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COMPUTATIONAL DESIGN OPTIMIZATION
UNDER UNCERTAINTY OF SYSTEMS WITH
NONLINEAR AEROELASTIC CONSTRAINTS

FINAL REPORT
GRANT FA9550-10-1-0353

Samy Missoum
Aerospace and Mechanical Engineering Department

University of Arizona, Tucson

1 Abstract
The work funded through this grant has enabled the development of a new method-
ology to substantially facilitate the design of systems with aeroelastic constraints.
Techniques focusing on the optimal design and the propagation of uncertainties have
been developed. The fundamental paradigm shift in this work stems from the use
of a classification-based approach to construct explicit “decision” boundaries such as
stability boundaries. This enables one to manage problems with discontinuities (e.g.,
problems with subcritical limit cycle oscillations) or problems with a large number
of constraints. This approach has been used as the foundation for reliability-based
design optimization and multifidelity algorithms for the reduction of computational
time. The proposed techniques have been successfully applied to several design ex-
amples with aeroelastic constraints.

2 Objectives

The main objective of this grant was to introduce a drastically novel methodology
for the optimal design under uncertainty of systems with aeroelastic constraints. The
need for a new methodology stems from the presence of major hurdles such as the
large computational times associated with aeroelasticity simulations, response dis-
continuities, high sensitivities to uncertainties, and a large number of failure modes.

During the two year grant, the objective of the first year was to demonstrate
the applicability and feasibility of the new solution schemes with a focus on the
construction of stability boundaries using Support Vector Machines (SVMs). A par-
ticular focus was on problems with discontinuous behaviors encountered in the case

1



of sub-critical limit-cycle oscillations (LCOs). In particular, the objective was to in-
troduce uncertainty and perform reliability-based design optimization (RBDO). The
objective of the second year was to use realistic simulations from a commercial code
(ZAERO) and develop new strategies to reduce the computational burden required
for the construction of stability boundaries (multifidelity approach) and to perform
design optimization.

3 Methodology and accomplishments

The methodology is based on the construction of explicit decision boundaries (bound-
aries of the feasible or failure region) using a Support Vector Machine (SVM) [1].
Because it is a classification technique, as opposed to an approximation technique,
it has the advantage of handling problems with discontinuous and binary responses.
In addition, the construction of explicit boundaries provides a flexible framework
to propagate uncertainties with multiple failure modes, thus greatly enhancing the
potential for optimal and reliable designs.

This work is the result of a fruitful and intense collaboration with Dr.
Phil Beran at AFRL/RBSD, Wright Patterson Air-Force Base, OH.

The research during the two years has been characterized by the following mile-
stones:

3.1 Construction of explicit boundaries. Nonlinear aeroleas-
ticity.

A methodology for the construction of explicit stability (flutter and/or divergence)
boundary has been developped. The boundary is constructed using a design of ex-
periments and an SVM which separates stable and unstable configurations. Figure
3.1 provides an example of flutter boundary for a two degree-of-freedom airfoil:
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Figure 1: Example of construction of explicit flutter boundary for a two
degree-of-freedom airfoil.

This approach is particularly useful for problems with discontinuities. This is the
case for systems that exhibit sub-critical limit cycle oscillations (LCO). Consider the
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case of the two-degrees of freedom airfoil with structural nonlinearities (i.e., nonlinear
stiffness). The airfoil can exhibit sub-critical LCO which happen at lower speed that
the predicted linear flutter velocity (FIgure 3.1). By using clustering techniques,
the discontinuities can be detected, thus providing the classification to construct the
explicit sub-critical LCO boundary [2].
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Figure 2: Construction of explicit boundaries for sub-critical LCO. Detec-
tion of the discontinuities, classification and construction of SVM.

3.2 Probability of failure and Reliability-based design opti-
mization.

Once the boundary is created, one can easily propagate uncertainties, calculate prob-
abilities of failure and perform reliability based design optimization. For instance, we
have solved a problem where one wants to minimize weight while making sure that
subcritical LCOs do not appear with a given probability [2]. A new approach has
also been developed to obtain a relatively conservative probability of failure using
probabilistic support vector machines [3].

3.3 Multifidelity models
An important milestone in this research has been the development of a scheme to
handle multiple levels of fidelity (e.g., low and high) in order to limit the problems
due to large computational times. This is a major step towards the design of full
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scale reliable optimal aerospace systems. In this research, the construction of explicit
stability boundaries can be enhanced by using lower and “cheaper” models as well
as experimental data. A sampling scheme has been developed with the basic idea
of selecting the region where high fidelity data need to be used. An example is the
construction of a nonlinear flutter boundary based on the linear flutter boundary.
Figure 3 provides an example for the two degree-of-freedom airfoil [4].

Figure 3: Example of construction of “high fidelity” (nonlinear) explicit
flutter boundary based on a lower fidelity (linear) flutter boundary.

