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Abstract 

 

This thesis researches cloud computing client initiated workloads. A heuristic 

presented in the work defines a process of workload trace characterization and synthetic 

workload generation. Analysis and characterization of a cloud trace provides insight into 

client request behaviors and statistical parameters. A versatile workload generation tool 

creates client connections, controls request rates, defines number of jobs, produces tasks 

within each job, and manages task durations. The test system consists of multiple clients 

creating workloads and a server receiving requests, all contained within a virtual machine 

environment. Statistical analysis verifies the synthetic workload experimental results are 

consistent with real workload behaviors and characteristics. This thesis provides 

researchers and developers with a lightweight process for characterizing and simulating 

cloud workloads. 
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CLOUD COMPUTING TRACE CHARACTERIZATION AND SYNTHETIC 

WORKLOAD GENERATION 

I.  Introduction 

General Issue 

The future of cloud computing is moving toward a state in which we won’t 

compute on local machines, but on highly automated data centers processing workloads 

in remote facilities. Commercial cloud services are becoming increasingly available, 

popular, complex, large, and difficult to administer and maintain. Current cloud 

computing research is vital to solving such demanding problem areas. Research topics 

such as autonomic systems, optimization, dynamic scalability, fault tolerance, virtual 

machine scheduling and releasing, hypervisor resource management, and clouds for 

rent/cost analysis, all rely on some form of workload input.  

The accuracy of research results can vary considerably based on slight variations 

to the input. Trace files are client workloads, and serve as input to the cloud algorithm. 

Understanding and simulating realistic workload characteristics are imperative for 

making effective design decisions and adding value to research results. Generating 

realistic workloads, or trace files, can contribute to innovation in numerous areas of cloud 

computing. 

Problem Statement / Objectives 

The goal of this thesis is determining whether synthetically generated cloud 

workloads have characteristics statistically similar to real cloud traces. The simulated 

workloads, or synthetic traces, consist of characteristics of real trace files derived from 
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various forms of statistical analysis. This research is one part of an overall effort of 

improving autonomous management methods and resource provisioning in distributed 

systems.  

Research Focus 

This research develops a lightweight process for generating synthetic workloads 

using an open source load generator. It focuses on characterizing and simulating a 

publically available cloud workload, a trace file recently published in 2012 by Google. 

Synthetic workloads will ideally have statistically similar qualities compared to real 

traces. 

Investigative Questions 

What is new about this research? First, characterizing publically available 

workload traces is not new to the research community. Characterizing the Google cloud 

trace is new, and publications modeling the trace became available nearly the same time 

the trace became available. Google employees are involved with such early publications, 

giving researchers an early start. What is new about this research is using a new heuristic 

to simulate important characteristics of cloud traces using open source or free workload 

generation tools. The idea of generating realistic synthetic workloads is critical for 

researchers, especially those outside of private entities that do not own such trace files.  

Why is this research relevant? This research is pertinent today because scientists 

and engineers developing and testing autonomic methodologies, optimization algorithms, 

and other cloud management issues, can utilize it. Researchers outside of private cloud 
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companies, such as academia, will have the information and tools necessary to feed their 

experiments with justifiably realistic workload inputs. 

Literature Review 

The next chapter discusses numerous aspects of cloud computing. The chapter 

defines cloud computing, compares clouds and grids, clarifies trace file availability, 

explores the Google trace, investigates a number of workload generation tools, and 

discusses related research. 

Heuristic 

Chapter 3 introduces a workload characterization and generation heuristic, which 

describes techniques that aid in the development of a synthetic workload.  The heuristic is 

comprised of two main sections. It begins with workload analysis of particular trace file 

characteristics, such as job arrival rate and task duration. Next is a synthetic workload 

generator design that produces client-initiated workloads with characteristics similar to 

those of the analyzed trace file. 

Methodology 

Chapter 4 describes the methodological approach to this research effort. The 

methodology is as follows: obtaining appropriate traces, analyzing and characterizing the 

data, performing simulations utilizing the spiral development model, and comparing 

results for statistical similarities. 
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Analysis and Results 

Chapter 5 begins with a statistical analysis of the Google trace, followed by a 

similar analysis of the synthetic workload. Next is a statistical comparison of similarities 

to the two traces. Chapter 4 ends with a scalability performance test of the workload 

generation tool. 

Assumptions and Limitations 

This research assumes publically available traces contain real data, and thus 

realistic characteristics. The data contained in the trace limits the results of this research. 

The small number of available traces also limits researchers. Even though these 

assumptions and limitations are restrictive, the results of this research are a vast 

improvement over predefined workloads, and provide researchers with the advantage 

necessary to justify their workloads. 
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II.  Literature Review 

Chapter Overview 

This chapter begins by defining cloud computing. Second is a discussion on the 

limited availability of workload traces and data repositories. Next is comparing and 

contrasting cloud and grid computing technologies, followed by a description of the 

recently published Google cloud workload trace. The final section is a discussion on free 

and open source workload generation tools. 

Cloud Computing  

Cloud computing has numerous definitions within the scientific community. For 

the purpose of this research, the definition provided by the National Institute of Science 

and Technology (NIST) is appropriate: Cloud computing is a model for enabling 

ubiquitous, convenient, on-demand network access to a shared pool of configurable 

computing resources (e.g., networks, servers, storage, applications, and services) that can 

be rapidly provisioned and released with minimal management effort or service provider 

interaction [41]. 

Cloud Characteristics 

Within the NIST definition, clouds display the following five essential 

characteristics [41]: 

 On-demand Self-service. Consumers request and receive computing 

capabilities, such as server time and network storage, as needed automatically. 

 Broad Network Access. A variety of devices such as smartphones, tablets, 

laptops, and workstations gain access to capabilities over the network. 
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 Resource Pooling. Integrated cloud computing resources serve multiple 

consumers, with different physical and virtual resources dynamically assigned 

and reassigned according to consumer demand. Examples of resources include 

storage, processing, memory, and network bandwidth. 

 Rapid Elasticity. Capabilities are easily adapted to appropriate quantities 

proportionate with demand. 

 Measured Service. Cloud systems automatically manage and optimize 

resources use by measuring, monitoring, and controlling services such as 

storage and processing. 

 

Cloud Services 

Cloud computing provides on-demand services and resources for consumers at 

three different levels: 

 Software as a Service (SaaS). Applications and software running on cloud 

infrastructure support massive numbers of customers. Various interfaces, such 

as a web browser or other software interface, access applications remotely 

through the internet. [23,41]. 

 Platform as a Service (PaaS). Developers build, test, and deploy applications 

and software using an Application Programming Interface (API) environment. 

[23,28,41] 

 Infrastructure as a Service (IaaS). The capability provided to the consumer is 

to provision hardware, software, and other computing resources [23,41]. 

Dynamically scalable raw infrastructure and associated middleware enable 

customers to run virtual machines [28,31]. For example, Amazon offers 

Elastic Compute Cloud (EC2) computing resources, which are available to the 

public for rent with a pay-per-use pricing model. 

 

Cloud Traces 

Recordings of application workload transactions, or traces, contain events such as 

request arrival time, job runtime, and other network-level traffic characteristics [3, 5, 35]. 

Obtaining real traces from cloud vendors is difficult, and publication of the traces is not 
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typical due to the proprietary nature of the data. Cloud computing vendors and/or the 

users who generate the traces consider them proprietary data. At the time of this research, 

there are only two known publically available cloud workload traces, both from Google. 

Data Repositories 

Limited Trace Availability 

With very few publically available cloud traces offered, analysis of cloud traces is 

very limited. The Parallel Workloads Archive, The Grid Workloads Archive, and Failure 

Trace Archive all host numerous publically available real trace files. The traces may not 

have originated from a cloud platform, but there are enough similarities between clouds 

and grids to justify using grid workloads for cloud simulations. The next section, Cloud 

and Grid Computing Compared, compares the two computing platforms. 

Publically Available Archives 

The following list describes several well-known public workload trace archives. 

Researchers use the data within these repositories for countless studies and hundreds of 

publications.   

 Parallel Workloads Archive. Numerous traces are publically available, the 

most recent being a workload of accounting records from the RIKEN 

Integrated Cluster of Clusters (RICC) installation in Japan [45]. RIKEN is a 

scientific research and technology institution of the Japanese government. The 

workload trace spans a period from May to Sep 2010, and represents 447,794 

jobs. The Parallel Workloads Archive uses the Standard Workload Format for 

its trace file format.  

 The Grid Workloads Archive. Numerous traces are publically available, the 

most recent being from the 2006 timeframe [27]. Traces over five years old 

are not used in this research for characterization purposes. The Grid 

Workloads Archive uses the Grid Workload Format for its trace file format.  
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 Failure Trace Archive. Numerous traces of parallel and distributed systems 

are publically available in this repository of system failure data [20]. The 

archive facilitates the design, validation, and comparison of fault-tolerant 

models and algorithms [20]. The SETI@home trace is the most recent 

available, and comes from a rather large distributed desktop grid system with 

approximately 230,000 nodes. The workload trace spans a period of 1.5 years 

from 2007-2009. The Failure Trace Archive uses Failure Trace Archive 

Format for its trace file format.  

 MetaCentrum Data Sets. One trace from the Czech National Grid 

Infrastructure is publically available. This workload trace contains 103,656 

jobs and spans a period from January to May 2009 [42]. MetaCentrum uses its 

own unique trace file format. 

 Google Cloud Trace. Google recently published a limited production 

anonymized workload trace recorded in May 2011 that spans a period of 

approx 6 hours and 15 minutes with 5 min timestamps. It represents over 9000 

jobs, each with multiple sub-tasks, totaling over 176,000 tasks [11]. This 

thesis research utilizes this trace for characterization and simulation 

experiments. 

