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Abstract 

This research addressed a critical limitation in the area of computational 

intelligence by developing a general purpose architecture for information processing and 

decision making. Traditional computational intelligence methods are best suited for well-

defined problems with extensive, long-term knowledge of the environmental and 

operational conditions the system will encounter during operation. These traditional 

approaches typically generate quick answers (i.e., reflexive responses) using pattern 

recognition methods. Most pattern recognition techniques are static processes that consist 

of a predefined series of computations. For these pattern recognition approaches to be 

effective, training data are required from all anticipated environments and operating 

conditions.  

The proposed framework, Conscious Architecture for State Exploitation (CASE), is a 

general purpose architecture designed to mimic key characteristics of human information 

processing. CASE combines low- and high-level cognitive processes into a common 

framework to enable goal-based decision making. The CASE approach is to generate 

artificial phenomenal states (i.e., generate qualia = consciousness) into a shared 

computational process to enhance goal-based decision making and adaptation. That is, 

this approach allows for the appropriate decision and corresponding adaptive behavior as 

the goals and environmental factors change. 
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To demonstrate the engineering advantages of CASE, it was used in an airframe 

application to autonomously monitor the integrity of a flight critical structural 

component.  In this demonstration, CASE automatically generated a timely maintenance 

recommendation when unacceptable cracking was detected. Over the lifetime of the 

investigated component, operational availability increased by a minimum of 10.7%, 

operational cost decreased by 79%, and maintenance intervals (i.e., MTBM) increased by 

a minimum of 900%.  
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MACHINE CONSCIOUS ARCHITECTURE FOR STATE EXPLOITATION AND 

DECISION MAKING 

 

I.  Introduction 

1.1 Background 

During the 1980's, a major breakthrough in computational intelligence occurred 

with the development of training rules for hidden units in artificial neural networks 

(ANNs).  ANNs mimic a significant aspect of the architecture of biological neural 

networks – that is, brains – as a large number of densely interconnected, but 

fundamentally simple processing elements, neurons.  Although artificial neurons are only 

coarse approximations of biological neurons, and ANNs are still coarser approximations 

to brains, ANNs have been used successfully across a wide range of applications, from 

medical image diagnosis to loan application processing [18] [27].  Problem areas, such as 

automatic target recognition (ATR), malware detection and structural health monitoring 

(SHM) have not been successfully solved with current ANN approaches [6] [13] [16] 

[28].  The remaining problems typically involve high degrees of uncertainty and a 

dynamic environment.  A new computational approach is needed to address these classes 

of problems. 

The next major advancement in computational intelligence will result from 

extending the mimicry from the neuronal level to the cognitive architecture level of the 

brain.  Conscious architecture refers to how information flows through and is controlled 

in the brain [31].  According to Morsella, an essential feature of human brain processing 
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is that multiple simultaneous, low-level unconscious processing modules provide inputs 

to a higher-level conscious processing module, where the conscious processing must 

disambiguate conflicting objectives [22].  For example, imagine reaching with your bare 

hand into the microwave to pull out a just-heated dinner plate.  If the pain of the hot plate 

does not register until you have carried it halfway across the kitchen, you may not realize 

it at the time, but your brain is disambiguating two conflicting objectives.  One 

unconscious reflexive process is demanding the minimization of tissue damage, and 

therefore suggests dropping the plate.  A conflicting unconscious process is demanding 

the satisfaction of hunger, by endurance of pain, which will shortly lead to satiation of 

hunger.  From an engineering standpoint, just as it was not necessary to know and closely 

replicate the inner workings of a neuron to achieve practical benefits from an ANN, we 

believe that the next level of computational intelligence will require duplicating the 

processes which are combined to control the musculoskeletal system in light of 

conflicting objectives.  However, we believe significant engineering advantage can be 

achieved by providing a computational pathway for considering, and then resolving the 

unconscious and conscious aspects of decision making.  

Our proposed architecture, Conscious Architecture for State Exploitation (CASE), 

combines low- and high-level cognitive processes into a common framework to enable 

goal-based decision making.  The CASE approach is to generate artificial phenomenal 

states (i.e., generate qualia = consciousness) into a shared computational process to 

enhance goal-based decision making and adaptation.  That is, this approach allows for the 

appropriate decision and corresponding adaptive behavior as the goals and environmental 

factors change.  Given the current state and the desired goal, CASE recommends an 
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appropriate action to take for achieving the given goal.  This architecture, which exploits 

phenomenal states, is shown to improve the performance of computational intelligence 

for applications currently unsolved using traditional approaches.  

1.2 Research Goals 

The goals of this research are to design and develop the CASE framework, and 

then demonstrate it in an application for which traditional approaches have been 

inadequate.  The success of the proposed approach will be based on the engineering 

advantage using the philosophy incorporated in CASE.  

1.3 Document Overview 

The remainder of this document is organized as follows.  Chapter 2 provides a 

background on designing conscious systems and their associated characteristics.  A 

conscious framework and investigated conscious architectures are discussed as well.  

Chapter 3 describes the overall functions and processing philosophy of CASE, along with 

an illustration of how CASE incorporates key characteristics of consciousness.  CASE is 

demonstrated in an SHM application in Chapter 4, and the results are compared with the 

current practice for ensuring structural integrity.  A summary of this work follows in 

Chapter 5, highlighting the contributions and impact of this research.  Additionally, areas 

for research extension are also explored.  
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II. Literature Review 

2.1 Overview 

This chapter provides the background research and knowledge of this research. It 

covers theories of consciousness, machine conscious architectures and characteristics of a 

conscious framework.  In addition, functional and phenomenal tenets of consciousness 

are discussed.   

2.2 Consciousness Theory 

One of the oldest and most widely-cited theories of cognition that includes 

conscious and subconscious aspects of its representation is the Global Workspace Theory 

(GWT).  GWT was developed by Bernard Baars to qualitatively account for a large set of 

conscious and unconscious processes [3].  The principle theory behind this model is the 

information flow of multiple parallel, specialized processes that compete and cooperate 

for access to the global workspace (i.e., working memory).   

The most relevant information from these specialized processes is allowed access 

to the global workspace to compete for processing attention.  The global workspace 

represents the process through which information is integrated and processed before a 

conscious state is determined.  Within the global workspace is a spotlight that represents 

the focus of attention.  The global workspace offers the flexibility to view content under 

the spotlight at different levels of abstraction similar to a zoom lens.  Only those aspects 

of the working memory that are within the ‘spotlight’ are conscious (i.e., qualia).  

Context information (e.g., goals) is provided to the global workspace to influence the 
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content under the spotlight.  This conscious information is then broadcast back out to the 

specialized processes to possibly change their state if appropriate.  

Figure 1 depicts the global workspace architecture. The five external circles in 

Figure 1 symbolize the unconscious parallel processes, and the rectangle represents the 

global workspace (i.e., working memory).  These parallel processes compete for entry 

into the global workspace.  The content of a specific parallel process enters the global 

workspace only when it wins the competition.  The circle inside the rectangle (i.e., 

working memory) is the “spotlight” which represents the focus of attention.  Content 

within the global workspace only enters the “spotlight” when it is attended to.  Since 

Baars only gives a metaphorical description of the GWT, more engineering design is 

required before this architecture can be realized.   

      

Figure 1. The Global Workspace Architecture [29] 

Several Machine Conscious (MC) researchers have engineered cognitive models 

inspired by the GWT for their specific investigations [2] [4] [29] [30].  Arrabales 

developed a cognitive architecture inspired by the GWT to explore a plausible functional 

explanation of how conscious experience could be generated from a global workspace 

[2].  Specifically, Arrabales’ research focused on characterizing artificial qualia (i.e., 
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subjective experience) as the contents that appear under the global workspace “spotlight.”  

This research primarily focused on the functionality of MC with no claims made toward 

the generation of phenomenal states.  The GWT-based architecture was developed to 

investigate visual qualia in a robotic application.  This MC model was designed to 

identify explicit contents (i.e., overt perception) of an autonomous robot.  The MC model 

was implemented using the cognitive architecture CERA and the functional model 

CRANIUM [2]. A diagram of this computational model is depicted in Figure 2.  

      

Figure 2. CRANIUM Computational Model [2] 

 

Murray Shanahan also developed a model inspired by the GWT for his research 

on MC [29].  The objectives of Shanahan’s architecture were to demonstrate the 

simulation hypothesis (i.e., thoughts are “internally simulated interaction with the 

environment”) and prove that it is feasible to use the theory of consciousness for 

controlling robots.  Shanahan used weightless neurons, G-RAM (Generalizing Random 

Access Memories), for implementing the unconscious processing functions of the 
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architecture.  These neurons employed single-shot training for which the update function 

can be rapidly computed.  The conscious processing element of the architecture was 

realized via an internal simulation for cognitive functions such as anticipation and 

planning.  This architecture was implemented to control a simulated robot.  

The GWT provides a good foundation for developing functionally conscious 

systems as demonstrated by Arrabales, and Shanahan.  However, the “hard problem” of 

creating artificial phenomenal states, which is an essential element of consciousness, has 

not been adequately addressed during these investigations.  A general purpose GWT-

inspired framework (i.e., architecture) that incorporates both functional and phenomenal 

conscious elements has yet to be achieved.   

Since the current research is focused on developing a general purpose MC 

architecture for generating phenomenal states, we begin the next section by discussing 

the recommended attributes of a conscious/phenomenal state framework.   

2.3 Conscious Framework 

Developing a framework for consciousness is required in order to investigate the 

“hard problem” of phenomenal states.  Several researchers such as Crick and Koch, and 

Rogers and Kabrisky have described a framework for consciousness [8] [28].  Crick and 

Koch consider a framework – not a detailed hypothesis or set of hypotheses, but a 

proposed method for attacking a scientific problem, often suggesting testable hypotheses. 

