - Configuring Constraints .. 53
Figure 37. Chained Optimization - Plugged In ... 53
Figure 38. CROW Provider Logic Cell... 55
Figure 39. Multiple Source Languages ... 55
Figure 40. Choosing a Provider Library ... 57
Figure 41. CROW Workflow Controller ... 58
Figure 42. CROW Workflow – Add Providers ... 58
Figure 43. CROW Workflow - Add MicroSW ... 58

iv
Data subject to restrictions on cover and notice page

Figure 44. CROW Workflow - Register .. 58
Figure 45. CROW Workflow - Reorganize ... 59
Figure 46. CROW Workflow - Moving After Setup Warning .. 59
Figure 47. CROW Workflow after MicroSW ... 60
Figure 48. CROW Workflow - Add WorkerWidget .. 60
Figure 49. CROW Workflow – Reorganizing WorkerWidgets ... 60
Figure 50. CROW Workflow - WorkerWidget Placed .. 60
Figure 51. CROW Query Controller ... 61
Figure 52. CROW Workflow - Validating... 61

v
Data subject to restrictions on cover and notice page

LIST OF TABLES

Table Page

Table 1. M3CT Parameter Values for the Berman-Wang Dialogue ... 27
Table 2. M3CT Parameter Identification (ID) Numbers .. 28
Table 3. Other M3CT Parameter Descriptions .. 28
Table 4. Pinned MAV Analysis Parameters (and Side Constraints for Optimization) 29
Table 5. Pinned MAV Analysis Results .. 30
Table 6. Pinned MAV Optimization Goals.. 30
Table 7. CONMIN Parameter Settings ... 31
Table 8. Pinned MAV Optimization Results ... 32
Table 9. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Wing Dialogue) 35
Table 10. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Body Dialogue) 36
Table 11. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Environment Dialogue) 36
Table 12. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Kinematics Dialogue) 36
Table 13. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Power Dialogue) 37
Table 14. Performance Characteristics of the Free-to-Move MAV when Pinned 37
Table 15. Parameter Values for the Analysis of a Free-to-Move MAV in Trimmed Hover 38
Table 16. Additional Parameter Settings for Trimmed Analysis of a Free-to-Move MAV 39
Table 17. Performance Characteristics of the Free-to-Move MAV in Trim .. 39

1
Approved for public release; distribution unlimited.

1.0 SUMMARY

OBJECTIVE I
The task objectives were to: understand the flight dynamics of flapping-wing micro air vehicles
(FWMAVs), and design and test flight control laws on flapping FWMAV prototypes that enable
controlled flight with the ability to hover and maneuver forward/backward and sideways. The
effort was aimed at developing a knowledge base that will lead to Intelligence, Surveillance, and
Reconnaissance (ISR) platforms that can hide in plain sight, reject disturbances and operate in
cluttered/confined spaces. The related key science issues were to develop a control-oriented
model of the aerodynamics and structure; design and implementation of a control theory, where
the control forces/moments are constrained to a periodic form, and to use these periodic forces to
precisely direct ISR sensors in cluttered/confined spaces in the presence of disturbances such as
gusts and steady winds.

The focus of the research effort shifted as work was performed on the task. Initial efforts were
focused on theoretical and computer based simulation work on modeling and control design for
flapping wing micro air vehicles (FWMAV). In collaboration with on-site researchers, we
successfully devised simulation models based on first-principles or quasi-steady models.
Moreover, control oriented models were also developed. The results are presented in numerous
publications listed in Section 4. These models were used for control design resulting in
controllers using a variety of control inputs including: split-cycle frequency modulation, stroke
amplitude and bias modulation, and angle-of-attack modulation. The controllers were
successfully tested, maintaining waypoint tracking when applied to six degree-of-freedom (DOF)
simulation models.

Later the work focused on producing prototype vehicles, particularly addressing verification of
the split-cycle modulation for control purposes. Emphasis was placed on building a small bird
size flapping wing vehicle with two independently actuated wings. Such a vehicle was built.
With an iterative design and fabrication process, the mechanical and electrical design was
improved to produce a satisfactory prototype. The resulting vehicles were tested on both an
electronic sensor force balance and an air-table. The force balance experiments produced
somewhat inconclusive results due to signal to noise ratio issues with the available sensors. The
air-table experiment has been a milestone success, showing clearly a proof of concept for the
split-cycle wingbeat velocity modulation approach for control.

OBJECTIVE II
The Flapping Sciences Integration (FSI) Project was initiated in 2008 as part of a larger Micro
Air Vehicle (MAV) Hover Science Program. The FSI effort, a collaborative activity between
industry, government, and academia, had three inter-related components: FSI-interface, FSI-
methods, and FSI-controls. This report describes FSI-interface, a contractual activity between
Air Force, Data Science Automation (DSA), and General Dynamics Information Technology
(GDIT). The contract representing FSI-interface was FA8650-04-D-3446, Task Order 35, on
which GDIT served as prime contractor, and DSA served as sub-contractor. The work carried
out in support of FSI-interface was conducted on-site by DSA at Air Force Research Laboratory

2
Approved for public release; distribution unlimited.

in the Multidisciplinary Science and Technology Center (MSTC), denoted by office symbol
AFRL/RQVC.

The primary technical goal of FSI was to develop an extensible, multidisciplinary design
methodology for the AFRL MAV team, its collaborators, and its potential customers. The
design methodology was anticipated to be experimental in nature and integrate new design
analysis capabilities developed in FSI-methods, an in-house basic research activity supported
by Air Force Office of Scientific Research (Drs Philip Beran and Richard Snyder, PIs). FSI-
interface also was intended to incorporate methods developed in FSI-controls, an add-on project
to the MSTC Collaborative Center for Multidisciplinary Science (CCMS) led by Professors
Mayur Patil and Craig Woolsey. In short, the role of FSI-interface was to integrate and
transition fundamental research in two other project areas for the purpose of future MAV
design.

A separate project to bridge between FSI and MAV Hover Sciences is Multi-Physics
Prototyping (MPP). Like FSI, MPP was a technical effort executed primarily in-house. MPP
was intended to be a collaborative activity with two components: MPP-support and MPP-QTA.
MPP-QTA was to be a Quantitative Technical Assessment of flapping technology for MAV (to
be carried out external to AFRL/ RQSE), and was to use the tools developed under FSI.
Unfortunately, this project was cancelled prior to contract award. However, MPP-support,
following a separate track, completed. The contract representing MPP-support was FA8650-04-
D-3446, Task Order 49; again, GDIT served as prime contractor, and DSA served as sub-
contractor. MPP-support was designed to provide technical support to MPP-QTA, including
FSI methodology tool deployment, software support, trouble-shooting, and liaise with an
internal MSTC QTA effort. With the cancellation of MPP-QTA, the MPP-support activity was
re-focused to provide internal support for use of FSI methodology tools and to apply them to
design cases as part of a “QTA-lite” study. This downsized QTA activity was strongly coupled
with the FSI-controls work, including development of gust-based design scenarios.

This document provides an architect’s perspective of FSI-interface and related software,
including:

• Architecture of the top-level user-interface: Multidisciplinary Multi-fidelity Model-
based Computational Tool (M3CT)

• Descriptions of the SORCER Service-Oriented Architecture that M3CT is built on,
including documentation about how-to-construct SORCER “jobs” and “exertions” (e.g.,
how to run a M3CT study)

• FSI-methods and FSI-controls software modules (“providers”) integrated within this
project via M3CT and SORCER Nomenclature

• Lessons learned during the project that could impact the future architectural
development of multidisciplinary design software

• Installation notes

3
Approved for public release; distribution unlimited.

Elements of this document will be repeated in the FA8650-04-D-3446, Task Order 35, Final
Report, along with elements of the FSI-interface Developer’s Guide and MPP-support’s Final
Report. The FSI-interface Final Report will serve as a concise summary of technical work that
appropriately references other source material containing more detailed descriptions. The
technical details contained herein are documented to enable maintenance of FSI software, to
create an enduring knowledge base of FSI software, and to enable the future development of
innovative multidisciplinary design software.

The Air Force initiator and technical point-of-contact for this project is Dr. Phil Beran
(AFRL/RQVC). The FSI-Interface programmer was Mr. Michael Robbeloth (DSA) from
project initiation to May 2012; Mr. Christopher Smithson (DSA) succeeded Mr. Robbeloth in
June 2012 to develop project documentation, improve software integrity, and provide
consultation on M3CT architectural weaknesses and alternative architectural concepts for future
design software. Mr. Robbeloth and Mr. Smithson were both supervised by Mr. Jeff Scott
(DSA).

The FSI-interface team is appreciative for the opportunity, assistance, and collaboration from
AFRL/RQ and Virginia Tech in this effort and wishes to acknowledge that the developments in
this effort directly resulted from this partnership. The authors gratefully acknowledge the
technical support of Mr. Dean Bryson, Mr. Gary Clayman (DSA), Dr. Aaron McClung, and Dr.
Bret Stanford (AFRL/ RQVC), and Dr. Manav Bhatia, Dr. Mayur Patil, and Dr. Craig Woolsey
(Virginia Tech).

4
Approved for public release; distribution unlimited.

2.0 INTRODUCTION

OBJECTIVE I
The task objectives were to: understand the flight dynamics of flapping-wing micro air vehicles
(FWMAVs), and design and test flight control laws on flapping FWMAV prototypes that enable
controlled flight with the ability to hover and maneuver forward/backward and sideways. The
effort was aimed at developing a knowledge base that will lead to Intelligence, Surveillance, and
Reconnaissance (ISR) platforms that can hide in plain sight, reject disturbances and operate in
cluttered/confined spaces. The related key science issues were to develop a control-oriented
model of the aerodynamics and structure; design and implementation of a control theory, where
the control forces/moments are constrained to a periodic form, and to use these periodic forces to
precisely direct ISR sensors in cluttered/confined spaces in the presence of disturbances such as
gusts and steady winds. The critical tasks to be accomplished included the following:

● Design flight control systems in cooperation with in-house researchers that can be
implemented on real-time ground based and on-board embedded flight computers.

● Design 3- and 4- Degrees of Freedom (DOF) controllers so a FWMAV model can
perform waypoint tracking in a 6-DOF simulation, utilizing power and control actuators,
similar those on vehicles recently fabricated at the Harvard Microrobotics Lab.

● The use of Matlab/Simulink to devise, develop, and analyze FWMAV modeling
prototypes

● Analyze the control authority obtained by manipulating the angle-of-attack and stroke-
plane-angle of the wings through control oriented modeling.

● Develop a modular simulation framework that allows seamless transitions between
aerodynamic models of varying fidelity. Compare results of simulations based on blade-
element aerodynamic models to those generated by high fidelity computational fluid
dynamics.

● Produce control-configured FWMAV designs; produce mathematical models of new
FWMAV designs; document design methodologies.

● Utilize angle-of-attack and stroke-plane-angle for control to provide more freedom when
choosing control inputs to provide 4 to 6-DOF control.

● Analyze the control authority obtained by dividing parameters of the wingbeat further
down to quarter stroke parameters

● Develop control-oriented mathematical models and simulations of candidate MAV
designs; develop flight control designs in cooperation with the in-house research team.

● Develop methods that enable analysis of FWMAV control system performance and
stability.

● Devise control analysis tools which are applicable to FWMAV control designs similar to
the 4- to 5-DOF controllers which have been shown to perform adequately in simulation;
analyze robustness and performance.

● Develop and implement low-level motor control laws that enable wing beat motion
profiles to be produced that generate desired cycle-averaged control forces and moments.

● Design and implement drive motor control algorithms on flight weight circuit boards that
allow wireless control of the motion of onboard flapping mechanisms.

● Design and construct flight-weight circuit boards that make use of surface mount
components to implement low level motion control of onboard flapping mechanisms.

● Produce new control-configured FWMAV designs; produce mathematical models of new
FWMAV designs; document design methodologies.

5
Approved for public release; distribution unlimited.

● Validate mathematical models by comparing analytical and numerical results to those
obtained from laboratory experiments.

● Implement fuselage position control laws on a surrogate flapping wing aircraft that is
mounted on a puck to support motion control tests on an air table.

● Develop instrumentation and data analysis software that supports the analysis of the
results of bench test, air table, and flight experiments.

The task research was initially focused on the theoretical modeling and control design.
Emphasis was placed on devising Simulink models capable of sufficiently replicating the gross
behavior of a FWMAV in order to conduct tests in simulation of control laws based on wingbeat
manipulation. The models were used to produce control oriented models facilitating the analytic
extraction of control derivative or sensitivity matrices for a variety of control input sensor suits.
The results of this work and its derivatives are available in detail in our published works (see
Appendix).

The last year of research focused on small bird sized vehicle fabrication to provide proof-of-
concept experiments, in particular, of the split-cycle constant period wingbeat
manipulation/modulation for control purposes. This included the design of a fuselage, wingbeat
actuation assembly, electronics, software, wing design and production, and fabrication. The
resulting FWMAVs were tested on both a force balance and an air-table to demonstrate control
over the two primary degrees-of-freedom predicted to be provided by split-cycle constant period
manipulation in the previously devised theoretical and simulation models.

OBJECTIVE II

The Multidisciplinary Multi-fidelity Model-based Computational Tool (M3CT) was developed
to enable the computational design of micro air vehicles through a generalizable, modeling and
optimization framework. The M3CT is integrated into the SORCER iGrid8 framework as a
principal Requestor. Leveraging the synergistic principles of the Federated Service Object
Oriented Architecture (FSOOA), the M3CT is essentially providing a universal User eXperience
(UX) in developing Exertion Oriented (EO) work packages without the end user requiring an
explicit understanding, or requiring programmatic maintenance of, each highly technical service
provider.

The core activity within FSI-Interface was the development of the M3CT, including technical
support associated with making engineering components (e.g., an optimization algorithm)
available within SORCER and reflecting end user practices in the M3CT workflows. From an
engineering standpoint, the function of the M3CT is to enable the end user to:

• Define a flapping wing MAV configuration
• Analyze this configuration (simulate its physical behavior)
• Define design variables (DVs), performance objectives, and engineering constraints for

the configuration
• Optimize the configuration for the defined DVs, objectives, and constraints

Various engineering disciplines and modeling fidelities are represented in the M3CT palette. 3D
wing aerodynamics is modeled using blade-element, or quasi-steady, aerodynamics. Wing

6
Approved for public release; distribution unlimited.

structure, when allowed to be flexible, is modeled using nonlinear beam-theory. When assumed
rigid, the wing inertial properties are still modeled. For pinned analysis (the MAV is assumed
to be fixed in space), the aerodynamics and structural dynamics are coupled for wing design
purposes. For flight analysis, either open loop or closed loop, the MAV is not pinned and its
rigid body degrees of freedom are modeled, including body mass (in this mode of use, the MAV
wings are assumed rigid). A trim module is provided to set certain variables for trimmed hover
or forward flight. An additional set of controller modules is provided to build and evaluate the
performance of LQR-based closed-loop control. Optimization can be performed using DOT,
CONMIN, or MMA.

The aerodynamic forces and flow fields produced by the motion of 2D airfoils are modeled at a
higher level of fidelity using the Maelstrom provider, which is based on an unsteady, and
nonlinear point-vortex methodology. This capability was incorporated into the M3CT early in
the FSI-Interface project as means to study end user workflows while the QSCSD and MUAV
providers were being constructed.