 

As computing technologies continue to change, the data contained in the traces 

that capture the workloads also change. Many of the traces in the above archives are over 

five years old, and consequently this research does not consider their use. Although there 

are few traces available, especially for academic research, the traces and archives 

described above do provide a diverse sampling of real workload traces. Varieties of 

statistical analyses characterize the traces. These derived characteristics are the 

foundation for building justifiably realistic synthetic traces.  
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Cloud and Grid Computing Compared 

Cloud is the New Grid 

Grid computing technologies primarily allow consumers to obtain processing 

power on demand. Cloud computing and grid computing are similar in the sense that both 

manage large datacenters and offer distributed computing resources to users [37].  

It is no surprise that cloud computing and grid computing overlap in many 

aspects. Cloud computing evolved from grid computing and shares similar infrastructure. 

Building cloud environments on top of stable grid infrastructures is possible. In this 

scenario, grid services manage cloud virtual machines, as seen in the Nimbus project 

[23]. 

Figure 1 [23] displays the relationship between grids, clouds, and other computing 

environments. On the service oriented application side, Web 2.0 covers nearly the entire 

spectrum, and cloud computing lies at the large-scale side. Clusters and supercomputers 

are traditionally non-service application oriented. Finally, grid computing overlaps with 

all aforementioned computing environments. It covers both service and non-service 

applications, and is typically of lesser scale than supercomputers and clouds [23]. 
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Figure 1:  Computing Environment Relationships [23] 

 

Cloud computing may be considered an extension or evolution of grid computing. 

Both share the same vision of reduced cost, increased reliability, and greater flexibility 

[13]. In addition, both share the concept of shifting computers from something we 

purchase and manage ourselves to something operated by third party utilities. 

Cloud and Grid are Different Paradigms 

Virtualization and Threads 

Things are not what they used to be, especially when it comes to massive amounts 

of data and computing power. Large-scale commercial cloud systems contain thousands 

of computers and process millions of jobs in virtual machines. This virtualization is a 
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crucial component found in most clouds and allows for encapsulation and abstraction 

[13]. Virtualization is similar to the concept of threads used in grid systems, where 

multithreading allows for concurrent execution of the threads. The concept of dynamic 

scalability, or elasticity, is the ability to add and remove capacity and resources based on 

actual usage, made possible through virtualization. A disadvantage of virtualization is 

that it takes time to setup, and is major concern for efficient cloud utilization [7]. 

Figure 2 [6] shows an example of a grid system running a multithreaded music 

player application. In this simplified grid system, each user has a dedicated thread. Notice 

that any single failure could negatively affect all users in the system. 

 

 

Figure 2:  Multithreaded Music Player [6] 

 

Figure 3 [6] shows an example of a cloud system running a single-threaded music 

player application. In this simplified cloud system, each user has a dedicated virtual 

machine. Notice that if the music player application fails, the impact is contained to one 

virtual machine and thus affects just one user. 
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Figure 3:  Virtual Machines with Single Threaded Music Player [6] 

 

Clouds rely heavily on virtual machines, while grids typically do not. Clouds are 

massively scalable commercial systems consisting of hundreds of thousands of computers 

that consumers can access on-demand. Virtualization and sheer size are two of the 

biggest differences between clouds and grids. Even so, they share much commonality in 

vision, architecture, and technology. 

Job Arrival 

Job arrival rates in clouds are typically higher than grids and clusters. Table 1 

shows the job arrival rate of some popular and well-studied public traces. Based on the 

data in Table 1, job submission frequency is much higher in clouds than that of grid or 

cluster systems.  

 

Table 1:  Jobs per Hour 

 Auvergrid RICC ANL Intrepid Google 1 Google 2 

      

Type Grid Cluster Cluster Cloud Cloud 

Mean 48 122 11 1475 552 
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Table 1 compares job arrival rates of grids, clusters, and clouds. Perhaps a 

comparison of grid versus cluster computing is necessary. Clusters typically consist of 

several homogeneous computers (same hardware and OS) working together to solve a 

problem, and are controlled by a central resource manager [29]. On the other hand, grids 

consist of several heterogeneous networked computers (different OS and hardware), 

working together and utilizing spare computing power [29]. Clusters are typically housed 

together in a central location, while grids are distributed over a large area such as Local 

Area Network (LAN) or Wide Area Network (WAN) [29].  

Job and Task Durations 

The work of Di et al [17] compares the Google cloud load versus grids. The 

general observation is that Google jobs are much shorter than grid jobs. For example, 

over 80% Google jobs’ durations are under 1000 seconds, while over half of grid jobs are 

over 2000 seconds. In addition, approximately 94% of Google task executions complete 

within 3 hours, while only 70% of grid task executions complete within 12 hours [17]. 

This difference in task duration is mainly because Google jobs, such as keyword search, 

are inherently short duration and often real-time, while grid jobs are usually based on 

longer duration complex scientific problems. [17] 

Cloud vs. Grid Significance 

In summary, clouds have much shorter job durations but higher arrival rate as 

compared to grids and clusters. These are important characteristics that researchers must 

consider when creating synthetic workloads to drive their experiments. 

Why be concerned with grid workload when cloud workloads are publically 

available? First, timing is an issue. The Google cloud trace publication occurred after the 
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start of this research. In addition, there are relatively few cloud traces compared to grid 

traces. Many publications and much research exist on grid traces. Due to the limited 

availability of cloud traces, researchers will continue to rely on the relatively larger 

number of grid and cluster traces for their work. 

Google Cluster Usage Trace 

This section introduces the trace data from a Google datacenter. The data in the 

trace is highly anonymized for confidentiality reasons. The Google trace is from May 

2011 and contains 6 hours 15 minutes of data capture, 3.5 million entries (observations), 

over 9000 jobs, and over 176,000 tasks. The file is available for download in comma-

separated values (CSV) format.  

Google Cluster 

Google datacenters contain clusters, or sets of racked machines connected by a 

high-speed network [49]. User requests arrive in the form of jobs, with each job 

containing one or more tasks. Tasks that belong to the same parent job have similar 

resource usage requirements [35].  Jobs are assigned unique 64-bit identifiers, which are 

never reused [49]. 

Scheduling Jobs and Tasks 

Google tasks have a life cycle of four different states: unsubmitted, pending, 

running, and dead, as shown in Figure 4. State transitions are events that either change 

the state of the task or affect the scheduling state [49]. High priority tasks are scheduled 

before low priority ones, and first-come-first-serve (FCFS) applies to tasks with equal 

priorities.  
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Figure 4:  State Transitions [49] 

 

It helps to understand the task lifecycle and state transition behavior prior to 

characterization and analysis of the trace data. Ultimately, researchers will understand the 

data to a level where it can be simulated using workload generation tools. 

Workload Generation Tools 

Numerous workload generation tools exist. Free or open source tools also exist. It 

is necessary to evaluate the available tools then choose one for simulations. At a 

minimum, the tool should have flexibility in request types, request rates, and tasks per 

job. 

Rain Workload Generator 

Rain is a statistics-based workload generation toolkit that uses distributions to 

model different workload classes [46]. It allows for delays between operation execution 

via cycle and think times. Rain assumes familiarity with workload generation and server 
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configuration/setup. The flexible and customizable workload characterization supports 

load variations. Rain has a Generator API for application specific load generators that 

target new systems and applications [46]. Rain Workload Toolkit is well suited for cloud 

workload generation. Unfortunately, documentation is minimal and lacks detail. 

Available tutorials are Olio and Raddit specific only. Consequently, Rain is not suitable 

for this research. 

Olio Web 2.0 

Olio is a Web 2.0 toolkit to aid in performance evaluations of web technologies. It 

is a Web 2.0 application that functions as a social event calendar. The toolkit also defines 

ways to drive load against the web application, which allows for performance 

measurements [44]. Olio is primarily for learning Web 2.0 technologies, evaluating the 

three implementations (PHP, Java EE, and RubyOnRails (ROR)), evaluating server 

technologies, and driving a load against the application to evaluate the performance and 

scalability of various platforms [44]. 

Olio has seven distinct operations that a workload can perform: 

1. Homepage 

2. Login 

3. Tag Search 

4. Event Detail 

5. Person Detail 

6. Add Person 

7. Add Event 



 

17 

Olio is well documented, but assumes prerequisite knowledge with setup and 

operation of apache web servers and MySQL databases. Olio is not in itself a workload 

generator; it is the application that receives requests from a workload generator.  It helps 

aid in server design decisions. The seven operations that Olio offers are all short duration 

tasks.  This research effort requires a variety of task durations from seconds to hours; 

therefore, Olio is not an appropriate cloud server. 

Cloudstone 

Cloudstone is a multi-platform, multi-language performance measurement tool for 

Web 2.0 and Cloud Computing [14]. It deploys on an instance of the Amazon Elastic 

Cloud Computing (EC2) data center, and primarily measures database performance. 

Cloudstone uses Olio as a Web 2.0 application. Standalone deployment is possible using 

Olio and Faban Workload Generator [14]. Cloudstone is well suited for cloud 

performance measurement, but is not in itself a workload generator. 

VMware VMmark 

VMmark is a benchmark tool used to measure performance and scalability of 

applications running in virtualized environments [57]. VMmark has extensive hardware 

and software requirements compared to the aforementioned tools. VMmark enables users 

to measure, view, and compare virtual datacenter performance [5]. It utilizes two 

previously discussed toolkits, Rain and Olio. Overall, VMmark is well documented, but 

this research does not utilize VMmark due to time constraints. 

