

CLOUD COMPUTING TRACE CHARACTERIZATION AND SYNTHETIC

WORKLOAD GENERATION

THESIS

Salvatore Capra, Civilian, USAF

AFIT-ENG-13-M-11

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the United States Air Force, Department of Defense, or the United

States Government. This material is declared a work of the United States Government

and is not subject to copyright protection in the United States.

AFIT-ENG-13-M-11

CLOUD COMPUTING TRACE CHARACTERIZATION AND SYNTHETIC

WORKLOAD GENERATION

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Cyber Operations

Salvatore Capra, BS

Civilian, USAF

March 2013

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT-ENG-13-M-11

CLOUD COMPUTING TRACE CHARACTERIZATION AND SYNTHETIC

WORKLOAD GENERATION

Salvatore Capra, BS

Civilian, USAF

Approved:

___________________________________ __________

Kenneth M. Hopkinson (Chairman) Date

___________________________________ __________

Jonathan W. Butts, Maj, USAF (Member) Date

___________________________________ __________

Kennard R. Laviers, Maj, USAF (Member) Date

Abstract

This thesis researches cloud computing client initiated workloads. A heuristic

presented in the work defines a process of workload trace characterization and synthetic

workload generation. Analysis and characterization of a cloud trace provides insight into

client request behaviors and statistical parameters. A versatile workload generation tool

creates client connections, controls request rates, defines number of jobs, produces tasks

within each job, and manages task durations. The test system consists of multiple clients

creating workloads and a server receiving requests, all contained within a virtual machine

environment. Statistical analysis verifies the synthetic workload experimental results are

consistent with real workload behaviors and characteristics. This thesis provides

researchers and developers with a lightweight process for characterizing and simulating

cloud workloads.

Table of Contents

Page

Abstract .. iii

Table of Contents ... iv

List of Figures ... vii

List of Tables ... ix

List of Equations .. xi

I. Introduction ...1

General Issue ...1

Problem Statement / Objectives ..1
Research Focus..2

Investigative Questions ...2
Literature Review ..3
Heuristic ..3

Methodology ...3
Analysis and Results ...4

Assumptions and Limitations ..4

II. Literature Review ...5

Chapter Overview ...5
Cloud Computing ..5

Cloud Characteristics ... 5
Cloud Services ... 6
Cloud Traces ... 6

Data Repositories ..7
Limited Trace Availability ... 7
Publically Available Archives ... 7

Cloud and Grid Computing Compared ...9

Cloud is the New Grid ... 9
Cloud and Grid are Different Paradigms ... 10
Job Arrival ... 12

Job and Task Durations .. 13
Cloud vs. Grid Significance .. 13

Google Cluster Usage Trace ...14
Google Cluster .. 14

Scheduling Jobs and Tasks .. 14
Workload Generation Tools ..15

Page

Rain Workload Generator ... 15
Olio Web 2.0 .. 16

Cloudstone ... 17
VMware VMmark .. 17
Faban Workload Generator .. 17
The R Project for Statistical Computing ... 18

Related Works ...18

Summary ...20

III. Workload Generation Heuristic ..21

Chapter Overview ...21

Workload Analysis ... 21
Synthetic Workload Generator Design ... 23

Summary ...26

IV. Methodology ...27

Chapter Overview ...27

Google Trace Statistical Analysis and Characterization ...28
Spiral Development ...29

Synthetic Workload Generation Phase 1 .. 29

Synthetic Workload Generation Phase 2 .. 31
Synthetic Workload Generation Phase 3 .. 37

Characteristics Experiment Setup ...39
Virtual Machine Configurations ... 39

Faban Parameters ... 40
Scalability Experiment Setup ..43

Faban Parameters ... 43
Summary ...44

V. Analysis and Results ..46

Chapter Overview ...46
Results of Google Trace Analysis ...46

Job Launches by Job Type .. 46
Normalized CPU and Memory Consumption .. 48

Task Duration .. 50
Tasks per Job ... 56

Tasks per Job by Job Type .. 59
Running Tasks ... 61
Summary of Google Trace Analysis .. 62

Synthetic Workload Generation Results ...63
Job Launches ... 63

Page

Task Duration .. 64
Synthetic Workload and Google Trace Compared ... 67

Summary of Synthetic Workload Generation Results.. 71
Results of Scalability Test ...72

Max Tasks per Job ... 72
Mean Tasks per Job ... 72
Summary of Scalability Test .. 73

VI. Conclusions and Recommendations ...74

Chapter Overview ...74
Conclusions of Research ...74

Traces .. 74
Workload Generation .. 75
Real vs. Synthetic Trace .. 75

Significance of Research ...76
Recommendations for Future Research ..77

Algorithm ... 77
Supplementary Synthetic Data .. 77
Additional Cloud Traces ... 77

Cloud Workload Generation Tools ... 78
Summary ...78

Bibliography ..79

List of Figures

 Page

Figure 1: Computing Environment Relationships .. 10

Figure 2: Multithreaded Music Player .. 11

Figure 3: Virtual Machines with Single Threaded Music Player 12

Figure 4: State Transitions .. 15

Figure 5: Methodology .. 27

Figure 6: Spiral Development Phase 1... 30

Figure 7: Cycle Time - Three Tasks per Job.. 33

Figure 8: Think Time - Two Tasks per Job ... 34

Figure 9: Variable Load File .. 35

Figure 10: Spiral Development Phase 2... 37

Figure 11: Spiral Development Phase 3... 38

Figure 12: Google Cluster Unique Job Launches .. 47

Figure 13: Google Cluster Normalized Memory and CPU Consumption 49

Figure 14: Google Cluster Task Duration .. 51

Figure 15: Google Cluster Task Duration by Job Type ... 53

Figure 16: Google Cluster Bar Plot Task Duration by Job Type 55

Figure 17: Google Tasks per Job w/ Non Linear Regression Fit 58

Figure 18: Google Tasks per Job by Job Type with Smoothing 60

Figure 19: Google Number of Running Tasks by Job Type .. 62

Figure 20: Faban Job Launches ... 64

Figure 21: Faban Task Duration with Smoothing.. 65

Page

Figure 22: Faban Tasks per Job with Smoothing... 66

Figure 23: Cumulative Distributions of Task Durations - Google versus Synthetic 68

Figure 24: Cumulative Distributions of Tasks per Job - Google versus Synthetic 69

List of Tables

 Page

Table 1: Jobs per Hour ... 12

Table 2: Faban Machine Quantities ... 24

Table 3: Google Trace Characteristics ... 28

Table 4: fhb Options .. 30

Table 5: Server Configuration ... 39

Table 6: Client Machine Configurations.. 40

Table 7: Faban Parameters Machine 1 ... 40

Table 8: Faban Parameters Machine 2 ... 41

Table 9: Faban Parameters Machine 3 ... 41

Table 10: Faban Parameters Machine 4 ... 42

Table 11: Max TPJ ... 43

Table 12: Mean TPJ ... 44

Table 13: Job Launches ... 47

Table 14: Correlation Between Memory and CPU .. 50

Table 15: Task Durations: % of Total Jobs ... 54

Table 16: Full Length Tasks ... 54

Table 17: Task Duration Decay Rate .. 55

Table 18: Tasks per Job Characteristics .. 56

Table 19: Small # Tasks per Job ... 57

Table 20: Tasks per Job Decay Rate ... 61

Table 21: Running Task Mean and Standard Deviation ... 61

Page

Table 22: Synthetic Task Durations as % of Total Jobs ... 65

Table 23: Small # Tasks per Job ... 67

Table 24: Pearson's Product-Moment Correlation .. 70

Table 25: Task Duration Counts ... 71

Table 26: Covariance .. 71

List of Equations

 Page

Equation 1: Task Duration .. 22

Equation 2: Tasks per Job ... 25

Equation 3: Decay Rate .. 52

Equation 4: LOESS Curve .. 59

1

CLOUD COMPUTING TRACE CHARACTERIZATION AND SYNTHETIC

WORKLOAD GENERATION

I. Introduction

General Issue

The future of cloud computing is moving toward a state in which we won’t

compute on local machines, but on highly automated data centers processing workloads

in remote facilities. Commercial cloud services are becoming increasingly available,

popular, complex, large, and difficult to administer and maintain. Current cloud

computing research is vital to solving such demanding problem areas. Research topics

such as autonomic systems, optimization, dynamic scalability, fault tolerance, virtual

machine scheduling and releasing, hypervisor resource management, and clouds for

rent/cost analysis, all rely on some form of workload input.

The accuracy of research results can vary considerably based on slight variations

to the input. Trace files are client workloads, and serve as input to the cloud algorithm.

Understanding and simulating realistic workload characteristics are imperative for

making effective design decisions and adding value to research results. Generating

realistic workloads, or trace files, can contribute to innovation in numerous areas of cloud

computing.

Problem Statement / Objectives

The goal of this thesis is determining whether synthetically generated cloud

workloads have characteristics statistically similar to real cloud traces. The simulated

workloads, or synthetic traces, consist of characteristics of real trace files derived from

2

various forms of statistical analysis. This research is one part of an overall effort of

improving autonomous management methods and resource provisioning in distributed

systems.

Research Focus

This research develops a lightweight process for generating synthetic workloads

using an open source load generator. It focuses on characterizing and simulating a

publically available cloud workload, a trace file recently published in 2012 by Google.

Synthetic workloads will ideally have statistically similar qualities compared to real

traces.

Investigative Questions

What is new about this research? First, characterizing publically available

workload traces is not new to the research community. Characterizing the Google cloud

trace is new, and publications modeling the trace became available nearly the same time

the trace became available. Google employees are involved with such early publications,

giving researchers an early start. What is new about this research is using a new heuristic

to simulate important characteristics of cloud traces using open source or free workload

generation tools. The idea of generating realistic synthetic workloads is critical for

researchers, especially those outside of private entities that do not own such trace files.

Why is this research relevant? This research is pertinent today because scientists

and engineers developing and testing autonomic methodologies, optimization algorithms,

and other cloud management issues, can utilize it. Researchers outside of private cloud

3

companies, such as academia, will have the information and tools necessary to feed their

experiments with justifiably realistic workload inputs.

Literature Review

The next chapter discusses numerous aspects of cloud computing. The chapter

defines cloud computing, compares clouds and grids, clarifies trace file availability,

explores the Google trace, investigates a number of workload generation tools, and

discusses related research.

Heuristic

Chapter 3 introduces a workload characterization and generation heuristic, which

describes techniques that aid in the development of a synthetic workload. The heuristic is

comprised of two main sections. It begins with workload analysis of particular trace file

characteristics, such as job arrival rate and task duration. Next is a synthetic workload

generator design that produces client-initiated workloads with characteristics similar to

those of the analyzed trace file.

Methodology

Chapter 4 describes the methodological approach to this research effort. The

methodology is as follows: obtaining appropriate traces, analyzing and characterizing the

data, performing simulations utilizing the spiral development model, and comparing

results for statistical similarities.

4

Analysis and Results

Chapter 5 begins with a statistical analysis of the Google trace, followed by a

similar analysis of the synthetic workload. Next is a statistical comparison of similarities

to the two traces. Chapter 4 ends with a scalability performance test of the workload

generation tool.

Assumptions and Limitations

This research assumes publically available traces contain real data, and thus

realistic characteristics. The data contained in the trace limits the results of this research.

The small number of available traces also limits researchers. Even though these

assumptions and limitations are restrictive, the results of this research are a vast

improvement over predefined workloads, and provide researchers with the advantage

necessary to justify their workloads.