Scope
This report describes at a high level the work carried out for FSI-Interface and FSI-Controls,
with emphasis on (1) technology challenges associated with the development of a generic
capability to design advanced aircraft and (2) lessons derived from the project that can lead to a
more successful capability in the future. Section 3 addresses software architecture, including
that of SORCER and the M3CT. Section 4 provides an introduction to the engineering problem
FSI-Interface is designed to study. Section 5 focuses on the technology challenges expected in
extending FSI-Interface to treat a broader range of aircraft concepts. Finally, Section 6 provides
a set of conclusions, including a detailed look at potential next steps to overcome the
technology challenges introduced in Section 5.

The reader should note that details associated with the work are reported in two documents that
fall outside the scope of this final report. The first document is the M3CT Developers Guide.
This document contains detailed information useful to those software developers intending to
modify or further develop M3CT (e.g., specification of the geometric data class). The second
document is the M3CT Users Guide. This document contains detailed information for potential
users of M3CT, including instructions on setting up and running certain benchmark cases. The
reader is also encouraged to study the Task Order 49 final report, which has additional
information about application of the FSI-Controls software.

Delivery
The following items are delivered per Task Order 35:

• M3CT Final Report
• M3CT Software DVD

The following items were provided as software documentation for Task Order 35:

• M3CT Users’ Guide
• M3CT Developers’ Guide

7
Approved for public release; distribution unlimited.

3.0 METHODS, ASSUMPTIONS AND PROCEDURES
OBJECTIVE I
Areas of research focus changed to further progress. Coarsely, the effort was divided into
modeling and simulation, control design, vehicle fabrication, and experiments. The efforts were
undeniably connected as the modeling and simulation informed the control design and vice
versa. The control design informed the modeling by providing feedback on the effectiveness of
different wingbeat modifications. The modeling and control design dictated which wingbeat
manipulations to employ in fabrication. The experimental results were compared to predictions
made by the models. The details of the experimental setup were partly dictated by the
fabrication, while the fabrication was amenable to the experiments.

3.1 Modeling and Simulation

Figure 1. General Assembly of a Minimally Actuated FWMAV

The modeling and simulation effort focused on producing a quasi-steady aerodynamic model
capable of producing a representation of a FWMAV similar to the one shown in Figure 1. The
models employed blade-element theory with empirical data from the literature to represent lift
and drag coefficients as functions of angle-of-attack or as lookup-tables; these type of models are
commonly referred to as quasi-steady models. Gradual improvements and enhancements were
made to the models. The final versions had online integration of the velocity vector field over
the wings, accounting not only for stroke velocity but also the rigid body velocity and first
principle based inertial effects. The models provide a six degree of freedom representation of a
FWMAV in flight, in particular at near hover conditions. Models were implemented in Simulink
and MATLAB.

8
Approved for public release; distribution unlimited.

The primary use of the models was threefold: to produce simplified control oriented models and
design tools based on cycle averaging, to analyze the effect and effectiveness of various
wingbeat manipulations, and to provide a truth model to test the eventual control laws. The
cycle-averaging of forces and moments was performed analytically on blade element based
models. Cycle-averaging involves taking the time averaged integral of the forces and moments
produced by a wing stroke cycle assuming a sinusoidal stroke position waveform, i.e., from an
initial wing position in a stroke, until the wing returns to that position. Sensitivity analyses, or
partial derivative computations, were performed on the cycle-average representation of the forces
and moments. Sensitivities were investigated for stroke frequency (number of complete strokes
per second), bias (the shifting of the midpoint of the stroke), angle-of-attack (shifting of stops for
the wing rotation about its spar), amplitude (total deviation of the stroke about its midpoint),
stroke-plane (tilting the plane in which the wing stroke lies), and split-cycle (employing different
velocity profiles for the up- and downstroke). Particular emphasis was placed on developing the
split-cycle approach, illustrated in Figure 2. Split-Cycle control was a particularly novel control
innovation of interest, facilitating control over four degrees-of-freedom using only two actuators.
These two actuators dictate the stroke velocity profile of each wing. The models predicted that
around hover, with the vehicle upright (top of head pointing upward, belly facing forward), split-
cycle manipulation provides control over two degrees of freedom, forwards/backwards
translation and roll rotation. Frequency manipulation adds vertical translation and yaw. Various
options were considered and tested in simulation for pitch control including the use of a bob-
weight, stroke bias, and stroke-plane manipulation.

Figure 2. Split-Cycle Illustration, Longer Arrows Represent Faster Half Strokes and

Shorter Arrows Represent Slower Half Strokes

3.2 Control Design
Control oriented models were derived from the quasi-steady FWMAV models. In particular,
sensitivities of the cycle-averaged forces and moments to stroke manipulations were derived.
This led to the investigation and simulation implementation of various control inputs as
discussed in Section 3.1. The result was a variety of methods to obtain control over four or five
degrees-of-freedom in a cycle-averaged sense. For example, utilizing control over stroke
frequency, split-cycle modulation, and stroke bias independently for each wing, allows for
control of cycle-averaged forward, backward, and vertical translation, as well as all three
attitudes.

9
Approved for public release; distribution unlimited.

Figure 3. Block Diagram Example, 4-DOF Controller

The control scheme was devised under the assumption that cycle-zero-order-hold (Cycle-ZOH)
is employed. This implies that at the start of each stroke, the stroke parameters are set and
persist throughout the subsequent stroke, as illustrated in Figure 3 and detailed in our published
work. Control laws were designed on a two level hierarchy. The inner-loop control is a
proportional, derivative, and integral control scheme assuming independent loop closure for the
controllable translations and attitudes. The outer-loop control law sets the reference signals for
the inner loop controller in order to produce waypoint tracking. Two control schemes were
devised and successfully provided waypoint navigation using either 4 or 5 degree-of-freedom
control to manipulate the FWMAV’s motion in our most sophisticated quasi-steady 6 degree-of-
freedom models.

10
Approved for public release; distribution unlimited.

Figure 4. Block Diagram of Stroke Position/Velocity Control

A control design was also needed in practice to control the stroke position and velocity profile
produced by the prototype FWMAVs. A brushless DC motor was used to drive a four-bar crank-
rocker mechanism to transform rotational motion into a rocking motion, i.e., the wing stroke.
The controller needed to drive the motor according to the inverse-kinematics of the 4-bar to
produce a cosinusoidal stroke waveform. Moreover, the controller needed to facilitate frequency
and split-cycle manipulation using an implementation sufficiently simple to run on 16-bit
microcontrollers. The resulting control design is illustrated in Figure 4 and was successfully
implemented for force-balance and air-table experiments. The design is based on using table
lookup to produce reference signals for a PID (proportional, integral, derivative) controller. The
tables were generated a priori in MATLAB based on the inverse-kinematics of the 4-bar
mechanism geometry and a timer is used to index the position and differential values. Two
distinct values are used to dictate the time difference between index increments during the first
and second half of the table. By making one value smaller than the other, split-cycle modulation
is achieved. A remote controller is used to dictate the timing of the stroke of each wing and each
half stroke.

3.3 Fabrication
The primary fabrication objectives were to machine a fuselage, construct wings, and fabricate
electronic circuits capable of implementing split-cycle control. Various design tests were also
performed using 3D printing.

11
Approved for public release; distribution unlimited.

Figure 5. Fuselage Fabrication

The fuselage consists of a body structure which incorporates motor attachments and the 4-bar
crank-rocker mechanism which drives the wing spar, as seen in Figure 5. Furthermore, there are
protruding pins near the wing spar mounts which constrain wing rotation about the spar, thus
enforcing desired bounds on the wings’ angle-of-attack. All the parts except for off-the-shelf
bearings and bolts, were milled from aluminum. The parts were drawn in computer-aided-design
(CAD), specifically SolidWorks, and G-code generated by SoldidCAM was used for the
machining. The weight of the fuselage, including the 4-bar mechanism and bearings, totals
approximately 4 grams.

Figure 6. Evolution of The Circuit Board Design

12
Approved for public release; distribution unlimited.

The electronics circuits evolved as experience was gained. The purpose of the electronic circuits
was to facilitate using three PIC24FJ64GA102 16bit microcontrollers to control the stroke
actuation using brushless DC motors. Furthermore, the microcontrollers were required to
communicate with a remote controller and with each other. Two microcontrollers were
programmed with the motor control laws and used pulse-width-modulation (PWM) and Hall
effect sensors to drive the motors via a set of half-H-bridges. The third microcontroller
communicated with a remote control receiver using pulse-position-modulation (PPM), deciphers
the signal, and communicated the remote control commands to the two microcontrollers which
control the motors. The circuit board development evolved into four stages as shown in Figure
6. The first stage used developmental boards with similar microcontrollers. The second stage
combined the microcontrollers on one board while using a separate driver board to connect to the
motors. The third stage combined the microcontroller and driver boards. The fourth and final
stage, minimized the board size to produce a flight weight board, weighing 1.71 grams.

Figure 7. Wing Fabrication, CAD to Negative Mold to Carbon Fiber and Capran Wing

Wings were fabricated using carbon fiber for structural support and a capran nylon film for wing
membrane. Three dimensional CAD designs of wings were 3D printed and a negative silicon
mold made from the prints. Fibre Glast 2000 resin was applied to 1k carbon fiber tow then
layered in the silicon mold, vacuum bagged, and baked. It was important to vacuum bag and
bake the carbon fiber wing spars to ensure that they conformed to the molds. Figure 7 shows,
top-to-bottom, a screen capture from the CAD software rendering, a photograph of a technician
constructing a wing, and a set of finished wings. The carbon fiber wings proved to be
lightweight and strong.

13
Approved for public release; distribution unlimited.

3.4 Experiments

Figure 8. Split-Cycle High Speed Video Recording Demonstration
A variety of experiments were performed in the course of this research effort. They included the
use of a prototype FWMAV mounted on a force-balance, high-speed video recording, and
mounting a prototype FWMAV on a puck to float on an air-table. A Nano17 electronic force
balance was used to measure forces and moments produced by prototype FWMAVs. The
experiments have thus far been inconclusive because of the signal-to-noise ratios and related
implementation issues. Controlled split-cycle modulation of the stroke was, however, confirmed
using high-speed video recording and manual tracking, as seen in Figure 8. The magenta line
shows the split-cycle waveform to be tracked and the red shows the measured stroke angle at the
wing spar origin.

Figure 9. The Airtable Experiment Setup with a Prototype FWMAV Mounted on a Puck

14
Approved for public release; distribution unlimited.

Both an airtable and airtable mount (puck) for FWMAV prototypes were constructed, as shown
in Figure 9. The airtable allows for testing FWMAV prototype capabilities to translate and rotate
on a horizontal plane. This allows constrained maneuver testing, eliminating vertical motion
(compensating for weight), and pitch/yaw rotation. In particular, recall that the primary effect of
split-cycle modification of the stroke was to produce forward/backward translation and roll.
Thus, the airtable and puck provide an ideal experiment for the viability of split-cycle
modulation based control.

OBJECTIVE II

Three parallel efforts comprise the architecture of the M3CT. The principal architecture is
summarized here for a quick reference. The implementation architecture is unique to the M3CT
effort. Ongoing development of the Principal Architecture has had some effect on the variable
implementation of M3CT. The collection of providers leveraged by the M3CT product are
highly variable in design, language, and intent, which is another challenge of providing an
agnostic approach to presenting these providers to the user.

Development of the program architecture is itself research. The unique distinctions of coding
practices and implementation techniques from class to class are moderately variable by this
very nature. It is important to consider each class as an experimental implementation.
Therefore, differences in similar classes are derived by their research iteration.

3.5 Principal Architecture
The Principal Architecture of the M3CT product is a Federated Service Object Oriented
Architecture (FSOOA). Within the FSOOA architecture there are providers, requestors, and
registrars. Similar to a Service Oriented Architecture (SOA), a provider presents work
capabilities to the network, a registrar provides network connectivity information, and a
requestor can be interpreted as a user of the network. However instead of a provider being
substantially limited to a specific form or function, or limiting connectivity concurrency
between requestors and providers, the SORCER API generates work packages that are exerted
across the federation.

SORCER is a federated Service-to-Service (S2S) meta-computing environment that treats
service providers as a network of peers within the well-defined semantics of the FSOOA. It is
based on Jini semantics of service in the network and the Jini programming model with explicit
leases, distributed events, transactions, and discovery and join protocols. Jini focuses on service
management in a networked environment. SORCER focuses on Exertion Oriented (EO)
programming, and the execution environment for exertions.

15
Approved for public release; distribution unlimited.

Figure 10. Architecture Environment
SORCER utilizes an integrated-grid platform (iGrid8) that maximizes the strengths of both
compute grid and meta-compute grid platform strategies. This platform provides the added
benefit of downward compatibility with legacy applications.

A great benefit of utilizing a framework such as SORCER, is that many various languages can
be successfully integrated into the M3CT environment. A disadvantage to the same, but not
exclusive to SORCER or any other resource serving in its capacity, is that exposure to multiple
languages can derive numerous variations in implementation standards. SORCER alleviates
many of these lower level implementation issues through the use of context objects. These
context objects can be standardized more easily, as they exist outside of platform specific
requirements.

SORCER provides over a hundred variations of implementation. In the next steps of M3CT,
only a handful of these variations will be needed. Over the next decade of research and
development, access to the remaining variations, and continued improvements to the SORCER
framework, will be beneficial in providing access to agnostically accessible service platforms in
am ever growing federation of computer science technologies.

3.6 Implementation Architecture
The Implementation Architecture of the M3CT product is a Model View Controller (MVC)
approach integrating into SORCER through its API library as a principal Requestor. The M3CT
requestor is written in Java, leveraging the cross platform deployment capabilities needed for a
broadly executable user interface. M3CT consists of numerous dialogs and forms hosted within
a Multiple Document Interface (MDI) Graphical User Interface (GUI). This provides the user of
the M3CT application the ability to interact with these providers at a simplified and
comprehensive level allowing for users to leverage available providers in the creation of
exertion based work packages without explicit understanding of each provider.

16
Approved for public release; distribution unlimited.

Figure 11. M3CT Implementation
Numerous Providers are integrated into SORCER, primarily utilizing JNA wrapping
techniques. These providers are discoverable and configurable through the M3CT user interface.
This design pattern circumvents the computer science background typically required for
working in a distributed computing environment. Providers are written in their native
languages, such as Fortran, C++, MATLAB, and other languages that are ideal for running
highly demanding algorithms, or were simply written in a language that the designer of that
algorithm is comfortable with. These algorithms can range from analytic resources such as
aeroelasticity, fluid dynamics, and vorticity, to providers that perform iterative optimizations or
improve performance through interpretive model reduction patterns.

Figure 12. Provider Implementation
The M3CT Requestor and the numerous experimental Provider companion implementations
encourage and unify the collaborative efforts of multiple disciplines by converging
methodologies and converting algorithmic discoveries and processes into a generically
accessible form. This benefit is further enhanced through programmatic optimization resources
that can help lead a research effort in the right direction with both performance enhancement
and data integrity.

This implementation architecture research has both discovered and uncovered implementation
details and associative development patterns that serve as a valuable lessons learned resource in
the design and development of a next-generation architecture.