Faban Workload Generator 

Faban is a Markov-chain-based workload generator, and is widely used for server 

performance and load testing, also referred to as benchmarking [18]. It contains features 
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that measure and log key performance metrics, and automate statistics collection and 

reporting. Faban supports numerous servers such as Apache httpd, Sun Java System Web, 

Portal and Mail Servers, Oracle RDBMS, memcached, and others [18]. Perhaps the most 

important feature pertaining to this research is developers can build and modify realistic 

workloads.  

Overall, Faban is well documented with manuals, tutorials, blogs, and other web 

documentation. Due to its distributed and scalable design, Faban is well suited for 

generating cloud computing workloads [18]. Consequently, Faban is the tool of choice 

for generating workloads in this research effort. 

The R Project for Statistical Computing  

R is a free and open source statistical analysis and graphics tool [31]. While R is 

not a workload generation tool, this research utilizes it extensively for data analysis, 

statistics collection, characterization, and graphics of cloud trace files.  

Related Works 

This research focuses on the analysis and synthesis of client-initiated workload 

characteristics contained within cloud trace files. The work most related to the work 

presented here is [58]. In [58], Wang et al. discuss analyzing and synthesizing realistic 

cloud workloads. The authors use a public 6-hour Google trace to design realistic cloud 

workloads, which drive the evaluation of Hadoop job schedulers and Hadoop shared 

storage system performance. The trace analysis focuses on job/task classification and 

resource utilization patterns. The authors attempt to predict future task and job behavior 

based on past information. MRPerf simulator is the workload generation tool utilized for 
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modeling MapReduce application performance. Wang et al. offer an algorithm for 

synthesizing realistic cloud traces based on pattern recognition, although the authors describe 

the results of the algorithm as a good first step towards workload generator development 

[58]. Unlike the work presented in this thesis, the authors assume statistical similarities 

between the analyzed trace and the synthesized workload.  

Di et al. [17] describe a similar cloud workload analysis. The authors perform a 

limited characterization of job/task load and server load of a 29-day Google trace. The 

research presented in the article compares statistical similarities between the Google trace 

and grid traces with regard to client initiated workload and host load, with much of the 

focus on host load [17]. The authors claim significant difference between clouds and 

grids exist due to differences in user interaction and host applications.    

Liu et al. [35] present characteristics of a 29-day Google trace, and focus on 

patterns of machine maintenance events and job/task behaviors. The authors study virtual 

machine management, job scheduling and processing, and cluster resource utilization. 

Liu et al. claim the Google trace discloses much information about how this particular 

Google cluster operates [35]. 

Chen et al. [11] developed a limited statistical profile of a 6-hour public Google 

trace. The authors cluster job types using the k-means clustering algorithm, and correlate 

job semantics and behavior [11]. Chen et al. claim the trace analysis provides system 

design insights, and make numerous implications regarding scheduling algorithms, 

cluster management, and capacity planning.   

Reiss et al. [48] describe the scheduler request and utilization of a 29-day Google 

trace. The research characterizes cluster resource request, resource utilization, and 
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associated distributions. The authors show the overall trace consists of a large number of 

small requests, but a small number of large requests dominate its resource usage [48]. 

Reiss et al. claim they have found two scheduling characteristics that should be addressed 

in future scheduler designs: scheduler resource request and usage mismatches, and 

scheduling delays due to unrealistic task constraints [48].  

Summary 

This chapter defines cloud computing, discusses publically available traces, and 

highlights the differences between cloud and grid workloads. The Google trace data is a 

good fit for this thesis research for the following reasons: the Google trace is new, and 

most importantly, it represents a cloud workload. It may be the first of its kind ever made 

available to the public. Other companies and owners of cloud traces should follow suit 

for the benefit and advancement of cloud research. Faban workload generator is the tool 

of choice for this research for a few reasons: Faban is highly customizable, it has multiple 

levels of automation, and thankfully, it is well documented.  
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III.  Workload Generation Heuristic 

Chapter Overview 

This chapter introduces a workload generation heuristic, which describes 

techniques that aid in the development of a synthetic workload. The heuristic may not 

generate optimized results like that of an algorithm, but it does provide reasonable results 

in an acceptable amount of time. Developers should adjust and fine-tune parameters as 

necessary to achieve desired results, characteristics, and distributions. 

Workload Analysis 

It is important that researchers become familiar with cloud workload trace 

properties and characteristics prior to generating a workload. First, researcher must locate 

and download the appropriate trace file. The following steps describe how to extract 

characteristics and properties from the trace as necessary for workload simulation. Use a 

statistical package, such as the R programming language, for computations and graphics. 

This research effort focuses on four main categories of workload characteristics: 

Job Arrival Rate, Task Duration, Tasks per Job, and Running Tasks. Each category 

results in a statistical distribution, such as negative exponential or constant, as seen in the 

Google trace analysis in chapter 5. The characteristics of these distributions provide input 

to the synthetic workload design. 

1. Job Arrival Rate 

a. Job Arrival Rate represents the number of unique connections to a server 

over time.  

b. Calculate the Job Arrival Rate using a statistical package, such as R, by 

tallying the number of unique jobs per interval of time. In the Google 

trace, for instance, each job is labeled with a unique ParentID number. 
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c. Using a statistical package, characterize the resulting distribution using the 

appropriate statistical methods, modeling, or curve fitting. For example, 

the Google trace Job Arrival Rate has a distribution that fluctuates around 

a constant average.  

d. If the trace contains multiple jobs types, calculate the Job Arrival Rate and 

characterize the resulting distributions for each job type.  

2. Task Duration 

a. Task Duration represents the time it takes for a server to process and 

respond to a client request.  

b. Find all occurrences of a unique task and note the time stamp information. 

Calculate Task Duration using a statistical package, such as R, by 

subtracting the smallest time stamp value from the largest time stamp 

value for each unique task in the trace. In the Google trace, for instance, 

each ParentID contains one or more tasks, labeled as TaskID. Each of 

these task entries contains time stamp information. Refer to Equation 1 for 

the Task Duration calculation. 

 

TD = Tfinal - Tinit 

Equation 1: Task Duration  

 (1) 

Where: 

TD = Task Duration time 

Tfinal = time stamp of last occurrence of unique task 

Tinit = time stamp of first occurrence of unique task 

 

 

c. Using a statistical package, characterize the resulting distribution using the 

appropriate statistical methods, modeling, or curve fitting. For example, 

the Google trace Task Duration has negative exponential distribution 

characteristics. 

d. If the trace contains multiple job types, calculate the Task Duration and 

characterize the resulting distributions for each job type. 

3. Tasks per Job 

a. Tasks per Job represents the number of tasks contained within each job or 

unique client connection to the server.  

b. Tally the number of unique tasks within each unique job using a statistical 

package, such as R. In the Google trace, for instance, each ParentID is a 

job that contains one or more tasks, labeled as TaskID.  
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c. Using a statistical package, characterize the resulting distribution using the 

appropriate statistical methods, modeling, or curve fitting. For example, 

the Google trace Tasks per Job has negative exponential distribution 

characteristics.  

d. If the trace contains multiple job types, calculate the Tasks per Job and 

characterize the resulting distributions for each type. 

4. Running Tasks 

a. Running Tasks represents the presence of a task in a trace file. In the 

Google trace, for instance, a running task means the TaskID is present in 

the trace. 

b. Count the number of unique tasks per unit of time using a statistical 

package, such as R. In the Google trace, for instance, count the number of 

unique TaskIDs per five minute time interval. 

c. Using a statistical package, characterize the resulting distribution using the 

appropriate statistical methods, modeling, or curve fitting. For example, 

the Google trace Running Tasks has a distribution that fluctuates around a 

constant average. 

d. If the trace contains multiple job types, calculate the Running Tasks and 

characterize the resulting distributions for each job type. 

 

Synthetic Workload Generator Design  

This research utilizes Faban, a free and open source workload creation 

framework, as a synthetic workload generator. The characteristics and distributions from 

each of the four categories in the previous section determine the workload design 

parameters. The properties of the distributions help foster effective workload generator 

design decisions. It is important to understand the distribution properties prior to 

generating a workload. 

1. Determine the total number of job launches. Within Faban, for instance, threads 

represent job launches, or unique client connection to the server. 

a. For a scaled down experiment, begin by reducing the actual cloud trace 

job launches by a factor of 100. 

2. Establish the number of workload generation machines. Both Task Durations and 

Tasks per Job determine the number of workload generation machines. Multiple 
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machines are necessary due to limitations of Faban and may not be required for 

other workload generators. 

a. Task Duration represents the time it takes for a server to process and 

respond to a client request.  

b. Divide Task Duration into three categories (short is seconds, medium is 

minutes, long is hours). Begin by allocating one workload generation 

machine (computer or virtual machine) for each Task Duration category. 

For example, if a workload contains three Task Duration categories (short, 

medium, and long), the workload requires three workload generation 

machines. Keep in mind this number of machines can grow, depending on 

Tasks per Job. 

c. Tasks per Job represents the number of tasks contained within each job or 

unique client connection to the server.  

d. Divide Tasks per Job into categories. For example, 1-9 is small, 10-99 is 

medium, and 100 or more is large. The number of categories and category 

ranges may be altered as necessary per simulation requirements. If only 

one Tasks per Job category exists per Task Duration category, one Faban 

machine should suffice. For multiple categories, assign one category per 

machine.  

e. Table 2shows an example requiring four Faban machines: 

  

Table 2:  Faban Machine Quantities 

Task Duration Tasks per Job Faban Machines 

   

Seconds Small (1) Machine 1 

Large (100) Machine 2 

Minutes Small (1-4) Machine 3 

  

Hours Small (1-4) Machine 4 

  

 

 

3. Set the number of job launches per workload generation machine. In Faban, for 

instance, threads represent job launches, which are set using the scale parameter. 