5

II. Literature Review

Chapter Overview

This chapter begins by defining cloud computing. Second is a discussion on the

limited availability of workload traces and data repositories. Next is comparing and

contrasting cloud and grid computing technologies, followed by a description of the

recently published Google cloud workload trace. The final section is a discussion on free

and open source workload generation tools.

Cloud Computing

Cloud computing has numerous definitions within the scientific community. For

the purpose of this research, the definition provided by the National Institute of Science

and Technology (NIST) is appropriate: Cloud computing is a model for enabling

ubiquitous, convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service provider

interaction [41].

Cloud Characteristics

Within the NIST definition, clouds display the following five essential

characteristics [41]:

 On-demand Self-service. Consumers request and receive computing

capabilities, such as server time and network storage, as needed automatically.

 Broad Network Access. A variety of devices such as smartphones, tablets,

laptops, and workstations gain access to capabilities over the network.

6

 Resource Pooling. Integrated cloud computing resources serve multiple

consumers, with different physical and virtual resources dynamically assigned

and reassigned according to consumer demand. Examples of resources include

storage, processing, memory, and network bandwidth.

 Rapid Elasticity. Capabilities are easily adapted to appropriate quantities

proportionate with demand.

 Measured Service. Cloud systems automatically manage and optimize

resources use by measuring, monitoring, and controlling services such as

storage and processing.

Cloud Services

Cloud computing provides on-demand services and resources for consumers at

three different levels:

 Software as a Service (SaaS). Applications and software running on cloud

infrastructure support massive numbers of customers. Various interfaces, such

as a web browser or other software interface, access applications remotely

through the internet. [23,41].

 Platform as a Service (PaaS). Developers build, test, and deploy applications

and software using an Application Programming Interface (API) environment.

[23,28,41]

 Infrastructure as a Service (IaaS). The capability provided to the consumer is

to provision hardware, software, and other computing resources [23,41].

Dynamically scalable raw infrastructure and associated middleware enable

customers to run virtual machines [28,31]. For example, Amazon offers

Elastic Compute Cloud (EC2) computing resources, which are available to the

public for rent with a pay-per-use pricing model.

Cloud Traces

Recordings of application workload transactions, or traces, contain events such as

request arrival time, job runtime, and other network-level traffic characteristics [3, 5, 35].

Obtaining real traces from cloud vendors is difficult, and publication of the traces is not

7

typical due to the proprietary nature of the data. Cloud computing vendors and/or the

users who generate the traces consider them proprietary data. At the time of this research,

there are only two known publically available cloud workload traces, both from Google.

Data Repositories

Limited Trace Availability

With very few publically available cloud traces offered, analysis of cloud traces is

very limited. The Parallel Workloads Archive, The Grid Workloads Archive, and Failure

Trace Archive all host numerous publically available real trace files. The traces may not

have originated from a cloud platform, but there are enough similarities between clouds

and grids to justify using grid workloads for cloud simulations. The next section, Cloud

and Grid Computing Compared, compares the two computing platforms.

Publically Available Archives

The following list describes several well-known public workload trace archives.

Researchers use the data within these repositories for countless studies and hundreds of

publications.

 Parallel Workloads Archive. Numerous traces are publically available, the

most recent being a workload of accounting records from the RIKEN

Integrated Cluster of Clusters (RICC) installation in Japan [45]. RIKEN is a

scientific research and technology institution of the Japanese government. The

workload trace spans a period from May to Sep 2010, and represents 447,794

jobs. The Parallel Workloads Archive uses the Standard Workload Format for

its trace file format.

 The Grid Workloads Archive. Numerous traces are publically available, the

most recent being from the 2006 timeframe [27]. Traces over five years old

are not used in this research for characterization purposes. The Grid

Workloads Archive uses the Grid Workload Format for its trace file format.

8

 Failure Trace Archive. Numerous traces of parallel and distributed systems

are publically available in this repository of system failure data [20]. The

archive facilitates the design, validation, and comparison of fault-tolerant

models and algorithms [20]. The SETI@home trace is the most recent

available, and comes from a rather large distributed desktop grid system with

approximately 230,000 nodes. The workload trace spans a period of 1.5 years

from 2007-2009. The Failure Trace Archive uses Failure Trace Archive

Format for its trace file format.

 MetaCentrum Data Sets. One trace from the Czech National Grid

Infrastructure is publically available. This workload trace contains 103,656

jobs and spans a period from January to May 2009 [42]. MetaCentrum uses its

own unique trace file format.

 Google Cloud Trace. Google recently published a limited production

anonymized workload trace recorded in May 2011 that spans a period of

approx 6 hours and 15 minutes with 5 min timestamps. It represents over 9000

jobs, each with multiple sub-tasks, totaling over 176,000 tasks [11]. This

thesis research utilizes this trace for characterization and simulation

experiments.

As computing technologies continue to change, the data contained in the traces

that capture the workloads also change. Many of the traces in the above archives are over

five years old, and consequently this research does not consider their use. Although there

are few traces available, especially for academic research, the traces and archives

described above do provide a diverse sampling of real workload traces. Varieties of

statistical analyses characterize the traces. These derived characteristics are the

foundation for building justifiably realistic synthetic traces.

9

Cloud and Grid Computing Compared

Cloud is the New Grid

Grid computing technologies primarily allow consumers to obtain processing

power on demand. Cloud computing and grid computing are similar in the sense that both

manage large datacenters and offer distributed computing resources to users [37].

It is no surprise that cloud computing and grid computing overlap in many

aspects. Cloud computing evolved from grid computing and shares similar infrastructure.

Building cloud environments on top of stable grid infrastructures is possible. In this

scenario, grid services manage cloud virtual machines, as seen in the Nimbus project

[23].

Figure 1 [23] displays the relationship between grids, clouds, and other computing

environments. On the service oriented application side, Web 2.0 covers nearly the entire

spectrum, and cloud computing lies at the large-scale side. Clusters and supercomputers

are traditionally non-service application oriented. Finally, grid computing overlaps with

all aforementioned computing environments. It covers both service and non-service

applications, and is typically of lesser scale than supercomputers and clouds [23].

10

Figure 1: Computing Environment Relationships [23]

Cloud computing may be considered an extension or evolution of grid computing.

Both share the same vision of reduced cost, increased reliability, and greater flexibility

[13]. In addition, both share the concept of shifting computers from something we

purchase and manage ourselves to something operated by third party utilities.

Cloud and Grid are Different Paradigms

Virtualization and Threads

Things are not what they used to be, especially when it comes to massive amounts

of data and computing power. Large-scale commercial cloud systems contain thousands

of computers and process millions of jobs in virtual machines. This virtualization is a

11

crucial component found in most clouds and allows for encapsulation and abstraction

[13]. Virtualization is similar to the concept of threads used in grid systems, where

multithreading allows for concurrent execution of the threads. The concept of dynamic

scalability, or elasticity, is the ability to add and remove capacity and resources based on

actual usage, made possible through virtualization. A disadvantage of virtualization is

that it takes time to setup, and is major concern for efficient cloud utilization [7].

Figure 2 [6] shows an example of a grid system running a multithreaded music

player application. In this simplified grid system, each user has a dedicated thread. Notice

that any single failure could negatively affect all users in the system.

Figure 2: Multithreaded Music Player [6]

Figure 3 [6] shows an example of a cloud system running a single-threaded music

player application. In this simplified cloud system, each user has a dedicated virtual

machine. Notice that if the music player application fails, the impact is contained to one

virtual machine and thus affects just one user.

12

Figure 3: Virtual Machines with Single Threaded Music Player [6]

Clouds rely heavily on virtual machines, while grids typically do not. Clouds are

massively scalable commercial systems consisting of hundreds of thousands of computers

that consumers can access on-demand. Virtualization and sheer size are two of the

biggest differences between clouds and grids. Even so, they share much commonality in

vision, architecture, and technology.

Job Arrival

Job arrival rates in clouds are typically higher than grids and clusters. Table 1

shows the job arrival rate of some popular and well-studied public traces. Based on the

data in Table 1, job submission frequency is much higher in clouds than that of grid or

cluster systems.

Table 1: Jobs per Hour

 Auvergrid RICC ANL Intrepid Google 1 Google 2

Type Grid Cluster Cluster Cloud Cloud

Mean 48 122 11 1475 552

13

Table 1 compares job arrival rates of grids, clusters, and clouds. Perhaps a

comparison of grid versus cluster computing is necessary. Clusters typically consist of

several homogeneous computers (same hardware and OS) working together to solve a

problem, and are controlled by a central resource manager [29]. On the other hand, grids

consist of several heterogeneous networked computers (different OS and hardware),

working together and utilizing spare computing power [29]. Clusters are typically housed

together in a central location, while grids are distributed over a large area such as Local

Area Network (LAN) or Wide Area Network (WAN) [29].

Job and Task Durations

The work of Di et al [17] compares the Google cloud load versus grids. The

general observation is that Google jobs are much shorter than grid jobs. For example,

over 80% Google jobs’ durations are under 1000 seconds, while over half of grid jobs are

over 2000 seconds. In addition, approximately 94% of Google task executions complete

within 3 hours, while only 70% of grid task executions complete within 12 hours [17].

This difference in task duration is mainly because Google jobs, such as keyword search,

are inherently short duration and often real-time, while grid jobs are usually based on

longer duration complex scientific problems. [17]

Cloud vs. Grid Significance

In summary, clouds have much shorter job durations but higher arrival rate as

compared to grids and clusters. These are important characteristics that researchers must

consider when creating synthetic workloads to drive their experiments.

Why be concerned with grid workload when cloud workloads are publically

available? First, timing is an issue. The Google cloud trace publication occurred after the

14

start of this research. In addition, there are relatively few cloud traces compared to grid

traces. Many publications and much research exist on grid traces. Due to the limited

availability of cloud traces, researchers will continue to rely on the relatively larger

number of grid and cluster traces for their work.

Google Cluster Usage Trace

This section introduces the trace data from a Google datacenter. The data in the

trace is highly anonymized for confidentiality reasons. The Google trace is from May

2011 and contains 6 hours 15 minutes of data capture, 3.5 million entries (observations),

over 9000 jobs, and over 176,000 tasks. The file is available for download in comma-

separated values (CSV) format.

Google Cluster

Google datacenters contain clusters, or sets of racked machines connected by a

high-speed network [49]. User requests arrive in the form of jobs, with each job

containing one or more tasks. Tasks that belong to the same parent job have similar

resource usage requirements [35]. Jobs are assigned unique 64-bit identifiers, which are

never reused [49].

Scheduling Jobs and Tasks

Google tasks have a life cycle of four different states: unsubmitted, pending,

running, and dead, as shown in Figure 4. State transitions are events that either change

the state of the task or affect the scheduling state [49]. High priority tasks are scheduled

before low priority ones, and first-come-first-serve (FCFS) applies to tasks with equal

priorities.

15

Figure 4: State Transitions [49]

It helps to understand the task lifecycle and state transition behavior prior to

characterization and analysis of the trace data. Ultimately, researchers will understand the

data to a level where it can be simulated using workload generation tools.

Workload Generation Tools

Numerous workload generation tools exist. Free or open source tools also exist. It

is necessary to evaluate the available tools then choose one for simulations. At a

minimum, the tool should have flexibility in request types, request rates, and tasks per

job.