In order to expose each application to the Java programming language, the independently
generated sources are wrapped with JNA or Groovy. The Java wrapping process allows for an
application to be created according to the software language that best suites its execution.

17
Approved for public release; distribution unlimited.

Figure 13. Leveraging Languages
Once the underlying product is available to the Java source as a library, the application
leverages the SORCER API for interoperability with the M3CT implementation of the FSOOA.
Once running, an Application is discoverable and can be instantiated by other applications, such
as the M3CT requestor. This environment also allows the application to utilize the hardware
solution that best processes the underlying algorithm.

18
Approved for public release; distribution unlimited.

4.0 RESULTS AND DISCUSSION

OBJECTIVE I
The results of the research tasks are divided into three sections: simulation, fabrication, and
experimental results. The research efforts primarily focused initially on modeling and control
design and producing results in simulation. In order to validate some of the abilities predicted by
simulation, prototype FWMAVs needed to be constructed, thus producing fabrication results.
Finally, actual experiments are presented, in particular, the airtable results. One of the primary
metrics of success for the research efforts conducted for this research task is the significant
number of peer-reviewed publications. In collaboration with in-house researchers, publications
numbers included 2 journal papers, 1 book chapter, 1 technical report, and over 13 conference
papers.

4.1 Simulation Results

Figure 14. Simulation Results Using a 5-DOF Controller (Frequency, Split-Cycle, Bias) on

the 6-DOF Quasi-Steady State FWMAV Model Including Rigid Body Velocity
Four and five degree-of-freedom control designs were devised and tested on 6 degree-of-freedom
FWMAV models of insect size, 60-90 mg in weight with a wingspan of up to 6 cm. The models
were devised to be consistent with state-of-the-art quasi-steady FWMAV models because higher
fidelity computational fluid dynamics models are, as of yet, too computationally intensive for
closed loop FWMAV simulation. Figure 14 shows a 5-DOF controller performing waypoint
tracking. Note that the position and attitude, controlled by the inner-loop controller, tracks the
reference generated by the outer-loop controller to perform guidance between waypoints. See
our published work for further details.

19
Approved for public release; distribution unlimited.

4.2 Fabrication Results

Figure 15. Complete Prototype FWMAV Mounted on an Airtable Puck
As shown in the previous section, the design of a FWMAV prototype was an incremental
process. The fuselage holding the structure to support the motors, 4-bar crank-rocker
mechanism, and wing mounts was completely constructed with mounting for either an airtable
puck or force balance. The electronic circuit boards were designed and manufactured to drive
and control the wing actuators and be remote controlled with a Spektrum Dx6i transmitter.
Figure 15 shows a fully assembled FWMAV prototype mounted on a puck.

20
Approved for public release; distribution unlimited.

4.3 Experimental Results

Figure 16. Airtable Experiment, Demonstrating a Remote Controlled Prototype FWMAV

Employing Split-Cycle Stroke Modulation
Experiments on the prototype FWMAV included high-speed video recordings, force balance,
and airtable controlled experiments. High-speed video confirmed the ability of our hardware and
software to produce a controlled split-cycle modulated wing motion. Force balance
measurements proved inconclusive due to signal to noise ratio issues. Finally, the FWMAV
prototype was mounted on a puck and remote controlled on an airtable. Figure 16 reads as a
filmstrip from left to right demonstrating the milestone achievement of being the first
demonstration of the control effectiveness of split-cycle modulation. The remote controller is
used to adjust the split-cycle stroke, as indicated on the figure, either symmetrically between the
two wings or asymmetrically. The thick arrows indicating faster motion than thin arrows.
Specifically, split-cycle modulation was shown to allow control of two degrees of freedom as
predicted by the mathematical models and simulations produced earlier. Simulations showed
that, in principle, the same type of mechanism can, with frequency modulation, control both
vertical motion and yaw. Additional design measures need to be taken to provide pitch control,
such as the addition of controlled stroke bias or stroke-plane modulation.

21
Approved for public release; distribution unlimited.

OBJECTIVE II

Section 4 contains a summary of results obtained with FSI-Methods, FSI-Controls, and FSI-
Interface. First, the benchmark problems are described to provide the reader an understanding
of analysis objectives. Second, the basic analytical process is described to provide the reader an
understanding of the methodology elements. Lastly the results of the individual benchmark
problems are presented. Further details are included in the MSCT Users Guide.

Two basic sets of results are shown. One set of results are shown for a MAV that is pinned (not
free to move), and which has flexible wings. Of interest is the role wing flexibility plays in the
production of aerodynamic forces. A second set of results are shown for a MAV that is free to
move, but which has rigid wings. Of interest is the tradeoff between design of control system
and wing and flapping characteristics for efficient operation in gust.

Prior to summarizing the results of canonical study cases, the methodology elements are
described, starting first with brief definitions of basic concepts, followed by descriptions of the
analytical capabilities.

4.4 Problem Description
In this section, the basic problem that is being solved by M3CT and its related software
capabilities is described. Further details can be found in technical papers by Stanford et al.i and
Bhatia et al.ii

4.4.1 MAV Configuration (Geometry, Kinematics, Structure)
A flapping MAV configuration is considered, and the basic description involves five
components: configuration geometry, kinematics, structure, vehicle motion, and vehicle control.
This section reviews vehicle geometry, kinematics, and structure.

The physical geometry consists of a body and two wings, although only the wings are modeled
aerodynamically. The geometric configuration is symmetric, left-to-right. Wings are offset
from the body, and any physical connection between the wings and the body is not modeled.
Potential physical contact between wings and body owing to motion and wing deformation is
not explicitly modeled or avoided. Wing planform geometry is defined discretely and
symmetrically about a geometric axis. Wings are flat and prescribed to have thickness,
although thickness is primarily a structural consideration.

Each wing is prescribed to move (i.e., flap) by specifying instantaneous rotation (Euler) angles:
three for each wing. Rotations are specified about wing root locations that are offset from the
body center of mass. In particular, the wing roots are placed an adjustable distance from the
vehicle symmetry plane. Feather rotation is specified about the wing’s geometric axis.

The wing structure is considered to be that of a beam whose cross-sectional geometric
properties vary with span-wise location. The wing structure extends from the wing root to the
wing tip, and the cross-sectional geometry is defined to match the specified planform and
thickness distributions (as functions of span-wise location). At the model level, the
aerodynamic and structural character of the wings is defined at an adjustable number of chord-
wise strips. For example, if the wing is decomposed into 10 strips, each strip has a uniform

22
Approved for public release; distribution unlimited.

chord and a uniform thickness. For a flexible wing, beam axis is assumed to be at the
geometric center of the wing, coincident with the wing’s geometric axis.

4.4.2 Pinned MAV
Studies are divided along two lines: the MAV is either pinned or free-to-move. MAVs that are
pinned are prescribed not to move (i.e., the body is specified to not translate or rotate with
respect to a lab frame). MAVs of this configuration type are allowed to have flexible wings
(i.e., wings that deform under loads), whose structure is described above.

4.4.3 Free-to-move MAV
Free-to-move MAVs are modeled as multi-body objects, whose motion is dictated by a
combination of gravitational, inertial, and aerodynamic forces (the latter two produced by
prescribed flapping), as applied to a 6-DOF set of rigid-body equations. As a multi-body
object, wings are assumed to move in a manner reflecting attachment to the vehicle body
(although physical connectivity is not defined). It should be noted that free-to-move MAVs are
assumed to have rigid wings. These wings are modeled inertially (and can significantly
influence body motion at large time scales), but not elastically, as true for pinned MAVs.

4.4.4 Free-to-move MAV with Control
A controller based on Linear-Quadratic-Regulator (LQR) theory is used to maintain stability of
a free-to-move MAV under a specified mission (either hover or a prescribed motion)ii. It is
assumed that the controller is able to observe all states of the vehicle (position, rotations,
velocity and angular rates). Any deviations in these quantities are used by the controller to
define perturbations to the trim kinematics in-order-to maintain stability. The user can specify
the kinematic parameters that can be perturbed by the controller, and the relative importance of
minimizing state-perturbations versus minimizing control-cost.

4.5 Fundamental Steps of Analysis and Optimization
This section reviews some key methodological aspects of the MAV studies, including both
vehicle analysis and vehicle optimization. As described above, vehicle geometry, kinematics
and structure are parameterized (i.e., can serve as design variables). For the free-to-move MAV,
design variables can also be assigned to the control scheme. Vehicle behavior can be analyzed,
meaning the time-dependent, multi-disciplinary responses of the vehicle can be numerically
simulated for specified initial conditions and parameter values defining the configuration.
Gradient-based optimization can then be used to optimize the configuration (change the design
variables) to improve a design objective while meeting constraints.

4.5.1 MAV Analysis
MAV analysis consists of aerodynamic analysis, structural dynamic analysis, aeroelastic
coupling, trim computation, simulation of rigid-body dynamics, and gust modeling.

Aerodynamic analysis is based on blade-element theory, following the implementation of
Berman and Wangiii. Through this approach, aerodynamic loads are computed for each
chordwise strip based on the instantaneous orientation and motion of the strip. Effects of
interference between strips and between strips and the body are not accounted for.

23
Approved for public release; distribution unlimited.

The dynamic response of wing structure is computed for the pinned MAV (the wings of the
free-to-move MAV are assumed rigid). A co-rotational finite-element formulation,
implemented by AFRLiv is used to analyze the time-dependent deformation of the beam
representing the wing structure. This formulation is nonlinear and allows for large, time-
dependent deformations about a rigid and virtual reference line that extends from the wing root
towards the wing tip. Three points are worthy of comment:

1. The dynamic response of the wing to periodic, rotary actuation is computed
using a second-order-accurate, time-marching scheme. Consideration was
originally given to a time-periodic approach using finite differences or spectral
elements, but the potential benefits seemed to be outweighed by the additional
complexity and fragility of the time-periodic approach.

2. If the wings of the pinned MAV are to be modeled as rigid, then the stiffness of
the wing should be specified to be orders-of-magnitude larger than the default
value. While the wing can be made nearly rigid, wing deformation and
aeroelastic interaction are still computed at a cost on par with that of a more
flexible wing. The current version of the code does not allow for the disabling
of the structural deformation calculation (primarily for the purpose of decreasing
computational cost).

3. If the actuation of the wing is too vigorous (e.g., too large a frequency), the
nonlinearity of the wing response will become severe enough to prevent
convergence of the numerical scheme. This is potentially a problem for
optimization, when certain regions of the design space cannot be assigned
converged solutions.

Aeroelastic coupling is achieved by sub-iteration at each time level until residuals are driven
below a specified threshold.

The provider that executes the pinned MAV analysis is named QSCSD for Quasi-Steady
aerodynamics and Computational Structural Dynamics.

For the free-to-move MAV, a symmetric, trimmed flight state in still air is computed to provide
a baseline about which gust perturbations and control variations are imposed. When trimmed,
the vehicle achieves a cycle-averaged (or stroke-averaged) balance between lift and weight, and
does not experience a cycle-averaged pitch moment (cycle averaged refers to time integration
over a complete flapping cycle). The trim calculation involves an iterative, shooting approach
that meets the two trim constraints while achieving a time-periodic solution at the specified
frequency (sensitivities employed in the iterative procedure are computed analytically). In
meeting the two constraints, two design parameters are computed, which can be selected
through their trim IDs. For the free-to-move MAV, the equations of motion solved in the
shooting procedure are the equations governing the rigid motion of the multi-body system.

Details concerning gust modeling can be found in the manuscript authored by Clayman et al.v

24
Approved for public release; distribution unlimited.

4.5.2 MAV Optimization
For most of this research, two gradient based optimization methods were applied. The first
method, CONMIN, was applied to the optimization of the pinned MAV. The CONMIN
optimizer utilizes the Method of Feasible Directions to compute the minimization of
constrained linear or nonlinear functions. Originally written in FORTRAN, CONMIN was
developed in 1973 by Garret N. Vanderplaats at the Ames Research Center and U.S. Army Air
Mobility Research and Development Laboratory. The objective function and constraint
behavior are provided to CONMIN by the optimization problem in M3CT by way of the
SORCER context object. The analytical constraint gradients are also provided through the
context object, but may (as an alternative to the method used) be calculated by CONMIN using
the built in finite difference method. (Bryson et al. also explored the use of the commercial
optimization method DOT, and this capability is integrated with M3CT, but is only available on
Linux systems, and license restricted. For this reason, results are shown below that were
obtained with CONMIN, and DOT is not further discussed.)

For the second portion of this research involving the analysis of the free-to-move MAV, the
method of moving asymptotes (MMA) gradient based optimization was utilized. The MMA
method, originally presented by Svanbergvi, is coupled with the flapping wing and wind gust
models. The optimization approach includes single gust and multiple gust profiles for mean
efficiency optimization. In each optimization case, minimization of the cycle average power
over the entire gust simulation is used as the objective function. The peak control power
expended and the total flight orbit spherical displacement of the MAV are used as metrics for
constraint behavior.

Given the generic design parameters x=[x1,…,xj=n]T, implicit constraint behavior fi(x), objective
function f0(x), and their gradients Δfi(x) and Δf0(x), the MMA obtains an optimal solution for
the given design iteration from a convex, separable sub-function in which the implicit constraint
behavior is replaced with an explicit approximation. The MMA is unique in that the explicit
constraint behavior is obtained as a linearization of the implicit constraints based on upper (Uj)
and lower (Lj) asymptotes for which Lj < xj < Uj. The magnitudes of the asymptotes are
modified according to the behavior of the problem gradients. As an example, if the optimization
process is oscillatory, the asymptotes may be squeezed closer to design parameters; conversely,
the asymptotes may be relaxed if the optimization is too steady. A more detailed discussion
related to the theory and applications related to the method of moving asymptotes can be found
in Ref. vi.

4.5.3 Case Management (input deck, output deck, leveraging resources)
There are vast amounts of data generated that represent each step throughout the course of a
study. These values are assigned to numerous variables, and these variables must be mapped
between independently executing events in a meaningful way. This need for case management
is where the FSOOA is leveraged by M3CT in the pursuit of an extensible solution.

Even though these smaller test cases only take a few hours to resolve, it is reasonable to expect
that larger test cases will require numerous computational systems that exceed the capabilities
of a single computer. The challenges are generally:

25
Approved for public release; distribution unlimited.

1) How do we map variables between two independently authored and maintained
interfaces?

2) How do we preserve data from each step for progress monitoring and data analysis?

3) How do we pass significantly large quantities of data without inflicting choke points
to the network of services?

4) How do we monitor, interrupt, or recover active studies through a centralized control
point?

5) How to we maintain repeatability of established studies over time and versioning?

Throughout the exploratory process of addressing these challenges, both studies are resolved
using different methods of invocation and conclusion. It was desired to create a uniform way
for both studies to be able to leverage CONMIN optimization. The incompatibilities between
the CONMIN implementation and the MMA implementation was unable to be resolved without
significant changes to both. Such proposed changes are introduced later in this document.

The first study leverages the QSCSD and CONMIN providers, where M3CT is the principle
requestor. This implementation leverages a method of tracking objects in JavaSpace, capturing
those objects for interpretation, and passing state flags between optimization runs to determine
the end condition. M3CT plays a passive role in this method where it is only able to update its
state if the providers send a properly formed message to satisfy the update. This method is not
ideal, in that errors, progress, and any other quantification of important data can be completely
bypassed without the end user of M3CT being aware.