The number of job launches per workload generation machine affects the 

resulting workload distribution. Assign parameters on each workload generation 

machine such that the output mimics that of the distribution determined in the 



 

25 

workload analysis section. Choose a subset of critical points from the distribution 

in the workload analysis section that will result in similar distribution shapes. 

a. Start with outliers, such as large (100) Tasks per Job, as seen in Table 2, 

Machine 2. In the Google trace, for instance, the number of clients 

requesting 100 Tasks per Job is relatively small compared to other 

categories. Assign a small number of jobs to the 100 Tasks per Job 

category, such as 1% of total jobs. For instance, in an overall Faban 

workload of 100 unique job launches, assign one thread to Machine 2. 

b. Determine another workload generation machine that requires a small 

number of jobs. In the Google trace, for instance, the number of clients 

requesting Task Durations in the hour range is relatively small compared 

to other categories. Assign a small number of jobs to the hours Task 

Duration category, such as 5% of total jobs. For instance, in an overall 

Faban workload of 100 unique job launches, assign five threads to 

Machine 4.  

c. Divide the remaining threads between the remaining Machines, as 

required to mimic the appropriate distribution. For example, assign 25 jobs 

to Machine 1 to simulate a portion of the workload with 25 client 

connections and one Task per Job. 

4. Set the appropriate timing or delay parameter to define the number of Tasks per 

Job. In Faban, for instance, Tasks per Job cannot be set directly. Instead, define 

Tasks per Job indirectly using the thinkTime parameter. Increase the thinkTime 

parameter to decrease the number of tasks per job. This research develops the 

formula in Equation 2 to clarify the Tasks per Job calculation. 

 

tsteadystate = TpJ (TD + TT) 

Equation 2: Tasks per Job  

 (2) 

Where: 

tsteadystate = total test duration time 

TpJ = Tasks per Job 

TD = Task Duration 

TT = Think Time, simulates the amount of time that passes between tasks 

 

5. Vary the workload arrival rate as necessary. Client-initiated workloads typically 

vary and are not flat. For example, the Google trace workload arrival rate 

fluctuates around a constant average. Workload generation tools may have a 
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feature that allows for workload variation. Faban, for instance, utilizes a load 

variation file to vary load patterns. 

6. Workloads may require Task Duration category subsets, which provide more data 

points or resolution when simulating a distribution. For example, in Table 27, the 

minutes Task Duration category may require subcategories of 1, 5, and 20 

minutes. In this case, multiple Task Durations are assigned to one machine. A 

feature may be present in the workload generation tool to accommodate this. In 

Faban, for instance, the operationMix parameter allows single threads to perform 

multiple separate operations, such as GET requests to multiple URLs. If such a 

feature is not available, assign one workload generation machine per subcategory.  

a. In Faban, a Flat Mix performs the same operation, such as a short duration 

HTML web request. 

b. In Faban, a Probability Mix will perform different operations based on 

probabilities assigned. Use this parameter to change the operation. For 

example, a workload may contain task durations that last minutes (1, 5, 

and 20 min), each at a unique URL. Assign probabilities as necessary for 

determining the number of times performing each operation. 

7. Determine the total test duration, which is the workload runtime. In Faban, for 

instance, the steadyState parameter defines the total test duration. 

Summary 

This chapter defines a workload generation heuristic, which begins with a 

workload analysis of an actual trace file, and ends with a synthetic workload generation 

process. The synthetic workload output should have statistical similarities when 

compared to the characteristic results of the workload analysis. Developers should adjust 

the necessary parameters to obtain appropriate statistical similarities.  
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IV.  Methodology 

Chapter Overview 

Analysis of the publically available Google cloud trace file for statistical 

characteristics focuses on client-initiated requests/workloads. This research uses the R 

statistical computing package for analysis of the Google trace. Some of the most 

important client workload characteristics include unique job launches, task duration, and 

tasks per job. Once the workload is analyzed and characterized, the results model a 

synthetic cloud workload. The resulting workload will have characteristics with statistical 

similarities to the Google trace. Figure 5 shows the overall methodological approach to 

this research effort. 

 

Figure 5:  Methodology 

 

Implementation of the spiral development process within the third step of Figure 5 

facilitates synthetic workload generation and design. The spiral model encourages the 

addition new synthetic workload elements, as information becomes available. The earliest 

phase is quite simple with a focus on exploration and learning. Each iteration adds a level 

of complexity to the workload generator. The final iteration contains the necessary 

elements and parameters for production of a justifiably realistic synthetic workload. 

Trace Files 
Statistical 
Analysis & 

Characterization 

Synthetic 
Workloads / 

Models 

Realistic 
Workload 
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Google Trace Statistical Analysis and Characterization 

Google trace file statistical analysis results provide the foundation for modeling 

and generating synthetic workloads. Although the file is highly anonymous, there is an 

abundance of information available for both client and server side characterizations. 

Table 3 describes the parameters necessary for statistical analysis. The R statistical 

analysis package parses the Google trace file, analyzes the data, and plots the results.  

Table 3:  Google Trace Characteristics 

Parameter Description 

  

Google Trace File Publically available Google Trace File 

Job Arrival Rate Measure the number of jobs in 5 min intervals. Jobs are 

assigned unique identification numbers within the trace 

file. 

Task Duration Measure the task durations. All tasks are assigned unique 

identification numbers within the trace file. 

Tasks per Job Measure the tasks per job. Jobs are assigned unique 

identification numbers within the trace file. 

Memory and CPU 

Consumption 

Measure/plot the server-side memory and CPU usage. 

Number of Running Tasks 

Job Type 0, 1,2, 3 

Measure/plot the number of running tasks for each job 

type. 

Task Duration by Job Type 

Job Type 0, 1, 2, 3 

Measure/plot the task durations for each job type. 

 

Tasks per Job by Job Type 

Job Type 0, 1, 2, 3 

Measure/plot the tasks per job for each job type. 

 

Characterizing and modeling the Google trace file provides the essential 

information for designing the synthetic workload. The synthetic workload will have 

statistically similar distributions.  
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Spiral Development 

Synthetic Workload Generation Phase 1 

Phase 1 of the spiral development process explores the Faban software and 

establishes a simple HTTP workload between a client and server. Faban offers a 

command-line utility called Faban Http Bench (fhb), which primarily tests the throughput 

of a single GET or POST request emulating some number of clients [18]. Faban's fhb 

utility provides a simple command line interface that automatically creates and compiles 

an HTTP driver from the command line arguments [18]. The HTTP driver executes, and 

a results summary is printed. Scalability within fhb is limited to one client machine, one 

Java Virtual Machine (JVM), and one URL, as seen in Figure 6. Fhb generates a 

workload by instantiating multiple client threads, each thread runs independently and 

maintains its own statistics. 
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Figure 6:  Spiral Development Phase 1 

 

The fhb utility has numerous command line arguments to specify parameters and 

customize the workload. Table 4 lists the relevant options for creating a simple workload. 

More options are available beyond those listed in Table 4, located at faban.org. Phase 2 

of the spiral development process investigates many of these options. 

 

Table 4:  fhb Options 

Parameter Description Example 

   

-J Pass standard JVM option. -J -Xmx600m, sets max JVM heap size 

-r rampUp/steady/rampDown -r 60/300/60, time in sec for each interval 

-W thinkTime in milliseconds -W 1000, wait one sec between client requests 

-c numThreads -c 100, simulates 100 unique client connections 
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Once fhb is successfully communicating between client and server, and a solid 

understanding of all the options listed in Table 4 exists, the next phase in the spiral 

development process may begin. The fhb command line is a preliminary tool with limited 

functionality, and is not suitable subsequent development phases.  

Synthetic Workload Generation Phase 2 

Phase 2 of the spiral development process integrates the Faban configuration file. 

Rather than passing fhb options via command line, the configuration file contains all the 

parameters that control the workload. Users invoke an Extensible Markup Language 

(XML) encoded file from the command line. The XML configuration file offers more 

parameters than fhb, thus promoting the development of complex workloads. For 

example, a configuration file may include workloads with multiple URLs and varying 

load.  

Threads 

Each thread represents a unique connection to the server -- that is, each thread is a 

client in a logical sense [18]. Understanding the concept of threads, and how Faban uses 

them, is important. The number of threads equals the number of clients, which is also 

equal to the number of jobs. Each thread simulates one client or job. For example, 

launching 50 threads simulates 50 unique clients or jobs. In addition, each thread utilizes 

a unique port number. For example, 25 threads contain 25 unique port numbers. 

Java Virtual Machines 

JVM heap size limits the size of the workload. The JVM can and will run out of 

memory. The following workload characteristics affect the amount of memory used 

within the JVM. 
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 Number of jobs 

 Number of tasks per job 

 Number of running tasks 

 

JVMs not allocated enough memory to perform the workload throw an error. To 

correct this issue, increase the amount of memory that the JVM uses by changing the 

appropriate argument. For example, change the argument -Xmx600m to -Xmx2048m. 

This will increase the heap size from 600 MB to 2 GB. The operating system and 

underlying hardware limit the max heap size. 

Cycle Time and Think Time 

Cycle Time and Think Time are timing delays that help regulate workloads. 

These timing parameters are important because they allow developers to regulate 

significant properties such as server load and task per job. Without them, threads would 

continuously run back-to-back tasks with no delay in between. Although Cycle Time and 

Think Time are similar, there is a subtle difference between the two parameters. 