Rain Workload Generator

Rain is a statistics-based workload generation toolkit that uses distributions to

model different workload classes [46]. It allows for delays between operation execution

via cycle and think times. Rain assumes familiarity with workload generation and server

16

configuration/setup. The flexible and customizable workload characterization supports

load variations. Rain has a Generator API for application specific load generators that

target new systems and applications [46]. Rain Workload Toolkit is well suited for cloud

workload generation. Unfortunately, documentation is minimal and lacks detail.

Available tutorials are Olio and Raddit specific only. Consequently, Rain is not suitable

for this research.

Olio Web 2.0

Olio is a Web 2.0 toolkit to aid in performance evaluations of web technologies. It

is a Web 2.0 application that functions as a social event calendar. The toolkit also defines

ways to drive load against the web application, which allows for performance

measurements [44]. Olio is primarily for learning Web 2.0 technologies, evaluating the

three implementations (PHP, Java EE, and RubyOnRails (ROR)), evaluating server

technologies, and driving a load against the application to evaluate the performance and

scalability of various platforms [44].

Olio has seven distinct operations that a workload can perform:

1. Homepage

2. Login

3. Tag Search

4. Event Detail

5. Person Detail

6. Add Person

7. Add Event

17

Olio is well documented, but assumes prerequisite knowledge with setup and

operation of apache web servers and MySQL databases. Olio is not in itself a workload

generator; it is the application that receives requests from a workload generator. It helps

aid in server design decisions. The seven operations that Olio offers are all short duration

tasks. This research effort requires a variety of task durations from seconds to hours;

therefore, Olio is not an appropriate cloud server.

Cloudstone

Cloudstone is a multi-platform, multi-language performance measurement tool for

Web 2.0 and Cloud Computing [14]. It deploys on an instance of the Amazon Elastic

Cloud Computing (EC2) data center, and primarily measures database performance.

Cloudstone uses Olio as a Web 2.0 application. Standalone deployment is possible using

Olio and Faban Workload Generator [14]. Cloudstone is well suited for cloud

performance measurement, but is not in itself a workload generator.

VMware VMmark

VMmark is a benchmark tool used to measure performance and scalability of

applications running in virtualized environments [57]. VMmark has extensive hardware

and software requirements compared to the aforementioned tools. VMmark enables users

to measure, view, and compare virtual datacenter performance [5]. It utilizes two

previously discussed toolkits, Rain and Olio. Overall, VMmark is well documented, but

this research does not utilize VMmark due to time constraints.

Faban Workload Generator

Faban is a Markov-chain-based workload generator, and is widely used for server

performance and load testing, also referred to as benchmarking [18]. It contains features

18

that measure and log key performance metrics, and automate statistics collection and

reporting. Faban supports numerous servers such as Apache httpd, Sun Java System Web,

Portal and Mail Servers, Oracle RDBMS, memcached, and others [18]. Perhaps the most

important feature pertaining to this research is developers can build and modify realistic

workloads.

Overall, Faban is well documented with manuals, tutorials, blogs, and other web

documentation. Due to its distributed and scalable design, Faban is well suited for

generating cloud computing workloads [18]. Consequently, Faban is the tool of choice

for generating workloads in this research effort.

The R Project for Statistical Computing

R is a free and open source statistical analysis and graphics tool [31]. While R is

not a workload generation tool, this research utilizes it extensively for data analysis,

statistics collection, characterization, and graphics of cloud trace files.

Related Works

This research focuses on the analysis and synthesis of client-initiated workload

characteristics contained within cloud trace files. The work most related to the work

presented here is [58]. In [58], Wang et al. discuss analyzing and synthesizing realistic

cloud workloads. The authors use a public 6-hour Google trace to design realistic cloud

workloads, which drive the evaluation of Hadoop job schedulers and Hadoop shared

storage system performance. The trace analysis focuses on job/task classification and

resource utilization patterns. The authors attempt to predict future task and job behavior

based on past information. MRPerf simulator is the workload generation tool utilized for

19

modeling MapReduce application performance. Wang et al. offer an algorithm for

synthesizing realistic cloud traces based on pattern recognition, although the authors describe

the results of the algorithm as a good first step towards workload generator development

[58]. Unlike the work presented in this thesis, the authors assume statistical similarities

between the analyzed trace and the synthesized workload.

Di et al. [17] describe a similar cloud workload analysis. The authors perform a

limited characterization of job/task load and server load of a 29-day Google trace. The

research presented in the article compares statistical similarities between the Google trace

and grid traces with regard to client initiated workload and host load, with much of the

focus on host load [17]. The authors claim significant difference between clouds and

grids exist due to differences in user interaction and host applications.

Liu et al. [35] present characteristics of a 29-day Google trace, and focus on

patterns of machine maintenance events and job/task behaviors. The authors study virtual

machine management, job scheduling and processing, and cluster resource utilization.

Liu et al. claim the Google trace discloses much information about how this particular

Google cluster operates [35].

Chen et al. [11] developed a limited statistical profile of a 6-hour public Google

trace. The authors cluster job types using the k-means clustering algorithm, and correlate

job semantics and behavior [11]. Chen et al. claim the trace analysis provides system

design insights, and make numerous implications regarding scheduling algorithms,

cluster management, and capacity planning.

Reiss et al. [48] describe the scheduler request and utilization of a 29-day Google

trace. The research characterizes cluster resource request, resource utilization, and

20

associated distributions. The authors show the overall trace consists of a large number of

small requests, but a small number of large requests dominate its resource usage [48].

Reiss et al. claim they have found two scheduling characteristics that should be addressed

in future scheduler designs: scheduler resource request and usage mismatches, and

scheduling delays due to unrealistic task constraints [48].

Summary

This chapter defines cloud computing, discusses publically available traces, and

highlights the differences between cloud and grid workloads. The Google trace data is a

good fit for this thesis research for the following reasons: the Google trace is new, and

most importantly, it represents a cloud workload. It may be the first of its kind ever made

available to the public. Other companies and owners of cloud traces should follow suit

for the benefit and advancement of cloud research. Faban workload generator is the tool

of choice for this research for a few reasons: Faban is highly customizable, it has multiple

levels of automation, and thankfully, it is well documented.

21

III. Workload Generation Heuristic

Chapter Overview

This chapter introduces a workload generation heuristic, which describes

techniques that aid in the development of a synthetic workload. The heuristic may not

generate optimized results like that of an algorithm, but it does provide reasonable results

in an acceptable amount of time. Developers should adjust and fine-tune parameters as

necessary to achieve desired results, characteristics, and distributions.

Workload Analysis

It is important that researchers become familiar with cloud workload trace

properties and characteristics prior to generating a workload. First, researcher must locate

and download the appropriate trace file. The following steps describe how to extract

characteristics and properties from the trace as necessary for workload simulation. Use a

statistical package, such as the R programming language, for computations and graphics.

This research effort focuses on four main categories of workload characteristics:

Job Arrival Rate, Task Duration, Tasks per Job, and Running Tasks. Each category

results in a statistical distribution, such as negative exponential or constant, as seen in the

Google trace analysis in chapter 5. The characteristics of these distributions provide input

to the synthetic workload design.

1. Job Arrival Rate

a. Job Arrival Rate represents the number of unique connections to a server

over time.

b. Calculate the Job Arrival Rate using a statistical package, such as R, by

tallying the number of unique jobs per interval of time. In the Google

trace, for instance, each job is labeled with a unique ParentID number.

22

c. Using a statistical package, characterize the resulting distribution using the

appropriate statistical methods, modeling, or curve fitting. For example,

the Google trace Job Arrival Rate has a distribution that fluctuates around

a constant average.

d. If the trace contains multiple jobs types, calculate the Job Arrival Rate and

characterize the resulting distributions for each job type.

2. Task Duration

a. Task Duration represents the time it takes for a server to process and

respond to a client request.

b. Find all occurrences of a unique task and note the time stamp information.

Calculate Task Duration using a statistical package, such as R, by

subtracting the smallest time stamp value from the largest time stamp

value for each unique task in the trace. In the Google trace, for instance,

each ParentID contains one or more tasks, labeled as TaskID. Each of

these task entries contains time stamp information. Refer to Equation 1 for

the Task Duration calculation.

TD = Tfinal - Tinit

Equation 1: Task Duration

 (1)

Where:

TD = Task Duration time

Tfinal = time stamp of last occurrence of unique task

Tinit = time stamp of first occurrence of unique task

c. Using a statistical package, characterize the resulting distribution using the

appropriate statistical methods, modeling, or curve fitting. For example,

the Google trace Task Duration has negative exponential distribution

characteristics.

d. If the trace contains multiple job types, calculate the Task Duration and

characterize the resulting distributions for each job type.

3. Tasks per Job

a. Tasks per Job represents the number of tasks contained within each job or

unique client connection to the server.

b. Tally the number of unique tasks within each unique job using a statistical

package, such as R. In the Google trace, for instance, each ParentID is a

job that contains one or more tasks, labeled as TaskID.

23

c. Using a statistical package, characterize the resulting distribution using the

appropriate statistical methods, modeling, or curve fitting. For example,

the Google trace Tasks per Job has negative exponential distribution

characteristics.

d. If the trace contains multiple job types, calculate the Tasks per Job and

characterize the resulting distributions for each type.

4. Running Tasks

a. Running Tasks represents the presence of a task in a trace file. In the

Google trace, for instance, a running task means the TaskID is present in

the trace.

b. Count the number of unique tasks per unit of time using a statistical

package, such as R. In the Google trace, for instance, count the number of

unique TaskIDs per five minute time interval.

c. Using a statistical package, characterize the resulting distribution using the

appropriate statistical methods, modeling, or curve fitting. For example,

the Google trace Running Tasks has a distribution that fluctuates around a

constant average.

d. If the trace contains multiple job types, calculate the Running Tasks and

characterize the resulting distributions for each job type.

Synthetic Workload Generator Design

This research utilizes Faban, a free and open source workload creation

framework, as a synthetic workload generator. The characteristics and distributions from

each of the four categories in the previous section determine the workload design

parameters. The properties of the distributions help foster effective workload generator

design decisions. It is important to understand the distribution properties prior to

generating a workload.

1. Determine the total number of job launches. Within Faban, for instance, threads

represent job launches, or unique client connection to the server.

a. For a scaled down experiment, begin by reducing the actual cloud trace

job launches by a factor of 100.

2. Establish the number of workload generation machines. Both Task Durations and

Tasks per Job determine the number of workload generation machines. Multiple

24

machines are necessary due to limitations of Faban and may not be required for

other workload generators.

a. Task Duration represents the time it takes for a server to process and

respond to a client request.

b. Divide Task Duration into three categories (short is seconds, medium is

minutes, long is hours). Begin by allocating one workload generation

machine (computer or virtual machine) for each Task Duration category.

For example, if a workload contains three Task Duration categories (short,

medium, and long), the workload requires three workload generation

machines. Keep in mind this number of machines can grow, depending on

Tasks per Job.

c. Tasks per Job represents the number of tasks contained within each job or

unique client connection to the server.

d. Divide Tasks per Job into categories. For example, 1-9 is small, 10-99 is

medium, and 100 or more is large. The number of categories and category

ranges may be altered as necessary per simulation requirements. If only

one Tasks per Job category exists per Task Duration category, one Faban

machine should suffice. For multiple categories, assign one category per

machine.

e. Table 2shows an example requiring four Faban machines:

Table 2: Faban Machine Quantities

Task Duration Tasks per Job Faban Machines

Seconds Small (1) Machine 1

Large (100) Machine 2

Minutes Small (1-4) Machine 3

Hours Small (1-4) Machine 4

3. Set the number of job launches per workload generation machine. In Faban, for

instance, threads represent job launches, which are set using the scale parameter.