The second study leverages the CONTROLS and MMA providers, where M3CT is the principle
requestor. This implementation gives M3CT the responsibility of acting as a logic gate
controller for the study. Input Decks are passed to each provider, and Output Decks are returned
to M3CT. M3CT is responsible for interpreting these Output Decks and forwarding them to the
next provider in the pre-planned sequence. In order to retain history, each Deck iteration is
saved to each providers hard drive, which is then manually stitched together with the updated
report from their respective providers underlying service.

JavaSpace is used in both implementations, which is where CONMIN was approached to see if
both studies could leverage the providers services uniquely. However with the first study and
second study being fundamentally different in implementation, the JavaSpace commonality was
insufficient. The first, passing provider data through JavaSpace. The second, passing URL
locations to Decks through JavaSpace. In both implementations, the naming, order, and
implementation of variables were also vastly different. i.e., The Kinematic Parameters, although
mathematically identical in purpose, were stored inconsistently between the various providers.

Case management will require a broader approach then what was considered within the scope
of the M3CT effort. In order for disparate systems of systems to be able to communicate
consistently, a schema needs to be researched and established that can properly

26
Approved for public release; distribution unlimited.

compartmentalize universally acceptable standards for common definitions. Schema typically
can be enforced through XML or JSON syntax. The use of Metadata can also lead toward the
automation of case management, alleviating some probabilities of human error.

4.6 Study Examples
4 study examples are presented herein to document results obtained with M3CT and integrated
providers:

1. Pinned MAV analysis (QSCSD)

2. Pinned MAV optimization (QSCSD and CONMIN)

3. Free-to-move MAV with pinned constraint analysis (Controls)

4. Free-to-move MAV trim analysis (Controls)

Results of these study examples are summarized in the following sub-sections. Before
presenting these results, we review nomenclature concerning the analysis.

Multiple (4) coordinate systems are defined, as shown in Figure . The MAV wing and body are
tracked in an inertial, global frame of reference denoted by I = {IX, IY, IZ}, where IZ corresponds
to altitude (positive up). The vehicle body frame R = {RX, RY, RZ}, is attached to the MAV
body (at the center-of-mass), and rotates and translates with respect to the global frame. The
positive direction of the body frame component RY is aligned with body rotation axis and
extends in what is considered the vehicle’s forward flight direction. The positive RX extends
out the right wing (in an un-rotated position). The wing frame, Wn = {WnX, WnY, WnZ}, where n
is the wing number (right=1 or left=2), is rotated about R following a 3-2-1 Euler angle
convention. In 3-2-1 order, the three Euler angles are ϕ (azimuth or stroke), θ (elevation or
deviation), and η (pitch or feather).

Figure 17. MAV Coordinate System
The geometry of the free-to-move MAV wing (both left and right wings are treated
equivalently) is defined by several parameters: the wing radius (BW; semi-span) of the wing, the
chord (and thickness) at three sections, span-break ratio (SBR), and the geometry mode flag.
The wing radius is measured along the center span line (50% chord line), as shown by the span-

27
Approved for public release; distribution unlimited.

wise dotted line in Figure . The wing root chord (CO), span-break chord (CS), and wing tip
chord (CN) define the chord distribution, and are assigned values in meters. The wing root
thickness (TO), span-break thickness (TS), and wing tip thickness (TN) define the thickness
distribution, and are assigned values in meters. The three chord sections are initialized parallel
with each other and lying on the X-Y plane as shown in Figure . The chord lengths and
thicknesses at any other point along the wing may be linear interpolated between the two
adjacent prescribed sections. The span-break position is equivalent to SBR * BW. The wing
geometry mode specifies whether the wing planform is to be defined asymmetrically (Figure ,
top) with a linear leading edge or symmetrically (Figure , bottom) across the wing 50% chord
line.

Figure 18. Free-to-Move MAV Wing Geometries
6 additional parameters are introduced to represent the positioning of the wing roots relative to
the body center-of-gravity: δWn = {δWnX, δWnY, δWnZ}, where n is the wing number (1 or
2). In other words, the point at which the wing rotates can be moved. These values are
interpreted as the wing root location minus the body center-of-gravity location in the body
coordinate system.

In the Controls module, access is given to the parameters of the quasi-steady aerodynamics
model, which follows that of Berman and Wangiii. The values used in the Controls study
examples below use the values provided in Table 1, as set in the Berman-Wang entry location of
M3CT.

Table 1. M3CT Parameter Values for the Berman-Wang Dialogue

Parameter Value
Translational Force
Coefficient

1.833

Rotational Force Coefficient 3.142
First Viscous Term 0.200
Second Viscous Term 0.000

28
Approved for public release; distribution unlimited.

Kinematic and split-cycle parameters are grouped together and assigned Identification (ID)
numbers, as recorded in Table 2 (with units; hereafter, “ND” refers to non-dimensional).

Table 2. M3CT Parameter Identification (ID) Numbers

ID
Number

Parameter
(Units)

Description (Name)

1 ϕm(rad) Stroke Amplitude (PHI_M)
2 ϕ0 (rad) Stroke Offset (PHI_O)
3 Kϕ (ND) Stroke Sharpness (K_PHI)
4 θm (rad) Deviation Amplitude

(THETA_M)
5 θ0 (rad) Deviation Offset

(THETA_0)
6 θs (rad) Deviation Phase-Shift

(THETA_S)
7 ηm (rad) Feather Amplitude (ETA_M)
8 η0 (rad) Feather Offset (ETA_0)
9 ηs (rad) Feather Phase-Shift (ETA_S)
10 Kη (ND) Feather Sharpness (K_ETA)
11 ω (rad/s) Flapping Frequency
12 δ (ND) Wing-Beat Bias

Additional parameters, including the wing geometry parameters, are defined in Table 3.

Table 3. Other M3CT Parameter Descriptions

Parameter
(Units)

Description (Name)

ρ (ND) LQR coefficient
SBR (%) Span-Break Ratio
BW (m) Wing Radius
Nθ (ND; 1 or 2) Deviation Frequency

Coefficient

4.6.1 Pinned MAV Analysis (QSCSD)
In this study example, M3CT is used to perform analysis of a pinned MAV in hover with the
QSCSD provider. A flapping frequency (ω) of 125 rad/s is prescribed, and the wing is
decomposed into 10 strips. The parameter values of this example are shown in Table 4.
Parameter specifications are divided according to the M3CT entry locations, or “M3CT
Dialogues”.

For convenience, minimum and maximum values of each parameter are also shown in the table,
and these values correspond to the side constraints enforced in the pinned MAV optimization
(Section 4.3.2). Please note that the values prescribed here are different than the initial
conditions used in the Pinned MAV Optimization study example described below.

29
Approved for public release; distribution unlimited.

Table 4. Pinned MAV Analysis Parameters (and Side Constraints for Optimization)

M3CT
Dialogue

Parameter Value Min Max

Kinematics ϕm 1.047 -π/2 π/2
 ϕ0 0.000 0.0 0.0
 Kϕ 0.010 0.01 0.5
 θm 0.000 -π/4 π/4
 θo 0.000 -π/4 π/4
 θs 0.000 -π/2 π/2
 ηm 0.785 -π/2 π/2
 ηo 1.571 -π/2 π/2
 ηs -1.571 -π/2 π/2
 Cη 0.100 0.01 1.0
Wing
Geometry

Chord (m),
Root to
Tip

2.250e-
02
3.238e-
02
3.978e-
02
4.472e-
02
4.719e-
02
4.719e-
02
4.472e-
02
3.978e-
02
3.238e-
02
2.250e-
02

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.01

0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06

 Thickness
(m), Root
to Tip

4.300e-
04
5.209e-
04
5.890e-
04
6.344e-
04
6.572e-
04
6.572e-
04
6.344e-

0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002
0.0002

0.0025
0.0025
0.0025
0.0025
0.0025
0.0025
0.0025
0.0025
0.0025
0.0025

30
Approved for public release; distribution unlimited.

04
5.890e-
04
5.209e-
04
4.300e-
04

Results are included in Table 5. The reader should note that analysis results are grouped
according to objective and constraint, following what is defined in the next study example.

Table 5. Pinned MAV Analysis Results

Parameter (Units) Value
Cycle-Averaged Power
(Normalized, W/N)

15.25

Cycle-Averaged Lift (N) 0.241
Peak Stress Indicator (kS) 1.412
Peak Power During Final Cycle
(W)

19.37

4.6.2 Pinned MAV Optimization (QSCSD and CONMIN)
In this study example, M3CT is used to perform optimization of a pinned MAV in hover with
the QSCSD and CONMIN providers. The goal of this study is to minimize the cycle-averaged
aerodynamic power while meeting a lift constraint of 0.15 N, assuming a sustained flapping
frequency of 125 rad/s. See Table 6.

Table 6. Pinned MAV Optimization Goals

M3CT
Category

Parameter (Units) Target

Objective Cycle-Averaged Power
(Normalized W/N)

Minimize

Constraint Cycle Average Lift (N) 0.15

The settings of parameters used by CONMIN are defined in Table 7. The results of the
optimization process are shown in Table 8. The reader should note that cycle-averaged power
required was reduced by more than 65% of the initial value. This reduction was accomplished
by changing the design variables as well as reducing the lift associated with the initial values of
the design variables, which was found to be 0.151 N. Thus, power was reduced by over 65%
while reducing hover lift by 37% to the constraint value (i.e., lift constraint is active). In other
words, the lift corresponding to the initial values of the design variables is more than needed.

Originally, a peak stress constraint was added in the optimization process. The peak stress
indicator was found to naturally decay throughout the kinematic optimization. The reduction in
stress can be viewed by comparing the initial stress indicator to the final value in Table 8; as a

31
Approved for public release; distribution unlimited.

result it was determined that removing the stress constraint better served the optimization
process.

Table 7. CONMIN Parameter Settings

M3CT
Dialogue

Parameter Description Value

RPRM Constraint Active Value -0.030
 Constraint Min Violation (CTMIN) 0.003
 Max absolute change (DABOBJ) 0
 Max relative change (DELOBJ) 0.001
 Absolute Change Objective Function (DOBJ1) 0.100
 Relative Change Objective Function (DOBJ2) 0
 Max Relative Change DV (DX1) 0.01
 Max Absolute Change DV (DX2) 0
 Relative finite difference step (FDCH) 0.001
 Min Abs value of finite difference step

(FDCHM)
0.0001

 Max relative change in DV (Lin Pgm Meth
(RMVLMZ)

0.4

 Max absolute change in DV (Lin Pgm Meth)
(DABSTR)

0

 Max relative change in DV (Lin Pgm Meth)
(DELSTR)

0.001

 NEWITR change when 0
IPRM Gradient Calculation Method (IGRAD) User
 Maximum Optimization Iterations (ITMAX) 200
 Number Consecutive Criteria Iterations

(ITRMOP)
3

 File Output Number (JWRITE) 9
 Number of Retained Constraints 0
 Design Variable Scaling Active and Violated Only
 Max Number Iterations Sequential

(Linear|Quad)
50

 Consecutive Iterations Convergence 0
Objective Inner Loop Evaluators pMaxNorm=evaluateExertion
 Outer Loop Evaluators pMaxNorm=evaluateExertion
 Gradient Inner Loop Evaluators pMaxNorm=evaluateMethod
 Gradient Outer Loop Evaluators pMaxNorm=evaluateMethod
Constraints Constraints ksMaxNorm

LavgNorm
Loop
Control

Maximum Outer Loop Iterations (ILITMAX) 10

 Maximum Inner Loop Iterations (OLITMAX) 50

32
Approved for public release; distribution unlimited.

Table 8. Pinned MAV Optimization Results

 Parameter (Units) Initial Optimized
Objective Cycle-Averaged Power (Normalized,

W/N)
15.25 5.22

Constraints Lift (N) 0.241 0.151
 Peak Stress (kS) 1.412 3.989e-03
Kinematic Azimuth Amplitude (PHI_M) 1.047 0.776
Design Azimuth Sharpness (K_PHI) 0.010 0.010
Variables Elevation Amplitude (THETA_M) 0.000 0.055
 Elevation Offset (THETA_O) 0.000 -0.055
 Elevation Shift (THETA_SHIFT) 0.000 0.011
 Pitch Amplitude (ETA_M) 0.785 0.945
 Pitch Offset (ETO_O) 1.571 1.571
 Pitch Phase (ETA_SHIFT) -1.571 1.145
 Pitch Squareness 0.100 0.102
Wing
Chord
Design
Variables

Chord, root to tip (m) 2.250e-02
3.238e-02
3.978e-02
4.472e-02
4.719e-02
4.719e-02
4.472e-02
3.978e-02
3.238e-02
2.250e-02

2.331e-02
3.227e-02
3.956e-02
4.433e-02
4.664e-02
4.660e-02
4.430e-02
3.967e-02
3.267e-02
2.320e-02

Wing
Thickness
Design
Variables

Thickness, root to tip (m) 4.300e-04
5.209e-04
5.890e-04
6.344e-04
6.572e-04
6.572e-04
6.344e-04
5.890e-04
5.209e-04
4.300e-04

5.343e-04
3.970e-04
5.463e-04
5.967e-04
5.981e-04
5.770e-04
5.434e-04
4.991e-04
4.424e-04
3.715e-04

After execution, the raw data stored after each optimization cycle can be found in the data
directory under iGrid-08. Each of these folders contains detailed data files of the model
parameters. The results tabulated in Table 8 compare the initial values of the design variables to
the optimized values for all 29 design variables.

Wing chord and thickness distribution, initial and optimized, are compared in Figure .
Instantaneous power and lift at the optimal design point are shown in Figure . To minimize the
resultant required power, the optimal kinematic motion exploits the aeroelastic interaction
between the wing and the air surrounding the wing. The variation of the three Euler angles

33
Approved for public release; distribution unlimited.

through the wing stroke at the optimal design point is shown in Figure 21. Here it can be seen
that minimizing power requires angular deviation from the stroke plane (variations of two Euler
angles not sufficient). The motion of the wing is shown in Figure , in terms of the stroke path
of the wing tip. This motion combines the effects of wing kinematics and wing deformation,
and is compared to the motion of the wing tip corresponding to a rigid wing moving with the
kinematics corresponding to the initial design point. Structural deformation accounts for the
large region enclosed by the motion of the wing tip. Also, it should be noted that the wing tip is
biased to positive values of z, owing to the constrained value of the cycle-averaged lift force
(also in the direction of positive z), and that the instantaneous lift force never vanishes.

Figure 19. Wing Chord (left) and Thickness (right) Distribution Results

Figure 20. Optimized Instantaneous Power (left) and Left (right) with Cycle-Averaged
Values

Figure 21. Instantaneous Kinematic Motion at the Optimal and Initial Design Points

34
Approved for public release; distribution unlimited.

Figure 22. Wing Tip Trace for Aeroelastic Wing at Optimal Design Point and for a Rigid
Wing at the Initial Design Point

4.6.3 Free-to-move MAV with Pinned Constraint Analysis (Controls)
The remaining case studies are examples of utilizing M3CT and the Controls module to perform
analysis and optimization of a free-to-move MAV with six degrees of freedom (three in
translation and three in rotation). The trim analysis is configured for a hover state.