Crick and Koch also believe that a good framework is one that appears reasonably 

plausible given the available scientific data and produces reasonably accurate results.  A 



 

8 

 

list of features recommended by Crick and Koch for developing a conscious framework 

is given below [8].  

 
1. Unconsciousness – Humans are not directly conscious of their thoughts, but a 

sensory representation of them in their imagination. 

2. Consciousness – Many actions in response to sensory inputs are rapid, transient, 

stereotyped and unconscious.  Consciousness deals more slowly with broader, less 

stereotyped aspects of the sensory inputs and takes time to decide on appropriate 

thoughts and responses. 

3. Coalitions of neurons – Neurons that form coalitions to support one another and 

compete among the other coalitions. 

4. Explicit representations – A small set of neurons exists that responds as a detector 

for that feature, without further complex neural processing. 

5. The higher level first – For a new visual input, the neural activity first travels rapidly 

and unconsciously up the visual hierarchy to a high level (this might instantiate 

zombie mode). 

6. Driving and modulating connections – Connections to cortical neuron fall into two 

broad classes: driving and modulating inputs. 

7. Snapshots – Conscious awareness (for vision) is a series of static snapshots with 

‘motion’ painted on them. That is, perception occurs in discrete epochs. 

8. Attention and binding – Attention can usefully be divided into two forms: either 

rapid, saliency-driven and bottom-up or slower, volitionally controlled and top-down. 
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9. Styles of firing – Synchronized firing may increase the effectiveness of a neuron, 

while not necessarily altering its average firing rate. 

10. Penumbra and meaning – Visual features interest such a set of neurons, but how 

does the brain know what that firing represents?  This is the problem of meaning. 

 

This list of conscious characteristics is not all-inclusive, as it is not feasible to 

duplicate the human information process entirely.  However, we do believe that it is 

possible to mimic selected features of human consciousness for providing some 

engineering advantages in problems currently unsolvable with classical methods.   

Most MC investigations develop conscious models inspired by the GWT for a 

specified purpose as described earlier; however, none of them explicitly demonstrated 

any of the suggested attributes of consciousness given above.  This research identifies a 

selected set of the conscious attributes listed above and incorporates them in the proposed 

architecture.  This research demonstrates that these attributes, used as guiding principles, 

are critical for realizing a general purpose MC architecture.  From these fundamental 

attributes, the functions of consciousness are discussed.          

2.4 Conscious Functions 

Phenomenal states are often referred to as “subjective experience,” “qualia,” 

“sentience,” “consciousness,” and “awareness” [22].  This document uses the terms 

consciousness and phenomenal states synonymously.  The functional role of phenomenal 

states (i.e., consciousness – the generation of those phenomenal states, qualia) still 

remains one of the greatest challenges for psychological science [22].  According to 
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Aleksander, a phenomenal system is one that is responsible for the behavior of the system 

by reflecting the properties of the real world [1].  In addition, Baars believes that 

phenomenal states allow for the global access of information (e.g., auditory, affective and 

visual information) [3].  In this document, we take the position proposed by Clark that 

phenomenal states are useful for the reason-and-memory-based selection of action, which 

uses knowledge from different bases that requires integration [7].  This concept is 

referred to as the integration consensus [22].  

According to Morsella, an essential feature of human cognition is that multiple 

simultaneous, low-level processing modules provide inputs to a higher level of 

processing, where the higher-level processing must disambiguate conflicting objectives. 

This process can be referred to as the Supramodular Interaction Theory (SIT) [22].   

SIT proposes that phenomenal states play a critical role in permitting interactions among 

a variety of response systems (i.e., modules) with different objectives.  Without 

phenomenal states, output from these different systems would be incapable of 

collectively influencing action [22].  Figure 3 depicts the SIT.  Response System A is 

concerned with how the organism should physically interact with the world.  Response 

System B is an incentive system concerned with whether the organism should approach 

or avoid a stimulus.  The output of these response systems only interacts in the 

phenomenal field, and they modulate a different aspect of the phenomenal experience.   

These phenomenal experiences (i.e., subjective experiences) are internally 

displayed using a phenomenal representation (i.e., mental states).  Phenomenal 

representations are not a completely accurate portrayal of the world, but should be 
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capable of generating a stable, consistent and useful depiction of the environment suitable 

for successful decision making.  

                    

Figure 3. Supramodular Interaction Theory [22] 

 

 

Morsella provides the tenets of SIT, which are listed below: 

1. Phenomenal States allow information from diverse sources to interact in order to 

produce adaptive action. 

2. Relatively few kinds of information require conscious interaction because many 

kinds of information can interact unconsciously. 

3. Phenomenal states are required for outputs of different supramodular response 

systems to interact. 

4. Interactive processes occurring among modules within response systems can be 

unconscious, but interactive processes across systems require conscious 

processing. 
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5. The response tendencies of response systems may conflict with skeletal muscle 

plans. 

6. The outputs of response systems incessantly modulate the phenomenal field, 

regardless of whether there is conflict. 

7. Without phenomenal states, the outputs of the different systems would be 

encapsulated and incapable of collectively influencing action.  

 

As discussed in the previous section regarding the importance of the conscious 

attributes, the conscious functional tenets are just as essential when developing a general 

purpose framework.  In fact, this research shows that the two are coupled, and to exhibit 

any of the given conscious attributes requires one or more of the tenets for functionality.  

Consequently, we will also demonstrate a subset of the functional tenets listed above via 

our proposed architecture.  

The next section briefly discusses the characteristics of phenomenal states (i.e., 

qualia) and their associated representation in MC applications as proposed by Rogers et 

al. [28].  In addition, Rogers et al. provide a list of recommended tenets for designing a 

general purpose MC architecture.     

2.5 Qualia Exploitation of Sensor Technology  

Rogers et al. discussed the potential benefits of using MC systems in military 

applications [28].  Specifically, they discussed how MC methodologies could potentially 

improve the capability of Automatic Target Recognition (ATR) techniques that are 

currently unable to meet the warfighter’s needs.  To improve the ATR capabilities (e.g., 
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combat identification), Rogers et al. suggest developing a general purpose machine-based 

recognizer called QUalia Exploitation of Sensor Technology (QUEST) [28].  The 

objective of QUEST is to construct a subjective representation (i.e., phenomenal states) 

to improve the characterization of entities in the environment.  The QUEST approach for 

developing a qualia-based system is to establish a list of guiding tenets to serve as the 

fundamental driving characteristics of what is needed for creating such a solution.  A 

complete list of the QUEST tenets can be found at [26]; however, the current research is 

focused on the tenets for phenomenal states (i.e., qualia), which are shown below.  

 

1. Subjective Aspects of Qualia:  Qualia are the subjective qualities evoked by a 

stimulus.  They only exist in the mind of the animal sensing the stimuli. 

2. Not Derivable:  The qualia are not derivable from the stimulus by any other 

animal.  Qualia are so distinct that the same stimulus presented at a different time 

to the same animal could evoke a different quale.   

3. Not Measurable:  Qualia are not measurable by any external agent.  There is no 

set of measurements that can be taken to explain what it is like for an animal to 

experience a specific quale.   

4. Qualia Spookiness:  The fact that qualia are only accessible by the animal that 

generates them make them ‘spooky.’  We call this gap between the externally 

observable stimuli and the only internally accessible qualia the S-Q gap.   
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5. Abstract Qualia:  Abstract is defined by philosophers as ‘not being reducible by 

sensor transduction.’  All qualia are abstract concepts. 

6. Internally Generated:  Qualia are evoked as a result of stimulation.  That 

stimulation can be the result of sensing or can be internally generated, e.g., by 

thinking or dreaming. 

7. Processes that act on Qualia:  There exists a set of processes that manipulate the 

internal qualia representation.  These processes generate efficient representations 

such as the formation of hierarchies to generate compound qualia.    

8. Evolving Qualia:  The qualia-based representation facilitates anticipating, 

detecting, distinguishing, and characterizing entities.  That representation can 

change and be manipulated.   

9. One Quale at a Time:  It is only possible for one quale to be experienced at a 

time.  Multiple solutions compete to be experienced.   

10. Qualia Theory of Relativity:  Qualia-based representations build a world model 

that is completely relative.  Each individual quale can only be characterized 

relative to other qualia.  

11. Negative Aha:  QUEST must not only be able to identify what it knows, but also 

what it doesn’t know.  This is termed ‘the known unknown.’  

12. Qualia Sensors – Measurement Units:  It is not yet clear that the conventional 

approach of mapping sensory measurements immediately to numbers doesn’t lead 
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us down a path where we can never get to a qualia-based representation.  QUEST 

may involve a new approach to non-numeric sensors.   

13. Intent – Theory of Mind (ToM):  Theory of mind is the act of computing the 

quale of ‘mindness’ by an animal.  It is one of the most important links for the 

quale of self.   

14. Self:  The concept of self involves being able to distinguish in the world model 

what is under one’s own control and what is external.  This computation will arise 

from interaction with the environment.   

15. Chinese Room and Zombies:  It is impossible to engineer a system that can give 

intelligent responses to arbitrary queries without having any understanding of the 

queries themselves.   

Although there is no standard design methodology for developing a general 

purpose MC framework for investigating phenomenal states, several researchers have 

provided guiding principles for different aspects of this problem, as described above.  

That is, Crick and Koch recommended attributes for developing a conscious framework, 

Morsella provided a list of functional tenets (i.e., SIT) for phenomenal states, and 

proposed characteristics/representations of qualia (i.e., phenomenal states) were given by 

Rogers et al. 

This research uses a subset of the conscious framework guiding principles to 

serve as design criteria for the proposed architecture.  The subset of guiding principles 

selected to design CASE are only those appropriate for MC systems and not just 
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applicable for human consciousness (e.g., penumbra and meaning).  Furthermore, a 

second filter was used for only selecting the principles that are useful for inference and 

reasoning since they are key features currently absent in SHM systems.  The selected 

framework guiding principles used to design CASE are listed below.   