Cycle time represents the inter-arrival time between successive requests arriving 

at the server [55]. The frequency of the requests remains the same, even if the server is 

slows down, thus causing task duration or response time to increase. A large response 

time, while cycle time remains the same, increases load and degrades performance on the 

server [55]. Figure 7 shows one thread with three tasks per job. Notice the cycle time 

remains the same, even when the task duration varies. 
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Figure 7:  Cycle Time - Three Tasks per Job 

 

Think Time represents the time interval that passes while a user reviews data 

presented on their screen and decides what to do next [55]. Developers can emulate 

Think Time in the configuration file. Closed systems typically use Think Times, where 

known client population and client interaction with the server exist [18]. For cloud 

computing synthetic workload generation, Think Time applies in a slightly different 

manner. Think Time helps define the number of tasks per job. In Figure 8, one thread 

runs for a steady state duration of 6 min, the task duration is 1 min (time it takes for the 

server to process and respond to the client requested task), and Think Time is set 2 min. 

The result is a single thread (one job) that runs two separate tasks, i.e. two tasks per job.  
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Figure 8:  Think Time - Two Tasks per Job 

 

Workload generation experiments utilize Think Time as opposed to Cycle Time 

for time delay parameters. Preliminary exploration during Phase 2 of the spiral 

development process shows Cycle Time does not perform as advertised. Results are 

inconsistent and at times unpredictable. Therefore, Think Time is the preferred time delay 

parameter used for all Faban synthetic workload generation experiments. 

Load Variation 

Constant load patterns are user or application requests that do not vary, and can be 

useful when stress testing a web application or server. On the other hand, variable 

workloads are important because real world workloads do have variation, especially 

public clouds. Fortunately, sound provisioning of data centers and clouds allow them to 

handle such variation. Server loads vary based on user interaction and requests. Varying 

the scale of the workload is necessary to simulate real user requests. Load variation is 

also useful for testing how well elastic cloud management techniques adapt to load 

variation [18]. 
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Faban has a load variation feature for scaling workloads. A workload generation 

run receives a load variation file at submission time [18]. Creation of the requested driver 

threads for the maximum load occurs at the beginning of the run [18]. Extra threads 

remain idle until needed, and return to an idle state between and after uses [18].  

The load variation file is an extensionless file that contains load level records, one 

load per line. Each record is a comma-separated pair of values in the structure <runtime 

in sec>,<thread count> as seen in Figure 9. The runControl element of the configuration 

file calls the variable load file. The example in Figure 9 shows a load of 500 threads for 

300 seconds, followed by a load of 700 threads for 600 seconds, and finally a load of 600 

threads for 300 seconds. Note the <scale> element of the configuration file represents the 

number of threads in the workload, and is equal to the largest thread count value in the 

variable load file. Also, note the <steadyState> element is equal to the sum of the runtime 

values in the variable load file. 

 

Figure 9:  Variable Load File 
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Operation Mix 

User interactions with cloud servers vary in load, and the type of operation varies. 

Users and applications send a variety of requests to servers. When simulating real 

workloads, it is necessary to emulate this type of client request variation. Sending 

identical HTTP GET/POST requests for the same URL is insufficient and does not 

represent real workloads. Fortunately, the Faban workload generator offers several 

different operation mixes [18]: 

 Flat Mix - chose the next operation based on assigned probability 

 Matrix Mix - maintain state and chose next operation based on current 

operation and probability ratio (Markov chain model) 

 Fixed Sequence - call operations in sequence 

 Flat Sequence Mix - select fixed sequences based on assigned probability 

 

Phase 2 of the Spiral Development explores a few critical elements of realistic 

workloads. Threads simulate the number of unique client connections to the server. Think 

Times help define the number of tasks per job. The variable load file specifies the number 

of threads and execution duration, which allows for workload variation. Finally, the 

operation mix diversifies the type and sequence of operations. Figure 10 illustrates the 

utilization of these parameters. 
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Figure 10:  Spiral Development Phase 2 

 

 

Synthetic Workload Generation Phase 3 

The third and final phase of the spiral development includes multiple machines 

running simultaneous Faban workloads. The heuristic from chapter 3 of this determines 

the number of workload generation machines, as seen in Table 2. Each machine will 

simulate workloads with a unique set of characteristics. For example, one machine 

produces workloads that request short duration tasks and contain a small number of tasks 

per job, while another machine produces workloads that request long duration tasks and 

contain one task per job, as seen in Figure 11. The goal of phase 3 is to generate an 
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overall workload that has statistical similarities to the Google trace. Developers must 

have a good understanding of cloud trace characteristics prior to generating a workload.  

The heuristic provides a framework for dividing the appropriate workloads 

between workload generation machines. Developers characterize the resulting workload 

output and compare for statistical similarities to the analyzed trace, then adjust input 

parameters for desired results. Number of job launches and tasks per job are categorical 

parameters commonly adjusted when simulating distributions and fitting curves.  

 

 

Figure 11:  Spiral Development Phase 3 
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Characteristics Experiment Setup 

The spiral development process leads up to this point where Google trace 

characteristics are simulated. The following sections document the parameters and 

settings for virtual machines, as well as the Faban configuration file.  

Virtual Machine Configurations 

Performance of all experiments occurs in a virtual computing environment using 

VMware Workstation. Utilizing virtual machines consolidates resources and eliminates 

the need for separate networked computers. Five virtual machines, one server acting as 

the cloud and four clients simulating hundreds of users and a variety of workloads, are 

able to communicate within a private network. The network adapter hardware setting is 

set to "Bridged" mode, which allows multiple virtual machines to talk to each other 

within the private network. Utilization of the ping command verifies communication 

between multiple host machines. The server and four clients utilized in the experiment 

have configurations with operating systems, software, and network settings, as seen in 

Table 5 and Table 6 below. 

 

Table 5:  Server Configuration 

Parameter Description 

  

Operating System Ubuntu Server 12.04.1 LTS 

Web Server Apache/2.2.22 (Ubuntu) 

Web Server Administration Webmin 1.580 

Private IPv4 Address 192.168.1.109 
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Table 6:  Client Machine Configurations 

Parameter Description 

  

Operating System Ubuntu Desktop 12.04 LTS 

Java Java SE Development Kit 7 

Workload Generator Faban 1.0.2 

Private IPv4 Address Client 1: 192.168.1.119 

Client 2: 192.168.1.115 

Client 3: 192.168.1.118 

Client 4: 192.168.1.117 

 

Faban Parameters 

Machine 1 

Machine 1 simulates a workload with 15 client connections, task duration less 

than one minute, and one task per job. The task is a HTML GET request to the same 

URL. 

Table 7:  Faban Parameters Machine 1 

Parameter Value Description 

   

Steady State 3600 sec Run experiment for 1 hour. 

Think Time 299000 ms Wait 299 sec after each task. Increase Think 

Time to decrease number of tasks per thread. 

Variable Load 

Threads 

0,3,1,0,2,1,0,2,3,0,2,2 Number of threads for the specified Variable 

Load Duration. Each thread simulates a new 

user or job. 

Variable Load 

Duration 

300 sec 5 min interval 

Mix Flat Mix HTML Web Request (1 URL) 

Num Threads 3 Number of Unique Threads in JVM. Increase 

the number of threads to increase number of 

simulated users. 

Num Tasks  Measure the number of tasks. 

Task Duration  Measure the task duration. 

Tasks / Job  Measure the number of tasks per thread. 

Threads are assigned unique port numbers. 
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Machine 2 

Machine 2 simulates a workload with 1 client connection, short task duration less 

than one minute, and 100 tasks per job. The task is a HTML GET request to the same 

URL. 

Table 8:  Faban Parameters Machine 2 

Parameter Value Description 

   

Steady State 3600 sec Run experiment for 1 hour 

Think Time 35500 ms Wait 35.5 sec after each TCP session. Increase Think Time 

to decrease number of tasks per thread. 

Variable Load N/A No load variation 

Mix Flat Mix HTML Web Request (1 URL) 

Num Threads 1 Number of Unique Threads in JVM. 

Num Tasks  Measure the number of tasks. 

Task Duration  Measure the task duration. 

Tasks / Job  Measure the number of tasks per thread. Threads are 

assigned unique port numbers. 

 

Machine 3 

Machine 3 simulates a workload with nine client connection, task durations in the 

5 to 30 min range, and 1-4 tasks per job. The tasks are three file downloads from three 

different URLs. 

Table 9:  Faban Parameters Machine 3 

Parameter Value Description 

   

Steady State 3600 sec Run experiment for 1 hour. 

Think Time 250000 ms, 250000 ms, 

149500 ms, 99500 ms,  

74500 ms 

Wait after each operation. Increase 

Think Time to decrease number of tasks 

per thread. 

Variable Load 7,4,1,7,6,4,3,2,4,9,3,5 Number of threads for the specified 

Variable Load Duration. Each thread 

simulates a new user or job. 
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Variable Load 

Duration 

300 sec 5 min interval 

Mix Probability Mix (0.4, 0.4, 

0.1, 0.05, 0.05) 

5 operations with respective Think 

Times and probability of occurrence. 

Num Threads 9 Number of Unique Threads in JVM. 

Increase the number of threads to 

increase number of simulated users. 

Num Tasks  Measure the number of tasks. 

Task Duration  Measure the task duration. 

Tasks / Job  Measure the number of tasks per thread.  

 

Machine 4 

Machine 4 simulates a workload with threads representing five client connections; 

the task duration is in the 1-hour range, and one task per job. The task is not a file 

download as seen on Machine 3. It is a series of delays on the web server simulating a 

long duration task. Large file downloads in the GB range create system instabilities 

within this small virtual environment, therefore large downloads are avoided. 