The Controls module manipulates the body-frame orientation to obtain trim in either hovering
or forward flight. An image depicting the changes in orientation with respect to the inertial
frame for a given flight mode is shown in Figure . The forces and moments generated in the
analysis (and reported below) are presented with respect to the MAV body frame. As a result of
the changes in orientation (here, the gravity vector always points downward in the inertial
frame; offset between the wing rotation point and the center of mass rotates the body in hover to
produce a body-up orientation), for hovering flight, the lift force should be directed along the
body frame axis RY. In forward trimmed flight, much of the lift should be directed along the RZ
axis.

Figure 23. Trim in Either Forward Flight or Hover
For each of the case studies discussed below, the parameters are specified in a manner
consistent with the common Hawkmoth (Manduca sexta). Kinematics and wing geometry are

35
Approved for public release; distribution unlimited.

approximated, the body mass (now relevant) is specified to be 3.75 × 10-3 kg, the wing span
(radius) is specified to be 5.30 × 10-2 m, and the flapping frequency is specified to be 85 rad/s
(approximately 13.5 Hz). Other parameter values are given in Tables 10 - 14. Please note that
in the Controls module, new dialogues are available to the user. In addition to the Berman and
Wang dialogue defined above, “body”, “environment”, “power” dialogues are added to enable
the user to define body properties needed for rigid-body analysis in a gusty environment and to
enable the user to characterize power losses in the MAV transmission.

In this first case, the Controls module is exercised for a MAV that is pinned, before releasing
the physical constraint and allowing the vehicle to achieve trim. This capability is not
accessible in the M3CT version of the Controls module, but is accessed directly via MATLAB,
the native language of the Controls module. This capability can be made accessible to M3CT,
following software modification.

Table 9. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Wing Dialogue)

Parameter (Units) Value
SBR (ND) 0.7000
Wing Density (kg/m3) 156.00
Number of Wing
Elements

10

Trim Forward V (m/s) 0.0
Trim Climbing V (m/s) 0.0
BW (m) 0.0530
C0 (m) 0.0080
CS (m) 0.0117
CN (m) 0.0139
T0 (m) 0.0003
TS (m) 0.0003
TN (m) 0.0003
Wing Geometry Mode
(ND)

1 (symmetric)

δW1x (m) 0.015
δW1y (m) 0.030
δW1z (m) 0.000
δW2x (m) -0.015
δW2y (m) 0.030
δW2z (m) 0.000

36
Approved for public release; distribution unlimited.

Table 10. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Body Dialogue)

Parameter Value
Body Mass (kg) 0.00375
Body Ellipsoid Major
(m)

0.0700

Body Ellipsoid Minor
(m)

0.0140

Pure Longitudinal
Only

False (deselected)

Table 11. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Environment
Dialogue)

Parameter Value
Analysis Mode Calculate cycle-averaged

power
Gravity Acceleration (m/s2) -9.81
Air Density (kg/m3) 1.225
RBM Solver Error Tolerance -10.0
RBM Time Integration Beta 0.50
Floquet Solver Error
Tolerance

-10.0

Number Time Intervals /
Period

60

Drag Coefficient (CD,0) 0.21
Drag Coefficient (CD,π/2) 3.35

Table 12. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Kinematics
Dialogue)

Parameter Value
ϕm π/3
ϕo 0
Kϕ 0.01
θm 0.001
θo 0
θs 0
ηm π/4
ηo π/2
ηs 0
Kη 0.10
ω 97.98
δ 0
Nθ 1

37
Approved for public release; distribution unlimited.

Table 13. Parameter Settings for Pinned Analysis of a Free-to-Move MAV (Power
Dialogue)

Parameter (Units) Value
Power Elastic Storage Parameter
(ND)

0.50

Power Dissipation Cost
Parameter (ND)

1.00

Power E Coefficient (ND) 0.10
Power K Coefficient (ND) 20.0

The pinned response is tabulated in Table 14. It should be noted that both the x and y
components of the body force vanish (y component approximately so), and that the sum of the
z-component of force is the cycle-averaged lift. In this case the stroke plane is oriented such
that the body axis lies in the stroke plane.

Table 14. Performance Characteristics of the Free-to-Move MAV when Pinned

Output Parameter Value
Cycle-Averaged Forces
(N)

 Left Wing [6.464e-04 -1.344e-06
3.426e-03]

 Right Wing [-6.464e-04 -1.344e-06
3.426e-03]

 Total Lift 0.0069
Cycle-Averaged Moments
(Nm)

 Left Wing [1.028e-04 1.746e-04 -
1.928e-05]

 Right Wing [1.028e-04 -1.746e-04
1.928e-05]

Cycle-Averaged Power
(W)

 Left Wing 7.250e-03
 Right Wing 7.250e-03
 Total 1.450e-02

4.6.4 Free-to-move MAV Trim Analysis (Controls)
The constraint of pinning the MAV is now removed, and a trim state of the vehicle is computed.
Initial values for the trim calculation are shown in Table 15, along with side constraints on the
different parameters used later in optimization. In Table 16, additional parameters are defined
that appear in the M3CT kinematics dialogue. The trim IDs specify which two parameters
become variables in the trim computation (i.e., these parameters are varied to meet the trim
constraints of cycle-averaged lift balanced by weight and vanishing cycle-averaged pitch
moment on the vehicle). In this case trim IDs are 1 and 4, indicating that ϕm and θm are the two

38
Approved for public release; distribution unlimited.

trim variables. Kinematic control IDs correspond to those kinematic parameters that are used
for closed-loop control (stroke amplitude and bias, in this case). Finally, the kinematic CAS
IDs are the cycle-averaged force sensitivities to the specified kinematic IDs that are reported in
the detailed Controls module output.

Trim results are presented in Table 17 in terms of forces and moments. It should be noted that
the cycle-averaged lift well matches the vehicle weight.

Not shown in this table is the change in orientation of the MAV. When pinned, the MAV is
positioned as shown in Figure (top), and lift is produced in the z-coordinate direction, which is
equivalent for body and inertial coordinate systems. However, when trimmed in hover, the
body of the MAV points upward (body y-coordinate axis aligned with the inertial x-coordinate
axis), and lift is produced in the body y-coordinate direction. This occurs because the wings are
located ahead of the body center of gravity, and the gravitational moment pitches the body. The
final values of wing stroke and deviation amplitude arising from the trim computation are 0 (-
1.2e-05) and 2.456 rad, respectively. The body becomes pitched at an angle of 4.703 rad, or 90
deg (straight up). In forward flight, the aerodynamic forces on the body, along with that of the
wings, balances gravity in a manner that changes the orientation of the body with respect to the
inertial frame.

Table 15. Parameter Values for the Analysis of a Free-to-Move MAV in Trimmed Hover

Parameter Initial
Value

Minimum
Value (Opt.
only)

Maximum
Value (Opt.
only)

Kinematics
ϕm π/3 -π/2 π/2
ϕo 0 0 1.0
Kϕ 0.01 0.01 0.99
θm 0.001 -π/4 π/4
θo 0 -π/4 π/4
θs 0 -π/2 π/2
ηm π/4 -π/2 π/2
ηo π/2 -π/2 π/2
ηs 0 -π/2 π/2
Kη 0.10 0.01 4.0
ω 97.98 62.83 314.2
Controller
ρ 0.001 1x10-10 10.00
Geometry
C0 0.047 0.008 0.100
CS 0.047 0.005 0.100
CN 0.047 0.005 0.100
SBR 0.581 0.125 0.875

39
Approved for public release; distribution unlimited.

Table 16. Additional Parameter Settings for Trimmed Analysis of a Free-to-Move MAV

Description Value
Kinematic Trim
IDs 1, 4

Kinematic Control
IDs 1, 2

Kinematic CAS
IDs

1, 2, 7, 8, 11,
12

Table 17. Performance Characteristics of the Free-to-Move MAV in Trim

Output Parameter Value
Cycle-Averaged Forces
(N)

 Left Wing [-9.359e-04 1.852e-02 2.484e-
08]

 Right Wing [9.359e-04 1.852e-02
2.4837e-08]

 Total Lift (N) 3.704e-02 (0.00378 kg)
Cycle-Averaged Moments
(Nm)

 Left Wing [2.741e-12 6.6072e-10 -
6.582e-04]

 Right Wing [2.741e-12 -6.6072e-10
6.582e-04]

Cycle-Averaged Power
(W)

 Left Wing 1.295e-01
 Right Wing 1.295e-01
 Total 2.591e-01

4.6.5 MUAV Closed Loop Flight in Gust (Controls)
The remaining closed-loop case studies are contained in the STEAP TO-49 Final Report.

40
Approved for public release; distribution unlimited.

5.0 TECHNOLOGICAL CHALLENGES FOR EXTENDING FSI

OBJECTIVE II

There are numerous technological challenges faced in extending flapping sciences integration to
a wider range of engineering design problems. This chapter is approached from a computer
science perspective, looking at various aspects of the engineering design process as capability
requirements. Here, “process” is not meant to be a specific process, such as that employed by
some partner in industry, but is meant to represent a dynamic set of engineering operations,
linked together in a framework, by a user to meet an engineering goal (e.g., minimize power
requirement while meeting a lift constraint).

Of interest are complex systems of equations that need to be solved in an efficient manner, i.e.,
realistic calculation times. Part of the cost is driven by ensuring that the results have an
acceptable error. Another part of the cost comes from the reassembly of parts back into a final
result. We desire the design capability to have a cost balance between these two contributing
cost factors.

Throughout the design process, there needs to be methods for monitoring divergence during
execution, leveraging individual toolsets at various fidelities, and being able to configure the
executional order of the systems.

After the processes have been completed, they must be repeatable. This means that the system
must be capable of accessing older versions of those toolsets. This is particularly problematic,
since method development and tool use generally occur on different time scales.
Documentation and understanding of how to leverage these tools must be preserved.
Additionally, hardware and software systems available to the network must be capable of
running them on a compatible platform in the future.

5.1 Errors from Approximation
The process of evaluating a solution curve as a manageable set of segments, without losing the
context of the measurement, is a process called discretization. Discretization introduces an error
into the system of differential equations (DEs), an approximation error known as discretization
error.

Figure 24. Discretization Errors Modify the Governing Equations
The fidelity of a system of equations representative of a physical process is inversely correlated
with another approximation error, modeling error (higher fidelity usually, but not always,
implying lower error). For example, the blade-element theory used to describe the
aerodynamics in FSI is generally thought to be of low-fidelity, since it doesn’t capture certain
aspects of the physical process related to wing flapping. In comparison, the laminar Navier-
Stokes equations are a much higher fidelity set of equations, at least for non-turbulent flows,
since they are known to describe all the flow physics produced by wing flapping, including the
interference effects explicitly not modeled by blade-element theory.

41
Approved for public release; distribution unlimited.

The nature of the design study has within its essence, a need to push the boundary between
computational performance and accuracy, thus generating the tipping point (or maybe thought
of as a “sweet spot”) where errors start to become unacceptable: we don’t want to spend to
much time in analysis if not warranted. However, it is not known a priori where this tipping
point occurs.

Figure 25. Fidelity Reduction Against Error Relationships (Notional)
The capability requirement set that arises is the need to: change fidelity within the framework;
evaluate, or at least score, the accuracy of the resulting analyses, and track computational time
consumed in analysis and optimization steps. Only if these requirements are met can the
process be made dynamic and extensible for a wide variety of engineering design problems.

5.2 Incompatibility from Reduction
To further reduce the amount of computational time required across a system of equations,
Reduced Order Modeling and other methods of model reduction help to generalize well
documented phenomena that would otherwise be extremely complex to model. This is an
established process, however the implementation of this process can vary from provider to
provider.

Figure 26. Computational Reductions Against Time Relationships
In order to leverage various methods of reduction, the underlying system of equations must be
convertible. That conversion process itself must not introduce any significant errors, and the
computational time of that conversion should ideally not require more effort than the reduction
alleviates.

Cobbling together disparate reduction methodologies into a single cohesive context reference
was weighted upon proprietary interfaces at the individual providers level. This is not the
correct placement of function for a conversion. The workflow controller must handle these
conversions between the output of the previous providers and the input of the next provider.

42
Approved for public release; distribution unlimited.

5.3 Many to One Context Collaboration
The general workflow of the M3CT was established as a single provider throughput to another
single provider. This encouraged proprietary connectivity between the interfaces of the two.
Additionally, the sequential nature of the relationship encouraged 4th wall breaking
implementations. Programmatically speaking, the 4th wall is an imaginary boundary between
objects. Objects are designed to communicate through interfaces, inheritance, and hierarchal
relationships. When you connect to another object directly, not using a prescribed method, you
are violating the 4th wall. In theatre, this is a moment when the actor speaks directly to the
audience, instead of staying within the boundaries of the stage. This should not be confused
with a soliloquy, in which the actor is revealing their internal thoughts to those who would
listen.

It is explicit in a multidisciplinary environment that numerous outputs are going to be leveraged
by a single input, often recursively, as the system of equations moves toward a solution. It is
therefore imperative that a collection of numerous outputs can be effectively mapped to a
collection of inputs. Mapping these relationships requires that the outputs and inputs be ordered
in a predictable way.

Conversions and integrations of data types will remain to be a large challenge of collaboration.
These conversions can somewhat be alleviated through the ability to inject adaptive logic
between the outputs and input requirements. With multiple inputs having the probability of
contributing to a single input, these adapters must be capable of accepting multiple outputs from
multiple contexts.

5.4 Decomposition and Synchronization
Decomposition is the practice of taking a large system and breaking it down into smaller
systems. Generally, the interrelationships between these subsystems become more intimate and
sequenced as you attempt to break them down. The benefit of calculating these smaller systems
can come from different sources; e.g., faster component execution, more atomistic definitions,
and sparser matrix representations of discretized equations. Reconstituting these parts back into
a solution can be a computational challenge and a source of error. For example, if the problem
of flutter is decomposed into a structures problem and an aerodynamic problem, each solved
separately, errors may arise from synchronization delays in the analyses.

Where possible, all systems of equations should be broken down into their lowest possible
module. The end user needs a way of understanding how to arrange these modules in an
effective composition. Furthermore, the interrelationships between modules need to be generic
enough in that any comparable module can easily be swapped in place of another. Without this
latter definition being applied to the concept, these systems cannot be considered modules, but
rather only a collection of proprietary processes in a fixed order of reassembly. Given time
constraints and the co-development of methods under FSI-Controls, the latter situation better
characterizes M3CT.

Having a subsystem of equations that ultimately represent one larger system of equations
explicitly implies that all of these subsystems must share a common iterative synchronization.
This synchronization requirement adds yet another level of complexity on the development of

43
Approved for public release; distribution unlimited.

modules due to the disparity between iterative scopes. One module requiring 10 steps, stitched
together with another module requiring 20 steps is a simple 1:2 ratio. These special cases are
not reliable against the larger case such as 10:11 ratios, where the calculation will require some
form of extrapolation or interpolation between micro-iterations of the formula, which introduce
yet another element of error.