1. Unconsciousness 

2. Consciousness 

3. Coalition of neurons 

4. Explicit representation 

5. Attention and binding 

 

The assumption is made that designing CASE using the selected framework 

principles to mimic characteristics of consciousness, will also elicit the associated 

functions and attributes of phenomenal states.  Nevertheless, using these guiding 

principles does not ensure the generation of phenomenal states.  However, by using the 

recommended guidance, a framework emerges to further the investigation of MC and 

phenomenal states.  

2.6 Summary 

This chapter reviews the most cited theories of consciousness and their 

investigation in MC systems.  Additionally, it discusses the characteristics of 

consciousness from a functional and phenomenal perspective.  Proposed tenets for these 

characteristics were provided along with suggested attributes for a conscious framework.  
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III.  Methodology 

3.1 Overview 

In this chapter, the proposed architecture is described in detail.  Furthermore, each 

of the selected conscious framework attributes is illustrated.  Lastly, the corresponding 

SIT functions and QUEST tenets of the selected attributes are identified.  

3.2 Conscious Architecture for State Exploitation (CASE) 

CASE is a general purpose architecture that autonomously generates state 

information while situated in some environment to enhance decision making.  The CASE 

computational philosophy is inspired by the cognitive information processing of humans.  

The CASE framework is designed to mimic the integration of low-level and high-level 

cognitive functions.  Specifically, CASE incorporates specific characteristics of the 

unconscious and conscious processes of human cognition.  Figure 4 illustrates CASE, 

consisting of two integrated systems:  a perceptual system (unconscious process) and a 

conceptual system (conscious process) [11].  
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Figure 4. Conscious Architecture for State Exploitation (CASE) 
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3.2.1 Perceptual System 

The perceptual system processes sensory data acquired from the environment to 

quickly compute state estimations (reflexive) via pattern recognition techniques.  Data 

sensed from the environment are capable of being processed in parallel from different 

sensing modalities (e.g., temperature, state estimates, etc.).  Furthermore, sensing 

modalities can be combined (e.g., form coalition) to increase the reliability of state 

estimations.  The environment can also be influenced by request of the perceptual system 

through implementation of selected actions performed by actuators (see Figure 4).  The 

output of the perceptual systems produces one or more state estimates (i.e., plausible 

states) that compete to enter the conceptual system (i.e., global workspace) for further 

processing.   

3.2.2 Conceptual System 

The conceptual system comprises long-term and working (i.e., short-term) 

memories.  Long-term memory stores procedural, semantic, and episodic knowledge 

regarding the environment and application-specific information.  Procedural memory 

provides knowledge related to particular action rules needed to achieve a given goal.  

General knowledge about the environment is stored in sematic memory, and episodic 

memory contains information regarding past experiences (i.e., past selected states).  

CASE uses working memory for reasoning and deliberating over state estimations.  It 

contains all the relevant information pertaining to the current situation such as state 

estimations, goals and action rules.  If additional information is required, working 
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memory can also query data from long-term memory and the perceptual systems to aid in 

the decision making process. 

3.3 Functions and Processes 

The perceptual system consists of two main modules:  environmental/operational 

data processing and state characterization (low-level processes).  The conceptual system 

also consists of two main modules:  state selection and action selection (high-level 

processes).  Each of these main elements is described below, and examples related to an 

assumed SHM application are provided. 

3.3.1 Environmental/Operational Data Processing 

The environmental/operational processing module acquires measurement data 

from the environment via sensors to provide context data regarding the manner in which 

the observed system (e.g., airframe, automobile, etc.) is being operated and the 

environment in which the system is operated.  For example, these data could include the 

external temperature of the surrounding environment and/or the operational speed of the 

system being monitored (see Figure 5).  Data collected by this module are primarily 

based on first principle sensing, which provides physics state information.  For example, 

temperatures are environmental data, and load levels and load cycles are operational data.  

Both context data types are used within the state selection module for computing the 

anticipated states via physics-based models (i.e., simulation).  Additionally, context data 

could be integrated with the state characterization data for enhancing state estimations.     
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Figure 5. Environmental/Operational Data Processing Module 

 

3.3.2 State Characterization  

State characterization is the process used to estimate health states via sensors and 

pattern recognition methods.  In Figure 6, sensor data from the monitored system are 

processed using damage estimation techniques.  These state estimations could be 

performed using several combinations of sensing modalities and algorithms.  For 

example, all damage algorithms could process data differently, using different sensors of 

the same modality for providing an estimate of the same state.  Likewise, all processing 

algorithms could estimate different states using the same sensors but different modalities.  

The dashed line entering the top of the state characterization module indicates 

that environmental/operational data could be used to supply context data.  For example, 

temperature compensation could be applied to sensor data based on thermocouple 

readings (see Figure 6).  That is, the damage algorithm could be adapted to compensate 
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for the effects caused by the operational and environmental conditions.  The output of the 

state characterization stage is one or more state estimates (i.e., plausible states) of the 

observed system. These outputs could also be combined (i.e., form coalitions) to improve 

state estimations.  

There are numerous ways the state characterization module could be configured 

for acquiring specific data and computing state estimations (e.g., sensing modalities, data 

processing methods, etc.).  For example, this module could perform specific interactions 

with the environment via actuators for acquiring specific data.  Additionally, the state 

characterization module could be reconfigured to process data in a specific way to 

enhance state estimations.  Both of these features could occur in real-time at the request 

of the perceptual systems via the state section module.  At this stage, state estimates give 

information related to presence of damage and the degree of damage, such as crack 

length estimates for a monitored location on an aircraft. 
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Figure 6. State Characterization Module 
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3.3.3 State Selection 

State selection involves using context data and/or physics-based models (i.e., 

simulation) to refine state estimates.  Context data are provided by the 

environmental/operational processing module to perform simulations using a physics-

based model.  For example, load data can be used in this simulation to predict the 

existence of a crack, given knowledge of the material properties and geometry of the part.  

These predictions are combined with the current state estimates (one or more) from the 

state characterization module and the past selected states to determine if they are logical 

and feasible (i.e., do not violate the laws of physics).  This consistency and reasonability   

assessment is performed using a state selection algorithm.  Estimates that fail this test are 

deemed invalid and do not further influence the selected answer.  The selected answer 

could be any one or a combination of the state estimates.  Furthermore, it could be a state 

estimate computed by the simulation.  The objective of the state selection module is to 

generate stable and consistent state estimates appropriate for actionable decision making 

and not necessarily a precise state assessment.  Figure 7 depicts the state selection 

process. 

  Requests for specific data and processing can be made to support the state 

selection procedure, as indicated by the dashed line, to the state characterization module 

(see Figure 4). The specific processing may be as simple as requesting repeated 

measurements from the same sensors, or even computing state estimates from different 

sensors using secondary methods that are possibly more computationally demanding.  

Once a decision is reached, the selected state is used within the action selection module.  
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Figure 7. State Selection Module 

 

3.3.4 Action Selection 

The action section module combines context data (i.e., environmental/operational 

data), state selection data, and goal-based data to select the most appropriate action for 

achieving the current objective.  This module uses selected states, anticipated 

environmental/operational data and goals/objectives data as input into a simulation (i.e., 

physics-based model).  This simulation is performed to identify potential problems that 

could occur as a result of a particular action.  If the simulation anticipates major issues 

with performing a specific action, then an alternative action with fewer concerns is 

recommended.  

The goal-oriented actions will differ based on the needs of each individual 

application.  For example, a maintainer may establish rules to be notified when a visual 

damage inspection is needed.  Or, a mission commander might design rules that report 
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risk of component or mission failure for the given current structural state and anticipated 

flight profile.  The action selection module of CASE is shown in Figure 8. 
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              Figure 8. Action Selection Module 

 

3.4 CASE Operational Characteristics 

The operational features of CASE were designed to include selected attributes of 

a conscious framework (Chapter 2).  These features were chosen based on their 

applicability to a MC system and the demonstrated application (i.e., SHM).  Furthermore, 

the corresponding functionality of SIT was also incorporated.  Explicitly, CASE was 

developed using the guiding principles selected in Chapter 2.  Using the functional 

modules of CASE described above, these guiding principles are illustrated via Functional 

Flow Block Diagrams (FFBD) for the selected conscious framework attributes.      

3.4.1 Unconscious 

The unconscious attribute is a mode in which actions in response to sensory 

inputs are rapid, transient and stereotyped. Unconscious attributes could also be thought 

of as automatic or reflexive responses analogous to a “knee jerk” reaction.  Additionally, 
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the primary flow of information is most likely feed-forward and bottom-up (i.e., from left 

to right in the diagram below).  Figure 9 illustrates the unconscious mode in CASE. 

State Characterization Action SelectionState Estimate(s)Sensor
Data

 

Figure 9. Unconscious Mode of CASE 

 

In Figure 9, sensory data from the environment enter the state characterization 

module in CASE.  This module computes one or multiple state estimates.  In this mode, 

the state characterization module must yield one output (i.e., state estimate) in order to 

provide actionable data to the action selection module.  If multiple state estimates are 

computed, they must be combined (e.g., form a coalition) in order to meet the “one 

output” requirement.  Although the depiction of the unconscious process in Figure 9 does 

not make use of any environmental/operational data, these data could be used to aid in the 

state estimation process.  The computed state estimated then enters the action selection 

module, where the corresponding action is immediately performed without deliberation 

or reasoning (e.g., state selection module).  