Table 10:  Faban Parameters Machine 4 

Parameter Value Description 

   

Steady 

State 

3600 sec Run experiment for 1 hour. 

Think Time 3600000 

ms 

Wait 1 hour after each server request. Increase Think Time to 

decrease number of tasks per thread. 

Variable 

Load 

N/A No load variation 

Mix Flat Mix Server Request (1 URL) 

Num 

Threads 

5 Number of Unique Threads in JVM. Increase the number of 

threads to increase number of simulated users. 

Num Tasks  Measure the number of tasks. 

Task 

Duration 

 Measure the task duration. 

Tasks / Job  Measure the number of tasks per thread. Threads are assigned 

unique port numbers. 

 



 

43 

Scalability Experiment Setup 

The scale of the actual Google workload is much larger than that of the 

characteristics experiment. The experiment reduces the number of unique job launches by 

a factor of 120. The intention is to show statistical similarities in workload distributions. 

The question may arise; can Faban handle the scale of a real cloud workload? The 

scalability experiment will provide an answer to that question.  

Faban Parameters 

Max Tasks per Job 

The experiment will verify Faban is capable of producing thousands of job 

requests from one individual thread. The test parameters come from the max tasks per job 

from the Google trace. 

 

Table 11:  Max TPJ 

Parameter Value Description 

   

Steady State 300 

sec 

Run experiment for 5 min. 

Think Time 60 ms Wait 60 msec after each task. Increase Think Time to decrease 

number of tasks per thread. 

Mix Flat 

Mix 

HTML Web Request (1 URL) 

Num 

Threads 

1 Number of Unique Threads in JVM. Increase the number of 

threads to increase number of simulated users. 

Num Tasks  Measure the number of tasks. 

Task 

Duration 

 Measure the task duration. 

Tasks / Job  Measure the number of Server Requests per thread. Threads are 

assigned unique port numbers. 
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Mean Tasks per Job 

This portion of the experiment will verify if Faban is capable of producing 

hundreds of job requests per thread from hundreds of individual threads. The mean tasks 

per job test parameters come from a section within the Google trace. 

Table 12:  Mean TPJ 

Parameter Value Description 

   

Steady State 300 

sec 

Run experiment for 5 min. 

Think Time 575 ms Wait 575 msec after each task. Increase Think Time to decrease 

number of tasks per thread. 

Mix Flat 

Mix 

HTML Web Request (1 URL) 

Num 

Threads 

120 Number of Unique Threads in JVM. Increase the number of 

threads to increase number of simulated users. 

Num Tasks  Measure the number of tasks. 

Task 

Duration 

 Measure the task duration. 

Tasks / Job  Measure the number of Server Requests per thread. Threads are 

assigned unique port numbers. 

 

Summary 

The methodology of this research effort begins with choosing an appropriate trace 

file, followed by analysis and characterization of a publically available Google trace. 

Next is modeling the workload, and ending with the production of a synthetic workload 

with characteristics similar to that of the Google trace.  

Developers must understand the complex Faban software prior to beginning 

synthetic workload generation. Due to the complex nature, the spiral development model 

is applied. Consecutive phases include additional parameters and modification of these 

parameters until particular synthetic workload characteristics result. There are two 
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primary experiments using the Faban workload generation toolkit. The first and primary 

experiment simulates the Google trace characteristics, while the second experiment 

verifies the scalability of the Faban software. The purpose of the scalability test is to 

verify the Faban toolkit can recreate a large number of client requests as seen in real 

workloads. 
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V.  Analysis and Results 

Chapter Overview 

This chapter is comprised of four main areas. First are the characteristic results 

from the statistical analysis of the Google trace. Second is the analysis and 

characterization of the synthetic workload simulation. Next is a statistical comparison of 

the Google trace and synthetic trace. This chapter ends with a Faban scalability results 

summary. 

Results of Google Trace Analysis 

The Google trace contains important characteristics necessary to simulate a client 

workload. Data from job rate of arrival, server memory and CPU core usage, task 

durations, tasks per job, and number of running tasks is contained within the trace. 

Extracting and characterizing this data by utilizing the heuristic in chapter 3 produces 

distributions that are essential for generating synthetic traces with statistical similarities.  

Job Launches by Job Type 

The heuristic in chapter 3 provides a framework for job launch characterization. 

Part 1 in the Workload Analysis section of the heuristic produces particular job arrival 

rate characteristics of the Google trace. The Google trace has four different job types (0, 

1, 2, and 3). Figure 12 contains a tally of unique job launches for each job type in five-

minute intervals.  
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Figure 12:  Google Cluster Unique Job Launches 

 

Table 13 presents a statistical summary of unique job launches, or job arrivals. 

Table 13:  Job Launches 

Parameter Job Arrival Rate 

(5 min intervals) 

Job Arrival Rate 

(1 hr intervals) 

   

Min 57 1315 

Max 195 1641 

Mean 120 1428 

Standard Deviation 25 121 
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Normalized CPU and Memory Consumption 

The Google trace contains CPU and Memory consumption measurements. Even 

though client-side synthetic trace simulation does not use these measurements directly, it 

is important to understand server side characteristics. Correlation and covariance 

statistics show how CPU and memory are related.  

Figure 13 shows a strong visual correlation between memory and CPU core 

usage. The covariance and correlation data prove memory and CPU usage have a 

relationship. This data represents measurements of the cloud computing system, not the 

clients. In addition, the memory and CPU usage fluctuate around a constant average, 

which may imply a relatively constant load. 
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Figure 13:  Google Cluster Normalized Memory and CPU Consumption 

 

Pearson's Product-Moment Correlation 

The Pearson product-moment correlation coefficient measures the strength of 

linear dependence between memory and CPU consumption. Table 14 contains the 

correlation value of the relationship. 
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Table 14:  Correlation Between Memory and CPU 

Correlation 

Coefficient (r) 

Degrees of 

Freedom 

p-value 95% Confidence 

Interval 

r
2
 

     

0.6668 73 8.8e-11 0.517 to 0.777 0.445 

 

The correlation coefficient value r is equal to 0.6668, which indicates a positive 

relationship between memory and CPU consumption. The square of the coefficient is 

equal to the percent of the variation in one variable that relates to the variation in the 

other.  The square of the coefficient equals 44.5%. The r
2 

value is > 25%, which is a 

strong effect size [15]. In addition, the P-value is less than 5%, so it is statistically 

significant.  

Covariance 

The covariance of the two data sets is 334.3756. It indicates a positive linear 

relationship between the two variables. Since the covariance is > 0, there is a tendency 

for large values of memory consumption to be associated with large values of core 

consumption, and vice versa. 

Task Duration 

The heuristic in chapter 3 provides a framework for task duration characterization. 

Part 2 in the Workload Analysis section of the heuristic produces particular task duration 

characteristics of the Google trace. The bar graph in Figure 14 shows a negative 

exponential distribution of task durations. All task duration calculations result from 

Equation 1. The majority of tasks is on the left side of the plot, and represents tasks that 

run for seconds and minutes. More specifically, the first 12 data points account for 73% 

of all tasks. The first 15 entries account for 20% of all data points and 73.5% of all tasks. 



 

51 

This ratio is similar to the 80/20 rule or Pareto principle, a specific type of long tailed 

distribution. The exception is the spur that appears at the end of the negative exponential 

distribution. The spur represents full-length duration tasks (greater than the length of the 

trace), and is removed from this plot. Had the trace recorded indefinitely, it is assumed 

the spur would not be present, and the distribution would likely taper off into a longer 

tail. The value of the spur is 35,206 tasks. 

 

 

Figure 14:  Google Cluster Task Duration 
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The decay rate estimates throughout this chapter are a result of the formula in 

Equation 3 below [43]. The decay rate estimate for Google task duration from Figure 14 

is -6.9%. 

 

Pt = Po e
-rt

 

Equation 3: Decay Rate  

(Note:  make font color  of caption 

white)(3) 

Where: 

Pt = the final quantity at time t 

Po = the initial quantity at time t = 0 

e = mathematical constant ≈ 2.71828 

r = the rate of decay 

t = time or number of periods 

 

Figure 3 displays task durations without regard to job type. Plotting task duration 

for individual job types may provide additional details and insight into workload 

behavior. All four job types appear to have qualities of a negative exponential 

distribution, as seen in Figure 15.  
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Figure 15:  Google Cluster Task Duration by Job Type 

 

A closer look at the different job types reveals all job types have short and long 

task durations that range from seconds to hours, as seen in Table 15. This characteristic is 

important when designing the synthetic trace.  
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Table 15:  Task Durations: % of Total Jobs 

 All Jobs Job 0 Job 1 Job 2 Job 3 

      

Seconds 29% 35% 12% 59% 13% 

Minutes 44% 43% 63% 7% 9% 

Hours 7% 6% 7% 6% 9% 

Full-Length 20% 16% 18% 28% 69% 

 

Three job types (0, 1, 2) all follow a negative exponential distribution. The 

exception is Job Type 3, which follows a U-shaped distribution, with the maximum 

frequencies at the two extremes of the range, as seen in Figure 16. 

Figure 16 does not show the spurs representing full-length duration tasks. Had the 

trace recorded indefinitely, it is assumed the spurs would not be present, and the 

distribution would likely taper off into a longer tail. The values of the spurs are in Table 

16. 

Table 16: Full Length Tasks 

 Job 0 Job 1 Job 2 Job 3 

     

Task Count 16389 9123 4240 5454 
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Figure 16:  Google Cluster Bar Plot Task Duration by Job Type 

 

Table 17: Task Duration Decay Rate 

 Job 0 Job 1 Job 2 Job 3 

     

Decay Rate -8.3% -6.7% -7.8% N/A 
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All four Job Types in Figure 16 have short and long task durations. This 

characteristic is important when designing the synthetic trace because it may not be 

necessary to simulate individual job types. All four job types have tasks that last seconds, 

minutes, and hours. Consequently, the simulation is simplified by lumping the categories 

together, thus eliminating the need to separate and simulate individual job type 

categories.  