Figure 27. Asymmetrical Synchronization of Iterative Values
Another such disadvantage endured through the process of decomposing a system, is the
potential usage of semaphores. This becomes a requirement when two or more systems require
access to the same contextual value at the same time. It is easy to place one system after the
other when only one semaphore condition is being averted, however duplex thread relationships
merit that a race condition can very well exist in the presence of numerous semaphore, and a
specific synchronization pattern would need to be enforced. This weighs heavily upon the end
user of the providers to configure correctly, and would provide less difficulty as a combined
system.

Figure 28. Interpreting the Asynchronously Decomposed Value of X
Ultimately the process of mathematical decomposition and synchronization should follow the
same methodologies and constraints of a multithreaded software application. These
methodologies must be converted into the realization and scope of the FSOOA operational
environment. This means that the multithreading techniques are not limited to the local
conditions of a processor unit, but instead are extrapolated over the entire federation. This is an
extremely broad and volatile scope.

It will be necessary in moving forward with multidisciplinary development to establish criteria
for defining mathematical system modules, their methods of internal synchronization, and how
they define their exposed contexts for external runtime manipulation. Further, these modules
must be assembled back into an accurate representation of the principle system of equations
without further degradation of accuracy.

5.5 Model Matching
The composition of exertion work is ultimately limited by the model format of the providers
registered to the FSOOA. Broadly segregating the available list are providers that anticipate
two-dimensional (2D) or three-dimensional (3D) calculations. These differences are notable in
both rendered objects and algorithm calculations such as for fluid dynamics. False positives and
false negatives can lead to failed research.

44
Approved for public release; distribution unlimited.

The models themselves may expect a triangular mesh, quadrilateral (Quad) mesh, or a Non-
Uniform Rational B-Spline (NURBS) mesh. Furthermore, each provider may have a unique
vertex format anticipated for the vertices of the mesh that are considered incomplete or
excessive definitions to other formats.

A common adaptive solution example would be matching a provider using standard units to a
provider using metric units. Another would be changing orientation, rotation, and scale.

There are efforts that exist apart from the scope of the M3CT project dedicated toward the
discovery of a generic approach to developing an aeroelastic provider module. Such a capability
was developed in MDICEvii, and involves satisfaction of fluid-structure interface conditions. A
more robust approach to filtering providers AND satisfying interface conditions, based on
model expectations over a broad network, is needed.

5.6 Data Reporting and Aggregation
Providers produce a great deal of context, and one user may want to see different aggregations
then another user. The critical failure point comes from requiring M3CT software to do this
aggregation without knowing how to interpret the data. In deployed networks, each product is
responsible for sending out various channels of information. The network doesn’t need to know
everything all the time. One channel can simply be a status, and another channel could be a full
data stream. The number of channels provided and what those channels hold has been framed
out many times over many various implementations.

The Context Object of the SORCER framework has the ability to provide this type of
compartmentalized data. The ability to provide aggregated views relies entirely upon the
provider of the service correctly. M3CT is fully capable of showing the aggregated data simply
by the nature of which context it is accessing.

In the current implementation, only one context is provided from the service per data set,
containing all of its information. This makes aggregation impossible, or incorrectly leveraged,
upon the M3CT product. In all future implementations, the service provider should be able to
produce as many context objects as there are reasonable needs for aggregation. Such accuracy is
impossible otherwise, or incorrectly requiring an external tool to perform the aggregation.

One possible interpretation of SORCER’s capabilities, and the channel analogy, is for a service
provider to use the following context labeling convention:

• Temp – The input context currently in use by the provider. This is a local copy of what
was pulled from the network and should be disposed after use.

• Progress – A context containing select iterations and their current/target values, ideal
for looping services and progress indicators.

• Full – The full context of the service, possibly never transmitted, retained for historical
analysis and archival.

• All – The full report includes all values from all iterations.

45
Approved for public release; distribution unlimited.

• Last – The full report only includes the values of the last iteration.

• Report – The full context of the service reduced programmatically (Using a Query
Syntax) by the requestor to a variable set of defined needs. Within a report:

• Poll – A context containing only the current data of each value, ideal for iterative
observation and error point analysis.

• Ranged – A context containing select values over a range of data points, ideal for the
display of large data set aggregation (Hi-Lo, Min, Max, etc.)

• Reduced – A context containing a reduced set of data that is representative of the full
context, ideal for the display of large model aggregation or adapting between fidelities.

• History – A context formed similarly to a REPORT as a programmatically reduced set,
but from history.

The job id and sequence id can be used to prevent collisions of similar processes, allowing for
history to be concise, and for non-concurrent workflow to be aggregated gracefully.

46
Approved for public release; distribution unlimited.

6.0 CONCLUSIONS

OBJECTIVE I
The goals of the research task can be coarsely summarized as the development of sufficiently
sophisticated FWMAV models, control design in a 6DOF simulation, and implementations of
prototype FWMAV experiments. The theoretical contribution can be seen in our published
works. It includes the development of quasi-steady 6DOF FWMAV models, amenable to
analytic analysis to produce simplified control models, and for controlled closed-loop simulation.
The models were used to guide the selection of potentially viable control inputs in the form of
stroke manipulations. The results were stroke parameter suits capable of producing 4-5 DOF
control, such as: independent frequency, split-cycle, and stroke-bias control for each of the two
wings. Controllers were designed which were shown in simulation to provide guidance between
waypoints in 3D space under a 6DOF simulation.

The fabrication and testing of a prototype FWMAV demonstrated the feasibility to control up to
four degrees-of-freedom using only two actuators and stroke velocity manipulation, namely
frequency and split-cycle stroke modulation. A prototype FWMAV was mounted on a puck and
placed on an airtable. The split-cycle modulation was then adjusted using a remote controller,
demonstrating the ability to use symmetric and asymmetric split-cycle modulation to control
forward/backward translation and clockwise/counter-clockwise rotation. These results are
currently being documented and have in part been accepted for publication, further publications
pending.

The research successes include contributing theoretical models for analysis and design usage,
four to five degree-of-freedom control designs amenable to future implementation, and the
proof-of-concept milestone achievement of controlled motion by the prototype FWMAV on the
airtable. Future investigations would be advised to consider further robustness analysis, the
inclusion of onboard sensors for control feedback, weight and power concerns, the ability to
produce more cycle-averaged lift than weight, and ultimately a prototype in controlled
untethered flight.

OBJECTIVE II

In order to properly scope the challenges facing development of a design-interface such as
M3CT, a number of subject matter specifics must be considered. This section emphasizes some
of the critical relationships that need more accommodation in a generalized, engineering design
approach.

Here it is clear that the emphasis is on the future of M3CT, instead of on the alpha-version of
M3CT developed for the purpose of creating a user experience for design of micro air vehicles.
Integration of the FSI-Methods and FSI-Controls components provided a useful engineering
backdrop that motivated certain functionality. Results for different use cases are summarized in
the Section on Program Results, as well as in the M3CT Users’ Guide. Results are found to be
in good agreement with stand-alone (i.e., non-network) of FSI methods and tools. Additional
applications of FSI components can be found in a companion delivery order report entitled
“Computational Prototyping of Micro Air Vehicles,” authored by Gary Clayman (Data Science
Automation).

47
Approved for public release; distribution unlimited.

The following points of interest emphasize the lessons learned throughout the exploratory
implementation of M3CT. Development within the M3CT framework is completed. The lessons
learned from these facets of implementation should be used to lay the foundation for the next
generation of multidisciplinary, multi-fidelity, model-based (i.e., parametric) computational
tools.

6.1 Technological Challenges for Extending FSI
6.1.1 Solution Persistence - After the processes have been completed, they must be repeatable.
This means that the system must be capable of accessing older versions of those toolsets. Tools
will generally be created at a different pace then the computation of solutions. Documentation
and understanding of how to leverage these tools must be preserved. Additionally, hardware and
software systems available to the network must be capable of running them on a compatible
platform in the future.

6.1.2 Reduced Fidelity - It is entirely possible that fidelity can be reduced while maintaining an
acceptable error margin. However, there needs be a capability to determine when error is no
longer acceptable so that models of greater fidelity can be employed from some other network
resource.

6.1.3 Reduced Modeling - Cobbling together disparate reduction methodologies into a single
cohesive context reference was weighted upon proprietary interfaces at the individual providers
level. This is not the correct placement of this conversion function. The workflow controller
must handle these conversions between the output of the previous providers and the input of the
next provider.

6.1.4 Context Composition - It is explicit in a multidisciplinary environment that numerous
outputs are going to be leveraged by a single input, often recursively, as the system of equations
moves toward a solution. It is therefore imperative that a collection of numerous outputs can be
effectively mapped to a collection of inputs. Mapping these relationships requires that the
outputs and inputs be ordered in a predictable way.

6.1.5 Many to One Mapping - Conversions and integrations of data types will remain a large
challenge of collaboration. These conversions can be mitigated through the ability to inject
adaptive logic between the outputs and input requirements. These adapters must be capable of
accepting multiple outputs from multiple contexts.

6.1.6 Iterative Synchronization - It will be necessary in moving forward with
multidisciplinary development to establish criteria for defining mathematical system modules,
their methods of internal synchronization, and how they define their exposed contexts for
external runtime manipulation.

6.1.7 Module Matching - A more robust approach to filtering providers in the network based
on their module expectations is needed. Further, these modules must be able to be assembled
back into an accurate representation of their principle system of equations at the lowest possible
margin of error.

48
Approved for public release; distribution unlimited.

6.1.8 Unit Matching - A common adaptive solution example would be matching a provider
using standard units to a provider using metric units. Another would be changing orientation,
rotation, and scale.

6.1.9 Data Aggregation - In all future implementations, the service provider should be able to
produce as many context objects as there are reasonable needs for aggregation. Such accuracy is
impossible otherwise, or incorrectly requiring an external tool to perform the aggregation.

6.1.10 Simple Interfaces - Context mappings need to be presented to the end user, and adapted
by the end user, to match any two providers together that share a common thread of equations.
Pushing the results of one provider into the input of another provider clutters the interfaces of
providers. M3CT needs to correctly adapt and submit the context through a single provider
interface for the targeted provider.

6.2 MVC in FSOOA
Development of M3CT was approached by an MVC design pattern. Each provider was written
twice. The first version of each provider was written to wrap the functional side of the provider
service. The second version of each provider was written as an extension of the M3CT exertion
class. Proprietary configuration files and view implementations were developed for each
provider.

The leading reason for each provider to be implemented uniquely is for the very purpose of
exploring which method of implementation would produce the best methodology for future
implementations. In this, the M3CT product itself is a conglomeration of numerous attempts at
defining this ideal relationship.

General MVC design patterns are insufficient for development within an FSOOA environment.
The software architecture must be developed through an adaptive and modular interpretation in
order to function agnostically with services that will not exist until after the product is
developed. This is something that MVC is incapable of doing at its level of responsibility.

A Content Management System (CMS) is an appropriate paradigm for integration into the
FSOOA. CMS is generally considered as a pairing of two applications.

• The Content Management Application (CMA) provides a users interface to
managing content relative to their permissions.

• The Content Delivery Application (CDA) provides the infrastructural means of
delivering aspects of content throughout the network.

M3CT must also manage the context objects being generated for providers in the network. A
Component Content Management System (CCMS) is an appropriate paradigm for that service.

Even though these industry terms are closely coupled with websites, their roles are not
dependent upon any web services. Without delving deeply into computer science, the CROW
solution provided at the end of this Final Report was inspired by CMS design patterns.
SORCER is essentially an advanced implementation of a CDA. M3CT, in its desired, future

49
Approved for public release; distribution unlimited.

form, is essentially an implementation of a CMA. Context Libraries used by CROW Query is a
simplification of CCMS assembly. Context Libraries use by the Factory of Factories are
generating the components of the CMA. These correlations are not direct, but serve as a
generalization of cognitive association.

6.3 Community Created Content
The engineering analysis and design community has existed long before and will exist long
after many professional careers. Throughout the tenure of AFRL contributors, there will be
contributions based on the best practices of their time. However, best practices are sometimes
discovered to no longer be ideal, or have lost their trailing documentations on how to utilize
their services effectively.

In order to preserve the usability and documentation of these provider services, context libraries
can be generated and versioned. With their content being leveraged as the origin of user
interfaces, provider connectivity, and service interface wrapping, they satisfy the complexities
presented by community created content.

Beyond the technological implementation, treating providers as community created content is
an ideal way of identifying and emphasizing efforts within the network. The implementation
could go so far as to allow for other users of the network to rate providers, provide comments
and criticisms, and leverage each other’s services in creating new solutions. The growth of
social networks is exponential, and it is this growth pattern that we desire to harness to make
fundamental changes in how engineering design is executed.

6.4 Next Steps (CROW)
The culmination of lessons learned throughout the Developers Guide, Users Guide, and this
Final Report have provided insight, clarification, and direction towards the next phase of Multi-
disciplined, Multi-fidelity, Model-based Computational tools development. The working title
for this next generation project is CROW: Conceptualize, Realize, and Optimize for the
Warfighter.

Figure 29. The CROW Workflow

50
Approved for public release; distribution unlimited.

Within the scope of this section, “Provider” represents an independently operating System
within a System of Systems (SoS) network environment. Providers are capable of requesting
from CROW as well as other Providers, in order to satisfy their input requirements for
performing work. In order to become a member of the SoS network environment, a provider
must satisfy the providers contract. Once established, the provider is now index-able within the
CROW network as a leveraged asset.

6.4.1 CROW First-Meta
The provider’s contract consists mainly of two depths of metadata. The first depth enables the
provider to be broadly discovered within the communications network elected for hosting
CROW. The second depth enables the dynamic construction of User Interface (UI) Factories
and CROW Query (CQ) binding. Second depth metadata is defined in three distinct sections:
Input, Progress, and Output.

6.4.1.1 Examples of first-meta: 2D, 3D, Aeroelastic, Rigid, Thermodynamic, Optimization,
etc.

Thus, when searching for all Aeroelastic providers in the CROW network, a pool of potential
matches can be returned in a relatively fast query process. The CROW workflow will now be
able to use all of the selected providers first-meta details when selecting subsequent provider
services. Selecting a second parameter, such as 3D, can further refine search results.

6.4.2 CROW Second-Meta
For every provider inserted into the CROW workflow, a simplified GUI allows for one of two
behaviors to take place on the Input. Either the user provides a direct resource, of which
contains a value. Or the user binds the Input to the Output value of another provider in the
workflow. The second-meta provides a range of expectations for each value. When the range is
an exact match, and the second-meta is an exact match, the connections can be connected
automatically for the user. Otherwise, the user must manually construct connections either
directly or through the use of an adapter.

6.4.2.1 Examples of second-meta: worldX, localX, rotationX, chord, thickness, coreTemp,
surfaceTemp, ambientTemp, innerLoopCount, outerLoopCount, etc.

6.4.2.2 Examples of data: Strings, Integers, Doubles, Arrays, URL’s, etc.

6.4.2.3 Examples of adapters: Analog to Digital, Kelvin to Celsius to Fahrenheit, 3D to 2D,
Standard to Metric, etc.

A known complexity with second-meta comes from the conditional relationship between what
is required, and what is required based on a selected option. This is resolved by using
appropriate inheritance through the Required, Optional, Conditional (ROC) recursive hierarchy.
Second-meta that is marked as conditional, references an optional, and is itself marked as being
required or optional with that conditional. These interpretations allow for any number and
combination of input and output parameters to be correctly anticipated and initialized by the
CROW framework.