In the unconscious mode, no data modulate the phenomenal field since it is a 

reflexive response.  This supports the SIT theory that relatively few kinds of information 

require conscious interaction, because many kinds of information can interact 

unconsciously [22].  
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3.4.2 Consciousness 

Contrary to the unconscious (i.e., zombie modes) process, consciousness is a 

more thoughtful and slower process in CASE.  It uses reasoning and deliberation to 

determine the most appropriate response to a given sensory input.  When used together 

with the unconscious system (i.e., zombie system or perceptual system), the conscious 

system may interfere (e.g., veto, change, etc.) with the unconscious system’s reflexive 

response to ensure that the most logical action is taken.  This process is evoked when the 

unconscious system response is inconsistent, unstable or illogical.  In the conscious 

mode, data flow in both directions (i.e., bottom-up and top-down).  The conscious mode 

of CASE operation is depicted in Figure 10.    
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Figure 10. Conscious Mode of CASE  

  Figure 10 shows sensory data from the environment entering the state 

characterization and environmental/operational processing modules.  Similar to the 

unconscious mode, the state characterization module can compute one or more state 

estimates (e.g., damage size).  However, in the conscious mode, the state 

characterization module is permitted to output multiple state estimates since a state 

selection process is performed next.  These multiple state estimates at this stage can be 

referred to as plausible states. The environmental/operational processing module 

computes context data related to the manner in which the observed system is being 
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operated (e.g., stress levels, velocity, etc.) and in what type of conditions (e.g., high 

temperature, low temperature).   

The state selection module combines context data and state estimates for 

reasoning to determine if the plausible states (i.e., estimated states) are logical and 

feasible (i.e., do not violate the laws of physics).  Results that fail the reasoning process 

are deemed invalid and do not further influence the selected answer (i.e., lose the 

competition and do no enter the global workspace).  Conversely, the valid results allow 

entrance to working memory (i.e., global workspace) and can become the focus of 

attention (i.e., artificially conscious) if they are selected (i.e., enter the “spotlight”).  Once 

an artificially conscious state is realized (i.e., selected), it is then used during a 

deliberation process within the action selection module.  This module integrates context 

data, selected state data and goals/objectives data for deliberation to ensure an 

appropriate action is taken given the current situation.  The selected action also becomes 

artificially conscious once the decision is made.  

Operations in the conscious mode employ three of the SIT functional tenets and 

two QUEST tenets.  The SIT tenet interaction across systems (i.e., modules) requires 

conscious processing is used [22].  A SIT diagram of CASE is shown in Figure 11.  

Notice that three modules are combined in the phenomenal field before an action is 

performed.  This is required in order to select the best plan of action for a given situation 

as discussed in the state section and action section modules described above.  

Additionally, the conscious mode supports the SIT tenet of outputs of different response 

systems requires phenomenal states to interact [22].  The conscious mode in CASE uses 

the phenomenal field twice for interaction before an action is determined.  First, it is used 



 

28 

 

in the state selection module for selecting from plausible states.  This process integrates 

data from the environmental/operational processing and state characterization modules 

before a selection is made using the process discussed earlier (see Figure 7).  Second, the 

action selection module uses data from environmental/operational processing, state 

characterization and goals/objectives modules as described above (see Figure 8).  This 

process also makes use of the phenomenal field (i.e., conscious representation) before an 

action is executed.  Since the state selection and action selection modules both integrate 

data from different systems before responding, it becomes obvious that the SIT principle 

of response systems incessantly modulate the phenomenal field is demonstrated in the 

conscious mode [22].  That is, anytime a module’s output becomes artificially conscious, 

it modulates the phenomenal field.  See Figure 11.  

                       

Phenomenal Field 

Environmental/
Operational 

(Response Sys. B)

Goals/Objectives
(Response Sys. C)

State Estimation
(Response Sys. A)

Action

 

Figure 11. Conscious Mode Phenomenal Field Modulation [22] 

 

The CASE operation in the conscious mode utilizes the QUEST tenet “not 

measurable” [28].  This tenet can be described as a process in which the unconscious 
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system (i.e., sensory system) results are changed, manipulated or replaced by the 

conscious system to generate a logical and thoughtful response.  CASE also uses the 

QUEST tenet “evolving qualia” in the conscious mode [28].  During the state selection 

and action selection processes, CASE uses a simulation (i.e., representation) that is 

manipulated via past and current state data. This simulation facilitates the detection, 

characterization, distinction, and anticipation of current and future state estimations.  A 

detailed example of these processes will be provided in Chapter 4.    

3.4.3 Coalitions of Neurons 

Coalitions of neurons take place at two stages within CASE.  During the state 

characterization process, neurons (i.e., features) could form coalitions to generate state 

estimations.  That is, each output from the state characterization module could comprise 

coalitions of features.  This condition could occur within a single sensing modality or 

across sensing modalities.  Similarly, the output of the state characterization module 

could be combined to form coalitions before entering the state selection module.  Figure 

12 illustrates this process. 
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Figure 12. Coalitions of Neurons in CASE  

The SIT function that the coalitions of neurons displays is outputs of different 

response systems requires phenomenal states to interact [22].  Since the coalition of 

neurons could be from different modalities, each modality could be considered a different 

response system. For example, imagine trying to recognize an object in the environment 
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via sensory observation.  If more than one of the senses (e.g., seeing and hearing) is used 

to characterize the object, the SIT principle described above is exercised.  This is 

analogous of what happens within CASE.  In the given example, this coalition process 

may or may not modulate the phenomenal field depending on whether it was performed 

in a conscious or unconscious mode.       

3.4.4 Explicit Representations 

The explicit representations characteristic in CASE occur in the state 

characterization module.  Each sensory processing element within the state 

characterization module has an explicit representation.  This representation allows each 

sensory element to respond to specific features reflexively without further processing.  

For example, one explicit representation might be able to detect structural damage.  Yet 

another explicit representation could have the ability to identify damage locations.  Both 

have the innate ability to respond autonomously via their explicit representation without 

additional processing.  Figure 13 depicts this process.  
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Figure 13. Explicit Representations in CASE 

 

In Figure 13, assume that the state characterization module has an explicit representation 

to detect damage.  The damage detection data are sent directly to the state selection 
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module, where it competes for access to working memory (i.e., global workspace).  Since 

damage detection is an explicit representation and is computed in a single module, no SIT 

functions are illustrated during this process.  

3.4.5 Attention and Binding 

Attention is divided into two forms. It can be rapid, saliency-driven and bottom-

up or slower, volitionally controlled and top-down.  In CASE, the bottom-up attention 

method is performed via the state characterization process.  Consider Figure 14.  Assume 

that an anomaly is detected in the sensor data via the state characterization module.  This 

abnormality gets attended to via the state selection process.  Furthermore, the appropriate 

action is taken during the action selection process to ensure the goals/objectives are 

achieved in spite of this anomaly.   
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Figure 14. Bottom-up Attention Process in CASE 

 

The top-down attention is driven by the goals/objectives and executed using the 

action selection module.  For instance, the action selection module can focus the 

attention of the system (i.e., MC system) by requesting specific data from the state 

characterization module to aid in the decision making process.  In Figure 15, assume the 

goals/objectives module makes a request for specific sensor data.  This request is sent to 

the action section module; in turn the action section module commands the state 
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characterization module to acquire the requested data.  These data are then processed in a 

feed-forward manner to become artificially conscious.  This process will continue until 

an acceptable solution is reached.  
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Figure 15. Top-down Attention Process in CASE 

 

Binding is a process that brings together different aspects of an object or event.  The 

philosophy behind binding is similar to an investigator interviewing two witnesses at the 

scene of a car accident who observed the same incident from different angles.  The goal 

is to collect all relevant aspects of the data for generating a complete representation for 

making the most accurate decision possible.  CASE performs binding by integrating data 

from sensors physically positioned in different locations.  These data could be of the 

same type or of different modalities.  In addition, these data could be acquired with high 

or low resolution.  Nevertheless, these data sets are combined to corroborate each other 

for providing the best possible response with the available data.   

The SIT tenets exhibited in the attention and binding attribute depend on the way the 

data are processed.  For example, if the attention/binding processes only need data from a 

single module with no interactions, then the SIT functions are not exhibited.  Conversely, 
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if the attention/binding processes require data interactions from different modules, then 

one or more SIT functions will be present.  The attention process in CASE exhibits the 

QUEST tenet one quale at a time [28].  During the attention process in CASE, whether 

bottom-up or top-down, one state is attended to at a time.  This is true during the state 

selection and action selection processes, which both use artificial consciousness for 

decision making.    

Table 1 summarizes the guiding principles illustrated in CASE for this investigation.  

CASE was designed, developed and demonstrated in an SHM application incorporating 

the philosophies listed in Table 1.  Details of this design and the demonstration results are 

discussed in Chapter 4. 

 

Table 1. Guiding Principles Demonstrated in CASE 

 
Framework 
Attributes 

SIT Tenets QUEST 
Tenets 

Unconscious -Relatively few kinds of information require 
conscious interaction, because many kinds 
of information can interact unconsciously.  
 

 

Consciousness -Interaction across systems (i.e., modules) 
requires conscious processing. 
-Outputs of different response systems 
require phenomenal states to interact. 
-Response systems incessantly modulate the 
phenomenal field. 

-Not Measurable 
-Evolving Qualia 

Explicit 
Representation 

  

Coalition of 
Neurons 

-Outputs of different response systems 
require phenomenal states to interact. 

 

Attention/ 
Binding 

-Depends on processing methods used. -One Quale at a Time 
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3.5  Summary 

This chapter provides a general overview of the CASE architecture.  In addition, 

the four main modules of CASE are described in detail.  Lastly, the selected 

characteristics of a conscious framework are illustrated via CASE, and the associated 

SIT/Quest tenets are discussed.    
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IV.  Demonstrated Application 

4.1 Overview 

This chapter describes the demonstration of CASE in an structural health 

monitoring (SHM) application.  First, the current method for ensuring structural integrity 

of USAF airframes is briefly discussed.  Next, an overview of SHM is given, followed by 

the experimental setup.  Finally, experimental results are presented comparing CASE 

with the current practice for maintaining aircraft structures.  