The number of job launches per workload generation machine affects the

resulting workload distribution. Assign parameters on each workload generation

machine such that the output mimics that of the distribution determined in the

25

workload analysis section. Choose a subset of critical points from the distribution

in the workload analysis section that will result in similar distribution shapes.

a. Start with outliers, such as large (100) Tasks per Job, as seen in Table 2,

Machine 2. In the Google trace, for instance, the number of clients

requesting 100 Tasks per Job is relatively small compared to other

categories. Assign a small number of jobs to the 100 Tasks per Job

category, such as 1% of total jobs. For instance, in an overall Faban

workload of 100 unique job launches, assign one thread to Machine 2.

b. Determine another workload generation machine that requires a small

number of jobs. In the Google trace, for instance, the number of clients

requesting Task Durations in the hour range is relatively small compared

to other categories. Assign a small number of jobs to the hours Task

Duration category, such as 5% of total jobs. For instance, in an overall

Faban workload of 100 unique job launches, assign five threads to

Machine 4.

c. Divide the remaining threads between the remaining Machines, as

required to mimic the appropriate distribution. For example, assign 25 jobs

to Machine 1 to simulate a portion of the workload with 25 client

connections and one Task per Job.

4. Set the appropriate timing or delay parameter to define the number of Tasks per

Job. In Faban, for instance, Tasks per Job cannot be set directly. Instead, define

Tasks per Job indirectly using the thinkTime parameter. Increase the thinkTime

parameter to decrease the number of tasks per job. This research develops the

formula in Equation 2 to clarify the Tasks per Job calculation.

tsteadystate = TpJ (TD + TT)

Equation 2: Tasks per Job

 (2)

Where:

tsteadystate = total test duration time

TpJ = Tasks per Job

TD = Task Duration

TT = Think Time, simulates the amount of time that passes between tasks

5. Vary the workload arrival rate as necessary. Client-initiated workloads typically

vary and are not flat. For example, the Google trace workload arrival rate

fluctuates around a constant average. Workload generation tools may have a

26

feature that allows for workload variation. Faban, for instance, utilizes a load

variation file to vary load patterns.

6. Workloads may require Task Duration category subsets, which provide more data

points or resolution when simulating a distribution. For example, in Table 27, the

minutes Task Duration category may require subcategories of 1, 5, and 20

minutes. In this case, multiple Task Durations are assigned to one machine. A

feature may be present in the workload generation tool to accommodate this. In

Faban, for instance, the operationMix parameter allows single threads to perform

multiple separate operations, such as GET requests to multiple URLs. If such a

feature is not available, assign one workload generation machine per subcategory.

a. In Faban, a Flat Mix performs the same operation, such as a short duration

HTML web request.

b. In Faban, a Probability Mix will perform different operations based on

probabilities assigned. Use this parameter to change the operation. For

example, a workload may contain task durations that last minutes (1, 5,

and 20 min), each at a unique URL. Assign probabilities as necessary for

determining the number of times performing each operation.

7. Determine the total test duration, which is the workload runtime. In Faban, for

instance, the steadyState parameter defines the total test duration.

Summary

This chapter defines a workload generation heuristic, which begins with a

workload analysis of an actual trace file, and ends with a synthetic workload generation

process. The synthetic workload output should have statistical similarities when

compared to the characteristic results of the workload analysis. Developers should adjust

the necessary parameters to obtain appropriate statistical similarities.

27

IV. Methodology

Chapter Overview

Analysis of the publically available Google cloud trace file for statistical

characteristics focuses on client-initiated requests/workloads. This research uses the R

statistical computing package for analysis of the Google trace. Some of the most

important client workload characteristics include unique job launches, task duration, and

tasks per job. Once the workload is analyzed and characterized, the results model a

synthetic cloud workload. The resulting workload will have characteristics with statistical

similarities to the Google trace. Figure 5 shows the overall methodological approach to

this research effort.

Figure 5: Methodology

Implementation of the spiral development process within the third step of Figure 5

facilitates synthetic workload generation and design. The spiral model encourages the

addition new synthetic workload elements, as information becomes available. The earliest

phase is quite simple with a focus on exploration and learning. Each iteration adds a level

of complexity to the workload generator. The final iteration contains the necessary

elements and parameters for production of a justifiably realistic synthetic workload.

Trace Files
Statistical
Analysis &

Characterization

Synthetic
Workloads /

Models

Realistic
Workload

28

Google Trace Statistical Analysis and Characterization

Google trace file statistical analysis results provide the foundation for modeling

and generating synthetic workloads. Although the file is highly anonymous, there is an

abundance of information available for both client and server side characterizations.

Table 3 describes the parameters necessary for statistical analysis. The R statistical

analysis package parses the Google trace file, analyzes the data, and plots the results.

Table 3: Google Trace Characteristics

Parameter Description

Google Trace File Publically available Google Trace File

Job Arrival Rate Measure the number of jobs in 5 min intervals. Jobs are

assigned unique identification numbers within the trace

file.

Task Duration Measure the task durations. All tasks are assigned unique

identification numbers within the trace file.

Tasks per Job Measure the tasks per job. Jobs are assigned unique

identification numbers within the trace file.

Memory and CPU

Consumption

Measure/plot the server-side memory and CPU usage.

Number of Running Tasks

Job Type 0, 1,2, 3

Measure/plot the number of running tasks for each job

type.

Task Duration by Job Type

Job Type 0, 1, 2, 3

Measure/plot the task durations for each job type.

Tasks per Job by Job Type

Job Type 0, 1, 2, 3

Measure/plot the tasks per job for each job type.

Characterizing and modeling the Google trace file provides the essential

information for designing the synthetic workload. The synthetic workload will have

statistically similar distributions.

29

Spiral Development

Synthetic Workload Generation Phase 1

Phase 1 of the spiral development process explores the Faban software and

establishes a simple HTTP workload between a client and server. Faban offers a

command-line utility called Faban Http Bench (fhb), which primarily tests the throughput

of a single GET or POST request emulating some number of clients [18]. Faban's fhb

utility provides a simple command line interface that automatically creates and compiles

an HTTP driver from the command line arguments [18]. The HTTP driver executes, and

a results summary is printed. Scalability within fhb is limited to one client machine, one

Java Virtual Machine (JVM), and one URL, as seen in Figure 6. Fhb generates a

workload by instantiating multiple client threads, each thread runs independently and

maintains its own statistics.

30

Figure 6: Spiral Development Phase 1

The fhb utility has numerous command line arguments to specify parameters and

customize the workload. Table 4 lists the relevant options for creating a simple workload.

More options are available beyond those listed in Table 4, located at faban.org. Phase 2

of the spiral development process investigates many of these options.

Table 4: fhb Options

Parameter Description Example

-J Pass standard JVM option. -J -Xmx600m, sets max JVM heap size

-r rampUp/steady/rampDown -r 60/300/60, time in sec for each interval

-W thinkTime in milliseconds -W 1000, wait one sec between client requests

-c numThreads -c 100, simulates 100 unique client connections

31

Once fhb is successfully communicating between client and server, and a solid

understanding of all the options listed in Table 4 exists, the next phase in the spiral

development process may begin. The fhb command line is a preliminary tool with limited

functionality, and is not suitable subsequent development phases.

Synthetic Workload Generation Phase 2

Phase 2 of the spiral development process integrates the Faban configuration file.

Rather than passing fhb options via command line, the configuration file contains all the

parameters that control the workload. Users invoke an Extensible Markup Language

(XML) encoded file from the command line. The XML configuration file offers more

parameters than fhb, thus promoting the development of complex workloads. For

example, a configuration file may include workloads with multiple URLs and varying

load.

Threads

Each thread represents a unique connection to the server -- that is, each thread is a

client in a logical sense [18]. Understanding the concept of threads, and how Faban uses

them, is important. The number of threads equals the number of clients, which is also

equal to the number of jobs. Each thread simulates one client or job. For example,

launching 50 threads simulates 50 unique clients or jobs. In addition, each thread utilizes

a unique port number. For example, 25 threads contain 25 unique port numbers.

Java Virtual Machines

JVM heap size limits the size of the workload. The JVM can and will run out of

memory. The following workload characteristics affect the amount of memory used

within the JVM.

32

 Number of jobs

 Number of tasks per job

 Number of running tasks

JVMs not allocated enough memory to perform the workload throw an error. To

correct this issue, increase the amount of memory that the JVM uses by changing the

appropriate argument. For example, change the argument -Xmx600m to -Xmx2048m.

This will increase the heap size from 600 MB to 2 GB. The operating system and

underlying hardware limit the max heap size.

Cycle Time and Think Time

Cycle Time and Think Time are timing delays that help regulate workloads.

These timing parameters are important because they allow developers to regulate

significant properties such as server load and task per job. Without them, threads would

continuously run back-to-back tasks with no delay in between. Although Cycle Time and

Think Time are similar, there is a subtle difference between the two parameters.

Cycle time represents the inter-arrival time between successive requests arriving

at the server [55]. The frequency of the requests remains the same, even if the server is

slows down, thus causing task duration or response time to increase. A large response

time, while cycle time remains the same, increases load and degrades performance on the

server [55]. Figure 7 shows one thread with three tasks per job. Notice the cycle time

remains the same, even when the task duration varies.

33

Figure 7: Cycle Time - Three Tasks per Job

Think Time represents the time interval that passes while a user reviews data

presented on their screen and decides what to do next [55]. Developers can emulate

Think Time in the configuration file. Closed systems typically use Think Times, where

known client population and client interaction with the server exist [18]. For cloud

computing synthetic workload generation, Think Time applies in a slightly different

manner. Think Time helps define the number of tasks per job. In Figure 8, one thread

runs for a steady state duration of 6 min, the task duration is 1 min (time it takes for the

server to process and respond to the client requested task), and Think Time is set 2 min.

The result is a single thread (one job) that runs two separate tasks, i.e. two tasks per job.

34

Figure 8: Think Time - Two Tasks per Job

Workload generation experiments utilize Think Time as opposed to Cycle Time

for time delay parameters. Preliminary exploration during Phase 2 of the spiral

development process shows Cycle Time does not perform as advertised. Results are

inconsistent and at times unpredictable. Therefore, Think Time is the preferred time delay

parameter used for all Faban synthetic workload generation experiments.

Load Variation

Constant load patterns are user or application requests that do not vary, and can be

useful when stress testing a web application or server. On the other hand, variable

workloads are important because real world workloads do have variation, especially

public clouds. Fortunately, sound provisioning of data centers and clouds allow them to

handle such variation. Server loads vary based on user interaction and requests. Varying

the scale of the workload is necessary to simulate real user requests. Load variation is

also useful for testing how well elastic cloud management techniques adapt to load

variation [18].

35

Faban has a load variation feature for scaling workloads. A workload generation

run receives a load variation file at submission time [18]. Creation of the requested driver

threads for the maximum load occurs at the beginning of the run [18]. Extra threads

remain idle until needed, and return to an idle state between and after uses [18].