51
Approved for public release; distribution unlimited.

Figure 30. Connecting Outputs to Inputs

6.4.3 CROW Micro-Iteration
Recursion is ultimately what is going to perform the scope of work across a CROW Workflow.
This recursion is interpreted in outer looping macro-iteration, and inner looping micro-iteration.
Context objects are used to define and control the process of stepping through these iterations.

Figure 31. Progress Observation Example
The progress of every provider can be observed through a basic listener implementation. The
second-meta of the provider being monitored provides information on how to correctly handle
the values being generated. A callback operation is mapped the same way as an input to output
operation. This process is triggered at a micro-iteration level.

The progress of a study can likewise be observed through the same implementation as the
progress of an individual provider. The scope of concern is raised to the level of which provider
in a CROW Workflow is taking action out of a known, or anticipated, sequence of actions. This
process is triggered at a macro-iteration level.

6.4.3.1 Examples of progress: Waiting to continue, multi-disciplined combined study-state,
percent complete, number of total complete, processing, synchronizing, etc.

Figure 32. Micro Iteration of Providers A, B, and C - CROW Syntax
The multi-disciplined combined study is a bit tricky. A provider that is capable of working
concurrently with one or more providers would use a logic gate such as this to synchronize their
inner loop iterations. Progress second-meta can range from non-existent, to extremely complex,
dependent upon the interactive nature of the provider. A progress method may go so far as to
inject an updated value into the Temp context of the service as an intentional update to its
underlying process, and then set its own progress to indicate that it has completed the task. The
injected process would listen for this changed state, and use it to continue with its own iteration.

52
Approved for public release; distribution unlimited.

Figure 33: Multi-disciplined Progress Synchronization Example
6.4.3.1.1 Asymmetrical Synchronization
It is noted in the technological challenges for extending FSI that the decomposition and
synchronization of complex mathematical systems that the composite determinations could
become asymmetrical in how model data is being iterated. This is not necessarily a problem
when leveraging components that are both of the original composition. The situation will exist
in the case of combining disparate compositions in an attempt to generate new solutions across
a multidisciplinary environment. This creates a need to ensure that any future design preempts
this plausibility with a built in methodology for handing asymmetrical synchronization.

Figure 34. Asymmetrical Synchronization during Micro-Iteration
More details on the approach will come through the actual pursuit and implementation of two
micro-iterated systems of equations that are then stitched together. Until that point, this defined
method should address these initial concerns.

6.4.4 Chained Optimization
An optimization (Also referred to as Segment-Iteration), is a behavioral analysis of a series of
providers. Design variables are adjusted within predefined constraints, as an interpretation of
the results of this analysis. These constraints can apply to input values and output values,
meaning that the compliance of an optimization may only be able to be determined after
completing a step. At the point of non-compliance, an optimizer may consider checking for
restored continuity past the edge of failure, or reverting to the previously known validity and
adjust the design variables by a different methodology. Gradient-based optimizers will complete
as a result of a maxima or minima solution, the result of toggling around a value, the failure of

53
Approved for public release; distribution unlimited.

the analysis process, or the result of completing a defined maximum number of attempts on the
solution.

Chained optimization (Chained Segment-Iteration), is the behavioral analysis of a series of
providers. It is critical that such functionality exists in the CROW architecture. To example the
use of chained optimization we can consider the arbitrary case of providers A, B, and C, being
optimized by D, where A and B are determined asynchronously, and their results are determined
synchronously to C.

Figure 35. Chained Optimization - CROW Syntax
As a user, the configuration of a chained optimization is relatively simple. Providers A, B, and
C are registered to the chained optimization by placing the optimization widget between the left
and right WorkerWidget’s. When selecting the optimizer for configuration, each provider’s
library is used to present the user with a UI of design variables and constraints. The Factory of
Factories will be leveraged to generate the best possible representation for the varieties of data
that can be optimized.

Figure 36. Chained Optimization - Configuring Constraints
Programmatically, the configuration can be visualized as a series of plugins to the optimization
controller object. The agnostic principles of optimization are identical: A series of services are
called, evaluated, and the result may be finalized or iterated. This process can be observed
through the listener interface, and once the routine is completed, CROW continues with the rest
of the workflow.

Figure 37. Chained Optimization - Plugged In

6.4.5 CROW Macro-Iteration
Macro-iteration is the process of running the Crow Workflow again, or in a loop. Doing so
without introducing any new data, should generate an identical result.

The CROW product can allow for the inputs of any provider to be mapped to the outputs of any
other provider from the previous macro-iteration. A primary example of this dimension of
analysis could be time step. The results of each loop collectively affect the end result.

54
Approved for public release; distribution unlimited.

Other variable changes, that are guaranteed to be able to be calculated independently, unlike the
collective effects of time, would be better served through an implementation of Workflow
Concurrency.

6.4.6 Workflow Concurrency
In more advanced examples of use, the user may want to execute multi-dimensional analysis,
where a mostly similar processes are conducted across a gradient of a major variable change. In
this, multiple crow workflows will be generally similar, however the calculation time,
successful completion, and numerous other performances may vary drastically from each other.
Of those that are successfully run the user may desire to aggregate their results, make
interpretations, and continue with another workflow past that point.

Doing so through a single CROW workflow is impractical, and does not leverage
objectification. By treating each CROW workflow as a separate track of logic, relationships can
be cloned while data is individually unique. Entirely separate workflow setups can also be run
concurrently. In order to bind them all together into one overarching solution, each CROW
workflow can be logically placed in series like a tape. However unlike a tape, this is a many to
one solution, where a virtually unlimited number of distributed services can be run, and
resolved, prior to initiating and evaluating any number of aggregate workflows.

Multi-dimensional analysis introduces a third initialization terminology to the CROW
Workflow UI. All three prototypes for use are described next for clarification:

Setup – This information is defined by the user before running the study. This allows for input
parameters to be generically satisfied, meaning, they are not the result of a real time calculation,
but are instead predetermined by the user creating the study.

Recursive – This information represents the collective outputs of all providers in the Crow
Workflow, as their result, from the previous Meta-Loop. This allows for the workflow to iterate
over a series of overarching variables, one such example being tau.

Continue – This information is similar to Recursive and Setup, in that this information is used
for this Crow Workflow in the capacity of Setup, but the values are the result of other Crow
Workflows that have all completed all of their recursions.

Ultimately all three of these UI do the same thing. They provide the starting point for a Crow
Workflow Macro-Loop cycle. It is proposed to keep them separately defined, principally in
order to preserve a simplified interface and cognitive understanding of functionality.

6.4.7 CROW Mega-Iteration
Mega-Iteration is defined here to satisfy what term to use when the user desires to feed
conclusive data back into the initial steps of the CROW Workflow, and perform the entire study
again with another overarching level of multidimensional analysis.

Mega-Loop iteration can essentially allow for an evolutionary behavior across the system of
systems. Providers at the end of the solution, interpreting the results of the study, can then make
educated guesses based off of holistic data. Mutations, alterations, random errors, and other

55
Approved for public release; distribution unlimited.

methods of evolution encouragement can be resourced as a way of using artificial intelligence
to improve the Warfighter. This level of multi-dimensional analysis is far-reaching and
obtainable. Programmatically, it is merely closing the loop between the final results, and the
initial setup of the study. Electing how something evolves is by far the bigger question.

6.4.8 CROW Logic Cell
The result of every provider is stored in a full report and retained for historical analysis. Only
the second-meta required by the next steps of the CROW workflow are compiled into a sub-
report using CROW Query (CQ) syntax. This keeps excess information off of the
communications network as well as improving performance. Subsequent workflow will query
the provider for a report, specifically, it will only ask for the data that has been mapped as an
input to another provider, or is being used by CROW to generate a workflow status report.

Figure 38. CROW Provider Logic Cell
Every provider in the CROW network is built within the framework of the CROW provider
Logic Cell illustrated above. Within that cell, a service may be of any type, concept, or
language, so long as the Cell can wrap the service. M3CT development efforts have proven that
C++, Fortran, and MatLab, can all be wrapped successfully through methods such as JNA.

Figure 39. Multiple Source Languages
The number of potential Logic Cells in the CROW network is essentially unlimited. Their
design is inspired from an interpretation of a biological neural network; each cell operates
independently throughout the SoS, and is capable of communicating in a valid and purposeful
manner with other cells based on its individual implementation. Like biological cells, the
CROW Provider Logic Cell can be anticipated to grow exponentially. The UI costs into this
network are anticipated to reduce synergistically through the use of a Factory of Factories.

6.4.9 CROW Query (CQ)
This functionality is what derives one of two fundamental strengths in the system. CQ will be
designed to match Second-Meta outputs with Second-Meta inputs when connecting two or
more providers in workflow. By using a simple query language, CQ is nothing more than a
patch cable between two or more communication interfaces. The actual values cannot be known
during initialization and setup, which makes this abstract method of pairing ideal in this
solution and exceedingly easy to learn.

56
Approved for public release; distribution unlimited.

6.5 Key Pairing with CROW Query

If Provider A has an ordered sequence of outputs, and Provider B has an ordered sequence of
inputs, then connecting them can be simplified as A#:B#

If Provider A has an X, Y, and Z coordinate as separate elements, and Provider B expects an
(X,Y,Z) structured input, then this connection can be simplified as [A#,A#,A#]:B#

If we reverse the previous condition, we can simply state A#:[B#,B#,B#]

If we want to set an absolute value for one of Provider B’s inputs, we state “value”:B#

We can read and write to the workflow configuration by omitting the provider call. Such as
“value”:# or #:B#

This simple syntax allows us to work with any complexity of primitive values. Whereas
[A#,B#,C#]:D# would take the output of three different providers, and assign them to D’s input.

CROW Query becomes slightly more complicated when an Adapter is required. Each adapter in
the system has a unique name. An adapter that performs Kelvin to Celsius may look like this:
KtoC(A#):B#

The number of adapters available to the CROW Query syntax is unlimited.

6.5.1 Factory of Factories
This functionality is what derives the second fundamental strength of the system. As new
quantifications are discovered, agnostic factories can be generated to handle those
quantifications and present them to the user in a constructive way. As with all UIs, having a
consistent look and feel to the end user, whether they are using one provider or another, reduces
training costs by increasing familiarity and leveraging associative learning patterns.

Using the First-Meta, an unlimited number of providers can be introduced into the network and
utilized by CROW without having to specifically program proprietary methods for these new
additions. The process of discovery is consistent and intelligent.

Using the Second-Meta, numerous well-defined techniques are available to the solution
provider by assigning the appropriate quantification of expected values by range, type,
expression, and other methods to be identified. They are then further grouped and related to
each other using the ROC recursive hierarchy. Once processed by the Factory, a fully elaborated
and cognitive interface is produced to the end user, without the end user having to know
anything about the provider beyond context.

57
Approved for public release; distribution unlimited.

6.5.2 Solution Persistence

Figure 40. Choosing a Provider Library
Selecting a provider also includes selecting which version of the provider you are going to use.
For solution persistence, all providers will maintain a list of libraries to choose from. It is
important for users of the CROW network to be able to run their established tests, even after
any one of their leveraged providers has updated to a new version. All previous versions are
simply marked as deprecated, which will notify the user that an updated solution may be
required in order to continue receiving support from said provider.

6.5.3 Providers Contract
Every provider that uses CROW must essentially satisfy the content of this section:

• First-Meta allows for the provider to be found in search results, providing
relevance to the user.

• Second-Meta allows for the interfaces of the provider to be dynamically
presented to the user.

• The Logic Cell allows for the provider to be implemented consistently
throughout the network.

• Solution Persistence protects the work efforts of the user by ensuring
compatibility stability.

By doing so, they are able to leverage CROW Query (CQ) and the Factory of Factories (FoF).

6.5.4 Implementation Methodology
A multi-disciplined combined study serves as an ideal case study for the implementation
methodology of CROW. This particular arbitrary case involves four providers, where three of
the providers are progress synchronized prior to their collective result being further evaluated
by the fourth provider. For this case study to hold true, it should then be extensible to any
number of providers through a fully recursive hierarchy of relationships.

6.5.4.1 Case Study Orientation:
Note: All terms introduced in this section are circumstantial for brevity. All illustrations in this
section are rough draft wireframes for concept orientation.

Four CROW Provider Logic Cells (LCs) will represent each of four provider services.

58
Approved for public release; distribution unlimited.

• Three of these LCs will be synchronized through the progress channel.

• Two of these LCs will access the same context within a micro-iteration.

• One of these LC will require an adapter on some of the context values.

• Pseudo Programmatically: JOB(JOB(A, B, C), D);

6.5.5 Populate the Workflow

Figure 41. CROW Workflow Controller
Search for and add all providers to the CROW Workflow.

Figure 42. CROW Workflow – Add Providers
Arrange the providers to appear in the order A, B, C, and D.

Figure 43. CROW Workflow - Add MicroSW
Add a micro-synchronization widget (MicroSW) to the CROW Workflow.

Figure 44. CROW Workflow - Register
Register the MicroSW with A, B, and C by dragging them into the MicroSW. Note that [ABC]
is defined in place of A, B, and C.

59
Approved for public release; distribution unlimited.

Figure 45. CROW Workflow - Reorganize
You can reorganize elements at any time prior to assigning connections.

Figure 46. CROW Workflow - Moving After Setup Warning
A warning will prompt that changing the assignment will remove the bindings if already set.

Configure the MicroSW

Open the MicroSW context menu and select “Configure”.

Specify that A and B are synchronized in parallel.

Specify that [AB] and C are synchronized in serial.

Edit the “onSync” action for each provider in the MicroSW.

Each provider will have specified what its interface is exposing and for which sync gate.

Select which sync gate to active on a specific provider.

Connect the exposed inputs to the exposed outputs of the other providers, or provide a manual
value for the sync gate. The ROC hierarchy applies.

Note: Only one provider may set a specific context element during a parallel action.

Note: Providers may have disparate iterations per micro-iteration.

Finish configuring all of the sync gates for all of the providers. Saving often implied.

Select any of the exposed output variables that you want to watch with a Micro-Progress
Indicator (MPI) widget. The MPI widget will be updated every sync gate where that variable is
exposed.

60
Approved for public release; distribution unlimited.

Figure 47. CROW Workflow after MicroSW
Close the MicroSW.

Continue Workflow Setup

Figure 48. CROW Workflow - Add WorkerWidget
Add a Worker Widget (WW) to the CROW Workflow.

Figure 49. CROW Workflow – Reorganizing WorkerWidgets
Relate the WW with [ABC] and D by dragging the WorkerWidget to the left of D.

Figure 50. CROW Workflow - WorkerWidget Placed
NOTE: All providers on the left side of the WorkerWidget are automatically identified as
eligible output mappings for the right hand provider inputs. Whether or not they are mapped is
encouraged by the meta-data of the selected providers, and ultimately the responsibility of the
user to define.

Configure the WorkerWidget

Open the WorkerWidget context menu and select “CROW Query”.

61
Approved for public release; distribution unlimited.

Figure 51. CROW Query Controller
Connect the exposed inputs of D to the exposed outputs of [ABC], or provide a manual value to
the remaining inputs. The ROC hierarchy applies.

Close the WorkerWidget.

Validate the Workflow

Figure 52. CROW Workflow - Validating
Validate the CROW Workflow by clicking the Validate button.