4.2 Aircraft Structural Integrity Program (ASIP) 

The United States Air Force (USAF) utilizes the Aircraft Structural Integrity 

Program (ASIP) to service and maintain its airframes.  The goal of ASIP is to ensure the 

desired level of structural safety, durability, and supportability with the least possible 

economic burden throughout the aircraft design service life [9].  USAF aircraft structures 

are currently designed using a “damage tolerant” philosophy, wherein structures are 

designed to retain the required residual strength for a period of unrepaired usage after the 

structure has sustained specific levels of fatigue, corrosion, accidental, and/or discrete 

source damage [9].  ASIP currently manages damage using a schedule-based 

maintenance philosophy by establishing predefined maintenance intervals for performing 

manual inspections.  This approach requires vehicles to be removed from service at 

predetermined times regardless of their actual condition.  In most cases, inspections 

performed during this process do not find any damage, and the airframe is returned to 
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service until the next inspection interval. The schedule-based maintenance approach 

works well for ensuring structural integrity.  However, it is very costly, labor-intensive, 

and reduces aircraft availability.  Furthermore, Operational and Support (O&S) costs are 

continuously rising due to the frequent inspections required to maintain aircraft safety in 

aging fleets [17]. 

4.3 Structural Health Monitoring (SHM)  

SHM can be defined as automated methods for determining adverse changes in 

the integrity of mechanical systems [12].  The need for and benefits of SHM systems for 

civil, military, and aerospace applications have been documented by many researchers 

[14] [20] [24] [32].  The ultimate goal of SHM is to provide an automated and real-time 

assessment of a structure’s ability to serve its intended purpose.  Structural health 

assessments consist of a diagnosis and prognosis of the monitored structure.  The 

diagnosis should include the detection, localization, and assessment of any damage, while 

the prognosis provides information regarding the consequences of the diagnosed damage.  

The prognosis might be that the structure is as good as new, safe to operate for only a 

certain number of flight hours, or that immediate repair is required.  Knowledge 

regarding the state of the structure is increased with each level of abstraction.  

SHM systems are typically comprised of in-situ or embedded sensors and 

processing algorithms.  The algorithms are used to interpret sensor data to discriminate 

between different damage states in order to provide an accurate damage assessment and 

corresponding prognosis.  Various processing steps may be performed by the SHM 

system to transform the data into different forms that enhance the damage assessment 
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ability.  Most SHM systems process sensory data using pattern recognition methods to 

classify structural states [19].  Development of SHM systems based on pattern 

recognition requires training data from all anticipated damage states and operational 

environments to be effective.  The training data are used to design a classifier, and the 

resulting performance is evaluated by scoring the classification results from data not 

utilized during the design or training phases.  

The integrity of a structure can be described at different levels of detail.  The two 

fundamental levels, detection of damage and its location, are each useful in their own 

rights.  Using only results from the damage detection and localization levels, inspection 

time and costs could be reduced.  Most SHM investigations have focused on developing 

quick state assessments (i.e., reflexive techniques) for achieving the fundamental levels 

of SHM.  These reflexive approaches have achieved limited success for damage detection 

and localization [13].  However, information provided by the two higher levels of SHM, 

relating to quantifying the degree of damage and ultimately an assessment of the 

consequences of damage in terms that are meaningful to maintainers, operators, and 

commanders, could lead to further improvements in operation.  Figure 16 illustrates a 

notional SHM system (high and low levels).  Exploiting the full operational benefits of 

SHM requires a new methodology for information processing.  SHM is a well-suited 

application for demonstrating CASE. 
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Figure 16. Notional SHM System [5] 

4.4  Experimental Setup 

CASE was used to autonomously monitor the integrity of a flight critical airframe 

component, a representative wing spar attachment lug, under simulated flight loads.  As 

the load cycles accumulated and the airframe component began to fracture, CASE 

computed an output recommending a maintenance action be performed by a maintainer.  

The results were compared and contrasted with ASIP using DoD metrics [10]. 

The test article used for this investigation is a representative single wing spar 

assembly made of 6061-T6511 extruded aluminum that was subjected to flight-like 

fatigue loading [15].  Although 2024 and 7075 are the most common alloys used in 

aircraft, 6061 was selected for this experiment because it is less expensive and readily 

available.  One end of the spar was mounted to a test fixture representing the wing 

attachment to the fuselage.  The opposite end of the spar was loaded in fatigue using a 

hydraulic actuator to emulate wing deflection during flight. The test configuration is 

shown in Figure 17. 
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Figure 17. Experimental Setup 
 
 

A finite element analysis was performed on the test article to determine the 

critical locations that require monitoring.  It was determined that the wing spar 

attachment lug was most likely to fracture first under fatigue loading.  During cyclic 

loading, corner cracks were predicted to initiate at the shoulders of the lug and grow 

horizontally (A-direction) and vertically (C-direction), as shown in Figure 18.  

The commercially available AFGROW (Air Force Growth), which is a physics-

based fracture mechanics software, was used to provide estimates of crack initiation and 

growth. The loading profiles were assumed to be sinusoidal with constant peak load 

amplitude of 1,000 lbf and a minimum load of zero.  Under these conditions, the critical 

crack lengths (predicted failure size) in the horizontal and vertical directions were found 

to be 0.35” and 0.70”, respectively.  Crack initiation estimates can be approximated from 

fatigue testing performed on un-notched (pristine) 6061-T6 specimens [15].  For this 

experiment, an assumed initiation crack size of 0.02” was used.  Therefore, the estimated 

time for a 0.02” crack to initiate was determined to be 10,000 cycles.  The fatigue life of 
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the lug was estimated using AFGROW as well.  Assuming an initial flaw size of 0.02”, 

under a constant peak applied loading of 1,000 lbf, the lug was predicted to fail at 14,500 

cycles.  Hence, the estimated lifecycle of the lug under the test conditions was estimated 

to be 24,500 cycles.  Figure 19 shows the results of the crack initiation and growth 

predictions for selected loading conditions.   

 

 
Figure 18. Model of Wing Spar Attachment Lug 

 

 

Figure 19. Crack Initiation and Growth Predictions 
 

Throughout the laboratory fatigue testing, measurements of the visual crack size 

(i.e., truth data) and SHM data were collected during pauses in the fatigue cycling.  
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Visual crack size measurements were performed using Florescent Dye Penetrant, and 

SHM data were generated using piezoelectric transducers (sensors and actuators) bonded 

to the lug [20].  The interval between data collections was based on the measured visual 

crack size.  Measurements were made every 1,000 cycles until a crack was visually 

detected.  After visual detection, measurements were made every 500 cycles until the 

longest observed crack reached 0.30”.  Once the longest crack reached 0.30”, 

measurements were made every 250 cycles.  The experiment was terminated when the 

longest crack reached 0.70”.  This schedule provided 123 measurements over 70,000 

fatigue cycles for use in the simulation of the ASIP and CASE processes. 

4.5  Demonstration Results 

4.5.1 ASIP 

Because of the conservative nature of ASIP, it is assumed that all critical airframe 

components have an initial flaw size to account for any damages that could have occurred 

during the manufacturing and maintenance processes.  Generally, ASIP assumes a 0.05” 

flaw because it is equivalent to the minimum detectable flaw size of a typical structural 

inspection.  For this reason, a 0.05” flaw was assumed to exist in the lug component.  

Using AFGROW with the loading profiles used for this testing, the estimated fatigue life, 

or the time required for an initial crack of 0.05” to grow to the critical crack length for the 

lug, was approximately 8,615 cycles.  The ASIP process usually establishes inspection 

intervals by performing the first manual inspection at half the estimated fatigue life, and 

the next inspection at the estimated fatigue life.  Therefore, the ASIP inspection interval 

used for this experiment was roughly 4,300 fatigue cycles (8,615 cycles / 2).  
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During testing, cracks initiated from both shoulders (left and right sides) of the 

lug and propagated in both the horizontal and vertical directions as expected.  The first 

noticeable cracks were at 43,000 cycles in the vertical direction, with lengths of 0.091” 

and 0.08” on the left and right shoulders, respectively.  Cracks in the horizontal direction 

were not detected until 47,500 cycles with sizes of 0.058” and 0.048”, respectively.  As 

noted above, the estimated times for a 0.02” crack to initiate was 10,000 cycles.  Because 

the inspection technique used for this experiment could only detect flaws above 0.05”, 

the 0.02” crack initiation assumption could not be verified.  However, it is still interesting 

to compare the estimated and measured cycles required for crack initiation and growth as 

shown in Table 2. 

Table 2. Error in Crack Initiation and Growth Predictions 
 

Crack Direction 
and Side 

Cycles for Crack Initiation Cycles for Crack Growth to Critical 

Estimated Measured 
in (mm) 

Percent 
Error 
(%) 

Estimated Measured 
in (mm) 

Percent 
Error (%) 

A-dir 
left side 

17,000 47,500 
0.058 (1.47) 

179 7,500 20,250 
0.360 (9.14) 

170 

A-dir 
right side 

16,000 47,500 
0.048 (1.22) 

197 8,500 17,750 
0.360 (9.14) 

109 

C-dir 
left side 

18,500 43,000 
0.091 (2.31) 

132 5,500 27,000 
0.520 

(13.21) 

391 

C-dir 
right side 

 
 

18,000 43,000 
0.080 (2.03) 

139 6,500 27,000 
0.680 

(17.27) 

315 

 

In Table 2, the error in predicting crack initiation cycles was between 132% and 

197% for all of the cracks.  Table 2 also lists the estimated and measured cycles for the 

cracks to grow from the initial crack size measured to the critical crack length.  The crack 

propagation errors range by almost a factor of four, from 109% to 391%.  These ranges 
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are typical of crack propagation behavior, as it is not uncommon for fatigue crack growth 

predictions to vary by a factor of four [33]. 