The load variation file is an extensionless file that contains load level records, one

load per line. Each record is a comma-separated pair of values in the structure <runtime

in sec>,<thread count> as seen in Figure 9. The runControl element of the configuration

file calls the variable load file. The example in Figure 9 shows a load of 500 threads for

300 seconds, followed by a load of 700 threads for 600 seconds, and finally a load of 600

threads for 300 seconds. Note the <scale> element of the configuration file represents the

number of threads in the workload, and is equal to the largest thread count value in the

variable load file. Also, note the <steadyState> element is equal to the sum of the runtime

values in the variable load file.

Figure 9: Variable Load File

36

Operation Mix

User interactions with cloud servers vary in load, and the type of operation varies.

Users and applications send a variety of requests to servers. When simulating real

workloads, it is necessary to emulate this type of client request variation. Sending

identical HTTP GET/POST requests for the same URL is insufficient and does not

represent real workloads. Fortunately, the Faban workload generator offers several

different operation mixes [18]:

 Flat Mix - chose the next operation based on assigned probability

 Matrix Mix - maintain state and chose next operation based on current

operation and probability ratio (Markov chain model)

 Fixed Sequence - call operations in sequence

 Flat Sequence Mix - select fixed sequences based on assigned probability

Phase 2 of the Spiral Development explores a few critical elements of realistic

workloads. Threads simulate the number of unique client connections to the server. Think

Times help define the number of tasks per job. The variable load file specifies the number

of threads and execution duration, which allows for workload variation. Finally, the

operation mix diversifies the type and sequence of operations. Figure 10 illustrates the

utilization of these parameters.

37

Figure 10: Spiral Development Phase 2

Synthetic Workload Generation Phase 3

The third and final phase of the spiral development includes multiple machines

running simultaneous Faban workloads. The heuristic from chapter 3 of this determines

the number of workload generation machines, as seen in Table 2. Each machine will

simulate workloads with a unique set of characteristics. For example, one machine

produces workloads that request short duration tasks and contain a small number of tasks

per job, while another machine produces workloads that request long duration tasks and

contain one task per job, as seen in Figure 11. The goal of phase 3 is to generate an

38

overall workload that has statistical similarities to the Google trace. Developers must

have a good understanding of cloud trace characteristics prior to generating a workload.

The heuristic provides a framework for dividing the appropriate workloads

between workload generation machines. Developers characterize the resulting workload

output and compare for statistical similarities to the analyzed trace, then adjust input

parameters for desired results. Number of job launches and tasks per job are categorical

parameters commonly adjusted when simulating distributions and fitting curves.

Figure 11: Spiral Development Phase 3

39

Characteristics Experiment Setup

The spiral development process leads up to this point where Google trace

characteristics are simulated. The following sections document the parameters and

settings for virtual machines, as well as the Faban configuration file.

Virtual Machine Configurations

Performance of all experiments occurs in a virtual computing environment using

VMware Workstation. Utilizing virtual machines consolidates resources and eliminates

the need for separate networked computers. Five virtual machines, one server acting as

the cloud and four clients simulating hundreds of users and a variety of workloads, are

able to communicate within a private network. The network adapter hardware setting is

set to "Bridged" mode, which allows multiple virtual machines to talk to each other

within the private network. Utilization of the ping command verifies communication

between multiple host machines. The server and four clients utilized in the experiment

have configurations with operating systems, software, and network settings, as seen in

Table 5 and Table 6 below.

Table 5: Server Configuration

Parameter Description

Operating System Ubuntu Server 12.04.1 LTS

Web Server Apache/2.2.22 (Ubuntu)

Web Server Administration Webmin 1.580

Private IPv4 Address 192.168.1.109

40

Table 6: Client Machine Configurations

Parameter Description

Operating System Ubuntu Desktop 12.04 LTS

Java Java SE Development Kit 7

Workload Generator Faban 1.0.2

Private IPv4 Address Client 1: 192.168.1.119

Client 2: 192.168.1.115

Client 3: 192.168.1.118

Client 4: 192.168.1.117

Faban Parameters

Machine 1

Machine 1 simulates a workload with 15 client connections, task duration less

than one minute, and one task per job. The task is a HTML GET request to the same

URL.

Table 7: Faban Parameters Machine 1

Parameter Value Description

Steady State 3600 sec Run experiment for 1 hour.

Think Time 299000 ms Wait 299 sec after each task. Increase Think

Time to decrease number of tasks per thread.

Variable Load

Threads

0,3,1,0,2,1,0,2,3,0,2,2 Number of threads for the specified Variable

Load Duration. Each thread simulates a new

user or job.

Variable Load

Duration

300 sec 5 min interval

Mix Flat Mix HTML Web Request (1 URL)

Num Threads 3 Number of Unique Threads in JVM. Increase

the number of threads to increase number of

simulated users.

Num Tasks Measure the number of tasks.

Task Duration Measure the task duration.

Tasks / Job Measure the number of tasks per thread.

Threads are assigned unique port numbers.

41

Machine 2

Machine 2 simulates a workload with 1 client connection, short task duration less

than one minute, and 100 tasks per job. The task is a HTML GET request to the same

URL.

Table 8: Faban Parameters Machine 2

Parameter Value Description

Steady State 3600 sec Run experiment for 1 hour

Think Time 35500 ms Wait 35.5 sec after each TCP session. Increase Think Time

to decrease number of tasks per thread.

Variable Load N/A No load variation

Mix Flat Mix HTML Web Request (1 URL)

Num Threads 1 Number of Unique Threads in JVM.

Num Tasks Measure the number of tasks.

Task Duration Measure the task duration.

Tasks / Job Measure the number of tasks per thread. Threads are

assigned unique port numbers.

Machine 3

Machine 3 simulates a workload with nine client connection, task durations in the

5 to 30 min range, and 1-4 tasks per job. The tasks are three file downloads from three

different URLs.

Table 9: Faban Parameters Machine 3

Parameter Value Description

Steady State 3600 sec Run experiment for 1 hour.

Think Time 250000 ms, 250000 ms,

149500 ms, 99500 ms,

74500 ms

Wait after each operation. Increase

Think Time to decrease number of tasks

per thread.

Variable Load 7,4,1,7,6,4,3,2,4,9,3,5 Number of threads for the specified

Variable Load Duration. Each thread

simulates a new user or job.

42

Variable Load

Duration

300 sec 5 min interval

Mix Probability Mix (0.4, 0.4,

0.1, 0.05, 0.05)

5 operations with respective Think

Times and probability of occurrence.

Num Threads 9 Number of Unique Threads in JVM.

Increase the number of threads to

increase number of simulated users.

Num Tasks Measure the number of tasks.

Task Duration Measure the task duration.

Tasks / Job Measure the number of tasks per thread.

Machine 4

Machine 4 simulates a workload with threads representing five client connections;

the task duration is in the 1-hour range, and one task per job. The task is not a file

download as seen on Machine 3. It is a series of delays on the web server simulating a

long duration task. Large file downloads in the GB range create system instabilities

within this small virtual environment, therefore large downloads are avoided.

Table 10: Faban Parameters Machine 4

Parameter Value Description

Steady

State

3600 sec Run experiment for 1 hour.

Think Time 3600000

ms

Wait 1 hour after each server request. Increase Think Time to

decrease number of tasks per thread.

Variable

Load

N/A No load variation

Mix Flat Mix Server Request (1 URL)

Num

Threads

5 Number of Unique Threads in JVM. Increase the number of

threads to increase number of simulated users.

Num Tasks Measure the number of tasks.

Task

Duration

 Measure the task duration.

Tasks / Job Measure the number of tasks per thread. Threads are assigned

unique port numbers.

43

Scalability Experiment Setup

The scale of the actual Google workload is much larger than that of the

characteristics experiment. The experiment reduces the number of unique job launches by

a factor of 120. The intention is to show statistical similarities in workload distributions.

The question may arise; can Faban handle the scale of a real cloud workload? The

scalability experiment will provide an answer to that question.

Faban Parameters

Max Tasks per Job

The experiment will verify Faban is capable of producing thousands of job

requests from one individual thread. The test parameters come from the max tasks per job

from the Google trace.

Table 11: Max TPJ

Parameter Value Description

Steady State 300

sec

Run experiment for 5 min.

Think Time 60 ms Wait 60 msec after each task. Increase Think Time to decrease

number of tasks per thread.

Mix Flat

Mix

HTML Web Request (1 URL)

Num

Threads

1 Number of Unique Threads in JVM. Increase the number of

threads to increase number of simulated users.

Num Tasks Measure the number of tasks.

Task

Duration

 Measure the task duration.

Tasks / Job Measure the number of Server Requests per thread. Threads are

assigned unique port numbers.

44

Mean Tasks per Job

This portion of the experiment will verify if Faban is capable of producing

hundreds of job requests per thread from hundreds of individual threads. The mean tasks

per job test parameters come from a section within the Google trace.

Table 12: Mean TPJ

Parameter Value Description

Steady State 300

sec

Run experiment for 5 min.

Think Time 575 ms Wait 575 msec after each task. Increase Think Time to decrease

number of tasks per thread.

Mix Flat

Mix

HTML Web Request (1 URL)

Num

Threads

120 Number of Unique Threads in JVM. Increase the number of

threads to increase number of simulated users.

Num Tasks Measure the number of tasks.

Task

Duration

 Measure the task duration.

Tasks / Job Measure the number of Server Requests per thread. Threads are

assigned unique port numbers.

Summary

The methodology of this research effort begins with choosing an appropriate trace

file, followed by analysis and characterization of a publically available Google trace.

Next is modeling the workload, and ending with the production of a synthetic workload

with characteristics similar to that of the Google trace.

Developers must understand the complex Faban software prior to beginning

synthetic workload generation. Due to the complex nature, the spiral development model

is applied. Consecutive phases include additional parameters and modification of these

parameters until particular synthetic workload characteristics result. There are two

45

primary experiments using the Faban workload generation toolkit. The first and primary

experiment simulates the Google trace characteristics, while the second experiment

verifies the scalability of the Faban software. The purpose of the scalability test is to

verify the Faban toolkit can recreate a large number of client requests as seen in real

workloads.

46

V. Analysis and Results

Chapter Overview

This chapter is comprised of four main areas. First are the characteristic results

from the statistical analysis of the Google trace. Second is the analysis and

characterization of the synthetic workload simulation. Next is a statistical comparison of

the Google trace and synthetic trace. This chapter ends with a Faban scalability results

summary.

Results of Google Trace Analysis

The Google trace contains important characteristics necessary to simulate a client

workload. Data from job rate of arrival, server memory and CPU core usage, task

durations, tasks per job, and number of running tasks is contained within the trace.

Extracting and characterizing this data by utilizing the heuristic in chapter 3 produces

distributions that are essential for generating synthetic traces with statistical similarities.

Job Launches by Job Type

The heuristic in chapter 3 provides a framework for job launch characterization.

Part 1 in the Workload Analysis section of the heuristic produces particular job arrival

rate characteristics of the Google trace. The Google trace has four different job types (0,

1, 2, and 3). Figure 12 contains a tally of unique job launches for each job type in five-

minute intervals.

47

Figure 12: Google Cluster Unique Job Launches

Table 13 presents a statistical summary of unique job launches, or job arrivals.

Table 13: Job Launches

Parameter Job Arrival Rate

(5 min intervals)

Job Arrival Rate

(1 hr intervals)

Min 57 1315

Max 195 1641

Mean 120 1428

Standard Deviation 25 121

48

Normalized CPU and Memory Consumption

The Google trace contains CPU and Memory consumption measurements. Even

though client-side synthetic trace simulation does not use these measurements directly, it

is important to understand server side characteristics. Correlation and covariance

statistics show how CPU and memory are related.