Another example is the construction of boundaries of regions of the design space
where the deflections due to a gust are smaller than a certain value. This was applied
to a General Transport Aircraft model available from ZONA Technology. The lower
fidelity model is a simple intuitive model whereas the higher fidelity model is the
finite element model subjected to a gust (Figure 4).

Figure 4: Lower and higher fidelity boundary for wing tip deflection for a
GTA subjected to gust. GTA model from ZONA Technology

In the second year of this research, the multifidelity scheme was significantly
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improves to reduce the number of calls to the high fidelity models. The new algorithm
is described in detail in [5]. The approach was applied to the following analytical
example:
Consider the ndimensional problem. The low-fidelity boundary is given as:

0.16−
n∑

i=1

(xi − 0.5)2 = 0 (1)

And the high-fidelity boundary is:

0.16−
n∑

i=1

(xi − 0.5− 0.02× (−1)i)2 = 0 (2)

The results are depicted in Figure 3.3. The plot gives the error as a function
of the number of high-fidelity function calls for the proposed multifidelity scheme, a
traditional design of experiments (CVT), and the adative sampling scheme based on
high-fidelity calls only (EDSD). The plot shows a clear advantage of the approach
compared to the other techniques.
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Figure 5: Comparison of the multifidelity approach, traditional design of experiments
(CVT), and adative sampling based on high fidelity only (EDSD).

In addition, the multifidelity scheme was applied to an aeroelasticity problem
solved using ZAERO [[6]]. The objective was to construct the the stability boundary
which includes both flutter and divergence. the wing planform and the parameters
are depicted in Figure 3.3. The low and high fidelity scheme are segregated based on
the number of structural finite elements and the number of aero-boxes (see Table 3.3
and Figure 3.3).

The stability boundary has been constructed in the three dimensional space with
the chord ratio (λ), the sweep angle, and the half. The low fidelity and high fidelity
boundaries are depicted in Figure 3.3.
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Figure 6: Parameters of wing planform for construction of stability boundary using
the new multifidelity scheme.

Parameter LF HF
elements (chord) 10 15

elements (semi-span) 24 36
modes 10 15

aero-boxes (chord) 10 15
aero-boxes (semi-span) 12 18

CPU time 1 min 5 min

Table 1: Low (LF) and high (HF) fidelity configurations for wing model.

For the 3D case, the convergence of the multifidelity scheme is depicted in Figure
3.3. As for the analytical example, it is compared to EDSD and a DOE.

3.4 Constrained Efficient Global Optimization
In order to perform an effective and efficient optimization with an SVM-based stability
constraint, the PI has developed an approach based on Efficient Global optimization
(EGO) for the objective function [7]. EGO allows one to select samples that have
the highest “expected” improvement for a given objective function approximated as
a Gaussian process.

A sampling scheme has been developed to maximize the expected improvement,
EI, while refining a constraint on the probability of feasibilityP (+1|x). The prob-
ability of feasibility P (+1|x) is calculated using a novel probabilistic SVM model,
which accounts for the probability of misclassification [8].

The overall scheme is a two-level optimization (details are available in [8]). A
first stage minimizes globally the objective function by maximizing the expected
improvement (EI) and constraining the probability of feasibility P (+1|x):

low−fidelity high−fidelity

Figure 7: Low (LF) and high (HF) fidelity configurations for wing model.
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Figure 8: High and low fidelity stability boundaries. Two failures modes: divergence
and flutter.
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Figure 9: Comparison of HF function evaluations for the multifidelity scheme (MF-
EDSD), HF-based EDSD, and Central Voronoi Tesselation designs of experiments
(DOE).

max
x

EI(x)

s.t. P (+1|x) ≥ 0.5

The second level refines the SVM boundary locally within a hypersphere and is based
on the probability of misclassification Pm:

max
x

||x− xnearest||
s.t. Pm(x) ≥ 0.5

||x− xc|| ≤ R(k)
u

Details on the update of the radius Ru at each iteration is given in [8].
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Application example. Consider a wing for which one wants to find the thickness
distribution (modeled with an exponential) along with the sweep angle, taper ratio,
and span (a total of five variables) so as to minimize weight while maintaining a stable
configuration (accounting for flutter and divergence). Figure 10 provides a depiction
of the wing and its optimal thickness distribution. Figure 11 provides the evolution
of the objective function (weight) and an example of representation of the stability
boundary.

The optimization problem to find the optimal planform and optimal thickness
distributions are:

min
x

Weight =

∫ b
2

0

ρt(y)c(y)dy

s.t. s(x) ≤ 0 (i.e.,x ∈ Ωstable)

xmin ≤ x ≤ xmax

Where the vector of design variables x is x = {θ, t1, t2, b, cr}T and the exponential

thickness ditribution is defined as: t(y) = t1e
− 2t2y

b . Convergence results and optimal
results are provided in the following figures.
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Figure 10: Wing planform to optimize for weight with stability constraint. Optimal
thickness distribution of the wing.
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