Resolve all ROC violations by setting values manually in the Workflow Setup, or editing the
MicroSW or WW elements.

The implementation is now ready to execute.

Optional: The user may elect to connect exposed D outputs with exposed [ABC] inputs in
succession to there starting values. Setting the macro-iteration count to a positive value will
apply macro-iteration. These recursive assignments are ignored when macro-iteration is set to
zero.

6.5.6 Trailblazer
As another benefit of participating in CROW, Trailblazer can discover provider connectivity. As
the CROW network increases in acceptance and capability, the ability becomes apparent in that
two completely incompatible providers can find a way to be linked together through the use of
First-Meta and Second-Meta inputs and outputs. A product like Trailblazer would not be
possible or realistically feasible to start development until the CROW network has increased in
successful participation. Ideally Trailblazer will make the use of Adapters easier and more
readily automated while creating CROW workflow.

6.5.7 BAR
The Goal of the BAR approach is to alleviate both the technical and the non-technical
challenges of CROW. Provider Buy-in, Awards for contribution, and Recognition, are critical
attributes for multidisciplinary action and cultural change amongst analysts accustomed to
narrower transition strategies. The long-term benefits of CROW are competing with the short-

62
Approved for public release; distribution unlimited.

term benefits of single faceted solutions. This practice also promotes efficient spending across
participating sectors, by providing a built in mechanic for observing usage. Leveraging
management tools directly into the solution is plausible as described below, bringing large
scalability to the software architecture.

6.5.8 CROW Summary
The solution variations in micro-looping, chained optimization (chained segment-looping),
macro-looping, workflow concurrency, and mega-looping gives the end user the greatest
potential of performance in executing a study along with the greatest measure of flexibility
across independently published providers.

While the use cases for CROW can range from simple to extraordinarily complicated, the first-
meta and second-meta standards will allow for the exponentially growing provider base to
remain flexible, dynamic, and usable, while also encouraging provider participation toward the
defined standards.

In short, to address future engineering design challenges, an architecture is required that can
adapt to growth driven by complexity. This adaptation has technical and cultural facets.

Developing a comprehensive User Interface that provides a feeling of product familiarity across
services already developed, and those to be developed in the future, reduces user error, user
frustration, and exponentially reduces the costs of creating a unique interface per provider. Any
truly unique needs of an interface can be abstracted, modularized, and added to the library of
resources for that provider, and all providers that follow afterward.

It is absolutely critical to the persistence of discovered solutions that versions of providers are
properly bound and preserved. Any uncontrolled change within a system of systems across a
broad federation of services is a critical failure. Such changes can lead to false positives, false
negatives, and potentially lost decades of accumulated full-time equivalents through
misdirection or duplication in research and development.

In the pursuit of multi-dimensional, multidisciplinary, multi-fidelity, model-based solutions
(“M4 Solutions” it could be coined); CROW represents a starting point for developing the
architecture of that pursuit.

63
Approved for public release; distribution unlimited.

7.0 SUMMARY

OBJECTIVE II

This summary section is part of three such summaries related to the final report. This summary
is focused on overarching aspects. Specifically the lessons learned in providing a solution for a
multi-disciplined product specialized in Flapping Sciences Integration (FSI) for Micro Air
Vehicles (MAV).

It is notable that the underlying methodologies of the M3CT effort can be extended to all multi-
disciplined efforts. The development of an M3CT beta-quality product would be required to
realize that potential. The user interface should be considered alpha-quality and archived for
reference.

Lessons Learned
Model implementations across all disciplines need to be defined in a consistent and extensible
way. Naming conventions, the order of how common terms are defined, and how common
terms are stored in a context object are all critical requirements. Establishing these conventions
will help alleviate the costs and user errors associated with establishing modularized FSI
solutions. These model implementations play a major role in calculation time lost resolving
interface differences.

There are numerous technological challenges in implementing FSI solutions. The tradeoffs
between calculation time, accuracy, and the dimensions of analysis all contribute to the overall
productivity of the study. False positives, false negatives, unacceptable error margins, and the
cost of resources all play a role in deciding how to break processes down, and whether or not
such a task is ultimately possible.

The implementation architecture approached for this solution is insufficient. A community
created content paradigm can be leveraged for methods on handling such a diverse background
of providers. CROW has been proposed as a step towards this paradigm. The principle
architecture selected for the underlying use of M3CT has evolved to iGrid12 during the course
of this study. It remains as a plausible solution at the middle tier of implementation.

64
Approved for public release; distribution unlimited.

8.0 PUBLICATIONS AND PRESENTATIONS

Journal Papers:
Oppenheimer, M.W., Doman, D.B., Sigthorsson, D.O., “Dynamics and Control of a Biomimetic
Vehicle Using Biased Wingbeat Forcing Functions,” AIAA Journal of Guidance, Control, and
Dynamics, 2011, Vol.34: 204-217

Doman, D., Oppenheimer, M.W., Sigthorsson, D.O., “Wingbeat Shape Modulation for Flapping-
Wing Micro-Air-Vehicle Control During Hover,” AIAA Journal of Guidance Control And
Dynamics, 2010, AIAA-0731-5090 vol.33 no.3 (724-739).

Book Chapters:
Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O., “Dynamics and Control of Flapping
Wing MAVs,” in “Handbook of Unmanned Aerial Vehicles,” Edited by K. P. Valavanis and G.
J. Vachtsevanos, Springer, 2013.

Technical Reports:
Hall, A.J., Roberts, A., Weintraub, I., Riddick, J.C., “Flapping Wing Technology for Micro Air
Vehicles Incorporating a Lead Zirconate Titanate (PZT) Bimorph Actuator”, Army Research
Laboratory ARL-TR-6040, June 2012.

Conference Papers:
Sigthorsson, D.O., Oppenheimer, M.W., Doman, D.B., “Wingbeat Synchronization And
Implementation,” AIAA Guidance, Navigation, and Control Conference, 2012.

Oppenheimer, D.O., Awtar, S., Sigthorsson, D.O., Weintraub, I., Doman, D.B., “Computation of
Inertial Forces and Torques Associated with Flapping Wings,” AIAA Guidance, Navigation, and
Control Conference, 2012.

Sigthorsson, D.O., Oppenheimer, M.W., Doman, D.B., “Insect Sized Flapping Wing Vehicles
Versus Rotorcrafts, a Comparative Study,” AIAA Aerospace Sciences Meeting, 2012.

Sigthorsson, D.O., Oppenheimer, M.W., Doman, D.B., “Flapping Wing Micro Air Vehicle
Aerodynamic Modeling Including Flapping and Rigid Body Velocity,” AIAA Aerospace
Sciences Meeting, 2012.

65
Approved for public release; distribution unlimited.

Oppenheimer, M.W., Sigthorsson, D.O., Doman, D.B., “A Revised Blade Element Model for
Vehicles with Flapping Wings,” AIAA Aerospace Sciences Meeting, 2012.

Sigthorsson, D.O., Oppenheimer, M.W., Doman, D.B., “Body Torque Generation for a Flapping
Wing Micro Air Vehicle by Angle of Attack Change,” AIAA Aerospace Sciences Meeting,
2011.

Oppenheimer, M.W., Sigthorsson, D.O., Doman,D.B., “Controllability Analysis For A Flapping-
Wing MAV With Power And Control Actuators,” The American Control Conference, 2010.

Sigthorsson, D.O., Oppenheimer, M.W., Doman,D.B., “Flapping Wing Micro-Air-Vehicle
Control, Employing Triangular Wave Strokes and Cycle-Averaging,” AIAA Guidance,
Navigation, and Control Conference, 2010.

Sigthorsson, D.O., Oppenheimer, M.W., Doman, D.B., “Flapping Wing Micro-Air-Vehicle 4-
DOF Controller Applied to a 6-DOF Model,” AIAA Guidance, Navigation, and Control
Conference, 2010.

Oppenheimer, M.W., Doman, D.B., Sigthorsson, D.O., “Dynamics and Control of a Biomimetic
Vehicle: Part I - Aerodynamic Model with Wing Bias,” AIAA Aerospace Sciences Meeting
Including the New Horizons Forum and Aerospace, AIAA-2010- 1023, 2010.

Doman, D.B., Oppenheimer, M.W., Sigthorsson, D.O., “Dynamics and Control of a Biomimetic
Vehicle: Part II - Control with Wing Bias,” AIAA Aerospace Sciences Meeting Including the
New Horizons Forum and Aerospace, AIAA-2010- 1024, 2010.

Other 2010 GNC References:

Oppenheimer, M.W., Bolender, M., Sigthorsson, D.O., Doman, D.B., “Analysis of the
Translational Motion of a Flapping Wing Micro Air Vehicle”, AIAA-Paper-2010-7708,
Guidance, Navigation, and Control Conference, 2010.

Oppenheimer, M.W., Sigthorsson, D.O., Doman, D.B., “Multiple Degree-of-Freedom Control of
a Flapping-Wing Micro Air Vehicle with Power and Control Actuators”, AIAA-Paper-2010-
7557, Guidance, Navigation, and Control Conference, 2010.

All conference papers were presented at the respective conference.

66
Approved for public release; distribution unlimited.

REFERENCES

i Stanford, B., Beran, P. S., Snyder, R., and Patil, M., “Stability and Power Optimality in Time-
Periodic Flapping Wing Structures,” 53rd Structures, Structural Dynamics, and Materials
Conference, 23 - 26 April 2012, Honolulu, Hawaii, Aug. 2011, pp. 1–13.
Figure 1
ii Bhatia, M., Patil, M., Woolsey, C., Stanford, B., and Beran, P., “LQR Controller for
Stabilization of Flapping Wing MAV in Gust Environments,” AIAA: submitted for publication.”

iii Berman, G., Wang, Z., “Energy-Minimizing Kinematics in Hovering Insect Flight,” Journal of
Fluid Mechanics, Vol. 582, pp. 153-168, 2007.

iv Bryson, D.E., Stanford, B.K., McClung, A.M., Sims, T.W., Miranda, J.L., Beran, P.S., and
Parker, G.H., “Multidisciplinary Optimization of a Hovering Wing with a Service-Oriented
Framework and Experimental Validation,” AIAA Aerospace Sciences Meeting including the New
Horizons Forum and Aerospace Exposition Conference, Orlando, FL, January 4-7, 2011.

vClayman, G., Beran, P., Bhatia, M., and Stanford, B., “Service-Oriented Multidisciplinary
Optimization of a Closed Loop Flapping Wing Subject to Gust,” AIAA Journal (in review),
2012.

viSvanberg, K., “The Method of Moving Asymptotes – A New Method for Structural
Optimization,” International Journal for Numerical Methods in Engineering, Vol. 24, No. 2, pp.
359-373, 1987.

vii Snyder, Richard D., Beran, Philip S., Huttsell, Lawrence J., and Pettit, Chris L. “Aeroelasticity
Research in the Multidisciplinary Technologies Center of the United States Air Force Research
Laboratory” International Forum on Aeroelasticity and Structural Dynamics, Madrid, Spain, Jun
2001.

67
Approved for public release; distribution unlimited.

LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS

Symbol Definition
CAS Cyclic Analytical Sensitivity
ROM Reduced Order Model
CSD Computational Structural Dynamics
FSOOA Federated Services Object Oriented Architecture
SORCER Service ORiented Computing EnviRonment
M3CT Multidisciplinary Multifidelity Model-based Computational Tool
QS Quasi-Steady
QSCSD QS + CSD, A provider in the network.
ANT Another Neat Tool
IDE Interactive Development Environment
NURBS Non-Uniform Rational B-Spline
MMA Method of Moving Asymptotes
DOT Design Optimization Tools
MUAV Micro Unmanned Air Vehicle
AE Aero-Elastics
FSI Flapping Sciences integration
MAV Micro Air Vehicle
SOA Service Oriented Architecture
EO Exertion Oriented
UUID Universally Unique IDentifier

APPENDIX

Definitions

	LIST OF TABLES
	Untitled
	1.0 SUMMARY
	OBJECTIVE II
	 Architecture of the top-level user-interface: Multidisciplinary Multi-fidelity Model-based Computational Tool (M3CT)
	 Descriptions of the SORCER Service-Oriented Architecture that M3CT is built on, including documentation about how-to-construct SORCER “jobs” and “exertions” (e.g., how to run a M3CT study)
	 FSI-methods and FSI-controls software modules (“providers”) integrated within this project via M3CT and SORCER Nomenclature
	 Lessons learned during the project that could impact the future architectural development of multidisciplinary design software
	 Installation notes
	2.0 INTRODUCTION
	Scope
	Delivery
	3.1 Modeling and Simulation
	3.2 Control Design
	3.3 Fabrication
	3.4 Experiments

	OBJECTIVE II
	3.5 Principal Architecture
	3.6 Implementation Architecture

	4.0 RESULTS AND DISCUSSION
	4.1 Simulation Results
	4.2 Fabrication Results
	4.3 Experimental Results
	4.4 Problem Description
	4.4.1 MAV Configuration (Geometry, Kinematics, Structure)
	4.4.2 Pinned MAV
	4.4.3 Free-to-move MAV
	4.4.4 Free-to-move MAV with Control

	4.5 Fundamental Steps of Analysis and Optimization
	4.5.1 MAV Analysis
	4.5.2 MAV Optimization
	4.5.3 Case Management (input deck, output deck, leveraging resources)

	4.6 Study Examples
	4.6.1 Pinned MAV Analysis (QSCSD)
	4.6.2 Pinned MAV Optimization (QSCSD and CONMIN)
	4.6.3 Free-to-move MAV with Pinned Constraint Analysis (Controls)
	4.6.4 Free-to-move MAV Trim Analysis (Controls)
	4.6.5 MUAV Closed Loop Flight in Gust (Controls)

	5.1 Errors from Approximation
	5.2 Incompatibility from Reduction
	5.3 Many to One Context Collaboration
	5.4 Decomposition and Synchronization
	5.5 Model Matching
	5.6 Data Reporting and Aggregation

	6.0 CONCLUSIONS
	6.1 Technological Challenges for Extending FSI
	6.2 MVC in FSOOA
	6.3 Community Created Content
	6.4 Next Steps (CROW)
	6.4.1 CROW First-Meta
	6.4.2 CROW Second-Meta
	6.4.3 CROW Micro-Iteration
	6.4.3.1.1 Asymmetrical Synchronization

	6.4.4 Chained Optimization
	6.4.5 CROW Macro-Iteration
	6.4.6 Workflow Concurrency
	6.4.7 CROW Mega-Iteration
	6.4.8 CROW Logic Cell
	6.4.9 CROW Query (CQ)
	6.5.1 Factory of Factories
	6.5.2 Solution Persistence
	6.5.3 Providers Contract
	6.5.4 Implementation Methodology
	6.5.4.1 Case Study Orientation:

	6.5.6 Trailblazer
	6.5.7 BAR
	6.5.8 CROW Summary

	Lessons Learned
	Journal Papers:
	Book Chapters:
	Technical Reports:
	Conference Papers:

	LIST OF SYMBOLS, ABBREVIATIONS AND ACRONYMS
	2013-0030Cover.pdf
	AFRL-rQ-WP-TR-2013-0030
	STINFO COPY

	2013-0030SF298.pdf
	REPORT DOCUMENTATION PAGE