Figure 13 shows a strong visual correlation between memory and CPU core

usage. The covariance and correlation data prove memory and CPU usage have a

relationship. This data represents measurements of the cloud computing system, not the

clients. In addition, the memory and CPU usage fluctuate around a constant average,

which may imply a relatively constant load.

49

Figure 13: Google Cluster Normalized Memory and CPU Consumption

Pearson's Product-Moment Correlation

The Pearson product-moment correlation coefficient measures the strength of

linear dependence between memory and CPU consumption. Table 14 contains the

correlation value of the relationship.

50

Table 14: Correlation Between Memory and CPU

Correlation

Coefficient (r)

Degrees of

Freedom

p-value 95% Confidence

Interval

r
2

0.6668 73 8.8e-11 0.517 to 0.777 0.445

The correlation coefficient value r is equal to 0.6668, which indicates a positive

relationship between memory and CPU consumption. The square of the coefficient is

equal to the percent of the variation in one variable that relates to the variation in the

other. The square of the coefficient equals 44.5%. The r
2

value is > 25%, which is a

strong effect size [15]. In addition, the P-value is less than 5%, so it is statistically

significant.

Covariance

The covariance of the two data sets is 334.3756. It indicates a positive linear

relationship between the two variables. Since the covariance is > 0, there is a tendency

for large values of memory consumption to be associated with large values of core

consumption, and vice versa.

Task Duration

The heuristic in chapter 3 provides a framework for task duration characterization.

Part 2 in the Workload Analysis section of the heuristic produces particular task duration

characteristics of the Google trace. The bar graph in Figure 14 shows a negative

exponential distribution of task durations. All task duration calculations result from

Equation 1. The majority of tasks is on the left side of the plot, and represents tasks that

run for seconds and minutes. More specifically, the first 12 data points account for 73%

of all tasks. The first 15 entries account for 20% of all data points and 73.5% of all tasks.

51

This ratio is similar to the 80/20 rule or Pareto principle, a specific type of long tailed

distribution. The exception is the spur that appears at the end of the negative exponential

distribution. The spur represents full-length duration tasks (greater than the length of the

trace), and is removed from this plot. Had the trace recorded indefinitely, it is assumed

the spur would not be present, and the distribution would likely taper off into a longer

tail. The value of the spur is 35,206 tasks.

Figure 14: Google Cluster Task Duration

52

The decay rate estimates throughout this chapter are a result of the formula in

Equation 3 below [43]. The decay rate estimate for Google task duration from Figure 14

is -6.9%.

Pt = Po e
-rt

Equation 3: Decay Rate

(Note: make font color of caption

white)(3)

Where:

Pt = the final quantity at time t

Po = the initial quantity at time t = 0

e = mathematical constant ≈ 2.71828

r = the rate of decay

t = time or number of periods

Figure 3 displays task durations without regard to job type. Plotting task duration

for individual job types may provide additional details and insight into workload

behavior. All four job types appear to have qualities of a negative exponential

distribution, as seen in Figure 15.

53

Figure 15: Google Cluster Task Duration by Job Type

A closer look at the different job types reveals all job types have short and long

task durations that range from seconds to hours, as seen in Table 15. This characteristic is

important when designing the synthetic trace.

54

Table 15: Task Durations: % of Total Jobs

 All Jobs Job 0 Job 1 Job 2 Job 3

Seconds 29% 35% 12% 59% 13%

Minutes 44% 43% 63% 7% 9%

Hours 7% 6% 7% 6% 9%

Full-Length 20% 16% 18% 28% 69%

Three job types (0, 1, 2) all follow a negative exponential distribution. The

exception is Job Type 3, which follows a U-shaped distribution, with the maximum

frequencies at the two extremes of the range, as seen in Figure 16.

Figure 16 does not show the spurs representing full-length duration tasks. Had the

trace recorded indefinitely, it is assumed the spurs would not be present, and the

distribution would likely taper off into a longer tail. The values of the spurs are in Table

16.

Table 16: Full Length Tasks

 Job 0 Job 1 Job 2 Job 3

Task Count 16389 9123 4240 5454

55

Figure 16: Google Cluster Bar Plot Task Duration by Job Type

Table 17: Task Duration Decay Rate

 Job 0 Job 1 Job 2 Job 3

Decay Rate -8.3% -6.7% -7.8% N/A

56

All four Job Types in Figure 16 have short and long task durations. This

characteristic is important when designing the synthetic trace because it may not be

necessary to simulate individual job types. All four job types have tasks that last seconds,

minutes, and hours. Consequently, the simulation is simplified by lumping the categories

together, thus eliminating the need to separate and simulate individual job type

categories.

Tasks per Job

The heuristic in chapter 3 provides a framework for tasks per job

characterization. Part 3 in the Workload Analysis section of the heuristic produces

particular tasks per job characteristics of the Google trace. Tasks belong to jobs, and

jobs may have multiple tasks. In the Google trace, some jobs contain one task while

others contain thousands of tasks. Table 18 summarizes these characteristics and

shows a wide range of tasks per job.

Table 18: Tasks per Job Characteristics

Parameter Tasks per Jobs

Min 1

Max 4880

Decay Rate -2.7%

Tasks per Job Distribution

The long tail statistical distribution has a high number of occurrences

followed by a low number of occurrences, which gradually fades off in an asymptotic

curve [43]. The events that occur at the far end of the tail have a very low probability

of occurrence. A large share of the population (number of data points) lies in the tail.

57

Table 19 shows the few points that dominate the left side of the graph. For

example, the first two data points (1 and 2 tasks per job) account for approx 81.7% of

the total number of jobs. In addition, 86% of all jobs have five tasks or less. The first

five data points account for just 2.1% of the total number of data points, but account

for 86% of all jobs. In summary, most jobs contain few tasks, a few jobs contain

thousands of tasks, and much of the population lies in the tail. Thus, the tasks per job

characteristics of the trace data follow a long tail statistical distribution. Figure 17

shows the long tail negative exponential distribution. Notice that both axes use a

logarithmic scale. A linear scale on the x-axis would result in a much steeper curve of

the exponential decay.

Table 19: Small # Tasks per Job

Tasks Per Job # Jobs % of Total Jobs

1 6746 73.2%

2 782 8.5%

3 174 1.9%

4 97 1.1%

5 121 1.3%

58

Figure 17: Google Tasks per Job w/ Non Linear Regression Fit

Google 2 trace follows a very similar task per job distribution, as seen in [35].

Liu [35] claims the jobs with a few tasks, rather than a few jobs with many tasks, drives

the overall system throughput of the Google 2 trace. This is because jobs with one task

dominate the left side of the plot, as seen in Figure 17. The only two cloud traces

publically available at the time of this writing follow this characteristic: most jobs

contain few tasks.

59

Smoothing

The scatter.smooth command in R is a smoothing function fitted by the LOESS

algorithm, a locally weighted polynomial regression model [51]. The LOESS function

allows the tracing of a smooth curve through a plot, as seen in Figure 17. The polynomial is

fit to a subset of the data, using weighted least squares, giving more weight to the nearest

points and less weight to points further away, as in the k-nearest neighbor algorithm [12].

The object of the nonlinear nonparametric regression fit is to estimate the regression

function f() directly [24]. The LOESS algorithm attempts to fit the model in Equation 4.

yi = f(xi) + εi

 Equation 4: LOESS Curve

 (4)

Where:

f = unspecified regression function

xi = corresponding data point

εi = random error

Tasks per Job by Job Type

Figure 17 shows tasks per job without regard to job type. Plotting tasks per job for

individual job types may provide additional details and insight into workload behavior. All

four Job Types appear to have some qualities similar to that of a negative exponential

distribution, especially Job Types 0 and 1, as seen in Figure 18.

60

Figure 18: Google Tasks per Job by Job Type with Smoothing

All four Job Types in Figure 18 contain numerous values for tasks per job, ranging

from 1 to thousands. This characteristic is important when designing the synthetic trace

because it may not be necessary to simulate individual job types. Consequently, the

simulation is simplified by lumping the categories together, thus eliminating the need to

separate and simulate individual job type categories, similar to the results of the task

61

duration analysis.

Table 20: Tasks per Job Decay Rate

 Job 0 Job 1 Job 2 Job 3

Decay Rate -0.4% -0.5% -1.1% -0.3%

Running Tasks

The heuristic in chapter 3 provides a framework for running tasks characterization.

Part 4 in the Workload Analysis section of the heuristic produces particular running tasks

characteristics of the Google trace. Figure 19 shows a time series of the number of running

tasks. The definition of "running" is the presence of a task in the trace [11]. Idle tasks with 0

normalized cores are present in the trace and therefore counted. Although the line plots of

each of the four job types are a different shape, some display similar behaviors [11]. For

example, Job Types 2 and 3 both have near constant number of running tasks. In addition,

Job Types 0 and 1 both have running jobs that fluctuate around a constant average. Table 21

contains a summary of the mean and standard deviation for number of running tasks within

each job type.

Table 21: Running Task Mean and Standard Deviation

 Job 0 Job 1 Job 2 Job 3

Mean 22296 14329 4902 6173

Standard Deviation 1384 1569 46 28

62

Figure 19: Google Number of Running Tasks by Job Type

Summary of Google Trace Analysis

The number of unique job launches is variable, but fluctuates around a constant

average. Server memory and CPU consumption are highly correlated and fluctuate around

a constant average. Task durations have a negative exponential distribution and follow the

Pareto principle. Tasks per job also have a negative exponential distribution and follow

the Pareto principle. Many jobs with a few tasks and short task durations, rather than a

63

few jobs with many tasks and long task durations, determine the overall system

throughput [35]. Finally, the number of running tasks is steady or fluctuates around a

constant average.

Synthetic Workload Generation Results

The synthetic workload design replicates certain characteristics of the Google

trace, such as task duration and tasks per job. This section analyzes important

characteristics of the synthetic trace, and compares them to the Google trace.

Job Launches

Figure 20 shows the number of unique job launches from the synthetic workload

experiment. The fluctuation in job launches is due to the number of threads on each client

machine as well as the variable load file. Notice the Total Unique Job Launches

fluctuates around a constant average, similar to the behavior of the Google trace.

64

Figure 20: Faban Job Launches

Task Duration

The simulation eliminates the full duration tasks found in the Google trace, and

adjusts the three remaining categories of seconds, minutes, and hours accordingly. All

proportions are preserved. As a result, the simulation task durations as a percent of total

jobs are as follows in Table 22.

65

Table 22: Synthetic Task Durations as % of Total Jobs

Task Duration % of Total Jobs

Seconds 21.0%

Minutes 72.4%

Hours 6.6%

Figure 21 shows a bar plot of the task durations from the synthetic workload. In

addition to the bar plot, a Loess smoothing curve is fitted to the data. The curve displays

a negative exponential distribution, similar to that of the Google trace.

Figure 21: Faban Task Duration with Smoothing

66

Figure 22 shows a bar plot of the tasks per job from the synthetic workload. In

addition to the bar plot, a Loess smoothing curve is fitted to the data. The curve displays

properties of a negative exponential distribution, similar to that of the Google trace.

Figure 22: Faban Tasks per Job with Smoothing

The design of the synthetic workload contains a small number of tasks per job.

The data in Table 23 follows the Pareto principle closely: 78.9% of all jobs have one task

per job, quite close to the 80/20 ratio.