Tasks per Job 

The heuristic in chapter 3 provides a framework for tasks per job 

characterization. Part 3 in the Workload Analysis section of the heuristic produces 

particular tasks per job characteristics of the Google trace. Tasks belong to jobs, and 

jobs may have multiple tasks. In the Google trace, some jobs contain one task while 

others contain thousands of tasks. Table 18 summarizes these characteristics and 

shows a wide range of tasks per job.  

Table 18: Tasks per Job Characteristics 

Parameter Tasks per Jobs 

  

Min 1 

Max 4880 

Decay Rate -2.7% 

 

Tasks per Job Distribution 

The long tail statistical distribution has a high number of occurrences 

followed by a low number of occurrences, which gradually fades off in an asymptotic 

curve [43]. The events that occur at the far end of the tail have a very low probability 

of occurrence. A large share of the population (number of data points) lies in the tail. 
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Table 19 shows the few points that dominate the left side of the graph. For 

example, the first two data points (1 and 2 tasks per job) account for approx 81.7% of 

the total number of jobs. In addition, 86% of all jobs have five tasks or less. The first 

five data points account for just 2.1% of the total number of data points, but account 

for 86% of all jobs. In summary, most jobs contain few tasks, a few jobs contain 

thousands of tasks, and much of the population lies in the tail. Thus, the tasks per job 

characteristics of the trace data follow a long tail statistical distribution. Figure 17 

shows the long tail negative exponential distribution. Notice that both axes use a 

logarithmic scale. A linear scale on the x-axis would result in a much steeper curve of 

the exponential decay. 

Table 19: Small # Tasks per Job 

# Tasks Per Job # Jobs % of Total Jobs 

   

1 6746 73.2% 

2 782 8.5% 

3 174 1.9% 

4 97 1.1% 

5 121 1.3% 
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Figure 17:  Google Tasks per Job w/ Non Linear Regression Fit 

 

Google 2 trace follows a very similar task per job distribution, as seen in [35]. 

Liu [35] claims the jobs with a few tasks, rather than a few jobs with many tasks, drives 

the overall system throughput of the Google 2 trace. This is because jobs with one task 

dominate the left side of the plot, as seen in Figure 17. The only two cloud traces 

publically available at the time of this writing follow this characteristic: most jobs 

contain few tasks. 
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Smoothing 

The scatter.smooth command in R is a smoothing function fitted by the LOESS 

algorithm, a locally weighted polynomial regression model [51]. The LOESS function 

allows the tracing of a smooth curve through a plot, as seen in Figure 17. The polynomial is 

fit to a subset of the data, using weighted least squares, giving more weight to the nearest 

points and less weight to points further away, as in the k-nearest neighbor algorithm [12]. 

The object of the nonlinear nonparametric regression fit is to estimate the regression 

function f( ) directly [24]. The LOESS algorithm attempts to fit the model in Equation 4. 

 

 

yi = f(xi) + εi 

 Equation 4: LOESS Curve  

 

 (4) 

Where: 

f = unspecified regression function 

xi = corresponding data point 

εi = random error 

 

 

Tasks per Job by Job Type 

Figure 17 shows tasks per job without regard to job type. Plotting tasks per job for 

individual job types may provide additional details and insight into workload behavior. All 

four Job Types appear to have some qualities similar to that of a negative exponential 

distribution, especially Job Types 0 and 1, as seen in Figure 18. 
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Figure 18:  Google Tasks per Job by Job Type with Smoothing 

 

All four Job Types in Figure 18 contain numerous values for tasks per job, ranging 

from 1 to thousands. This characteristic is important when designing the synthetic trace 

because it may not be necessary to simulate individual job types. Consequently, the 

simulation is simplified by lumping the categories together, thus eliminating the need to 

separate and simulate individual job type categories, similar to the results of the task 
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duration analysis. 

Table 20: Tasks per Job Decay Rate 

 Job 0 Job 1 Job 2 Job 3 

     

Decay Rate -0.4% -0.5% -1.1% -0.3% 

 

Running Tasks 

The heuristic in chapter 3 provides a framework for running tasks characterization. 

Part 4 in the Workload Analysis section of the heuristic produces particular running tasks 

characteristics of the Google trace. Figure 19 shows a time series of the number of running 

tasks. The definition of "running" is the presence of a task in the trace [11]. Idle tasks with 0 

normalized cores are present in the trace and therefore counted. Although the line plots of 

each of the four job types are a different shape, some display similar behaviors [11]. For 

example, Job Types 2 and 3 both have near constant number of running tasks. In addition, 

Job Types 0 and 1 both have running jobs that fluctuate around a constant average. Table 21 

contains a summary of the mean and standard deviation for number of running tasks within 

each job type. 

 

Table 21: Running Task Mean and Standard Deviation 

 Job 0 Job 1 Job 2 Job 3 

     

Mean 22296 14329 4902 6173 

Standard Deviation 1384 1569 46 28 
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Figure 19:  Google Number of Running Tasks by Job Type 

 

Summary of Google Trace Analysis 

The number of unique job launches is variable, but fluctuates around a constant 

average. Server memory and CPU consumption are highly correlated and fluctuate around 

a constant average. Task durations have a negative exponential distribution and follow the 

Pareto principle. Tasks per job also have a negative exponential distribution and follow 

the Pareto principle. Many jobs with a few tasks and short task durations, rather than a 
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few jobs with many tasks and long task durations, determine the overall system 

throughput [35]. Finally, the number of running tasks is steady or fluctuates around a 

constant average. 

Synthetic Workload Generation Results 

The synthetic workload design replicates certain characteristics of the Google 

trace, such as task duration and tasks per job. This section analyzes important 

characteristics of the synthetic trace, and compares them to the Google trace. 

Job Launches 

Figure 20 shows the number of unique job launches from the synthetic workload 

experiment. The fluctuation in job launches is due to the number of threads on each client 

machine as well as the variable load file. Notice the Total Unique Job Launches 

fluctuates around a constant average, similar to the behavior of the Google trace. 
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Figure 20:  Faban Job Launches 

 

Task Duration 

The simulation eliminates the full duration tasks found in the Google trace, and 

adjusts the three remaining categories of seconds, minutes, and hours accordingly. All 

proportions are preserved. As a result, the simulation task durations as a percent of total 

jobs are as follows in Table 22. 
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Table 22: Synthetic Task Durations as % of Total Jobs 

Task Duration % of Total Jobs 

  

Seconds 21.0% 

Minutes 72.4% 

Hours 6.6% 
 

Figure 21 shows a bar plot of the task durations from the synthetic workload. In 

addition to the bar plot, a Loess smoothing curve is fitted to the data. The curve displays 

a negative exponential distribution, similar to that of the Google trace. 

 

Figure 21:  Faban Task Duration with Smoothing 
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Figure 22 shows a bar plot of the tasks per job from the synthetic workload. In 

addition to the bar plot, a Loess smoothing curve is fitted to the data. The curve displays 

properties of a negative exponential distribution, similar to that of the Google trace. 

 

Figure 22:  Faban Tasks per Job with Smoothing 

 

The design of the synthetic workload contains a small number of tasks per job. 

The data in Table 23 follows the Pareto principle closely: 78.9% of all jobs have one task 

per job, quite close to the 80/20 ratio.  
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Table 23: Small # Tasks per Job 

# Tasks Per Job # Jobs % of Total Jobs 

   

1 60 78.9% 

2 7 9.2% 

3 4 5.3% 

4 4 5.3% 

100 1 1.3% 

 

Synthetic Workload and Google Trace Compared 

Task Length 

Task duration is one of the primary characteristics simulated in the synthetic 

workload experiment, although the server and not the client workload determine it. 

Figure 23 visually compares the Cumulative Distribution Function (CDF) of both the 

Google and synthetic workloads. The CDFs appear to have very similar characteristics, 

both of which are exponentially distributed. 
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Figure 23:  Cumulative Distributions of Task Durations - Google versus Synthetic 

 

Tasks per Job 

The number of tasks per job is another primary characteristics simulated in the 

synthetic workload experiment. Figure 24 visually compares the Cumulative Distribution 

Function (CDF) of the Google and synthetic workloads. The CDFs appear to have very 

similar characteristics, both of which are exponentially distributed. 
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Figure 24:  Cumulative Distributions of Tasks per Job - Google versus Synthetic 

 

Correlation 

Tasks per Job and Task Duration are important characteristics in the simulated 

trace data. Table 24 describes the statistical significance of the comparison between 

Google trace data and synthetic workload.  
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Table 24: Pearson's Product-Moment Correlation  

Parameter Correlation 

Coefficient (r) 

Degrees of 

Freedom 

p-value 95% Confidence 

Interval 

r
2
 

      

Tasks per Job 0.999 2 0.0010 0.95016 to 0.99998 0.998 

Task Duration 

as % Total Jobs 

(sec, min, hr) 

 

 

0.916 

 

 

1 

 

 

0.2636 

 

 

N/A 

 

 

0.839 

Task Duration 

by Task Count 

(see Table 25) 

 

 

0.995 

 

 

2 

 

 

0.0053 

 

 

0.7657 to 0.99990 

 

 

0.990 

 

Correlation coefficients provide an indication of strength of relationship. The Null 

Hypothesis (H0): r = 0, states there is no 'true' relationship. The Alternative hypothesis 

(H1): r ≠ 0, states the relationship is real. A small p value points to strong evidence.  