Since the lug is a fracture critical component, ASIP would require periodic 

inspections to ensure fatigue cracks do not initiate and grow beyond the critical crack 

length before being repaired.  Using the ASIP-established inspection interval of every 

4,300 cycles for this component, the lug would be inspected approximately ten 

(43,000/4,300) times before any damage is detected for cracks in the vertical direction 

and eleven (47,500/4,300) times for cracks in the horizontal direction.  These inspections 

in which no damage is detected are significant since the cost for inspecting similar 

components on fielded aircraft range from approximately $1,000 to $120,000 per 

inspection based on various factors (e.g., aircraft configuration, type of inspection, 

coating removal and restoration, etc.) [23]. 

4.5.2 CASE 

CASE was applied to the same representative aircraft component.  The shoulder 

regions of the lug were instrumented using bonded Kapton-encapsulated piezoelectric 

transducers (PZTs) as shown in Figure 20.  During the SHM data collections, ultrasonic 

elastic waves were transmitted through the shoulder regions of the lug, from a rectangular 

actuation PZT to six sensing PZT disks for each side (i.e., left and right sides).  The 

actuation signals were 5½ cycle windowed tone bursts with center frequencies ranging 

from 400 kHz to 1 MHz in 100 kHz increments.  Sensor data was recorded with a 10 

MHz sample rate and 12-bit amplitude resolution.  Load data was also collected 

throughout the demonstration via a force transducer attached to the tip of the hydraulic 
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actuator.  Figure 21 depicts the instantiation of CASE as demonstrated.  Sections 4.5.2.1 

through 4.5.2.4 will describe how the CASE modules processed the acquired data.  

 

Figure 20. PZT Sensors/Actuator Installed on the Wing Spar Attachment Lug 
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4.5.2.1 Environmental/Operational Processing 

For this demonstration, the environmental/operational data processing module 

computed loading and cycle count information via the load transducer attached to the 

hydraulic actuator (see Figure 17).  During cyclic loading, the actual applied loads were 

measured and acquired throughout the experiment.  These data provided operational 

information regarding the actual loading profile experienced by the wing spar assembly 

Figure 21. CASE as Demonstrated 
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and the corresponding duration or number of cycles.  Figure 22 depicts a block diagram 

of this process.  This information serves as context data for the state selection and action 

selection modules. 

Cycle Counting 
Algorithim

Max/Min Loading 
Algorithim 

Operational Data

Max/Min Loads

Force 
Transducer

Wing Spar 
Attachment Lug

Cycle Count

Environment

 

Figure 22. Environmental/Operational Module of CASE as Demonstrated 

 

4.5.2.2 State Characterization 

The structural state characterized during this demonstration was crack size.  The 

fundamental feature for crack size estimation is based on a damage index derived from 

the correlation coefficient between a reference and test measurements.  The reference 

measurements were taken at cycle 1,000.  This was done to give the test article, sensors, 

etc., time to settle.  A damage index was computed at each sensor for each tone burst 

frequency.  The damage index is defined to be (1 – ρxy ), where ρxy is the correlation 

coefficient between a segment of the reference and corresponding segment of the test 

signal.  Segments are specified to include essentially the interval around the first arriving 

packet.  Test signals are shown in Figure 23.  The segment used for ρxy is approximately 

between 20 and 40 µsec. 



 

46 

 

      

Figure 23.  Excitation and Response Signals 

Two methods were used to estimate the crack size.  First, a linear regression 

model for mapping damage indices to visual crack size measurements was designed using 

data from the completed test.  The data were randomly divided into training and test 

partitions across the experimental signal collections.  For the six sensors and seven 

frequencies, 42 damage index values were computed at each CASE measurement (i.e., 42 

damage index values per side).  Feature selection was based on a stepwise regression 

procedure.  The procedure involved iteratively fitting a series of multi-linear regression 

models to crack size measurements using different subsets of elements from the feature 

vector.  The subset of features grows or shrinks based on the significance of a feature’s 

contribution to the regression model.  A feature is added to the subset only when its 

presence in the model improves the fit.  Conversely, a feature is removed from the subset 

when its absence does not degrade the fit.  The stepwise procedure terminates when the 

addition of any remaining feature does not improve the fit, and the removal of any 

previously selected feature degrades the fit.  

Another estimation model was developed using an Artificial Neural Network 

(ANN).   The ANN was trained using the damage index values and visual crack size 
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measurements.  As with the regression modeling, the data were randomly divided into 

training and test partitions across the experimental signal collections.  Unlike the 

regression modeling, the ANN used all 42 damage index values.  A diagram of the state 

characterization module is shown in Figure 24.  

For this demonstration, two pairs of state estimation units were implemented (i.e., 

primary and secondary state estimations).  The primary state estimation unit consists of 

regression model 1 and ANN 1 (see Figure 24).  These estimates were used to provide the 

first state estimates (i.e., plausible states) to compete to enter working memory (i.e., 

conceptual system or global workspace).  If both of these state estimates were 

unacceptable, then estimations from the secondary unit were used (i.e., regression model 

2 and ANN 2) in the same manner.  Note that these state estimation models are examples 

of the conscious framework principle explicit representation (see section 3.4.4).      
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Figure 24. State Characterization Module of CASE as Demonstrated 
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4.5.2.3 State Selection 

The State Selection module integrated information from state characterization 

and environmental/operational processing for selection of a current structural state (see 

Figure 25).  The loads and cycle count information were used in an AFGROW model to 

predict the current crack size, while the regression and ANN estimation models provided 

estimates of the current crack size as described above.  This is an example of the evolving 

qualia tenet of QUEST [28].  This process exploited a representation (i.e., model or 

simulation) to characterize the current state using past and predicted state estimates.  The 

selected structural state was determined by a selection algorithm that used logic and 

agreement-based averaging. 

 

Max/Min Loads AFGROW
(physics-based 

model ) Predicted State
(anticipated state)

Selection Algorithm
(logic-based)

Selected
State

Long Term Memory
(stored past states)

State Estimates
(plausible states)

Previous
State

State Estimate 1

State Estimate 4

State Estimate 2

Specific Request From State Characterization Module

Previous States

State Estimate 3

Cycle Count

 

Figure 25. State Selection Module of CASE as Demonstrated 
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The logic incorporated into the selection algorithm was based on the fundamental 

premise that cracks do not get shorter.  This logic ensures that current estimations must 

be equal to or greater than the previous selected state.  If both the primary estimates 

violated this condition, they were rejected and removed from further consideration.  

However, if both the primary estimates were greater than the previous selected state and 

were within a certain percentage of each other, then their average was used as the current 

selected state.  Averaging (i.e., combining) any of the state estimates illustrates the 

conscious framework attribute of coalitions of neurons [8].  If the estimates were not in 

agreement with each other, then each was checked individually for agreement with the 

AFGROW model predicted state.  This logic can result in the selected state being an 

average of either one of the crack estimated states and the AFGROW predicted state, or 

an average of all three.  If an agreement was not reached by this point, the state selection 

module would request two supplemental estimations, and the selection process would 

repeat.  If an agreement was still not reached at the end of this phase, the selected state 

was defaulted to the AFGROW model predicted state.  Selecting the model-based state 

estimate is an example of the not measurable QUEST tenet [28].  Figure 26 shows the 

state selection algorithm in detail. 
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State Selection Algorithm: 
Four estimation states:  E1(n), E2(n), E3(n), E4(n)  
Percentage value:  ±%X     Predicted state:  PS(n)  
Selected state:  SS(n)   Previous state:  SS(n-1). 
1.) If E1(n) & E2(n) are ≥ SS(n-1)) and E1(n) &  E2(n) are within ±%X of each other {i.e. 𝐸1(𝑛) − 𝑋 ∗

𝐸1(𝑛) ≤ 𝐸2(𝑛) ≤ 𝐸1(𝑛) + 𝑋 ∗ 𝐸1(𝑛) and 𝐸2(𝑛) − 𝑋 ∗ 𝐸2(𝑛) ≤ 𝐸1(𝑛) ≤ 𝐸2(𝑛) + 𝑋 ∗ 𝐸2(𝑛)   }  
then 𝑆𝑆(𝑛) = 𝐸1(𝑛)+𝐸2(𝑛)

2
 

2.) If E1(n)  is within ±%X of PS(n), then 𝑆𝑆(𝑛) = 𝐸1(𝑛)+𝑃𝑆(𝑛)
2

 

3.) If E2(n)  is within ±%X of PS(n), then 𝑆𝑆(𝑛) = 𝐸2(𝑛)+𝑃𝑆(𝑛)
2

 

4.) If E1(n) & E2(n) are within ±%X of PS(n),  then 𝑆𝑆(𝑛) = 𝐸1(𝑛)+𝐸2(𝑛)+𝑃𝑆(𝑛)
3

 
5.) If the first four steps do not yield the selected state, the architecture feedbacks to select two 

additional estimations or  E3(n)= E1(n),  E4(n)= E2(n) and repeat steps 1 to 4 
6.) If the selected state is not determined by this point then SS(n) is set equal to PS(n) 

 
Figure 26. State Selection Algorithm 

 

The demonstrated state selection algorithm was based on the assumption that the 

estimation techniques were able to detect a crack initiation of equal to or greater than 

0.05”.  If the estimations did not detect crack initiation, then the model prediction portion 

of the state selection was not activated, resulting in a continuous sequence of selected 

state crack lengths of 0”.  Figure 27 plots the four estimated states, where primary 

estimations are {REG(1),NN(1)} and supplemental estimations are {REG(2),NN(2)}, the 

AFGROW predicted state (i.e., physics-based model estimation), and the visual crack 

measurements (i.e., truth data) from this experiment using laboratory data and a Simulink 

implementation of the state selection process.  CASE detected crack initiation at 42,000 

cycles.  Prior to 42,000 cycles, no crack was detected; therefore, the predicted and 

selected states were 0”.  At 42,000 cycles, the two primary estimates were neither in 

agreement with each other nor the predicted state.  Hence, the algorithm requested the 

two supplemental estimations.  These estimates were in agreement and determined crack 
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initialization.  The average of the supplemental estimates was used as the selected state, 

and is shown marked by X’s in Table 3. 