67

Table 23: Small # Tasks per Job

Tasks Per Job # Jobs % of Total Jobs

1 60 78.9%

2 7 9.2%

3 4 5.3%

4 4 5.3%

100 1 1.3%

Synthetic Workload and Google Trace Compared

Task Length

Task duration is one of the primary characteristics simulated in the synthetic

workload experiment, although the server and not the client workload determine it.

Figure 23 visually compares the Cumulative Distribution Function (CDF) of both the

Google and synthetic workloads. The CDFs appear to have very similar characteristics,

both of which are exponentially distributed.

68

Figure 23: Cumulative Distributions of Task Durations - Google versus Synthetic

Tasks per Job

The number of tasks per job is another primary characteristics simulated in the

synthetic workload experiment. Figure 24 visually compares the Cumulative Distribution

Function (CDF) of the Google and synthetic workloads. The CDFs appear to have very

similar characteristics, both of which are exponentially distributed.

69

Figure 24: Cumulative Distributions of Tasks per Job - Google versus Synthetic

Correlation

Tasks per Job and Task Duration are important characteristics in the simulated

trace data. Table 24 describes the statistical significance of the comparison between

Google trace data and synthetic workload.

70

Table 24: Pearson's Product-Moment Correlation

Parameter Correlation

Coefficient (r)

Degrees of

Freedom

p-value 95% Confidence

Interval

r
2

Tasks per Job 0.999 2 0.0010 0.95016 to 0.99998 0.998

Task Duration

as % Total Jobs

(sec, min, hr)

0.916

1

0.2636

N/A

0.839

Task Duration

by Task Count

(see Table 25)

0.995

2

0.0053

0.7657 to 0.99990

0.990

Correlation coefficients provide an indication of strength of relationship. The Null

Hypothesis (H0): r = 0, states there is no 'true' relationship. The Alternative hypothesis

(H1): r ≠ 0, states the relationship is real. A small p value points to strong evidence.

Regarding tasks per job, there is a 0.1% chance that the relationship under test is

due to random sampling variability. The p-value is less than 5%, so it is statistically

significant. The r
2

value is > 25%, which is a strong effect size [15]. Actually, the r
2

value

is nearly equal to 1, with 1 being a perfect goodness of fit. Consequently, we reject the

null hypothesis H0.

For Task Duration as % of Total Jobs, a minimum of 2 degrees of freedom (n-2)

is required for a confidence interval. The data sets are from Table 15 and Table 22. The

three categories of seconds, minutes, and hours are not enough to meet this criteria. Even

so, the r value indicates there is some relationship. The p value is not small enough to

indicate statistically significant evidence. The task duration r
2

value is > 25%, which is a

strong effect size [15]. Even though the data points to some relationship, it is not

statistically significant, and we fail to reject H0.

71

For Task Duration by Task Count, there is a 0.5% chance that the relationship

under test is due to random sampling. The p-value is less than 5%, so it is statistically

significant. The r
2

value is > 25%, which is a strong effect size [15]. Actually, the r
2

value

is nearly equal to 1, with 1 being a perfect goodness of fit. Consequently, we reject the

null hypothesis H0.

Table 25: Task Duration Counts

Trace 1sec to < 5min 5 min 20 min Hour

Google 51,182 9918 6381 181

Synthetic 202 21 19 5

Covariance

Table 26 shows the covariance values for task duration and tasks per job. Both

values, task duration and tasks per job, indicate a positive linear relationship between the

two data sets. In summary, the distributions have similar behaviors and change together.

Table 26: Covariance

Parameter Value

Task Duration 732.0

Tasks per Job 1259.9

Summary of Synthetic Workload Generation Results

The number of unique job launches is variable, but fluctuates around a constant

average. Task durations and tasks per job are both negative exponentially distributed. The

tasks per job parameter has an 80/20 characteristic, where nearly 80% of jobs contain a

single task. In addition, cumulative distribution function plots visually compare the

Google trace to the synthetic workload. The distributions show a strong relationship.

72

Correlation and covariance values show statistical significance, or lack thereof, when

comparing similarities of task duration and tasks per job.

Results of Scalability Test

This experiment scales down the size of the Faban synthetic workload. The

scalability test determines if the workload generator can produce a load equivalent to that

of the largest surges in the Google trace.

Max Tasks per Job

The max tasks per job value from the Google trace is 4880, as seen in Table 18.

The test verifies if Faban is capable of creating a load with 1 thread and 4880 jobs. The

experiment runs for 300 sec with a 60 ms think time. The result of the test is a throughput

of 4983 tasks. Consequently, Faban is capable of simulating a single user requesting

thousands of tasks.

Mean Tasks per Job

The mean tasks per job value from the Google trace is 19, as seen in Table 18.

Faban is capable of generating such a load for a sustained amount of time. However, a

requirement may exist for generation of a larger load, or surge. The Google trace does

contain a surge with a mean tasks per job value of 521. The mean number of threads in

the trace is 120. The test verifies if Faban is capable of creating a load with 120 threads

and 521 tasks per thread, totaling 62,520 tasks. The experiment runs for 300 sec with a

575 ms think time. The throughput is 62,447 tasks. Consequently, Faban is capable of

simulating hundreds of users each requesting hundreds of tasks.

73

Summary of Scalability Test

The scalability test shows Faban can produce large synthetic workloads with load

sizes comparable to publically available cloud traces. Faban's distributed design makes it

very well suited for generating large loads, perhaps simulating thousands of users each

requesting thousands of tasks. The addition of new client workload machines increases

output capacity. The limiting factor is the JVM and underlying hardware, as described in

Chapter 3.

74

VI. Conclusions and Recommendations

Chapter Overview

This thesis researches cloud trace characterization and synthetic workload

generation. Very few publically available cloud traces exist, only two published by

Google at the time of this writing. Numerous workload generation tools are available, and

Faban is the tool of choice for this study. Synthetic traces can contain justifiably real

characteristics, as shown in Chapter 4. The information contained in this thesis will assist

future researchers who require cloud workloads without using full-blown data sets.

Conclusions of Research

Publically available trace files bound research of this nature. More specifically,

the data contained in the Google trace limits the synthetic workload results of this

research. Even so, this is a vast improvement over predefined workload with no statistical

justifications. The information in this thesis provides researchers with a lightweight

heuristic for generating synthetic workloads using an open source load generator. In

addition, this research provides Google cloud workload characteristics and methodologies

that justify statistical similarities.

Traces

Numerous publically available trace archives exist, and many contain workload

traces from computer system technologies such as grids and clusters. Clouds and grids

have much commonality, with the main differences being: clouds use virtual machines

while grids use threads, job and task durations are shorter in clouds than grids, and clouds

have a higher job arrival rate than grids. Characterizing the qualities of grid trace files

75

within the research community is not new. Publications characterizing the Google trace

and the Google trace itself both appeared at nearly the same time, likely because Google

employees are involved with the publications. Even so, the Google cloud trace is the first

known publically available cloud trace, and simulating its characteristics is new to

academia and the research community.

The Google workload trace is anonymous and thus has limitations, but still

contain much useful information. One must become familiarized and understand the data

prior to characterizing and modeling it. Some of the more important characteristics for

simulation purposes are job types, job launches and request rates, running tasks, tasks per

job, and task durations. The goal is generating a synthetic workload with statistically

significant similarities to the Google trace.

Workload Generation

Faban is a free web-benchmarking tool that is well suited for cloud generation. It

is scalable to meet large workload demands found in clouds. There is a learning curve to

the software tool, so the spiral development process or similar procedure is supportive

when generating synthetic workloads. Developers can create different workload

distributions, such as exponential or normal, by modifying Faban configuration files.

Think time and variable load parameters are particularly important for shaping the

distributions.

Real vs. Synthetic Trace

The number of job launches in the Google trace is variable and fluctuates around

a constant average. Server memory and CPU consumption are highly correlated, and

values fluctuate around a constant average. Task durations and task per job both have

76

negative exponential distributions and follow the Pareto principle. Jobs with a few tasks

and short task durations, rather than a few jobs with many tasks and long task durations,

determine the overall system throughput [35]. Finally, the number of running tasks is

steady or fluctuates around a constant average.

The number of unique job launches in the synthetic trace is variable, but

fluctuates around a constant average, similar to the Google trace. Task durations and

tasks per job are both negative exponentially distributed. The tasks per job parameter has

an 80/20 characteristic, where nearly 80% of jobs contain a single task. In addition,

cumulative distribution function plots visually compare the Google trace to the synthetic

workload. The distributions show a strong relationship. Correlation and covariance values

prove statistical significance when comparing characteristics of task duration and tasks

per job. The overall result of the synthetic workload generation is a strong positive

relationship exists between the Google trace and the synthetic workload.

Significance of Research

This research effort proves the heuristic from chapter 3 successful. By gathering

trace data, analyzing and understand the data, characterizing and modeling it, and finally

generating a synthetic workload, researchers have the foundation needed for justifying

realistic characteristics and proving statistical significance. This research effort provides

a stepping-stone for engineers and researchers who require a cloud workload.

Autonomous cloud management techniques and virtual machine optimization are

significant and relevant research topics that necessitate realistic workloads. The heuristic

77

in this thesis provides vital information for creating justifiably realistic synthetic cloud

workloads.

Recommendations for Future Research

Algorithm

Develop an algorithm from the heuristic presented in chapter 3 to formalize the

lightweight synthetic workload generation process. Formalizing the heuristic can

optimize cloud workload generation, and ultimately further cloud research.

Supplementary Synthetic Data

Generating more data at a larger scale can lead to an improved statistical analysis.

In particular, more variety in task duration and tasks per job can lead to a better

distribution fit. An ideal fit to the Google trace has a long tail, which requires more data

points in the tail, for both task durations and tasks per job. Task durations are more a bit

more complex because the durations rely on the time it takes the server to complete the

task, hence the need to design additional server-side tasks.

Additional Cloud Traces

As new cloud traces become available to the public, researchers must analyze and

characterize the data. This leads to improvements in quality of synthetic workloads,

elasticity and optimization algorithms that manage cloud servers, and ultimately the

services provided by cloud vendors. Owners of cloud traces should follow Google's

initiative and publish their data for the good of the cloud computing community.

78

Cloud Workload Generation Tools

Although Faban is well suited for cloud synthetic workload generation, there may

be superior tools available. One software package that sounds particularly interesting is

VMmark by VMware, a virtualization platform benchmarking tool. Its primary purpose

measures datacenter performance, but also includes built-in load generation tools. At a

minimum it seems worthy of exploring, but does require a very high level of prerequisite

knowledge in the field of virtual machine administration. In addition, VMmark is a rather

large system that encompasses numerous smaller systems. Consequently, researchers

must consider the extensive hardware and software requirements of the system.

Summary

Overall, this work analyzes real traces and simulates those characteristics in a

synthetic workload. Statistical analysis proves the relationships and similarities.

Specifically, the synthetic task duration and tasks per job distributions mimic that of the

Google trace. The ability to create justifiably realistic workloads furthers cloud research

and is not in current literature.

79

Bibliography

[1] A. Ali-Eldin, M. Kihl, J. Tordsson and E. Elmroth. Efficient provisioning of bursty

scientific workloads on the cloud using adaptive elasticity control. Presented at

Proceedings of the 3rd Workshop on Scientific Cloud Computing Date. 2012, .