Regarding tasks per job, there is a 0.1% chance that the relationship under test is 

due to random sampling variability. The p-value is less than 5%, so it is statistically 

significant. The r
2 

value is > 25%, which is a strong effect size [15]. Actually, the r
2 

value 

is nearly equal to 1, with 1 being a perfect goodness of fit. Consequently, we reject the 

null hypothesis H0. 

For Task Duration as % of Total Jobs, a minimum of 2 degrees of freedom (n-2) 

is required for a confidence interval. The data sets are from Table 15 and Table 22. The 

three categories of seconds, minutes, and hours are not enough to meet this criteria. Even 

so, the r value indicates there is some relationship. The p value is not small enough to 

indicate statistically significant evidence. The task duration r
2 

value is > 25%, which is a 

strong effect size [15]. Even though the data points to some relationship, it is not 

statistically significant, and we fail to reject H0. 



 

71 

For Task Duration by Task Count, there is a 0.5% chance that the relationship 

under test is due to random sampling. The p-value is less than 5%, so it is statistically 

significant. The r
2 

value is > 25%, which is a strong effect size [15]. Actually, the r
2 

value 

is nearly equal to 1, with 1 being a perfect goodness of fit. Consequently, we reject the 

null hypothesis H0. 

Table 25: Task Duration Counts 

Trace 1sec to < 5min 5 min 20 min Hour 

     

Google 51,182 9918 6381 181 

Synthetic 202 21 19 5 

 

Covariance 

Table 26 shows the covariance values for task duration and tasks per job. Both 

values, task duration and tasks per job, indicate a positive linear relationship between the 

two data sets. In summary, the distributions have similar behaviors and change together. 

Table 26: Covariance 

Parameter Value 

  

Task Duration 732.0 

Tasks per Job 1259.9 

 

Summary of Synthetic Workload Generation Results 

The number of unique job launches is variable, but fluctuates around a constant 

average. Task durations and tasks per job are both negative exponentially distributed. The 

tasks per job parameter has an 80/20 characteristic, where nearly 80% of jobs contain a 

single task. In addition, cumulative distribution function plots visually compare the 

Google trace to the synthetic workload. The distributions show a strong relationship. 
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Correlation and covariance values show statistical significance, or lack thereof, when 

comparing similarities of task duration and tasks per job. 

Results of Scalability Test 

This experiment scales down the size of the Faban synthetic workload. The 

scalability test determines if the workload generator can produce a load equivalent to that 

of the largest surges in the Google trace.  

Max Tasks per Job 

The max tasks per job value from the Google trace is 4880, as seen in Table 18. 

The test verifies if Faban is capable of creating a load with 1 thread and 4880 jobs. The 

experiment runs for 300 sec with a 60 ms think time. The result of the test is a throughput 

of 4983 tasks. Consequently, Faban is capable of simulating a single user requesting 

thousands of tasks.  

Mean Tasks per Job 

The mean tasks per job value from the Google trace is 19, as seen in Table 18. 

Faban is capable of generating such a load for a sustained amount of time. However, a 

requirement may exist for generation of a larger load, or surge. The Google trace does 

contain a surge with a mean tasks per job value of 521. The mean number of threads in 

the trace is 120. The test verifies if Faban is capable of creating a load with 120 threads 

and 521 tasks per thread, totaling 62,520 tasks. The experiment runs for 300 sec with a 

575 ms think time. The throughput is 62,447 tasks. Consequently, Faban is capable of 

simulating hundreds of users each requesting hundreds of tasks. 
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Summary of Scalability Test 

The scalability test shows Faban can produce large synthetic workloads with load 

sizes comparable to publically available cloud traces. Faban's distributed design makes it 

very well suited for generating large loads, perhaps simulating thousands of users each 

requesting thousands of tasks. The addition of new client workload machines increases 

output capacity. The limiting factor is the JVM and underlying hardware, as described in 

Chapter 3.  
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VI.  Conclusions and Recommendations 

Chapter Overview 

This thesis researches cloud trace characterization and synthetic workload 

generation. Very few publically available cloud traces exist, only two published by 

Google at the time of this writing. Numerous workload generation tools are available, and 

Faban is the tool of choice for this study. Synthetic traces can contain justifiably real 

characteristics, as shown in Chapter 4. The information contained in this thesis will assist 

future researchers who require cloud workloads without using full-blown data sets. 

Conclusions of Research 

Publically available trace files bound research of this nature. More specifically, 

the data contained in the Google trace limits the synthetic workload results of this 

research. Even so, this is a vast improvement over predefined workload with no statistical 

justifications. The information in this thesis provides researchers with a lightweight 

heuristic for generating synthetic workloads using an open source load generator. In 

addition, this research provides Google cloud workload characteristics and methodologies 

that justify statistical similarities. 

Traces 

Numerous publically available trace archives exist, and many contain workload 

traces from computer system technologies such as grids and clusters. Clouds and grids 

have much commonality, with the main differences being: clouds use virtual machines 

while grids use threads, job and task durations are shorter in clouds than grids, and clouds 

have a higher job arrival rate than grids. Characterizing the qualities of grid trace files 
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within the research community is not new. Publications characterizing the Google trace 

and the Google trace itself both appeared at nearly the same time, likely because Google 

employees are involved with the publications. Even so, the Google cloud trace is the first 

known publically available cloud trace, and simulating its characteristics is new to 

academia and the research community. 

The Google workload trace is anonymous and thus has limitations, but still 

contain much useful information. One must become familiarized and understand the data 

prior to characterizing and modeling it. Some of the more important characteristics for 

simulation purposes are job types, job launches and request rates, running tasks, tasks per 

job, and task durations. The goal is generating a synthetic workload with statistically 

significant similarities to the Google trace. 

Workload Generation 

Faban is a free web-benchmarking tool that is well suited for cloud generation. It 

is scalable to meet large workload demands found in clouds. There is a learning curve to 

the software tool, so the spiral development process or similar procedure is supportive 

when generating synthetic workloads. Developers can create different workload 

distributions, such as exponential or normal, by modifying Faban configuration files. 

Think time and variable load parameters are particularly important for shaping the 

distributions.  

Real vs. Synthetic Trace 

The number of job launches in the Google trace is variable and fluctuates around 

a constant average. Server memory and CPU consumption are highly correlated, and 

values fluctuate around a constant average. Task durations and task per job both have 
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negative exponential distributions and follow the Pareto principle. Jobs with a few tasks 

and short task durations, rather than a few jobs with many tasks and long task durations, 

determine the overall system throughput [35]. Finally, the number of running tasks is 

steady or fluctuates around a constant average. 

The number of unique job launches in the synthetic trace is variable, but 

fluctuates around a constant average, similar to the Google trace. Task durations and 

tasks per job are both negative exponentially distributed. The tasks per job parameter has 

an 80/20 characteristic, where nearly 80% of jobs contain a single task. In addition, 

cumulative distribution function plots visually compare the Google trace to the synthetic 

workload. The distributions show a strong relationship. Correlation and covariance values 

prove statistical significance when comparing characteristics of task duration and tasks 

per job. The overall result of the synthetic workload generation is a strong positive 

relationship exists between the Google trace and the synthetic workload.  

Significance of Research 

This research effort proves the heuristic from chapter 3 successful. By gathering 

trace data, analyzing and understand the data, characterizing and modeling it, and finally 

generating a synthetic workload, researchers have the foundation needed for justifying 

realistic characteristics and  proving statistical significance. This research effort provides 

a stepping-stone for engineers and researchers who require a cloud workload. 

Autonomous cloud management techniques and virtual machine optimization are 

significant and relevant research topics that necessitate realistic workloads. The heuristic 
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in this thesis provides vital information for creating justifiably realistic synthetic cloud 

workloads.  

Recommendations for Future Research 

Algorithm 

Develop an algorithm from the heuristic presented in chapter 3 to formalize the 

lightweight synthetic workload generation process. Formalizing the heuristic can 

optimize cloud workload generation, and ultimately further cloud research. 

Supplementary Synthetic Data 

Generating more data at a larger scale can lead to an improved statistical analysis. 

In particular, more variety in task duration and tasks per job can lead to a better 

distribution fit. An ideal fit to the Google trace has a long tail, which requires more data 

points in the tail, for both task durations and tasks per job. Task durations are more a bit 

more complex because the durations rely on the time it takes the server to complete the 

task, hence the need to design additional server-side tasks.  

Additional Cloud Traces 

As new cloud traces become available to the public, researchers must analyze and 

characterize the data. This leads to improvements in quality of synthetic workloads, 

elasticity and optimization algorithms that manage cloud servers, and ultimately the 

services provided by cloud vendors. Owners of cloud traces should follow Google's 

initiative and publish their data for the good of the cloud computing community. 
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Cloud Workload Generation Tools 

Although Faban is well suited for cloud synthetic workload generation, there may 

be superior tools available. One software package that sounds particularly interesting is 

VMmark by VMware, a virtualization platform benchmarking tool. Its primary purpose 

measures datacenter performance, but also includes built-in load generation tools. At a 

minimum it seems worthy of exploring, but does require a very high level of prerequisite 

knowledge in the field of virtual machine administration. In addition, VMmark is a rather 

large system that encompasses numerous smaller systems. Consequently, researchers 

must consider the extensive hardware and software requirements of the system. 

Summary 

Overall, this work analyzes real traces and simulates those characteristics in a 

synthetic workload. Statistical analysis proves the relationships and similarities. 

Specifically, the synthetic task duration and tasks per job distributions mimic that of the 

Google trace. The ability to create justifiably realistic workloads furthers cloud research 

and is not in current literature.  
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