      

Figure 27.  State Estimations and Visual Crack Size versus Cycles 

 

Table 3 also shows that at the next state estimation cycle of 42,500 the two primary 

estimates were in agreement.  Thus, no request for additional estimates was needed, and 

their average was used as the selected state.  At cycle 43,000 the two primary estimates 

and the predicted state were in agreement, and their average was used as the selected 

state.  Figure 28 shows the visual crack measurements and selected crack size resulting 

from applying the state selection algorithm for the lifetime of the lug. 

 

Table 3. Estimates Selected for Averaging 
 

Cycle (n) NN1(n) REG1(n) NN2(n) REG2(n) P(n) 
41,000      X 
41,500      X 
42,000    X X  
42,500  X X    
43,000  X X   X 
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Figure 28. Selected State and Visual Crack Size versus Cycles 

 

4.5.2.4 Action Selection 

The Action Selection stage enhances the command’s (i.e., user’s) situational 

awareness by combining selected state information and mission goals into a common 

representation to enable effective and efficient operational decisions (see Figure 29).  

AFGROW
(physics-based 

model)
 

Mission Goals (loads, cycles)

Selected State

Risk-based 
Decision 

Algoritihm

Simulation
Results Mission or Maintenance

Cycle Count

Max/Min Loads

 

 

 

The time remaining before a crack reaches the predicted critical state can be estimated 

using AFGROW.  Given the current crack size, along with material properties, part 

Figure 29. Action Selection Module as Demonstrated 
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geometry, and loading information, AFGROW can estimate the number of cycles 

remaining before the crack reaches the critical crack state, resulting in failure.  Figure 30 

shows estimated crack sizes versus load cycles for selected peak loads.  For example, 

consider entering the graph from the vertical axis at the crack length of 0.2” for the 1000 

lbf peak load case.  The AFGROW estimated cycle count corresponding to this crack 

length is approximately 11,800 cycles.  Additionally, the number of cycles to failure has 

already been computed by AFGROW, and is 14,500 cycles the end point of the 1000 lbf 

curve.  Therefore, the estimated remaining life of the component is found by subtraction 

to be 2,700 cycles (14,500–11,800). 

                             

 

Figure 30.  Model Predicted Crack Growth 

  For this demonstration, each mission was based on a cyclic load profile of 1,000 lbf 

with duration of 250 cycles or 50 flight hours (Cycles / 5 = flight hours).  A typical risk 

chart was generated to enhance the command’s mission situational awareness.  The risk 

chart was constructed with the vertical axis depicting the “Likelihood” and the horizontal 

axis representing the “Consequences.”  The likelihood values were determined by 
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calculating the difference between the estimated hours remaining before reaching a 

critical state given the current state and flight hours needed to complete the mission.  

Based on these calculated values, likelihood levels were assigned using the equations 

shown in Figure 31.  Additionally, the consequences were determined by a random 

number generator assigning an integer value between one and four.  The risk chart used 

during this demonstration is shown in Figure 32. 

Level 1 = hours remaining – hours required > 1.90 * hours required. 

Level 2 = 1.90 * hours required > hours remaining – hours required > 1.70 * hours required.  

Level 3 = 1.70 * hours required > hours remaining – hours required > 1.50 * hours required. 

Level 4 = 1.50 * hours required > hours remaining – hours required > 1.30 * hours required. 

Level 5 = 1.30 * hours required > hours remaining – hours required > 1.10 * hours required  

 

Figure 31. Risk Likelihood Equations 
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       Figure 32. Mission Risk Chart 
 

Two categories of commanders were simulated during this demonstration to 

assess their impact on airframe operations.  The first commander simulated was a 

pessimistic decision maker.  This commander was risk averse and only decided to 
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perform missions that have a high probability of success.  Conversely, the second 

commander simulated was an optimistic decision maker and was willing to perform 

missions with a lower probability of success.  The decision matrices for these 

commanders are shown in Figure 33.  
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Figure 33. Decision Matrices 
 

Data from the laboratory experiment was used in a Simulink simulation to 

evaluate the impact of three different operational philosophies.  The experimental data 

was used to generate structural state information as described above.  A total of 1,000 

simulated lug life cycles were conducted comprising 280 missions per lifetime.  Each 

mission within a given lifecycle produced a new consequence value via a random number 
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generator.  The likelihood values for each mission were calculated using the equations 

shown in Figure 30.  Operational decisions were made using three different approaches.  

The first approach employed the current ASIP philosophy of repairing the airframe 

whenever a crack of any size was detected by the monitoring systems (i.e., reflexive). 

This approach only required CASE to be used as a low-level SHM system.  The 

next two methods were considered risk-based approaches.  That is, weapon systems could 

continue to execute missions after a crack had been detected, depending upon the risk.  

To illustrate this approach, the pessimistic and optimistic decision makers were 

implemented during the simulation based on the decision matrix depicted in Figure 33.  If 

the computed risk value corresponded to a green box, the decision was made to perform 

the next mission.  Conversely, if the computed risk value corresponded to a red box, the 

decision was made to repair the airframe.  The results of the simulation are shown in 

Figure 33 for each decision method. 

The results indicate on average, the low-level SHM system will perform 

maintenance earlier than the risk-based approaches.  On average, over the 1000 simulated 

runs, the low-level SHM system requested maintenance approximately 4,300 hours 

earlier than any of the risk-based decisions.  However, the average differences between 

the risk-based decisions were much smaller.  In fact, the results indicate the optimistic 

decision maker would recommend repair just 72 (12,888–12,816) hours beyond the 

pessimistic decision, as shown in Figure 34.  This difference amounts to one additional 

mission since each mission has a 50 hour duration.  A more quantitative comparison 

between ASIP and CASE is investigated in the next section. 
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Figure 34. Simulation Results for 1,000 Lifetime Mission Decisions. 
 

4.5.3 ASIP and CASE Comparison 

A quantitative comparison of ASIP and CASE was performed using the 

experimental results and DoD’s recommended metrics for assessing weapon systems 

operational effectiveness and efficiency [10].  The recommended metrics are as follows 

along with their corresponding definitions and formulas: 

• Materiel Reliability (MR) – a measure of the probability the system will perform 
without failure over the specific interval.  

 

  𝑀𝑅 = 𝑀𝑇𝐵𝑀 = 𝑈𝑝𝑡𝑖𝑚𝑒
# 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐴𝑐𝑡𝑖𝑜𝑛𝑠

 

 

  Where MTBM: Mean Time Between Maintenance 

• Mean Down Time (MDT) – the average total time required to restore an asset to 
its full operational capabilities. 

 

  𝑀𝐷𝑇 = 𝑇𝑖𝑚𝑒 𝑝𝑒𝑟 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 ∗ # 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 
# 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐴𝑐𝑡𝑖𝑜𝑛𝑠
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• Materiel Availability (MA) – a measure of the percentage of time a system is 
operationally capable of performing an assigned mission at a given time, based on 
materiel condition. 

 

   𝑀𝐴 = 𝑀𝑇𝐵𝑀
𝑀𝑇𝐵𝑀+𝑀𝐷𝑇

 

 

• Ownership Cost (OC) – balances the sustainment solution by ensuring the O&S 
costs associated with materiel readiness are considered when making decisions.   

 

  𝑂𝐶 = # 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 ∗ 𝐶𝑜𝑠𝑡 𝑃𝑒𝑟 𝑀𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒 𝐴𝑐𝑡𝑖𝑜𝑛𝑠 

For CASE/ASIP metric comparison, certain assumptions must be made regarding 

labor cost, maintenance down time, repair cost, etc. Table 4 shows the input assumptions 

for performing the metric calculations.  These assumptions were selected from a recent 

cost benefit study performed by the Boeing Company for the Air Force Research 

Laboratory (AFRL) on a similar airframe component [23].  Also for CASE, only a single 

lug and the left side in the vertical direction over its operational lifetime was considered. 

Using the assumptions and formulas, the efficiency metrics were calculated.  

First, the metrics using the ASIP process were calculated to serve as a baseline.  Then, 

calculations were performed on a low-level SHM system and a high-level SHM system.  

The low-level SHM system requested a maintenance action whenever a crack of any size 

was detected.  In contrast, the high-level SHM system called for maintenance based on 

risk using pessimistic and optimistic decision makers, as discussed in the previous 

section.  Table 5 summarizes the calculated metrics for each monitoring approach 

investigated during this experiment.  
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Table 4. Simulation Input Assumptions and Parameters Description 
 

Parameter Description Wing Spar Attachment 
Number of 
locations 

Quantity of locations or 
area per platform 

2 corner cracks, left and right sides, in the vertical 
direction 

Inspection 
Time 

Time that covers accessing 
and inspecting all areas; 
assume both sides are 
inspected at the same time 

200 labor hours 

Inspection 
Interval 

Time between inspections  
(ASIP) 

860 flight hours 

Normal 
Repair Time 

Time to do repairs; assume 
these areas are already 
accessible due to inspection 

200 labor hours 

Normal 
Repair  
Additional 
Cost 

Cost outside of repair labor, 
such as materials and 
support equipment; used for 
scheduled and unscheduled 
repairs. 

> $100K 
(For a new clevis when a crack is found) 

Extensive 
Repair Cost 

Cost when crack requires 
extensive repair to bring the 
platform back to service 

> $100K 
(For a new clevis when a crack causes fuel to leak) 

Structure 
Replacement 
Time 

Time to remove and replace 
a structure, when applicable 

~200 labor hours 

Labor Rate Labor cost per hour to 
perform maintenance 

$80.00/hour 

 

Table 5. Summary of Metrics Calculations 
 

 ASIP Low 
level 

High 
Level 
(Pessimistic) 

High 
Level 
(Optimistic) 

% Dif 
(Min) 

% Dif 
(Max) 

MA 0.878 0.972 0.981 0.981 +10.7 +11.7 
MR (hrs) 860 8600 12816 12888 +900 +1399 
OC ($) 192000 40000 40000 40000 -79 -79 
MDT (hrs) 120 250 250 250 +108 +108 

 

CASE produced improved values over the current ASIP process for three of the 

four evaluation metrics for all SHM systems investigated.  That is, MA and MR increased 

by a minimum of 10.7 % and 900%, respectively.  In addition, OC decreased by 79%.  