[2] A. Andrzejak, D. Kondo and S. Yi. Decision model for cloud computing under sla

constraints. Presented at Modeling, Analysis & Simulation of Computer and

Telecommunication Systems (MASCOTS), 2010 IEEE International Symposium on.

2010, .

[3] A. Bahga and V. K. Madisetti. Synthetic workload generation for cloud computing

applications. Journal of Software Engineering and Applications 4(7), pp. 396-410. 2011.

[4] A. Beitch and D. A. Patterson. Rain: A workload generation toolkit for cloud

computing applications. Rain 2010.

[5] T. Benson, A. Akella and D. A. Maltz. Network traffic characteristics of data centers

in the wild. Presented at Proceedings of the 10th Annual Conference on Internet

Measurement. 2010, .

[6] K. P. Birman, Guide to Reliable Distributed Systems: Building High-Assurance

Applications and Cloud-Hosted Services. Springer, 2012.

[7] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg and I. Brandic. Cloud computing and

emerging IT platforms: Vision, hype, and reality for delivering computing as the 5th

utility. Future Generation Comput. Syst. 25(6), pp. 599-616. 2009.

[8] E. Caron, F. Desprez and A. Muresan. Forecasting for grid and cloud computing on-

demand resources based on pattern matching. Presented at Cloud Computing Technology

and Science (CloudCom), 2010 IEEE Second International Conference on. 2010, .

[9] D. Chappell. Introducing the windows azure platform. David Chappell & Associates

White Paper 2010.

[10] Y. Chen, A. S. Ganapathi, R. Griffith and R. H. Katz. Towards understanding cloud

performance tradeoffs using statistical workload analysis and replay. University of

California at Berkeley, Technical Report no.UCB/EECS-2010-81 2010.

[11] Y. Chen, A. S. Ganapathi, R. Griffith and R. H. Katz. Analysis and lessons from a

publicly available google cluster trace. University of California, Berkeley, CA, Tech.Rep

2010.

[12] W. S. Cleveland. Visualizing Data 1993.

80

[13] W. S. Cleveland and S. J. Devlin. Locally weighted regression: An approach to

regression analysis by local fitting. Journal of the American Statistical Association

83(403), pp. 596-610. 1988.

[14] Cloudstone. Available: http://radlab.cs.berkeley.edu/wiki/Projects/Cloudstone.

[15] J. Cohen. A power primer. Psychol. Bull. 112(1), pp. 155. 1992.

[16] M. D. De Assunção, A. Di Costanzo and R. Buyya. Evaluating the cost-benefit of

using cloud computing to extend the capacity of clusters. Presented at Proceedings of the

18th ACM International Symposium on High Performance Distributed Computing. 2009.

[17] S. Di, D. Kondo and W. Cirne. Characterization and comparison of google cloud

load versus grids. 2012.

[18] Faban. Available: http://faban.org/.

[19] Faban Harness and Benchmark Framework. Available:

http://java.net/projects/faban/.

[20] Failure Trace Archive. Available: http://fta.inria.fr.

[21] D. Feitelson. Workload modeling for computer systems performance evaluation.

Book Draft, Version 0.36 2012.

[22] D. Feitelson. Workload modeling for performance evaluation. Performance

Evaluation of Complex Systems: Techniques and Tools pp. 114-141. 2002.

[23] I. Foster, Y. Zhao, I. Raicu and S. Lu. Cloud computing and grid computing 360-

degree compared. Presented at Grid Computing Environments Workshop, 2008. GCE'08.

2008, .

[24] J. Fox. An R and S-Plus Companion to Applied Regression 2002.

[25] A. Ganapathi, Y. Chen, A. Fox, R. Katz and D. Patterson. Statistics-driven workload

modeling for the cloud. Presented at Data Engineering Workshops (ICDEW), 2010 IEEE

26th International Conference on. 2010, .

[26] S. Genaud and J. Gossa. Cost-wait trade-offs in client-side resource provisioning

with elastic clouds. Presented at Cloud Computing (CLOUD), 2011 IEEE International

Conference on. 2011, .

[27] Grid Workloads Archive. Available: http://gwa.ewi.tudelft.nl.

81

[28] A. Iosup, S. Ostermann, M. N. Yigitbasi, R. Prodan, T. Fahringer and D. H. J.

Epema. Performance analysis of cloud computing services for many-tasks scientific

computing. Parallel and Distributed Systems, IEEE Transactions on 22(6), pp. 931-945.

2011.

[29] Journal of Theoretical and Applied Information Technology. Available:

http://www.jatit.org/.

[30] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer

36(1), pp. 41-50. 2003.

[31] C. Kleineweber, A. Keller, O. Niehorster and A. Brinkmann. Rule-based mapping of

virtual machines in clouds. Presented at Parallel, Distributed and Network-Based

Processing (PDP), 2011 19th Euromicro International Conference on. 2011, .

[32] D. Kluscek and H. Rudov. The importance of complete data sets for job scheduling

simulations. Presented at Job Scheduling Strategies for Parallel Processing. 2010, .

[33] D. Kondo, B. Javadi, A. Iosup and D. Epema. The failure trace archive: Enabling

comparative analysis of failures in diverse distributed systems. Presented at Cluster,

Cloud and Grid Computing (CCGrid), 2010 10th IEEE/ACM International Conference

on. 2010, .

[34] Y. Liu, N. Bobroff, L. Fong and S. Seelam. Workload management in cloud

computing using meta-schedulers. IBM Research 2009.

[35] Z. Liu and S. Cho. Characterizing machines and workloads on a google cluster.

Presented at Parallel Processing Workshops (ICPPW), 2012 41st International

Conference on. 2012, .

[36] V. Makhija, B. Herndon, P. Smith, L. Roderick, E. Zamost and J. Anderson.

VMmark: A scalable benchmark for virtualized systems. VMware Inc, CA,

Tech.Rep.VMware-TR-2006-002, September 2006.

[37] E. P. Mancini, M. Rak and U. Villano. Perfcloud: Grid services for performance-

oriented development of cloud computing applications. Presented at Enabling

Technologies: Infrastructures for Collaborative Enterprises, 2009. WETICE'09. 18th

IEEE International Workshops on. 2009, .

[38] N. Matloff. The Art of R Programming 2011.

[39] M. Mattess, C. Vecchiola and R. Buyya. Managing peak loads by leasing cloud

infrastructure services from a spot market. Presented at High Performance Computing

and Communications (HPCC), 2010 12th IEEE International Conference on. 2010, .

82

[40] J. M. McCune, D. A. Fisher and A. D. Andrews. Trust and trusted computing

platforms. 2011.

[41] P. Mell and T. Grance. The NIST definition of cloud computing. National Institute

of Standards and Technology 53(6), pp. 50. 2009.

[42] MetaCentrum Data Sets. Available: http://www.fi.muni.cz/~xklusac/workload;.

[43] J. S. Milton and J. C. Arnold. Introduction to Probability and Statistics: Principles

and Applications for Engineering and the Computing Sciences 2002.

[44] Olio Web 2.0. Available: http://incubator.apache.org/olio/index.html.

[45] Parallel Workloads Archive. Available:

http://www.cs.huji.ac.il/labs/parallel/workload/.

[46] Rain Workload Toolkit. Available: https://github.com/yungsters/rain-workload-

toolkit/wiki.

[47] F. L. Ramsey and D. W. Schafer. The Statistical Sleuth: A Course in Methods of

Data Analysis 2012.

[48] C. Reiss, R. H. Katz and M. A. Kozuch. Towards understanding heterogeneous

clouds at scale: Google trace analysis. 2012.

[49] C. Reiss, J. Wikes and J. Hellerstein, "Google cluster-usage traces: format +

schema," .

[50] V. Ricci. Fitting distributions with r. Contributed Documentation Available on

CRAN 2005.

[51] N. Sematech. Engineering Statistics Handbook 2006.

[52] B. Sharma, V. Chudnovsky, J. L. Hellerstein, R. Rifaat and C. R. Das. Modeling and

synthesizing task placement constraints in google compute clusters. Presented at

Proceedings of the 2nd ACM Symposium on Cloud Computing. 2011, .

[53] B. Speitkamp and M. Bichler. A mathematical programming approach for server

consolidation problems in virtualized data centers. Services Computing, IEEE

Transactions on 3(4), pp. 266-278. 2010.

[54] P. Teetor. R Cookbook 2011.

[55] TestnScale. Available: http://www.testnscale.com/docs/;.

83

[56] A. Totok. Exploiting service usage information for optimizing server resource

management. 2006.

[57] VMWare VMmark. Available:

http://www.vmware.com/products/vmmark/requirements.html.

[58] G. Wang, A. R. Butt, H. Monti and K. Gupta. Towards synthesizing realistic

workload traces for studying the hadoop ecosystem. Presented at Modeling, Analysis &

Simulation of Computer and Telecommunication Systems (MASCOTS), 2011 IEEE 19th

International Symposium on. 2011, .

[59] J. Wilkes and C. Reiss. Google cluster data. Available:

http://code.google.com/p/googleclusterdata/wiki/ClusterData2011_1.

[60] Q. Zhang, J. L. Hellerstein and R. Boutaba. Characterizing task usage shapes in

Google’s compute clusters. Proc.of Large-Scale Distributed Systems and Middleware

(LADIS 2011) 2011.

[61] Y. Zhang, Z. Wang, B. Gao, C. Guo, W. Sun and X. Li. An effective heuristic for

on-line tenant placement problem in SaaS. Presented at Web Services (ICWS), 2010

IEEE International Conference on. 2010, .

[62] X. Zhu, D. Young, B. Watson, Z. Wang, J. Rolia, S. Singhal, B. McKee, C. Hyser,

D. Gmach, R. Gardner, T. Christian and L. Cherkasova. 1000 islands: An integrated

approach to resource management for virtualized data centers. Cluster Computing 12(1),

pp. 45-57. 2009.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

21-03-2013
2. REPORT TYPE

Master’s Thesis
3. DATES COVERED (From – To)

Sep 2011 - Mar 2013

4. TITLE AND SUBTITLE

Cloud Computing Trace Characterization and Synthetic

Workload Generation

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Capra, Salvatore, Civilian, USAF

5d. PROJECT NUMBER

N/A
5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)

 Air Force Institute of Technology

Graduate School of Engineering and Management (AFIT/EN)

2950 Hobson Way, Building 640

WPAFB OH 45433

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT-ENG-13-M-11

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Intentionally Left Blank

10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

DISTRIBUTION STATEMENT A: APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This thesis researches cloud computing workload characteristics and synthetic workload generation. A heuristic

presented in the work guides the process of workload trace characterization and synthetic workload generation.

Analysis of a cloud trace provides insight into client request behaviors and statistical parameters. A versatile

workload generation tool creates client connections, controls request rates, defines number of jobs, produces tasks

within each job, and manages task durations. The test system consists of multiple clients creating workloads and a

server receiving request, all contained within a virtual machine environment. Statistical analysis verifies the

synthetic workload experimental results are consistent with real workload behaviors and characteristics.

15. SUBJECT TERMS

Cloud Computing, Trace File, Synthetic Workload Generation, Workload Characterization

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
OF PAGES

97

19a. NAME OF RESPONSIBLE PERSON

Dr. Kenneth Hopkinson (ENG)
a. REPORT

U

b. ABSTRACT

U

c. THIS PAGE

U

19b. TELEPHONE NUMBER (Include area code)

(937) 255-6565, x 4579 kenneth.hopkinson@afit.edu

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