However, the MDT increased by 108%, which seems counterintuitive given the increase 

in MR or MTBM.  Details of these calculations are shown in Table 6.  
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After further examination, the MDT result is not so surprising.  Since CASE only 

conducts maintenance when a repair is needed (not for inspections), and because the 

repair time is greater than the ASIP inspection time, the MDT increased.  A large 

percentage of ASIP’s down time is due to structural inspections.  In fact, an actual 

structural repair would only be performed once during the ten scheduled maintenance 

intervals.  The total down time for ASIP and CASE (low-level) for 8600 flight hours is 

shown in Figures 35 and 36, respectively.  The graph indicates that ASIP total down time 

over this time interval is 1200 hours, and CASE total down time is only 250 hours (one 

maintenance request).  Although the MDT for CASE is greater than ASIP’s, its total 

down time is much less.  In fact, CASE decreased the total down time by 79%, which 

explains the improvement in MR or MTBM. 

 

    
Figure 35. Total ASIP Down Time for 8600 Flight Hours 

 

 

    

Figure 36. Total CASE Down Time for 8600 Flight Hours 
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Table 6. Metrics Calculation Results 
 

ASIP Metrics Calculations 
Input Parameters  Calculations (ASIP) 

Maintenance Interval (hrs) 860 MA 0.878 
Time/inspection (hrs) 100 MR (hrs) 860 
Number of inspections 10 OC ($) 192000 
Normal repair time (hrs) 200 MDT (hrs) 120 
Number of repairs 1   
Man-hour labor 2   
Labor rate ($/hr) 80   
Operational time (hrs) 8600   

(CASE) Low-Level SHM Metrics Calculations 
Input Parameters Calculations (SHM I) 

Maintenance Interval (hrs) 8600 MA 0.972 
Time/inspection (hrs) 100 MR (hrs) 8600 
Number of inspections 0 OC ($) 40000 
Normal repair time (hrs) 250 MDT (hrs) 250 
Number of repairs 1   
Man-hour labor 2   
Labor rate ($/hr) 80   
Operational time (hrs) 8600   

(CASE) High-Level SHM Metrics Calculations 
Input Parameters Calculations (Pessimistic) 

Maintenance Interval (hrs) 12816 MA 0.981 
Time/inspection (hrs) 100 MR (hrs) 12816 
Number of inspections 0 OC ($) 40000 
Normal repair time (hrs) 250 MDT (hrs) 250 
Number of repairs 1   
Man-hour labor 2   
Labor rate ($/hr) 80   
Operational time (hrs) 12816   

(CASE) High-Level SHM Metrics Calculations 
Input Parameters Calculations (Optimistic) 

Maintenance Interval (hrs) 12888 MA 0.981 
Time/inspection (hrs) 100 MR (hrs) 12888 
Number of inspections 0 OC ($) 40000 
Normal repair time (hrs) 250 MDT (hrs) 250 
Number of repairs 1   
Man-hour labor 2   
Labor rate ($/hr) 80   
Operational time (hrs) 12888   
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Let’s revisit the selected guiding principles discussed earlier to determine if they 

were used during the CASE demonstration.  Table 3 above depicted a snapshot of the 

decisions made by the state selection module during the simulation.  From this table, the 

guiding principles exercised can be determined via the operations of CASE.  This process 

is illustrated next:  

• Consciousness – At cycle 41,000 and 41,500, the predicted (i.e., model or 
simulation) estimates were selected.  This condition only occurs if the primary 
and secondary estimates from the unconscious system (i.e., zombie system) are 
unacceptable.  The model/simulation function is only utilized in the conscious 
mode.   

• Explicit Representation – Cycle 42,500 is a good example of explicit 
representation.  The output of each state estimation process (REG1, NN1, REG2 
and NN2) is a crack length value, which makes them explicit representations.  
However, for this particular case (i.e., cycle 42,500), no further processing was 
required since the primary estimates were chosen (i.e., no request for addition 
data).   

• Coalition of Neurons – Cycles 42,000 through 43,000 exhibit the coalition of 
neurons principle.  Each estimate in the same row marked with an ‘X’ are 
averaged together to form a coalition.      

• Unconscious – The unconscious mode is illustrated at cycle 42,500 since the 
primary estimates were chosen (REG1 and NN1) without interference from the 
conscious system.  

• Attention/Binding – At cycle 42,000, CASE demonstrated the “top-down” 
attention mode because the secondary estimates were only active at the request of 
the conscious system.  In this scenario, the secondary states were selected.  
Conversely, during cycle 42,500, the “bottom-up” attention mode was illustrated.  
This is evident because the primary estimates were selected without any 
directions from the conscious system.  Binding occurred with all of the estimates 
since CASE uses a least two different processing methods (e.g., REG1 and NN1) 
before deciding on a state.  The REG and NN models could be regarded as 
observing the same object from different aspects.  The REG model is linear 
method, while the NN is a non-linear process.  In addition, the REG and NN 
models do not use the same features as described in section 4.5.2.2.      
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Table 1 above depicted the correlation between the conscious framework 

attributes and the SIT/Quest tenets.  From this relationship, it is safe to infer that all the 

SIT/Quest tenets in Table 1 were utilized since their corresponding attributes were 

exhibited. 

4.5.4 Summary 

CASE is demonstrated via an SHM application. A representative airframe 

component is used in a simulated fatigue experiment to compare CASE with the current 

ASIP process.  CASE and ASIP processes are described in detail.  The DOD metrics for 

maintaining aircraft are used for comparing CASE with ASIP.  

 

    

  



 

64 

 

V. Conclusion 

5.1  Overview 

This chapter discusses the contributions of this research and provides 

recommendations for future work.  Furthermore, it describes how the research objectives 

were achieved and concludes with a summary of the research. 

5.2 Contributions 

The current research makes contributions in the area of machine conscious 

architectures.  It culminated in a design, development and demonstration of a general 

purpose architecture for information processing and decision making (i.e., CASE).  The 

motivation behind CASE is to engineer a solution for applications that have not been 

successfully addressed through traditional computational intelligence techniques.  This 

novel architecture was designed to mimic key characteristics of human cognition.  

Specifically, it incorporates particular features of the unconscious and conscious 

processes of human cognition.  Although several researchers have developed 

architectures to mimic specific functionalities [2] [4] [25] [30] of consciousness, the 

“hard problem” of creating artificial phenomenal states has not been adequately 

addressed during these investigations.  

The uniqueness in this research is that CASE incorporates guiding principles for 

consciousness recommended by [8] [22] [28] to include key characteristics of both 

functional and phenomenal behavior.  The current research demonstrated each of the 

selected key characteristics of consciousness via CASE using software simulation.  These 

guiding principles do not ensure the generation of phenomenal states; however, by using 
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the recommended guidance, a framework emerges to further the investigation of MC and 

phenomenal states. 

CASE was demonstrated in a selected application to determine its engineering 

advantages.  It was used in an SHM application to autonomously monitor the integrity of 

a flight critical airframe component, and it automatically generated a timely maintenance 

recommendation when unacceptable cracking was detected.  Metrics computed from 

experimental results demonstrated that using CASE is more effective and efficient than 

the currently employed maintenance approach (i.e., ASIP).  Over the lifetime of the 

investigated component, operational availability increased by a minimum of 10.7%, 

operational cost decreased by 79%, and maintenance intervals (i.e., MTBM) increased by 

a minimum of 900%.  

5.3 Future Work 

The research field of MC is in its infancy, and therefore, the opportunity for future 

research is bountiful.  However, developing a standard framework (i.e., architecture) to 

investigate the “hard problem” of phenomenal states (i.e., qualia) is paramount.  

Recommendations of future work to address this critical problem are given below using 

the current research as the point of departure.   

5.3.1  Tenets/Attributes of Consciousness 

The current research used five of the recommended conscious framework 

attributes and their associated functional and behavioral tenets to illustrate in CASE.  

Future research needs to incorporate more of these recommended tenets into a single 

architecture for continued advancement in creating a general purpose MC framework.  
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This approach will provide structure for researchers to further the investigation of MC, 

specifically phenomenal states.  A complete list of the QUEST tenets is provided at [26].  

It is recommend that the next tenets integrated into CASE be chosen from the QUEST 

tenets of qualia since they attempt to capture the characteristics of phenomenal states 

(i.e., qualia).   

5.3.2 Engineering Applications 

Additional demonstrations are required to further mature the MC framework and 

investigate the engineering advantages enabled by these systems.  Rogers et al. provided 

a list of diverse problems applicable to MC solutions.  Examining the results from these 

experiments will allow for the adding and/or removing of tenets as needed, enabling the 

establishment of design criteria for developing MC systems since one does not currently 

exist.          

5.3.3 Evaluation Criteria 

Lastly, MC research needs to focus on creating evaluation criteria for 

architectures/frameworks.  Currently, there is no way to determine whether or not an MC 

system has been successfully developed [21] [25].  Once a design standard has been 

established, the accompanying assessment process should ensue to determine whether or 

not the MC framework was successfully designed.  Again, this process will create a 

structure for MC researchers to follow.  

5.4 Summary  

This research designed, developed and demonstrated an MC architecture, CASE, 

conforming to key guiding principles of consciousness.  A detailed design of CASE was 
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described, along with illustrations of the selected key features of consciousness.  CASE 

was then demonstrated in an SHM application to determine if it provided an engineering 

advantage compared to the current technique.       
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